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ASYMPTOTICS OF q-PLANCHEREL MEASURES

VALENTIN FÉRAY AND PIERRE-LOÏC MÉLIOT

Abstract. In this paper, we are interested in the asymptotic size of rows and columns of a random
Young diagram under a natural deformation of the Plancherel measure coming from Hecke algebras. The
first lines of such diagrams are typically of order n, so it does not fit in the context studied by P. Biane

and P. Śniady. Using the theory of polynomial functions on Young diagrams of Kerov and Olshanski,
we are able to compute explicitly the first- and second-order asymptotics of the length of the first rows.
Our method works also for other measures, for instance those coming from Schur-Weyl representations.

1. Introduction

1.1. Background. Given a combinatorial family of planar objects, it is natural to ask if, with a good
rescaling, there is a limiting continuous object when the size tends to infinity. In the case of Young
diagrams endowed with Plancherel measure, this question has been solved in 1977 independently by A.
Vershik and S. Kerov [KV77] and B. Logan and L. Shepp [LS77]. Then V. Ivanov and G. Olshanski
[IO02], using unpublished notes of S. Kerov, have been able to describe the fluctuations of diagrams
around this limit shape.

The Plancherel measure is natural when we look at Young diagrams of a given size n (whose set
will be denoted Yn), because it is related to the regular representation of Sn. But there are many
other interesting measures on Young diagrams and we can look for a limiting continuous object in these
cases also. P. Biane has proven the existence of a limiting shape under some general conditions on the
character values of the representation associated to the measure [Bia01]. This includes some natural
representations, like the one on (CN )⊗n appearing in Schur-Weyl duality under some conditions on n and

N . In this context, the second-order asymptotics has been studied by P. Śniady [Śni06].

The results mentioned above give a limit shape for the Young diagrams rescaled by 1/
√
n, where n

is the number of boxes of the diagram. In particular, the existence of a limit shape implies that the
probability that a random diagram has a long row or column (of length ≫ √

n) tends to 0. So it is not
a good formalism to study the asymptotic behavior of non-balanced Young diagrams, such as diagrams
under the q-Plancherel measure.

This measure is a natural q-analog of the Plancherel measure, and it has been introduced first by E.
Strahov in [Str08]. In this paper, he looks at the asymptotic behavior of diagrams under this measure.
By generalizing Kerov’s method of a differential growth model [Ker96], he obtained a limit shape for a
diagram under the q-Plancherel measure with a parameter q depending of the size of the diagrams.

We have mentioned above that, if we fix q, there is no hope to find a limit shape of diagrams rescaled
by 1/

√
n as the first rows or columns are very big. In this paper, we give the precise behavior (first- and

second-order asymptotics) of the length of these first rows or columns (either rows or columns, depending
on the value of q, are of order Θ(n)). This is a good description of the shape of the diagram as almost all
the weight of the diagram lies in these rows or columns. Our method is closed to the one of the papers
[IO02, Śni06].

A natural question arising after this result on q-Plancherel measure is the following. Can our method be
adapted to measures for which typical diagrams have rows of intermediate scaling Θ(nα) with 1/2 < α < 1:
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intermediate between the balanced case (α = 1/2) and the q-Plancherel case (α = 1)? The answer is yes
and, as examples, we look at measures associated to Schur-Weyl duality. In these cases, the method gives
results on the global shape of the diagram, but not the precise behavior of the first rows and columns.
Indeed, as for balanced diagrams, the asymptotic behavior of the lengths of the first rows and columns is
not a direct consequence of the existence of the limit shape. For instance, in the case of the Plancherel
measure, a consequent amount of extra work is needed: see [BDJ99, BDJ00, Oko00, BOO00].

1.2. Results.

1.2.1. First rows of a random Young diagram under the q-Plancherel measure. Let us suppose q < 1. In
this paper, we compute the asymptotic behavior (law of large numbers and central limit theorem) of the
vector containing the lengths of the first k rows of a random diagram under the q-Plancherel measureMn,q.
Note that Theorem 1 implies that the k first rows contain asymptotically (1 − qk) × n boxes, therefore
describing the length of theses rows gives a good description of the diagram. As Mn,q−1(λ′) = Mn,q(λ)
(this follows from Definition 1), in the case q > 1, our result gives the asymptotic behavior of the columns,
which are, in this case, the relevant quantities.

Theorem 1 (First order asymptotics). Suppose q < 1. If λ = (λ1 ≥ λ2 ≥ · · · ) denotes a Young diagram
of size n under the q-Plancherel measure ( cf. figure 1), then

∀i ≥ 1,
λi

n
−→Mn,q

(1− q) qi−1;

where the arrow →Mn,q
means convergence in probability.

Figure 1. A random Young diagram λ = (101, 51, 28, 8, 7, 3, 1, 1) of size 200 under the
1/2-Plancherel measure.

Theorem 2 (Second order asymptotics). Under the same hypothesis, if Yn,q,i is the rescaled deviation

√
n

(
λi

n
− (1 − q) qi−1

)
,

then we have convergence of the finite-dimensional laws of the random process (Yn,q,i)i≥1 towards those
of a gaussian process (Yq,i)i≥1 with:E[Yq,i] = 0 ; E[Y 2

q,i] = (1 − q) qi−1 − (1− q)2 q2(i−1) ; cov(Yq,i, Yq,j) = −(1− q)2 qi+j−2.

In particular, two different coordinates Yq,i and Yq,j are negatively correlated. For the readers not
accustomed to the topology of convergence in law, let us give a more concrete version of Theorem 2.
Given ε > 0 and for any positive real numbers x1, . . . , xr, Theorem 2 ensures that, for n big enough:

∣∣∣∣∣P [
∀i ∈ [[1, r]] , |λi − (1− q) qi−1 n| ≤ xi

√
n
]
− 1√

(2π)r detQ

∫ x1

−x1

· · ·
∫ xr

−xr

e−
tXQ−1X

2 dX

∣∣∣∣∣ ≤ ε,

where Q is the symmetric matrix with coefficients Qij = δij (1−q) qi−1−(1−q)2 qi+j−2, which is positive
definite because of the Hadamard rule (in each column, the diagonal coefficient is positive and strictly
bigger than the sum of the absolute values of the other coordinates).
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1.2.2. Other measures. As mentioned in paragraph 1.1, our method is quite general. We can establish
limit shape theorems with different rescalings. As example, in paragraph 6, we introduce some natural
probability measures on Young diagrams. We obtain the following result:

Theorem 3. Let (λn)n be the sequence of random Young diagrams described in paragraph 6.1. Let us
assume N ∼ c · nα with α < 1/2 if we rescaled λn by n1−α in the horizontal direction and nα in the
vertical direction, the new sequence converges in probability towards a rectangle of side c and c−1.

More precisely, for each ε, η > 0, there exists an integer n0 such that, for each n ≥ n0, the border of the
diagram λn is, after rescaling and with probability greater than 1− ε, contained in the hatched area:

×n1−α

×nα

c−1

c

η

Figure 2. Limit shape of a rescaled random diagram under the Schur-Weyl measure of
parameters c > 0 and α < 1/2.

Unfortunately, one can not use this to give the precise behavior of the first row of the diagram. The
only result we have is the following one (which is a consequence of Proposition 22):

Proposition 4. Let λn be the sequence of random diagrams described in paragraph 6.1. Let us assume
that N ∼ c nα with α < 1/2. For any ε > 0, one has λ1 = o(n1−α+ε) in probability.

1.2.3. Longest increasing subsequence. It is well-known that the length of the first row of a Young diagram
of size n under Plancherel measure has the same distribution as the length of the longest increasing
subsequence of a random permutation of size n (under the uniform distribution). Indeed, the shape of
the tableaux obtained by Robinson-Schensted bijection defines a map

Sn −→ {λ ⊢ n},
which sends the length of the longest increasing subsequence on the length of the first row of λ. The
image of the uniform distribution on Sn is the Plancherel measure on Young diagrams of size n, and this
explains the aforementioned result.

Our results on the q-Plancherel measure can also be interpreted in the context of longest increasing
subsequences. Indeed, E. Strahov [Str08] has noticed that the q-Plancherel measure is the image by the
map above of the probability measure defined by

∀ σ, P[σ] = Z · qimaj(σ),

where imaj(σ), called major index, is the sum of the positions of the descents of σ and Z = 1/[n]q! is the
normalization constant such that the probabilities sum to 1. So Theorems 1 and 2 imply the following
result:
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Theorem 5. Let q be a real in ]0, 1[ and n an integer. Consider the distribution on permutations such
that the probability to pick a permutation σ is proportional to qimaj(σ). The length ℓ(σ) of the longest
increasing subsequence of a permutation under this distribution is equivalent in probability to n(1 − q).
Moreover, the rescaled deviation (ℓ(σ)− n(1− q))/

√
n converges in law towards a centered normal law of

variance (1− q)− (1− q)2.

As mentioned in subsection 6.1, the measure considered in section 6 is the image of the uniform
distribution on words of length n with letters from 1 to N by RSK algorithm. Therefore Proposition 4
implies:

Corollary 6. Fix c > 0 and 0 < α < 1/2. Let ℓ be the length of the longest non-decreasing subsequence
of a random word with n letters between 1 and c · ⌊nα⌋. When n tends to infinity, one has in probability:
ℓ = o(n1−α+ε).

1.3. Tools. Since we are looking at measures on diagrams of a given size, irreducible character values on
a given permutation can be seen as random variables. Moreover, in our context, their expectations are
easy to compute. Therefore we would like to express other random variables, linked directly to the shape
of the diagrams in terms of the character value. This can be done thanks to Kerov’s and Olshanski’s
theory of polynomial functions on the set of Young diagrams (see [KO94]). Note that the general idea
described here is already the one used by Kerov for his central limit theorem (see [IO02]).

In this article, we shall use the power sums of Frobenius coordinates. With an adequate gradation on
the functions on Young diagrams, we shall easily find their asymptotic behavior under the q-Plancherel
measure. Going back to the behavior of the first rows is then a technical step.

1.4. Some open questions.

1.4.1. Precise behavior of the first line. Proposition 4 (respectively Corollary 6) gives only an upper bound
for the behavior of the first row of the considered diagrams (respectively the length of the longest non-
decreasing subsequence of a random word). It would be nice to obtain the precise behavior (equivalent
and perhaps fluctuation) of these random variables. If we follow [Oko00], the first step is to study the
asymptotic behavior of the observable pk with a parameter k which tends also to infinity (as quickly as
some power of n for example). Such a result could be deduced from the expression pρ in terms of Σ’s
(normalized characters), but unfortunately, equation (2) is hard to invert.

1.4.2. Concrete realization of power sums in the center of the symmetric group algebras. We will see in
section 3 that the relations between some functions on Young diagrams can be understood as relations
in the center of the symmetric group algebras via the abstract Fourier transform. Therefore, if we want
to understand better the expression of the pρ’s in terms of the Σ’s (and we would like to, see the first
open problem!), one way to do it would be to describe in a nice way the image of the pρ’s by the abstract
Fourier transform. One could also use the power sums of Jucys-Murphy elements which have a simple
definition in CSn and have the same top homogeneous component as the pρ (with a shift of index and
up to a multiplicative constant).

1.5. Outline of the paper. In section 2, we define the q-Plancherel measure and recall its basic pro-
perties. Then, in section 3, we introduce families of observables of diagrams, which will be useful in the
proof of the main theorems. Sections 4 and 5 are respectively devoted to the proofs of Theorems 1 and
2. In section 6, we study other measures with the same tools.
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2. The q-Plancherel measure

In this section, we define and present basic properties of the q-Plancherel measure. The characterization
given in paragraph 2.2 is the one which will be used in the next sections. The algebraic interpretation of
paragraph 2.3 gives some motivation to look at this measure.

2.1. Definition.

Definition 1. The q-Plancherel measure on the set Yn of Young diagrams of size n is the probability
measure Mn,q defined by:

∀λ ⊢ n, Mn,q({λ}) = Mn,q(λ) =
Dλ(q) dimλ

{n!}q
,

where dimλ is the dimension of the irreducible representation of Sn indexed by λ, and Dλ(q) is its generic
degree defined in [GP00, Chapter 8].

This is a natural q-analog of the Plancherel measure defined by E. Strahov [Str08] (for instance, it could
also be defined by a Markov process which generalizes the Plancherel growth process, see figure 3). In
the two next paragraphs, we shall explain why this q-analog is natural in the context of Hecke algebras
and general linear groups in finite characteristic.

D = 1 ; M1,q = 1

1

q+1

q

q+1

D = 1 ; M2,q = 1/(q + 1)M2,q = q/(q + 1)

D = q

q2

q2+q+1

q+1

q2+q+1

q2+q

q2+q+1 1

q2+q+1

M3,q = (2q)/(q2 + q + 1)

D = q2 + q

q3+q

q4+2q3+2q2+2q+1

D = q3

M3,q = q3/(q3 + 2q2 + 2q + 1)q3

q3+q2+q+1

D = q6

M4,q = q6/(q6 + 3q5 + 5q4

+6q3 + 5q2 + 3q + 1)

M3,q = 1/(q3 + 2q2 + 2q + 1)

D = 1

D = q4 + q2
q2+q+1

q3+q2+q+1

q4+q3+q2

q4+2q3+2q2+2q+1

D = q3 + q2 + q

M4,q = (3q)/(q4 + 2q3 + 2q2 + 2q + 1)D = q5 + q4 + q3

M4,q = (3q3)/(q4 + 2q3 + 2q2 + 2q + 1)

1

q3+q2+q+1

D = 1

M4,q = 1/(q6 + 3q5 + 5q4

+6q3 + 5q2 + 3q + 1)

M4,q = (2q2)/(q4 + 3q3 + 4q2 + 3q + 1)

q3+q2+q

q3+q2+q+1

q2+q+1

q4+2q3+2q2+2q+1

Figure 3. Generic degrees, q-Plancherel measures and q-transition probabilities on di-
agrams of size n ≤ 4.
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2.2. Link with representation of the Hecke algebras. The q-Plancherel measure appears naturally
in the abstract harmonic analysis of the Iwahori-Hecke algebras Hn,q. Recall that if n ∈ N and q is a
complex parameter, then Hn,q is the complex associative algebra with generators T1, T2, . . . , Tn−1 and
relations:

braid relations: ∀i, TiTi+1Ti = Ti+1TiTi+1;

commutation relations: ∀ |j − i| ≥ 2, TiTj = TjTi;

quadratic relations: ∀i, (Ti − q)(Ti + 1) = 0.

We recover the symmetric group algebra CSn for q = 1. For any value of q, one can define an element
corresponding to a permutation σ ∈ Sn:

Tσ = Ti1Ti2 . . . Tik ,

where σ = si1si2 · · · sik is a minimal decomposition of σ in elementary transpositions (thanks to the
Matsumoto theorem, the result does not depend on which minimal decomposition we choose). It can
be shown that (Tσ)σ∈Sn

forms a linear basis of Hn,q (see for example [Mat99] or [GP00]). Moreover, if
q 6= 0 is not a root of unity (in the following, we assume that we are in this case, as q is a positive real
number), then Hn,q is a semi-simple algebra abstractly isomorphic to CSn, and have consequently the
same theory of representations: the irreducible Hn,q-modules are parameterized by the partitions of size
n, and each Specht module Sλ(q) has for dimension

dimSλ(q) = dimSλ =
n!∏

(i,j) h(i, j)
(hook length formula).

We will denote by ςλ(q) the trace of the simple module Sλ(q), and by χλ(q) the normalized character,
so that ςλ(q) = (dim λ)χλ(q). Both objects are central linear forms on Hn,q.

Let us consider the regular trace of the Iwahori-Hecke algebra:

τq(Tσ) =

{
1 if σ = id,

0 otherwise.

The decomposition of τq in the basis of normalized q-characters χλ(q) writes as:

τq =
∑

λ∈Yn

Mn,q(λ)χ
λ(q) =

∑

λ∈Yn

Dλ(q)

{n!}q
ςλ(q)(1)

Of course, this characterizes the Plancherel measure. Therefore, if we consider the q-characters on a fixed
element Tσ as a function of the indexing partition λ, its expectation under the q-Plancherel measure
is τq(Tσ), that is either 0 or 1. Using this, we will be able to compute expectations of observables of
diagrams.

Remark 1. We will prove in this article that we have in fact a concentration of the q-characters around
the regular trace, see Corollary 13.

2.3. Interpretation in the representation theory of GLn(Fq). If q = pe is a power of a prime
number, the previous identities may be interpreted in the setting of the representation theory of the
group of invertible n × n matrices GL(n,Fq). Indeed, it is a well-known fact [Iwa64] that the relations
defining Hn,q are those of the convolution algebraC[B(n,Fq)\GL(n,Fq)/B(n,Fq)] = {f ∈ C[GL(n,Fq)] | ∀b, b′ ∈ B(n,Fq), f(bgb′) = f(g)} ,
where B(n,Fq) is the Borel subgroup of GL(n,Fq), containing the invertible upper-triangular matrices.

Now, consider the GL(n,Fq)-module of functions on the flag variety GL(n,Fq)/B(n,Fq) — or, in
other words, right B(n,Fq)-invariant complex functions on GL(n,Fq). Since GL(n,Fq) acts transitively
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on the flag variety, a GL(n,Fq)-endomorphism u of this module is entirely determined by a function
h ∈ C[GL(n,Fq)] such that:

u(1B(n,Fq)) =
∑

g∈G

h(g)1g.
Moreover, the condition u ∈ EndGL(n,Fq) C[GL(n,Fq)/B(n,Fq)] implies that h is left and right B(n,Fq)-
invariant. As a consequence, we have an isomorphism

Hn,q
iso≃ C[B(n,Fq)\GL(n,Fq)/B(n,Fq)]

iso≃ EndGL(n,Fq) C[GL(n,Fq)/B(n,Fq)],

whence a decomposition of the (GL(n,Fq),Hn,q)-bimodule C[GL(n,Fq)/B(n,Fq)] similar to the classical
Schur-Weyl duality between GL(n,C) and Sn:

GL(n,Fq)y

{C[GL(n,Fq)/B(n,Fq)]
}
xHn,q

=
∑

λ∈Yn

Uλ(q)⊗C Sλ(q).

The Uλ(q) are called unipotent modules of GL(n,Fq). Each Uλ(q) is irreducible and of complex dimension

dimUλ(q) = Dλ(q) = qb(λ)
{n!}q∏

(i,j)∈λ{h(i, j)}q
,

where b(λ) =
∑

i(i − 1)λi. Thus, the natural probability measure Mn,q on the set of characters of
Hn,q is also the natural probability measure on the set of unipotent characters of GL(n,Fq). Moreover,
the regular trace τq is just the restriction of the normalized trace of EndCC[GL(n,Fq)/B(n,Fq)] to the
subalgebra of GL(n,Fq)-morphisms, that is to say, Hn,q.

3. Observables of diagrams

In this section, we introduce the algebra of observables of diagrams O. This subalgebra of the algebra
of functions on the set of all Young diagrams Y =

⊔
n∈N Yn is isomorphic to the algebra of (complex)

symmetric functions, and it is known to be a powerful tool in the setting of asymptotic representation
theory of symmetric groups, see [IO02]. In this paper, the authors introduced four algebraic basis of
O: the power sums (pk)k≥1 in the Frobenius coordinates, the power sums (p̃k)k≥2 in the interlacing
coordinates, the normalized characters (Σk)k≥1 and the free cumulants (Rk)k≥2. In the following, we
shall use the power sums pk, the normalized characters Σk and their quantizations Σk,q; this section is
devoted to their presentation.

3.1. Power sums of Frobenius coordinates. If λ is a partition of size n, we recall that its Frobenius
coordinates (ai, bi)1≤i≤d are defined by ai = λi − i and bi = λi

′ − i, with i less than the size d of the

diagonal of the diagram. The modified Frobenius coordinates are (Aλ, Bλ) =
(
(a∗i )1≤i≤d, (−b∗i )1≤i≤d

)

with a∗i = ai + 1/2 and b∗i = bi + 1/2, see figure 4 on the next page. Let us define the function pk on the
set Y of all Young diagrams: pk(λ) is the k-th power sum of the alphabet Aλ − Bλ (with the notations
of λ-rings). In other words,

pk(λ) =

d∑

i=1

(a∗i )
k − (−b∗i )

k.

Note that p1(λ) is simply the size |λ| of the diagram (whence the modification of the coordinates).

We denote by O the algebra generated by the functions (pk)k≥1; it is the algebra of polynomial functions
on Young diagrams introduced by S. Kerov and G. Olshanski in [KO94], but we use here the notations
of [IO02]. It can be shown that the pk are algebraically independent over C, and as a consequence, the
pρ = pρ1pρ2 · · · pρr

(where ρ runs over all partitions) form a linear basis of O. The algebra of observables
of diagrams has therefore a canonical gradation given by:

deg pρ = |ρ| = ρ1 + ρ2 + · · ·+ ρr.
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Figure 4. Modified Frobenius coordinates of a Young diagram drawn in Russian style.
For instance, a∗1 is here equal to 31/2, and −b∗2 = −23/2.

3.2. Normalized characters. Another graded algebraic basis may be considered: the normalized cha-
racters (Σk)k≥1. If ρ and λ are two partitions of respective sizes k and n, we define the following function
on Y :

Σρ(λ) =

{
n↓k χλ(σρ 1n−k) if k ≤ n

0 if k > n,

where n↓k = n(n − 1) · · · (n − k + 1) is the k-th falling factorial of n, the partition ρ′ = ρ 1n−k is the
partition ρ completed with parts of size 1, and σρ′ is any permutation in Sn with cycle decomposition of
type ρ′.

In the case where λ has only one part (character values on cycles), by using the Frobenius formula
ςλ(ρ) = 〈sλ | pρ〉 (cf. [Mac95, §1.7], and in particular the corollary 1.7.7), it can be shown that Σk is
a polynomial in the (pl)l≤k. To compute these polynomials, one can use the following Proposition (see
[IO02, Propositions 3.3 and 3.4, 4.4 and 4.5]):

Proposition 7. If k ≥ 1, the observable Σk writes as

(2) Σk = [tk+1]



− 1

k

k∏

j=1

(1− (j − 1/2)t) · exp




∞∑

j=1

pj t
j

j
(1− (1− kt)−j)







 .

As a consequence, the top homogeneous component of Σk is pk, and (Σk)k≥1 is a algebraic basis of the
algebra O.

Examples 1. Σ1 = p1, Σ2 = p2, Σ3 = p3 − 3
2p11 +

5
4p1, Σ4 = p4 − 4p21 +

11
2 p2.

By abstract Fourier transform Z(CSn) ↔ CS∨
n = CYn, we may interpret a function on Young diagrams

with n boxes as an element of the center of the group algebra CSn. Thus a function f on all Young
diagrams can be seen as sequences of elements (fn)n≥1 with fn ∈ Z(CSn) for all n. In the case of the

normalized characters Σρ, this sequence has a very nice expression, see [Śni06]:

(Σρ1,ρ2,...,ρr
)n =

∑

a(i,j)∈[[1,n]]
ai,j 6=a(i,j)′

(a11, a12, . . . , a1ρ1) (a21, a22, . . . , a2ρ2) · · · (ar1, ar2, . . . , arρr
)

=
∑

∀i, Ai∈A(n, ρi)
∀i6=j, Ai∩Aj=∅

C(A1)C(A2) · · · C(Ar),(3)
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where A(n, k) is the set of k-arrangements of [[1, n]] and C(A) is the cycle corresponding to a sequence A
of distinct numbers. It is easy to check that these elements verify

∀λ ∈ Y , Σρ(λ) = χλ
(
(Σρ)|λ|

)
.

Hence, the element in the equation (3) corresponds to the function Σρ on Young diagrams by the abstract
Fourier transform, so the notation are coherent. Moreover, formula (3) allows to do computations for all
n simultaneously and in this case, we will forget the index n (for example in next paragraph).

3.3. Products of normalized characters. As abstract Fourier transform is a ring homomorphism,
the convolution product in the center of the symmetric group algebra corresponds to the point-wise
multiplication of functions over Young diagrams of size n. But, in Z(CSn), one has

Σµ ·Σν =
∑

∀i, Ai∈A(n, µi)
∀i6=j, Ai∩Aj=∅

∑

∀i, Bi∈A(n, νi)
∀i6=j, Bi∩Bj=∅

C(A1)C(A2) · · · C(Ar)C(B1)C(B2) · · · C(Br).

As the Ai’s and the Bj ’s may have elements in common, this is not equal to Σµ∪ν . Let us split this double
summation over ai,j and bk,l in the following way. To each indexing sequence ai,j , bk,l, we associate the
partial matching between the sets IA = (i, j)1≤j≤µi

(indices of the a’s) and IB = (k, l)1≤k≤νl , which links
(i, j) and (k, l) if and only if ai,j = bk,l. When we sum the quantity

(4) C(A1)C(A2) · · · C(Ar)C(B1)C(B2) · · · C(Br)

over indexing sequences with a given partial matching, we obtain Σρ for some ρ depending on the
matching. Indeed, if we know which of the ai,j ’s are equal to which of the bk,l’s, the product (4) can be
rewritten as a product of cycles with disjoint supports in a way which does not depend of the values of
the a’s and of the b’s. Finally,

Σµ ·Σν =
∑

Σρ(M),

where the sum runs over partial matchings M of the set of indices of the a’s with the set of indices of
the b’s.

Example 2. Let us compute Σ2 ·Σ3. The set of indices of the a’s (resp. the b’s) is {1, 2} (resp. {1, 2, 3}).
• If A and B have no common element, the product C(A)C(B) is a 3-cycle multiplied by a 2-cycle

with disjoint supports and the corresponding sum is Σ3,2.
• If a1 = b1, but all other elements are different, then (a1 a2 a3) · (a1 b2) = (a1 b2 a2 a3). When

we sum on all possible values of a1, b2, a2, a3 (all different), one obtains Σ4.
The result is the same for any of the 6 matchings of size 1.

• If a1 = b1 and a2 = b2, then (a1, a2, a3) · (a1, a2) = (a1, a3)(a2). When we sum on all possible
values of a1, a2, a3, one obtains Σ2,1 (note, that here it is important to remember that we have
to sum over indices a2 even if its value does not change the permutation).

Once again, the result is the same for any of the 6 matchings of size 2.

Thus, Σ2 ·Σ3 = Σ2,3 + 6Σ4 + 6Σ2,1.

In general, one has the following properties:

(1) The size of ρ(M) is simply |µ|+ |ν| − |M | where |M | is the size of the matching.
(2) The term corresponding to the empty matching is Σν∪µ. Thus,

Σν ·Σµ = Σν∪µ +
∑

|ρ|<|µ|+|ν|

cρν,µ Σρ.

By induction, one obtains that, if k1 ≥ k2 ≥ . . . ≥ kr:

Σk1 ·Σk2 · · ·Σkr
= Σk1,...,kr

+
∑

|ρ|<k1+···+kr

cρk1,...,kr
Σρ.
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This triangular relation can be inverted, so the Σρ are in the algebra O and span it linearly.
Moreover, Σρ is a non-homogeneous element of degree |ρ| and its homogeneous component of
maximal degree is pρ.

(3) If µ = (l) and ν = (m), all matchings of size 1 give a term Σl+m−1. As they are ml such
matchings, one has

Σl Σm = Σl,m +mlΣl+m−1 + (terms of degree at most l +m− 2).

3.4. Another product. In this paragraph, we recall the definition of the disjoint product • on O (see

[Śni06]), which will be useful in section 5. It is enough to give the value of the product of two elements
of the basis Σρ:

Σµ •Σν = Σµ∪ν .

If we look at the description of the classical product on the Σµ given at the previous paragraph, taking
the product • consists in keeping in the result the terms indexed by families of disjoint indices. This
remark can be generalized to expression of the kind:

XG
i1,...,ir

=
∑

∀j, Aj∈A(n,ij)
G(ai,j)∈G

C(A1) · · ·C(Ar),

where G(ai,j) is, as in the previous paragraph, the graph describing which of the ai,j ’s are equal and G
a collection of admissible graphs. The following lemma will be useful in subsection 5.1:

Lemma 8. The disjoint product of two such expressions is given by:

XG
i1,...,ir

•XG′

i′1,...,i
′
r
= XG⊔G′

i1,...,ir ,i′1,...,i
′
r
,

where G⊔G′ is the collection of all graphs obtained by disjoint union of a graph of G and a graph of G′. In
other words, the disjoint product of two expressions as above is obtained by keeping in the usual product
only terms such that the two families of indices are disjoint.

Proof. As in the previous paragraph, the summation over sequences of indices corresponding to a given
graph gives a term Σρ. Therefore:

XG
i1,...,ir

=
∑

G∈G

Σρ(G)

and we have

XG
i1,...,ir

•XG′

i′1,...,i
′
r
=

∑

G∈G

∑

G′∈G′

Σρ(G),ρ(G′);

= XG⊔G′

i1,...,ir ,i′1,...,i
′
r
. �

3.5. q-characters. In this paragraph, we present a quantization of the Σ-basis of O corresponding to
renormalized q-characters of the Iwahori-Hecke algebras. In [Ram91], A. Ram uses the Schur-Weyl decom-
position of (Cm)⊗n in irreducible (Uq(sl(m,C)),Hn,q)-bimodules to compute explicitly the characters of
the Iwahori-Hecke algebra Hn,q — the reader can also consult [RRW96] and [RR97]. These computations
lead to a generalization of the usual Frobenius-Schur formula. Recall that the latter writes as:

∀ρ ∈ Yn, pρ(X) =
∑

λ∈Yn

ςλ(ρ) sλ(X).

First, we need a q-analog of the character value ςλ(ρ). Given two permutations σ and τ in the same
conjugacy class of Sn, the T -basis elements Tσ and Tτ can have different traces in a Hn,q-module: for
instance, (1, 2) and (1, 3) are conjugate in S3, but χ(T(1,2)) = q and χ(T(1,3)) = q3 if we consider the one-
dimensional index representation. However, if σ and τ are of minimal Coxeter length in their conjugacy
classes, then one has χ(Tσ) = χ(Tτ ) for any character χ. Moreover, the values of a character χ on these
particular elements determine χ, see [Ram91, Propositions 5.1 and 5.2] or [GP00, §8.2] for the general
case of an Iwahori-Hecke algebra of a Coxeter group. Consequently, if

σρ = (1, 2, . . . , ρ1) (ρ1 + 1, ρ1 + 2, . . . , ρ1 + ρ2) · · · (ρ1 + · · ·+ ρr−1 + 1, . . . , ρ1 + · · ·+ ρr),
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then ςλ(q) is entirely determined by the values ςλ(ρ, q) = ςλ(Tσρ
, q), where ρ runs over Yn. As in the

case q = 1, we denote by χλ(ρ, q) the rescaled character value (divided by the dimension of the module).

We shall also need a q-analog of the power sum pk(X). Let q̃k(X, q) be the symmetric function defined
by the formulas

q̃k(X, q) =
qk

q − 1
hk(X(1− q−1)) (λ-ring notations, X is an alphabet and q−1 is a variable),

=
qk

q − 1

∑

µ∈Yk

(1− q−1)ℓ(µ) mµ(X) =
1

q − 1

∑

µ∈Yk

(qµ − 1)(zµ)
−1 pµ(X),

where qµ − 1 means
∏r

i=1 (q
µi − 1), and where zµ equals

∏
i≥1 i

mi mi! if µ writes multiplicatively as

1m12m2 . . . sms . This is a slightly modified version of the Hall-Littlewood polynomial Pk(X, q−1) described
in [Mac95, Chapter 3]. We can now state Ram’s generalization of Frobenius-Schur formula:

Proposition 9 (q-Frobenius-Schur formula). If q̃ρ = q̃ρ1 · · · q̃ρr
, then the following generalized Frobenius-

Schur formula holds:

∀ρ ∈ Yn, q̃ρ(X, q) =
∑

λ∈Yn

ςλ(ρ, q) sλ(X).

Many combinatoric rules follow from Proposition 9, e.g., a quantization of the classical Murnaghan-
Nakayama rule, see [RR97, §2]. For the asymptotic analysis of the q-Plancherel measures, we shall use a
triangular relation between q-characters and standard characters:

ςλ(ρ, q) = 〈q̃ρ(X, q) | sλ(X)〉 = qn

(q − 1)ℓ(ρ)
〈
hρ(X − q−1X)

∣∣ sλ(X)
〉

=
qn

(q − 1)ℓ(ρ)

∑

ν∈Yn

〈
hρ(X − q−1X)

∣∣ pν(X − q−1X)
〉 〈

pν(X − q−1X)
∣∣ sλ(X)

〉

〈pν | pν〉

=
1

(q − 1)ℓ(ρ)

∑

ν∈Yn

(qν − 1)
〈hρ | pν〉

zν
〈pν | sλ〉 =

1

(q − 1)ℓ(ρ)

∑

ν∈Yn

qν − 1

zν
〈hρ | pν〉 ςλ(ν)

As for q = 1, we define the following function on the set Y of all Young diagrams:

Σρ,q(λ) =

{
|λ|↓|ρ| χλ(ρ 1|λ|−|ρ|, q) if |ρ| ≤ |λ|;
0 else.

If |ρ| = |λ| = n, the previous formula can be rewritten:

(5) (q − 1)ℓ(ρ) Σρ,q(λ) =
∑

ν∈Yn

qν − 1

zν
〈pν | hρ〉 Σν(λ)

This is of course also true for |ρ| > |λ|. We will show that it still holds for k = |ρ| < |λ| = n. In this case,
the scalar product 〈hρ 1n−k |pν〉 in the sum above writes as:

〈hρ 1n−k |pν〉 =
〈
hρ(p1)

n−k
∣∣ pν

〉
=

∑

π1∈Yρ1 ,...,πm∈Yρm

(zπ1 · · · zπm
)−1

〈
pπ(p1)

n−k
∣∣ pν

〉

=
∑

π1,...,πm

zπ1n−k (zπ1 · · · zπm
)−1 1(ν=π1n−k) = (zν 1(ν=νk1n−k))

∑

π1,...,πm

(zπ1 · · · zπm
)−1 1(νk=π)

= (zν/zνk)1(ν=νk1n−k)

∑

π1,...,πm

(zπ1 · · · zπm
)−1 〈pπ | pνk〉 = (zν/zνk)1(ν=νk1n−k) 〈hρ | pνk〉

As a consequence, formula (5) can be seen as an equality of functions on Y . Note that this relation
between the symbols Σρ,q and Σν is triangular, because 〈pν | hρ〉 = 0 unless ν is finer than ρ. Moreover,
as (mρ)ρ∈Y is the dual basis of (hρ)ρ∈Y , the inverse relation is easily obtained. We conclude that:
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Proposition 10 (Quantization of the algebra of observables). The symbols (Σρ,q)ρ∈Y form a C(q)-basis
of O(q) = O ⊗C C(q) and yield a quantization of the basis (Σρ)ρ∈Y of O. Moreover, the transition
matrices between the Σρ,q and the Σρ are triangular, given by:

(q − 1)ℓ(ρ) Σρ,q(λ) =
∑

ν∈Yk

qν − 1

zν
〈pν | hρ〉 Σν(λ);(6)

(qρ − 1)Σρ(λ) =
∑

ν∈Yk

(q − 1)ℓ(ν) 〈mν | pρ〉 Σν,q(λ).(7)

4. First order asymptotics

This section is devoted to the proof of Theorem 1. Let us fix a real q ∈ ]0, 1[. The first step of the
proof is the convergence of power sums of Frobenius coordinates.

4.1. Convergence of power sums. The q-Plancherel measure is a measure on Young diagrams, so the
functions on Young diagrams and in particular the elements of O are in this context random variables.
In particular we will denote by E their expectation. Thanks to the characterization of the q-Plancherel
measure with the normalized trace (paragraph 2.2), one has immediately:E[Σρ,q] =

{
n↓k if ρ = 1k;

0 else.

By using the triangular relation between the Σρ and the Σν,q, we obtain:E[Σρ] =
1

qρ − 1

∑

ν∈Yk

(q − 1)ℓ(ν) 〈mν | pρ〉 E[Σν,q] =
(q − 1)|ρ|

qρ − 1
n↓|ρ| 〈m1|ν| | pρ〉

=
(1− q)|ρ|

1− qρ
n↓|ρ|(8)

This gives in particular the asymptotic order of magnitude:E[Σρ] = O
(
n|ρ|

)
= O

(
ndeg(Σρ)

)

In fact, this is true for any measure on Young diagrams, but not always precise enough (for example, to
study the usual Plancherel measure, one has to use the fact that it is O(n(|ρ|+ℓ(ρ))/2)). In this context,
the exact computation above shows that we could not find a better bound. As (Σρ)ρ∈Y is a linear basis
of O, the previous estimation remains true for any element of O.

Lemma 11. For any x ∈ O, one has E[x] = O(ndeg(x)).

This lemma allows us to forget terms of lower degree when we want to look at the asymptotic behavior
of the expectation of some observable. In particular, one can obtain the following result for the power
sums of the Frobenius coordinates:

Lemma 12 (Convergence of power sums). Under the q-Plancherel measures, we have convergence in
probability of the renormalized power sums pk(λ):

∀k ≥ 1,
pk(λ)

|λ|k −→Mn,q

(1− q)k

1− qk
.

Proof. An immediate consequence of equation (8) is that E[Σρ]/n
|ρ| → (1 − q)|ρ|/(1 − qρ) when n goes

to infinity. But Σρ − pρ is an observable of degree less than |ρ| − 1, so the same holds for pρ:

lim
n→∞

E[pρ]
n|ρ|

=
(1 − q)|ρ|

1− qρ
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Fix ε > 0 and k ≥ 1. The Bienaymé-Chebyshev inequality ensures that

Mn,q

[∣∣∣∣
pk
nk

− (1 − q)k

1− qk

∣∣∣∣ ≥ ε

]
≤ 1

ε2
E[( pk

nk
− (1 − q)k

1− qk

)2
]

≤ 1

ε2

(E[pk,k]
n2k

− 2
E[pk]
nk

(1− q)k

1− qk
+

(1− q)2k

1− qk,k

)
,

whence the result by using the estimations of E[pρ] for ρ = (k) and ρ = (k, k). �

Corollary 13 (Convergence of the characters and q-characters). Under the q-Plancherel measures, we
have the following convergences in probability:

∀ρ ∈ Y ,
Σρ

n|ρ|
−→Mn,q

(1− q)|ρ|

1− qρ
i.e. χλ(ρ) −→Mn,q

(1 − q)|ρ|

1− qρ
;

∀ρ ∈ Y ,
Σρ,q

n|ρ|
−→Mn,q

δρ=1|ρ| i.e. χλ(ρ, q) −→Mn,q
δρ=1|ρ| .

Proof. It is a direct consequence of Proposition 7, Lemmas 11 and 12. �

4.2. Convergence of lengths of rows. Note that the limit values of the rescaled pk’s are the power
sums of the sequence ((1 − q), (1− q)q, (1 − q)q2, . . .). Indeed,

∞∑

i=1

(1− q)k q(i−1)k =
(1− q)k

1− qk
.

In this paragraph, we will show that the convergence of the power sums implies the convergence of the
sequence. This will finish the proof of Theorem 1.

The main idea is to consider, given a Young diagram λ of size n, the probability measure Xλ defined
by

Xλ =
d∑

i=1

(a∗i (λ)/n) δ(a∗
i (λ)/n)

+ (b∗i (λ)/n) δ(−b∗i (λ)/n)
.

The k-th moment of Xλ is exactly pk+1(λ)/n
k+1. So, thanks Lemma 12, under q-Plancherel measure, the

moments of Xλ, which can be seen as random variables, converge in probability towards the moments of
the measure

X∞;q =

∞∑

i=1

(1 − q)qi−1 δ(1−q)qi−1 .

Lemma 14. As usual, we consider a sequence of random diagrams λn ∈ Yn taken with q-Plancherel
measure. At any point x 6= (1 − q) qi−1, one has convergence in probability of the repartition functions,
that is to say: ∑

y≤x

ny∈Aλ+Bλ

|y| −→Mn,q

∑

(1−q)qi−1≤x

(1− q)qi−1.

Proof. In the following, we consider λ 7→ Xλ as a measure-valued random variable Xn,q; its law is by
definition the image of Mn,q by λ 7→ Xλ. The set M ([−1, 1]) of signed Radon measures on [−1, 1], where
Xn,q takes its values, is the dual of C ([−1, 1]) and is compact and metrizable for the ∗-weak topology1.
Indeed, if (fn)n∈N is a sequence of continuous functions dense in C ([−1, 1]), then

d(m1,m2) =
∑

n∈N 1

2n
max(1, |m1(fn)−m2(fn)|)

1It is a particular case of the Prohorov theorem: if E is a separable and complete metric space (in other words, a polish
space), then the same holds for the set of probability measures M (E), see [Bil69, Chapter 1]. As a consequence, convergence
in probability makes sense for random probability measures on a closed subset of the real line.
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is a distance compatible with the topology of M ([−1, 1]). We choose {fn}n∈N = Q[X ] (dense by Stone-
Weierstrass theorem), thus the convergence of moments implies that Xn,q converges in probability in
(M ([−1, 1]), d) towards X∞;q.

But, for Radon measures on the real line, the weak convergence Xn,q ⇀ X∞;q is equivalent to the
convergence of repartition functions FXn,q

(x) → FX∞;q (x) at points x ∈ [−1, 1] where FX∞;q is continuous
— it is a part of the Portmanteau theorem ([Bil69, Chapter1]). �

End of proof of Theorem 1. Now, let us take x = 1 − q + η with η > 0 sufficiently small. We also fix
1− q > ε > 0. Note that FX∞;q = 1 on a vicinity of x. Consequently, for n big enough and outside a set
of arbitrary small probability, all rows of λ are smaller than nx, because

FXλ
(x) =

∑

y≤x

ny∈A+B

|y| ≥ FX∞;q (x) − ε = 1− ε > q,

and this could not be if a row were bigger than n(1− q + η). Indeed, we would then have

FXλ
(1) ≥ FXn,q

(x) + 1− q + η > 1 + η > 1.

Hence, for n big enough, a∗1(λ)/n is smaller than x outside a set of arbitrary small probability. Now, if
x′ = 1 − q − η, then FX∞;q = q on a vicinity of x′, and therefore, for n big enough and outside a set of
arbitrary small probability, some rows of λ are bigger than nx′; otherwise, we would have

FXλ
(1) = FXλ

(x′) ≤ FX∞;q (x
′) + ε = q + ε < 1.

We conclude that for n big enough and outside a set of arbitrary small probability, the rescaled first
column a∗1(λ)/n is between x′ and x. Consequently, a∗1(λ)/n converges in probability towards 1− q, and
the same argument holds for the following rows (with an induction on the index i of the row). Of course,
a∗i (λ)/n− λi/n = O(1/n), so we have proved Theorem 1. �

Remark 2. If we take x = 0 in Lemma 14, then we see that
∑d

i=1 b
∗
i (λ)/n goes to 0 in probability: so,

the order of magnitude of the columns is a o(n). Unfortunately, we are not able to give an equivalent for
the quantities λ′

i (i ≥ 1).

Remark 3. The proof will work for any measure for which we can compute expectation of character
values as soon as (the following condition implies the convergence of variance of power sums towards 0
in Lemma 12): E(Σk,k) = E(Σk)

2 + o(n2k).

This is similar to the result obtained by Biane for balanced diagrams in [Bia01].

4.3. Link with the infinite Hecke algebra. The technicalities of the previous paragraph could have
been avoided by using a general result of Kerov that ensures that, if (λn)n∈N is a (random) sequence of di-
agrams of size n such that the normalized characters χλn converge (in probability), then the renormalized
Frobenius coordinates (a∗i (λn)/n, b

∗
i (λn)/n) have a limit (α, β) in the Thoma simplex

Ω =

{
(
(αi)i≥1, (βi)i≥1

) ∣∣ α1 ≥ α2 ≥ · · · ≥ 0, β1 ≥ β2 ≥ · · · ≥ 0, γ = 1−
∞∑

i=1

(αi + βi) ≥ 0

}
,

cf. [KV81], [Ker03] and [KOV04]. Moreover, this limit can be computed, using the limit of the normalized
characters. Therefore using Kerov’s result, one could deduce directly Theorem 1 from Corollary 13 and
skip the previous paragraph. However, Kerov’s arguments can not be used for fluctuations and we would
need the measure-valued random variable Xn,q in subsection 5.3.

We give here more details on Kerov’s arguments and how they fit for our work. This can be skipped
during a first reading of the paper.
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It is well-known that this infinite-dimensional simplex is involved in the representation theory of S∞

and its Hecke algebra H∞,q; let us recall briefly why. Since S∞ is a wild group (i.e. with factor rep-
resentations of type II or III), there is no hope to obtain a complete classification of all the unitary
representations of CS∞. However, such a classification has been obtained for the finite factor represen-
tations, i.e., the unitary representations U : CS∞ → L (H) whose von Neumann algebras M (U(CS∞))
admit a finite trace, see [Tho64] and [Oko94]. Let us denote by H(Y ) the convex compact set of nor-
malized harmonic complex functions on the Young graph Y . Then, H(Y ) parameterizes the normalized
characters of S∞, and its boundary ∂H(Y ) parameterizes the irreducible characters of CS∞. Moreover,
this boundary can also be described topologically as the Thoma simplex, and if x ∈ CSn and (α, β) ∈ Ω,
then

χα,β(x) =
∑

λ∈Yn

sλ(α, β) ς
λ(x),

where sλ(α, β) denotes the super-symmetric Schur function sλ taken on the difference of alphabets α−β.
Finally, if x ∈ CSm and if (λn)n≥m is a sequence of diagrams of sizes n such that the renormalized
Frobenius coordinates (a∗i (λn)/n, b

∗
i (λn)/n) have a limit (α, β) ∈ Ω, then

χλn(x) → χα,β(x).

By harmonic analysis on the Young graph, S. Kerov showed the converse statement: the convergence
of characters implies the existence of limit frequencies (α, β). Moreover, the same results hold for the
infinite Hecke algebra H∞,q: it suffices to replace the characters by the q-characters in the previous
argument. Now, Corollary 13 can be viewed as a concentration result of the q-characters around the
regular trace τq of H∞,q: indeed, χ

λ(ρ, q) →Mn,q
τq(ρ) for any partition ρ. Since

χα,β(Tσρ
, q) =

∑

λ∈Yn

sλ(α, β) ς
λ(ρ, q) = q̃ρ(α, β, q),

a simple computation shows that τq = χω(q) with ω = (((1 − q)qi−1)i≥1, 0). In other words, the q-
Plancherel measure of the infinite Hecke algebra is the Dirac at ω, and the limit frequencies of the rows
and columns of a random Young diagram under the q-Plancherel measures could have been deduced
directly from Corollary 13 and the result of Kerov.

Note that, to use Kerov’s result, we need a convergence in probability of character values and not only
the convergence of the expectations: in other words, only subsection 4.2 can be avoided. In addition, our
method is interesting as the measure Xλ will be used in the analysis of fluctuations (paragraph 5.3).

Remark 4. In subsection 2.3, we have seen an algebraic interpretation of the regular trace τq on Hn,q. It is
the restriction of the usual trace of the space EndC C[GL(n,Fq)/B(n,Fq)] to the subalgebra of GL(n,Fq)-
morphisms, which is isomorphic to C[B(n,Fq)\GL(n,Fq)/B(n,Fq)]. There is a similar interpretation
for τq on H∞,q, but one has to consider the group GLB(Fq), which is slightly bigger than GL(∞, q),
see [KV98]. Then, τq is the restriction of the usual trace of L1(GLB(Fq),mHaar) to the subalgebra
of compactly supported functions that are constant on B(∞,Fq)-double cosets, this subalgebra being
isomorphic to H∞,q.

5. Second order asymptotics

In this section, we investigate the second order asymptotics of the rows of diagrams under the q-
Plancherel measure and we prove Theorem 2. As in the previous section, the first part of the proof
consists in studying asymptotics of pk. In particular, we shall prove:

Proposition 15 (Fluctuations of pk). Under the q-Plancherel measure, we have the following convergence
result. If we denote the renormalized centered power sum by

Wn,q,l(λ) =
√
n

(
pl(λ) − E[pl]

nl

)
,
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then, for any k ≥ 1, the finite random vector (Wn,q,1,Wn,q,2, . . . ,Wn,q,k) converges in law towards a
gaussian vector of covariance matrix:

cov(Wq,l,Wq,m) = lm (1− q)l+m

(
1

1− ql+m−1,1
− 1

1− ql,m

)
.

Before we start, recall that the algebra of observables O admits two different products: the usual product
of (commuting) observables · and the disjoint product •, cf. section 3. We shall denote by O• the algebra
with the latter product, and by Eid the identification O → O•. The proof of Proposition 15 relies on the
interaction of the two products and on the expectation of character values E[Σρ] = n↓|ρ| (1−q)|ρ|/(1−qρ).

5.1. Bound for cumulants. This kind of results (computing the fluctuations of an observable from the

character values) has already been stated by P. Śniady in the case where the characters are small and the
corresponding diagrams balanced. Here, we have to use different observables and a different gradation,
but the ideas of the proof are the same, and the definitions of the different cumulants used here come
from [Śni06]. In particular we shall use joint cumulants of random variables k(X1, . . . , Xr), which can be
defined by induction2 on r:E[X1 X2 · · ·Xr] =

∑

π partition
of {1,2,...,r}

k
(
Xi∈π1

)
k
(
Xi∈π2

)
· · · k

(
Xi∈πℓ

)
.

A centered gaussian vector (Y1, . . . , Yk) is characterized by the fact that all k(Yi1 , . . . , Yir ) are equal to
0 for r 6= 2. Moreover, the values for r = 2 give then the covariance matrix. Therefore, the proof of
Proposition 15 consists in computing the limit of k(Wn,q,i1 , . . . ,Wn,q,ir ). In fact, we will show a stronger
result than the convergence towards 0 for r ≥ 3:

Lemma 16 (Order of magnitude of cumulants). For any x1, x2, . . . , xr ∈ O, one has:

k(x1, . . . , xr) = O
(
ndeg(x1)+···+deg(xr)−r+1

)
.

The end of this subsection is devoted to the proof of this lemma. Thanks to the multi-linearity of
cumulants (for r ≥ 2) and a good behavior with respect to products (see [LS59] and [Śni06, Theorem 4.4]),
it is enough to prove this lemma with the xi in any graded algebraic basis of O. A good choice is the basis
(Σk)k≥1; indeed, we have already computed the expectation of these observables under the q-Plancherel
measure. Unfortunately, we do not know their joint moments E[Σi1 · · ·Σir ], which are different from
what we have computed in the previous section, namely, E[Σi1,...,ir ].

5.1.1. Cumulants k•. This difficulty disappears if we use the algebra O•, because Σi1 •· · ·•Σir = Σi1,...,ir .
This algebra gives rise to a new kind of cumulants, the so-called disjoint cumulants, which we shall
denote by k•(X1, . . . , Xr). Their definition is the same as for k(X1, . . . , Xr), except that the product of
observables is now the disjoint product:

(9) E[X1 •X2 • · · · •Xr] =
∑

π partition
of {1,2,...,r}

k•
(
Xi∈π1

)
k•

(
Xi∈π2

)
· · · k•

(
Xi∈πℓ

)
.

It is easy to prove the analog of Lemma 16 for these disjoint cumulants:

Lemma 17 (Order of magnitude of disjoint cumulants). For any x1, x2, . . . , xr ∈ O, one has:

k•(x1, . . . , xr) = O
(
ndeg(x1)+···+deg(xr)−r+1

)
.

2It can also be defined via generating functions.
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Proof. As for classical cumulants, it is enough to prove it for xj = Σij . In this case, the left-hand side of
(9) is simply E[Σi1,...,ir ] =

(q − 1)i1+···+ir

∏
(qij − 1)

n↓(i1+···+ir).

Except for the factor n↓(i1+...+ir), everything is multiplicative with respect to the parts of λ. More
formally, there exist numbers αi such that:E[Σi1,...,ir ] =



∏

j

αij


n↓(i1+···+ir);

=



∏

j

αij


E[Σ 1, . . . , 1︸ ︷︷ ︸

i1+···+ir times

]
.

An immediate induction implies that:

k•(Σi1 , . . . , Σin) =




∏

j

αij



 k•(Σ1, . . . , 1︸ ︷︷ ︸
i1 times

, . . . , Σ1, . . . , 1︸ ︷︷ ︸
ir times

).

But χλ(Σ1i) = n↓i for any λ, so the corresponding cumulants do not depend on the measure considered

on Young diagrams, and we can use the result of P. Śniady who proved ([Śni06, Lemma 4.8]) that:

k•(Σ1, . . . , 1︸ ︷︷ ︸
i1 times

, . . . , Σ1, . . . , 1︸ ︷︷ ︸
ir times

) = O(ni1+···+ir−(r−1)).

This ends the proof of this lemma. �

5.1.2. Cumulants kid. The last problem is to link classical and disjoint cumulants. Thanks to the com-
mutativity of the diagram below

O O
•C��?????E=Mn,q

//Eid

����
��

�E=Mn,q

this can be done by using a result of Brillinger [Bri69]. One obtains the following formula, see [Śni06,
Proposition 4.1]:

(10) k(X1, X2, . . . , Xn) =
∑

π⊢n

k•(kid(Xi∈π1), k
id(Xi∈π2), . . . , k

id(Xi∈πr
)),

where kid is the cumulant corresponding to the identity map Eid of the diagram (note that kid takes value
in O), that is to say that it is defined by

X1X2 · · ·Xr =
∑

π partition
of {1,2,...,r}

kid
(
Xi∈π1

)
• kid

(
Xi∈π2

)
• · · · • kid

(
Xi∈πℓ

)
.

We will prove the following bound on the degree of identity cumulants. For any i1, . . . , ir, one has:

(11) deg
(
kid(Σi1 , . . . ,Σir )

)
≤ i1 + · · ·+ ir − (r − 1).

Note that it is not the same as [Śni06, Theorem 4.3]; indeed, we use a different gradation on the algebra
of observables.

Let us begin by looking at kid(Σi1 , . . . , Σin) for small values of n. For n = 1, by definition kid(Σi) = Σi.
For n = 2, one has:

kid(Σi1 , Σi2) = Σi1 ·Σi2 −Σi1,i2 .
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But one has also

Σi1 ·Σi2 =
∑

A1∈A(n,i1), A2∈A(n,i2)

C(A1)C(A2);

Σi1,i2 =
∑

A1∈A(n,i1), A2∈A(n,i2)
A1∩A2=∅

C(A1)C(A2).

so the difference kid is equal to the same expression with the sum restricted to pairs of arrangements
which have a non-empty intersection:

kid(Σi1 , Σi2) =
∑

A1∈A(n,i1), A2∈A(n,i2)
A1∩A2 6=∅

C(A1)C(A2).

It turns out that the identity cumulants satisfy a similar identity in the general case, and the intersections
between the Aj play again a significant role. First, note that:

Σi1 · · ·Σir =
∑

∀j, Aj∈A(n,ij)

C(A1) · · ·C(Ar)

Given a family A1, . . . , Ar of arrangements, we consider the relation ∼1 defined by k ∼1 l ⇔ Ak ∩Al 6= ∅.
It can be completed in an equivalence relation; let us denote by π(A1, . . . , Ar) the corresponding partition
of [[1, r]]. Obviously, this partition depends only on which indices are equal and not on the values they
take, so the sum of C(A1) · · ·C(Ar) over arrangements corresponding to a given partition is of the form
XG

i1,...,ir
(notation of paragraph 3.4) and we can use Lemma 8 on this kind of expression.

Lemma 18. For any i1, . . . , ir, one has:

kid(Σi1 , . . . , Σir ) =
∑

∀j, Aj∈A(n,ij)
π(A1,...,Ar)={[[1,r]]}

C(A1) · · ·C(Ar).

Proof. We will prove this statement by induction on r. As explained above, it is true for r = 1, 2. Let
us suppose that it is true for all s ≤ r − 1. Because of the definition of the disjoint product •, for every
non-trivial set partition π, one has:

kid
(
Σi∈π1

)
• kid

(
Σi∈π2

)
• · · · • kid

(
Σi∈πℓ

)
=

∑

∀j, Aj∈A(n,ij)
π(A1,...,Ar)=π

C(A1) · · ·C(Ar).

Indeed, the induction hypothesis applies for each part πi, so we only keep terms corresponding to sequences
of arrangements for which two numbers in the same part of π are in the same part of π(A1, . . . , Ar).
Besides, when we make the product •, we take only disjoint set of indices (using Lemma 8), so two
numbers in different parts of π cannot be in the same part of π(A1, . . . , Ar).

We use now the inductive definition of kid:

kid(Σi1 , . . . , Σir ) = Σi1 · · ·Σir −
∑

π 6={[[1,r]]}

kid
(
Σi∈π1

)
• kid

(
Σi∈π2

)
• · · · • kid

(
Σi∈πℓ

)

=
∑

∀j, Aj∈A(n,ij)

C(A1) · · ·C(Ar) −
∑

π 6={[[1,r]]}




∑

∀j, Aj∈A(n,ij)
π(A1,...,Ar)=π

C(A1) · · ·C(Ar)




=
∑

∀j, Aj∈A(n,ij)
π(A1,...,Ar)={[[1,r]]}

C(A1) · · ·C(Ar),

which is exactly the equality we wanted at rank r. �
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Now, for every sequence of arrangements A1, . . . , Ar such that π(A1, . . . , Ar) is the trivial partition
{[[1, r]]}, the cardinal of |A1 ∪ · · · ∪ Ar| is smaller than i1 + · · · + ir − (r − 1), because one has at least
r− 1 equalities between different elements of these arrangements. So, kid(Σi1 , . . . , Σir ) can be written as
a linear combination of Σλ with |λ| ≤ i1 + · · ·+ ir − (r − 1), which ends the proof of equation (11).

Finally, equations (10) and (11), together with Lemma 17, end the proof of Lemma 16.

5.2. Computation of covariances. Now, let us compute explicitly the limit (co)variances of the
rescaled deviations of the Σk. First, note that if l and m are two positive integers, then:

k•(Σl, Σm) = E[Σl •Σm]− E[Σl]E[Σm] = E[Σl,m]− E[Σl]E[Σm]

=
(1− q)l+m

1− ql,m
(
n↓l+m − n↓l n↓m

)
= −lm

(1 − q)l+m

1− ql,m
nl+m−1 +O(nl+m−2)

The last identity follows from the development of the falling factorial:

n↓k = nk − k(k − 1)

2
nk−1 +O(nk−2)

Now, we can compute the higher term of the standard cumulant k(Σl, Σm) if we use the graded develop-
ment of Σl Σm −Σl,m in the algebra of observables:

k(Σl, Σm) = kid(Σl, Σm) + k•(Σl, Σm) = E[Σl Σm −Σl,m] + k•(Σl, Σm)

= E[lmΣl+m−1]− lm
(1 − q)l+m

1− ql,m
nl+m−1 +O(nl+m−2)

= lm (1− q)l+m

(
1

1− ql+m−1,1
− 1

1− ql,m

)
nl+m−1 +O(nl+m−2)

We have therefore proved:

Proposition 19 (Fluctuations of Σk). If we denote Zn,q,k =
√
n (Σk/n

k − (1 − q)k/(1 − qk)), then
(Zn,q,k)2≤k≤K converges in law towards a gaussian vector (Zq,k)2≤k≤K , with the following covariance
matrix:

k(Zq,l, Zq,m) = lm (1− q)l+m

(
1

1− ql+m−1,1
− 1

1− ql,m

)

End of the proof of Proposition 15. It turns out that the sequence (Wn,q,k)k≥2 of the rescaled deviations
of power sums has the same limit law (Zq,k)k≥2. Indeed, we have already shown that the limit of the
rescaled deviations of power sums is a gaussian vector, and it suffices then to show that k(pl, pm) has the
same higher term as k(Σl, Σm). According to the proposition 7, each symbol Σk is a rational polynomial
in the pl≤k with higher term pk. So, we can use the multi-linearity of joint cumulants to write:

k(Σl, Σm) = k(pl, pm) + (cumulants of observables ai, bj with deg ai + deg bj < l +m).

But if a and b are two observables of degree A and B, then we have seen that k(a, b) is a O(nA+B−1).
As a consequence, the remaining terms are all O(nl+m−2). This ends the proof of Proposition 15. �

Remark 5. Lemma 16 implies also that the rescaled q-characters converge towards a gaussian vector.
But for these q-characters, we are unable to give a general formula for the covariance because one has no
good description of the product Σρ,q Σλ,q. However, we can compute it for some given partitions ρ and
λ: for instance, E[(Σ2,q)

2]

n4
=

(
q (1− q)2

1 + q + q2

)
n−1 + lower degree terms.

Note that this value does not vanish except for q = 1, which means that the q-character χq(21
n−2) has

fluctuations of order n−1/2 (and not n−1 as in the case q = 1). This seems to be also the case for the
other q-characters.
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5.3. Fluctuations of rows. As before, we denote by Xλ the probability measure on [−1, 1] associated
to a Young diagram λ, and by X∞;q the limit probability measure of the Xλ under the q-Plancherel
measures. If f ∈ C 1([−1, 1]) is a continuously differentiable function on [−1; 1], we define the rescaled
deviation of f under q-Plancherel measure. It is the random variable Dn,q(f) obtained by composition
of q-Plancherel measure by the function:

λ 7→ √
n (Xλ(f)−X∞;q(f)) ,

where µ(f) is a short notation for
∫ 1

−1
fdµ.

In this context, the convergence in law of rescaled power sums can be reformulated as a convergence
in law of the vector

(
Dn,q(x

l)
)
1≤l≤k

towards a gaussian vector (Zq;l) of covariance matrix:

k(Zq;l, Zq;m) = X∞;q((l + 1)(m+ 1)xlxm)− (l + 1)(m+ 1)X∞;q(x
l)X∞;q(x

m);

= X∞;q

(
(xl+1)′ (xm+1)′

)
−X∞;q

(
(xl+1)′

)
X∞;q

(
(xm+1)′

)
.

Recall that with respect to the C 1-topology, R[X ] is dense in the space of continuously differentiable
functions C 1([−1, 1]). By using this density together with the bilinearity of Dn,q and covariance, we
conclude that for any functions f1, f2, . . . , fr ∈ C 1([−1, 1]), the vector of rescaled deviations Dn,q(fi)
converges towards a gaussian vector (Zq;fi)i∈[[1,r]] of covariance matrix:

k(Zq;fi , Zq;fj ) = X∞;q ((xfi)
′ (xfj)

′)−X∞;q ((xfi)
′) X∞;q ((xfj)

′) .

Proof of Theorem 2. If i ≥ 1, we denote by fi a class C 1 and non-negative function such that fi(x) = 1 on
a vicinity Vi of q

i−1 (1− q) and fi(x) = 0 outside a vicinity Wi ⊃ Vi, cf. figure 5. We shall also suppose
that the Wi are disjoint open sets; in particular, X∞;q(fi) = qi−1(1 − q). Since f ′

i(q
i−1(1 − q)) = 0,

(xfi)
′(qi−1(1− q)) = fi(q

i−1(1 − q)) = 1, and as a consequence,

X∞;q((x fi(x))
′2)−X∞;q((x fi(x))

′)2 = qi−1(1− q)− q2(i−1)(1− q)2.

Wi

qi−1(1 − q)

Figure 5. Graphical representation of the test function fi.

Moreover, fi fj = 0 for all i 6= j, and the same holds for fi f
′
j , f

′
i fj or f ′

i f
′
j. Therefore, the covariance

matrix of the corresponding limit gaussian vector (Zq;fi)i≥1 is:

X∞;q ((x fi(x))
′ (x fj(x))

′)−X∞;q ((x fi(x))
′) X∞;q ((x fj(x))

′) = −X∞;q ((x fi(x))
′) X∞;q ((x fj(x))

′) ;

= −(1− q)2 qi+j−2.

Finally, for n big enough and outside a set of arbitrary small probability, a∗i (λ)/n is in Vi, a
∗
i−1(λ)/n is

in Vi−1 and a∗i+1(λ)/n is in Vi+1. Thus, with a probability close to 1, the support of Xλ and the support
of fi 6= 0 intersect only at a∗i (λ)/n, and Xλ(fi) = a∗i (λ)/n. As a consequence,

√
n

(
a∗i (λ)

n
− qi−1(1 − q)

)
=

√
n (Xλ(fi)−X∞;q(fi)) ,

outside a set of arbitrary small probability, and the repartition functions of these random variables have
the same asymptotic behavior. Theorem 2 follows then from the estimation a∗i (λ) = λi +O(1). �
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6. Schur-Weyl representations

In this section, we use the same tools to study other measures on partitions and to describe asymp-
totically the shape of the diagrams. The purpose of this section is to show that our method works as
soon as the typical length of the first rows of the diagram is of order nα with α > 1/2 and not only with
α = 1.

6.1. Decomposition of tensor representations. We consider the following representation of the sym-
metric group: Sn acts on the space (CN )⊗n by commuting the vectors of the pure tensors. Its character is
very easy to compute: χ(ρ) = N ℓ(ρ), where ℓ(ρ) is the number of parts of the partition ρ (or, equivalently,
the number of cycles of any permutation of type ρ).

This representation can be decomposed into irreducible representations of Sn: let us denote mλ the
multiplicity of the irreducible module Sλ. We associate to this decomposition the following measure on
partitions P[λ] = mλ · dim(Sλ)

Nn
.

In other words, P[λ] is the dimension of the isotypic component of type λ divided by the total dimension
of the module (CN )⊗n. Note that this is a very natural way to construct measure on Young diagrams of
a given size: the same construction with the regular representation gives rise to the Plancherel measure.

An interesting thing with this kind of measure is that the expectation of rescaled character values is
proportional to the character of the representation. In the case we are looking at (the action of Sn on
(CN )⊗n), E[Σρ] = n↓|ρ| · χ(ρ1

n−|ρ|)

Nn

= n↓|ρ| ·N ℓ(ρ)−|ρ|.

Let us finish this paragraph by a little remark. By Schur-Weyl duality, one has the following isomorphism
of Sn ×GL(N,C)-modules

(CN )⊗n ≃
⊕

λ⊢n

Vλ ⊗ Uλ,

where Uλ is an irreducible GL(N,C)-module. Moreover, the dimension of Uλ is the number of semi-
standard tableaux of shape λ with entries lower or equal than N . So,P[λ] = ∣∣∣∣

{
standard tableaux

of shape λ

}∣∣∣∣ ·
∣∣∣∣
{

semistandard tableaux
of shape λ (entries ≤ N)

}∣∣∣∣
Nn

.

This implies, as mentioned in paragraph 1.2.3, that this measure is in fact the image of the uniform
distribution on words of length n and letters from 1 to N by RSK algorithm.

6.2. Asymptotic shape of the diagrams. In the previous paragraph, we introduced some measure
on Young diagrams of size n. Here we are interested in the asymptotic shape of typical diagrams when
n tends to infinity. That means, as the measure we introduced also depends on an other parameter N ,
that we have to choose a value of N for each n. The case where the parameter N is equivalent of an
expression of the kind 1/c · nα with α ≥ 1/2 has already been solved by P. Biane [Bia01, paragraph 3.1].
So we will look at the case α < 1/2.

Using the formula for expectation of normalized character values of the previous paragraph, one has:

(12) E[Σρ] = n↓|ρ| ·N ℓ(ρ)−|ρ| ∼ c|ρ|−ℓ(ρ)n|ρ|+αℓ(ρ)−α|ρ|.

As in section 4, the first step is to show that the power sums have the same asymptotic behavior. Lemma
11 is true in this context, but not strong enough to obtain such a result. Unfortunately, with the gradation
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we give in section 3, it is not possible to have a stronger upper bound. Thus one has to introduce another
gradation on O.

6.2.1. Gradations on O. Let us define (this may not be an integer, but it does not matter):

degα(pρ) = |ρ|+ αℓ(ρ)− α|ρ|.

As in the case α = 0, the expression of Σk in terms of power sums (Proposition 7) gives us the degree
and the top homogeneous component of Σρ.

Lemma 20. For any ρ ∈ Y , one has:

Σρ = pρ + terms of lower degree.

Proof. It is enough to prove this for ρ = (k). Note that the α-degree can be written as:

degα(pλ) = (1− 2α)|λ|+ α(|λ| + ℓ(λ)).

(1) The first term is a positive multiple (recall that α < 1/2) of the usual gradation, so if pλ appears
with a non-zero coefficient in Σk, one has |λ| ≤ k, with equality if and only if λ = (k).

(2) The second term is a non-negative multiple of 2 deg1/2(λ) = |λ| + ℓ(λ). An easy consequence of

Proposition 7 is that all pλ appearing in Σk fulfill the condition |λ| + ℓ(λ) ≤ k + 1. Note that
we do not have the same necessary condition of equality as before: in fact, deg1/2 is a classical

gradation of O (see [IO02]), for which the top homogeneous component of Σρ is not pρ.

Finally, Σρ has degree |ρ| + αℓ(ρ) − α|ρ|, and its top homogeneous component for the new gradation is
pρ. �

6.2.2. Convergence of rescaled power sums and concentration of characters. Using equation (12), one has
the following analog of Lemma 11 (the gradation has been chosen in this purpose):

Lemma 21. For any x ∈ O, one has: E[x] = O(ndegα(x)).

Now, we have all the tools to prove the convergence of rescaled powers sums:

Proposition 22. Let (Nn)n≥1 be a sequence of positive integers such that Nn ∼ c ·nα for some α < 1/2.
Under the measure associated with the action of symmetric groups on the spaces (CNn)⊗n, one has the
following convergence in probability:

pk
nk+α−αk

→ ck−1.

Proof. Equation (12), Lemma 20 and Lemma 21 imply that:E[pρ] ∼ cρ−ℓ(ρ)n|ρ|+αℓ(ρ)−α|ρ|.

The result follows thanks to Bienaymé-Chebyshev inequality as in the case α = 0. �

Corollary 23 (Concentration of characters). Under the same assumptions, in probability,

Σρ

n|ρ|+αℓ(ρ)−α|ρ|
→ c|ρ|−ℓ(ρ).
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6.2.3. Consequences on the shape of diagrams. To deduce some results on the shape of diagrams from
the convergence of the quantities pk/(n

k+α−αk), one has to interpret them as the moments of some
measure-valued random variables. Therefore we define for a Young diagram λ the measure:

Xλ,α =
d∑

i=1

(a∗i (λ)/n
1−α)

δ(a∗
i (λ)/n

1−α)

nα
+ (b∗i (λ)/n

1−α)
δ(−b∗i (λ)/n

1−α)

nα
.

With this definition, Proposition 22 can be read as the convergence in probability of the moments of
this random-valued measure towards the sequence (1, c, c2, . . .), which is obviously the sequence of the
moments of the measure δc.

As explained in Lemma 14, this implies the convergence of the repartition functions. It is an easy
exercise left to the reader to show that this convergence can be reformulated as in Proposition 3.

Remark 6. The vector space (CN )⊗n is also a representation of the unitary group UN and, using Schur-
Weyl duality, its isotypic components under the action of UN are the same as under the action of Sn.

As a consequence, results of article [CŚ09] can be used to study the asymptotic shape of the diagram. It
turns out that, in the case α < 1/2, this approach gives finer results than ours. Nevertheless, as they are
two independent parameters, the space (CN )⊗n remains a good example to show that our method works

with any intermediate decay of character values between O(1) and O(
√
n
−|ρ|+ℓ(ρ)

).
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