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2 av. Malleret-Joinville, 94114 Arcueil Cedex, France
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Abstract

This paper addresses classification problems in which the class membership of training data is

only partially known. Each learning sample is assumed to consist in a feature vector xi ∈ X and

an imprecise and/or uncertain “soft” label mi defined as a Dempster-Shafer basic belief assign-

ment over the set of classes. This framework thus generalizes many kinds of learning problems

including supervised, unsupervised and semi-supervised learning. Here, it is assumed that the

feature vectors are generated from a mixture model. Using the Generalized Bayesian Theorem,

an extension of Bayes’ theorem in the belief function framework, we derive a criterion general-

izing the likelihood function. A variant of the EM algorithm dedicated to the optimization of

this criterion is proposed, allowing us to compute estimates of model parameters. Experimental

results demonstrate the ability of this approach to exploit partial information about class labels.
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1. Introduction

Machine learning classically deals with two different problems: supervised learning (classification)

and unsupervised learning (clustering). However, in recent years, new paradigms have emerged to

mix these two approaches in order to extend the applicability of machine learning algorithms.

The paradigm that emerged first is semi-supervised learning [1, 2], where the learning set Xss =

{(x1, y1), . . . , (xM , yM ),xM+1, . . . ,xN} is composed of two different parts. In the first part, the true

class labels yi are specified, whereas in the second part only the feature vectors xi are given. The

importance for such problems comes from the fact that labelled data are often difficult to obtain,

while unlabelled ones are easily available. Using unlabelled data may thus be a means to enhance

the performances of supervised algorithms with low additional cost. The recent publication of a

collected volume [3] shows the important activity around this issue in the Machine Learning field.

Recent approaches to semi-supervised learning fall into two main categories:

– An important class of methods is based on the hypothesis that the decision boundary should

be located in low density areas. Methods in this category aim at deriving a regularizer of the

conditional log-likelihood, taking into account the unlabelled data to bias the decision boundary

towards low density areas [4, 5]. The Transductive Support Vector Machine [6] uses a margin-

based criterion to achieve a similar goal. All these methods suffer from the problem of local

maxima, although some relaxation schemes lead to a convex optimization problem in the case

of the Transductive Support Vector Machine [7].

– Other methods are based on the assumption that the high-dimensional input data lie near a low

dimensional manifold. Unlabelled data are then useful as they help in estimating this manifold.

Methods relying on the manifold assumption are typically based on unsupervised dimensionality

reduction techniques such as PCA or Kernel-PCA, or on label propagation in a graph [8, 9].

Other paradigms have also been proposed to take into account more sophisticated information

on class labels. For example, partially supervised learning [10, 11, 12, 13, 14] deals with constraints

on the possible classes of samples. In this case, the learning set has the following form Xps =

{(x1, C1), . . . , (xN , CN )}, where Ci is a set of possible classes for learning example i. If all classes

are possible, the example is not labelled. Conversely, the example is perfectly labelled if only one

class is specified (|Ci| = 1). Between these two extreme cases, this approach may also handle

situations where some examples are known to belong to any subset of classes. In this case, they

are considered as partially or imprecisely labeled. This framework is thus more general than the

semi-supervised learning problem.

A completely different paradigm is based on the notion of label noise and assumes that the class

labels may be pervated by random errors. In this case, class labels are thus precise, but uncertain.

Recent contributions along these lines can by found in References [15, 16, 17]. In the first two

papers, a generative model of label noise is assumed. It is then proposed to model the label noise
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process by conditional distributions specifying the probabilities that samples labelled as belonging

to one class, were in fact drawn from from another class. The parameters of such model are then

learnt by maximizing the likelihood of the observations knowing the labels [15] or are optimized

using a Classification Maximum Likelihood approach [16]. A kernelized version of this kind of

approach has been proposed in [15, 18].

The investigations reported in this paper provide a solution to deal with imprecise and/or un-

certain class labels, and can therefore be seen as addressing a more general issue than in the above

paradigms. Our approach is based on the theory of belief functions [19, 20], a framework known to

be well suited to represent imprecise and uncertain information. In this paper, we explore its use

to represent knowledge on class membership of learning examples, in order to extend the partially

supervised framework. In this way, both the uncertainty and the imprecision of class labels may be

handled. The considered training sets are of the form Xiu = {(x1, m1), . . . , (xN , mN)}, where mi

is a basic belief assignment, or Dempster-Shafer mass function [19] encoding our knowledge about

the class of example i. The mis (hereafter referred to as “soft labels”) may represent different kinds

of knowledge, from precise to imprecise and from certain to uncertain. Thus, previous problems are

special cases of this general formulation. Other studies have already proposed solutions in which

class labels are expressed by possibility distributions or belief functions [21, 22, 23, 24]. These labels

are interesting when they are supplied by one or several experts and when crisp assignments are

hard to obtain. In such cases, the elicitation of experts’ opinions regarding the class membership

of objects under consideration, in term of possibility or belief functions, can be of interest [21, 25].

In this article, we present a new approach to solve learning problems of this type, based on

a preliminary study by Vannoorenberghe and Smets [26, 27]. This solution is based on mixture

models, and therefore assumes a generative model for the data. Generative models have already

proved their efficiency in a lot of applications [28]. Their flexibility offers also a good way to benefit

from domain specific knowledge, as shown, for example, in text classification [29]. Finally, the

adaptability of the Expectation Maximization (EM) algorithm, which may easily handle specific

constraints, is an advantage of generative models. Note that the approach introduced in [26] and

[30] to apply the EM algorithm to data with soft labels, although based on strong intuitions, was

only imperfectly formalized. It was not clear, in particular, what was the equivalent of the log-

likelihood function in this case, and if the proposed extension of the EM algorithm converged at

all. Precise answers to these questions are provided here.

This article is organized as follows. Background material on belief functions and on the estimation

of parameters in mixture models using the EM algorithm will first be recalled in Sections 2 and 3,

respectively. The problem of learning from data with soft labels will then be addressed in Section

4, which constitutes the core of the paper. A criterion extending the usual likelihood criterion will

first be derived in Section 4.1, and a version of the EM algorithm that optimizes this criterion will

be introduced in Section 4.2. Practical considerations and a general discussion will be presented
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in Sections 4.3 and 4.4, respectively. Finally, simulation results illustrating the advantages of this

approach will be reported in Section 5, and Section 6 will conclude the paper.

2. Background on Belief Functions

2.1. Belief Functions on a Finite Frame

The theory of belief functions was introduced by Dempster [31] and Shafer [19]. The interpreta-

tion adopted throughout this paper will be that of the Transferable Belief Model (TBM) introduced

by Smets [20]. The first building block of belief function theory is the basic belief assignment (bba),

which models the beliefs held by an agent regarding the actual value of a given variable taking

values in a finite domain (or frame of discernment) Ω, based on some body of evidence. A bba mΩ

is a mapping from 2Ω to [0, 1] verifying:

∑

ω⊆Ω

mΩ(ω) = 1. (1)

Each mass mΩ(ω) is interpreted as the part of the agent’s belief allocated to the hypothesis that

the variable takes some value in ω [19, 20]. The subsets ω for which mΩ(ω) > 0 are called the focal

sets. A categorical bba has only one focal set. A simple bba has at most two focal sets, including

Ω. A Bayesian bba is a bba whose focal sets are singletons. A bba is said to be consonant if its

focal sets are nested.

A bba is in one to one correspondence with other representations of the agent’s belief, including

the plausibility function defined as:

plΩ(ω)
△

=
∑

α∩ω 6=∅

mΩ(α), ∀ω ⊆ Ω. (2)

The quantity plΩ(ω) is thus equal to the sum of the basic belief masses assigned to propositions that

are not in contradiction with ω; it corresponds to the maximum degree of support that could be

given to ω, if further evidence became available. The plausibility function associated to a Bayesian

bba is a probability measure. If mΩ is consonant, then plΩ is a possibility measure: it verifies

plΩ(α ∪ β) = max(plΩ(α), plΩ(β)), for all α, β ⊆ Ω.

2.2. Conditioning and Combination

Given two bbas mΩ
1 , mΩ

2 supported by two distinct bodies of evidence, we may build a new bba

mΩ
1 ∩©2 = mΩ

1 ∩©mΩ
2 that corresponds to the conjunction of these two bodies of evidence:

mΩ
1 ∩©2(ω)

△

=
∑

α1∩α2=ω

mΩ
1 (α1)m

Ω
2 (α2), ∀ω ⊆ Ω. (3)

This operation is usually referred to as the unnormalized Dempster’s rule, or the TBM conjunctive

rule. Any positive mass assigned to the empty set during the combination process is interpreted

as indicating partial conflict between the two bodies of evidence. If the frame of discernment is
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supposed to be exhaustive, this mass is usually reallocated to other subsets, leading to the definition

of the normalized Demspter’s rule ⊕ defined as:

mΩ
1⊕2(ω) =







0 if ω = ∅

mΩ
1 ∩©2

(ω)

1−mΩ
1 ∩©2

(∅)
if ω ⊆ Ω, ω 6= ∅,

(4)

which is well defined provided mΩ
1 ∩©2(∅) 6= 1. Note that, if mΩ

1 (or mΩ
2 ) is Bayesian, then mΩ

1⊕2(ω)

is also Bayesian.

The combination of a bba mΩ with a categorical bba focused on α ⊆ Ω using the TBM conjunc-

tive rule is called (unnormalized) conditioning. The resulting bba is denoted mΩ(ω|α). Probabilistic

conditioning is recovered when mΩ is Bayesian, and normalization is performed. Using this defini-

tion, we may rewrite the conjunctive combination rule:

mΩ
1 ∩©2(ω) =

∑

α⊆Ω

mΩ
1 (α)mΩ

2 (ω|α), ∀ω ⊆ Ω, (5)

which is a counterpart of the total probability theorem in probability theory [32, 33]. This expression

shows more clearly the link with probability calculus and provides a shortcut to perform marginal

calculations on a product space when conditional bbas are available [33]. Consider two frames Ω

and Θ, and a set of conditional belief functions mΘ|Ω(·|ω) for all ω ⊆ Ω. Each conditional bba

mΘ|Ω(·|ω) represents the agent’s belief on Θ in a context where ω holds. The combination of these

conditional bbas with a bba mΩ on Ω yields the following bba on Θ:

mΘ(θ) =
∑

ω⊆Ω

mΩ(ω)mΘ|Ω(θ|ω), ∀θ ⊆ Θ. (6)

A similar formula holds for the plausibility function:

plΘ(θ) =
∑

ω⊆Ω

mΩ(ω)plΘ|Ω(θ|ω), ∀θ ⊆ Θ. (7)

This property bears some resemblance with the total probability theorem, except that the sum is

taken over the power set of Ω and not over Ω. We will name it the total plausibility theorem.

2.3. Independence

The usual independence concept of probability theory does not easily find a counterpart in belief

function theory, where different notions must be used instead. The simplest form of independence

defined in the context of belief functions is cognitive independence [19, p. 149]. Frames Ω and Θ

are said to be cognitively independent with respect to plΩ×Θ iff we have

plΩ×Θ(ω × θ) = plΩ(ω) plΘ(θ), ∀ω ⊆ Ω, ∀θ ⊆ Θ. (8)

Cognitive independence boils down to probabilistic independence when plΩ×Θ is a probability

measure. However, the concept of cognitive independence does not inherit all of the properties of

the probabilistic notion of independence and may be seen as a weak form of independence. See

[34, 35] for an in-depth analysis of independence concepts in the belief function theory.
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2.4. Belief Functions on the Real Line

The theory presented in the previous section can easily be extended to continuous belief functions

on the real line, assuming focal sets to be real intervals [36]. In this context, the concept of bba is

replaced by that of basic belief density (bbd), defined as a mapping mR from the set of closed real

intervals to [0, +∞) such that
∫ +∞

−∞

∫ +∞

x

mR([x, y])dydx ≤ 1. (9)

By convention, the one’s complement of the integral in the left-hand side of (9) is allocated to ∅.

As in the discrete case, plR([a, b]) is defined as a sum over all intervals whose intersection with [a, b]

is non-empty:

plR([a, b])
△

=

∫∫

[x,y]∩[a,b] 6=∅

mR([x, y])dydx. (10)

Further extension of these definitions to R
d, d > 1 is possible [37]. It is also possible to define

belief functions on mixed product spaces involving discrete and continuous frames (see, e.g., [38]).

The last tool from belief function theory which is of interest here is the Generalized Bayesian

Theorem (GBT), introduced by Smets [39, 33].

2.5. Generalized Bayesian Theorem

The Bayes’ theorem of probability theory is replaced in the framework of belief function by the

Generalized Bayesian Theorem (GBT), [39, 33, 40, 41]. This theorem provides a way to reverse

conditional belief functions without any prior knowledge. Let us consider two spaces, X the ob-

servation space and Θ the parameter space. Assume that our knowledge is encoded by a set of

conditional bbas mX|Θ(.|θi), θi ∈ Θ, which express our belief in future observations conditionally

on each θi, and we observe a realization x ⊆ X . The question is: given this observation and the

set of conditional bbas, what is our belief on the value of Θ? The answer is given by the GBT and

states that the resulting plausibility function on Θ has the following form:

plΘ|X (θ|x) = plX|Θ(x|θ) = 1−
∏

θi∈θ

(1− plX|Θ(x|θi)). (11)

When a prior bba mΘ
0 on Θ is available, it should be combined conjunctively with the bba defined

by (11). The classical Bayes’ theorem is recovered when the conditional bbas mX|Θ(.|θi) and the

prior bba mΘ
0 are Bayesian.

After this review of some tools from belief functions theory, the next part is dedicated to the

probabilistic formulation of the clustering and classification problems in terms of mixture model.

3. Mixture Models and the EM Algorithm

The Expectation Maximization (EM) algorithm provides a general solution to problems involving

missing data [42]. Here, we are interested in its most classical application, which concerns mixture
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Fig. 1. Graphical model representation of the mixture model (unsupervised learning)

estimation problems.

3.1. Mixture Models

Mixture models suppose the following data generation scheme:

– The true class labels {y1, . . . , yN} of data points are realizations of independent and identically

distributed (i.i.d) random variables Y1, . . . , YN ∼ Y taking their values in the set of all K classes

Y = {c1, . . . , cK} and distributed according to a multinomial distributionM(1, π1, . . . , πK):

P(Y = ck) = πk, ∀k ∈ {1, . . . , K}. (12)

The πk are thus the class proportions; they verify
∑K

k=1 πk = 1.

– The observed values {x1, . . . ,xN} are drawn using the class conditional density in relation with

the class label. More formally, X1, . . . , XN ∼ X are continuous random variables taking values

in X , with conditional probability density functions:

f(x|Y = ck) = f(x;θk), ∀k ∈ {1, . . . , K}. (13)

The parameters of this generative model are therefore the proportions π = (π1, . . . , πK) and the

parameters of the class conditional densities θ1, . . . ,θK . To simplify the notations, the vector of

all model parameters is denoted:

Ψ = (π1, . . . , πK ,θ1, . . . ,θK).

This generative model can be represented by an oriented graph, as shown in Figure 1.

The simplest case corresponds to the supervised learning problem where both the observations

and their classes are known. The learning set is then:

Xs = {(x1, y1), . . . , (xN , yN)}. (14)

It may be noted, equivalently, Xs = {(x1, z1), . . . , (xN , zN )}, where zi ∈ {0, 1}K are binary vari-

ables encoding the class membership of each data point, such that zik = 1 if yi = ck, and zik = 0

otherwise. In this case, the complete data log-likelihood can be written:

7
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L(Ψ;Xs) =

N∑

i=1

K∑

k=1

zik ln(πkf(xi;θk)). (15)

In this case, the Maximum Likelihood Estimator is generally easy to compute because optimization

problems are decoupled for each class.

In unsupervised learning problems, however, the available data are only the i.i.d realizations

of X , Xu = {x1, . . . ,xN}, provided by the generative model. To learn the parameters and the

associated partition of the data, the log-likelihood must be computed according to the marginal

density
∑K

k=1 πkf(xi;θk) of Xi. We then have

L(Ψ;Xu) =

N∑

i=1

ln

(
K∑

k=1

πkf(xi;θk)

)

. (16)

3.2. EM Algorithm

The log-likelihood function defined by (16) is difficult to optimize and may lead to a set of different

local maxima. The EM algorithm [42, 43] is nowadays the classical solution to this problem. The

missing data of the clustering problem are the true class labels yi of learning examples. The EM

algorithm brings them back in the optimization problem defined by (16), and uses them to build

an iterative ascent strategy which, given an initial parameter estimate Ψ(0), alternates two steps:

expectation (E) and maximization (M), until a local maximum is found.

The basis of the EM algorithm can be found in the link between the log-likelihood L(Ψ;Xu)

and the complete log-likelihood L(Ψ;Xs). The following relations hold:

L(Ψ;Xu) = L(Ψ;Xs)−
N∑

i=1

ln(P(zi|xi)) (17)

=

N∑

i=1

K∑

k=1

zik ln(πkf(xi;θk))−
N∑

i=1

K∑

k=1

zik ln

(

πkf(xi;θk)
∑K

k′=1 πk′f(xi;θk′)

)

. (18)

The observation labels zik are unknown, but they can be replaced by their expectation given the

current parameters estimates Ψ(q) at iteration q and the observed values x1, . . . ,xN . Relation (18)

remains valid and we obtain:

L(Ψ;Xu) =

N∑

i=1

K∑

k=1

t
(q)
ik ln (πkf(xi;θk))

︸ ︷︷ ︸

Q(Ψ,Ψ(q))

−
N∑

i=1

K∑

k=1

t
(q)
ik ln

(

πkf(xi;θk)
∑K

k′=1 πk′f(xi;θk′)

)

︸ ︷︷ ︸

H(Ψ,Ψ(q))

, (19)

with:

t
(q)
ik = E

Ψ(q) [zik|xi] = P(zik = 1|Ψ(q),xi) =
π

(q)
k f(xi;θ

(q)
k )

∑K

k′=1 π
(q)
k′ f(xi;θ

(q)
k′ )

. (20)

Such a decomposition is useful to define an iterative ascent strategy. The difference between the

log-likelihood evaluated at iterations q + 1 and q is:

L(Ψ(q+1);Xu)− L(Ψ(q);Xu) =
(

Q(Ψ(q+1),Ψ(q))−Q(Ψ(q),Ψ(q))
)

+
(

H(Ψ(q),Ψ(q))−H(Ψ(q+1),Ψ(q))
)

. (21)
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The second term in the right-hand side of (21) is:

H(Ψ(q),Ψ(q))−H(Ψ(q+1),Ψ(q)) =

N∑

i=1

K∑

k=1

t
(q)
ik ln(t

(q)
ik )−

N∑

i=1

K∑

k=1

t
(q)
ik ln(t

(q+1)
ik ) (22)

=−
N∑

i=1

K∑

k=1

t
(q)
ik ln

(

t
(q+1)
ik

t
(q)
ik

)

. (23)

We thus have H(Ψ(q),Ψ(q))−H(Ψ(q+1),Ψ(q)) ≥ 0, as a consequence Jensen’s inequality. Therefore,

the log-likelihood will increase between iterations q and q + 1 if we find new parameter estimates

Ψ(q+1) such that:

Q(Ψ(q+1),Ψ(q))−Q(Ψ(q),Ψ(q)) > 0. (24)

Consequently, the maximization of the auxiliary function Q is sufficient to improve the likelihood.

Furthermore, because the sum over the classes is outside the logarithm, the optimization problems

are decoupled and the maximization is simpler. The EM algorithm starts with initial estimates Ψ(0)

and alternates two steps (called the E and M steps) to define a sequence of parameters estimates

with increasing likelihood values. These steps are recalled in more detail below.

E Step: During this step, the expectation of the complete data log-likelihood according to the cur-

rent value of the parameter is computed. This expectation defines the auxiliary function Q(Ψ,Ψ(q)):

Q(Ψ,Ψ(q)) = E
Ψ(q) [L(Ψ;Xs)|x1, . . . ,xN ] =

N∑

i=1

K∑

k=1

t
(q)
ik ln (πkf(xi;θk)) . (25)

For this, the posterior probabilities t
(q)
ik are computed from the current estimates of the parameters

using (20). When these posterior probabilities have been computed, we can optimize the auxiliary

function to find the new parameters estimates.

M Step: During this step, the parameters are updated. The maximization of the auxiliary function

with respect to Ψ provides the new estimate:

Ψ(q+1) = argmax
Ψ

Q(Ψ,Ψ(q)). (26)

As mentioned previously, this estimate has a higher likelihood than the previous one. This maxi-

mization problem has an analytic solution for the mixing proportions: the maximum of

N∑

i=1

K∑

k=1

t
(q)
ik ln(πk)

under the constraint
∑K

k=1 πk = 1 yields

π
(q+1)
k =

1

N

N∑

i=1

t
(q)
ik . (27)

Moreover, if classical parametric models are assumed for the conditional densities (Multivariate

normal, Exponential, ...), the optimization problem solution often has a closed form. For example, if

multivariate normal densities functions are considered, f(x;θk) = φ(x;µk,Σk), all the parameters

are updated using the following formulas:

9
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µ
(q+1)
k =

1
∑N

i=1 t
(q)
ik

N∑

i=1

t
(q)
ik xi (28)

Σ
(q+1)
k =

1
∑N

i=1 t
(q)
ik

N∑

i=1

t
(q)
ik (xi − µ

(q+1)
k )(xi − µ

(q+1)
k )′. (29)

The Expectation and the Maximization steps are repeated until convergence, which can be

detected when the increase of the log-likelihood does not exceed a given threshold.

The mixture model setting and the EM algorithm can be adapted to handle specific learning

problems such as the semi-supervised and the partially supervised cases, as we will see in the next

subsection.

3.3. Semi-supervised and Partially Supervised Learning of Mixture Models

In semi-supervised learning, the component origins of the samples are known only for the M

first observations. Consequently the log-likelihood can be decomposed in two parts corresponding,

respectively, to the supervised and unsupervised learning examples:

L(Ψ,Xss) =

M∑

i=1

K∑

k=1

zik ln(πkf(xi;θk)) +

N∑

i=M+1

ln(

K∑

k=1

πkf(xi;θk)), (30)

It is easy to see that an EM algorithm can be adapted to optimize this function. Function Q can

be rewritten as:

Q(Ψ,Ψ(q)) =
M∑

i=1

K∑

k=1

zik ln(πkf(xi;θk)) +
N∑

i=M+1

K∑

k=1

t
(q)
ik ln(πkf(xi;θk)). (31)

This form of Q leads to a new version of the EM algorithm dedicated to semi-supervised learning

problems. In fact, the modification affects only the E step, where the tik are only computed for

unlabelled observations. During the M step, the zik are used instead of the tik for labelled data.

In the context of partially known labels, the available information on yi is a subset of pos-

sible classes Ci ⊆ Y. The dataset Xps = {(x1, C1), . . . , (xN , CN )} under consideration contains

independent realizations (xi, Yi ∈ Ci). The likelihood must therefore be computed from the joint

distribution of (xi, Yi ∈ Ci):

P(xi, Yi ∈ Ci) =
∑

{k:ck∈Ci}

P(xi, Yi = ck) =
K∑

k=1

P(Yi ∈ Ci ∩ {ck})f(xi|Yi = ck) (32)

where:

P(Yi ∈ Ci ∩ {ck}) =







0 if ck /∈ Ci,

πk if ck ∈ Ci.

(33)

Introducing the notation li = (li1, . . . , liK) ∈ {0, 1}K which is simply an indicator of the subset

Ci ⊆ Y corresponding to the partial label (lik = 1 if ck ∈ Ci, lik = 0 otherwise), we may write:

P(Yi ∈ Ci ∩ {ck}) = likπk. (34)

Substituting P(Yi ∈ {Ci ∩ ck}) by likπk in (32), we have:
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P(xi, Yi ∈ Ci) =

K∑

k=1

likπkf(xi;θk) (35)

The log-likelihood becomes:

L(Ψ,Xps) =
N∑

i=1

ln

(
K∑

k=1

likπkf(xi,θk)

)

. (36)

The EM algorithm may also be used in this context, with few modifications to produce parameter

estimates [11]. The modifications affect only the E step where the posterior probabilities of each

class are computed according to:

t
(q)
ik =

likπ
(q)
k f(xi;θ

(q)
k )

∑K

k′=1 likπ
(q)
k′ f(xi;θ

(q)
k′ )

. (37)

The M step is not affected by taking into account the additional information and is computed as

usually.

4. Extension to Imprecise and Uncertain Labels

Our method extends the approach described above to handle imprecise and uncertain class labels

defined by belief functions.

4.1. Derivation of a Generalized Likelihood Criterion

In this section, we shall assume the learning set under consideration to be of the form:

Xiu = {(x1, m
Y
1 ), . . . , (xN , mY

N)}, (38)

where each mY
i is a bba on the set Y of classes, encoding all available information about the class

of example i. As before, the xi will be assumed to have been generated according to the mixture

model defined in Section 3.1. Our goal is to extend the previous method to estimate the model

parameters from dataset (38). For that purpose, an objective function generalizing the likelihood

function needs to be defined.

The concept of likelihood function has strong relations with that of possibility and, more gener-

ally, plausibility, as already noted by several authors [44, 45, 46, 47, 48]. Furthermore, selecting the

simple hypothesis with highest plausibility given the observations Xiu is a natural decision strategy

in the belief function framework [49]. We thus propose as an estimation principle to search for the

value of parameter ψ with maximal conditional plausibility given the data:

ψ̂ = arg max
ψ

plΨ({ψ}|Xiu). (39)

To avoid cumbersome notations, we shall not distinguish between the singleton {ψ} and the value

ψ; the notation plΨ({ψ}|Xiu) will thus be simplified to plΨ(ψ|Xiu).

The correctness of the intuition leading to this choice of (39) as an estimation principle seems

to be confirmed by the fact that the logarithm of plΨ(ψ|Xiu) is an immediate generalization of

criteria (16), (30) and (36), as shown by the following proposition.
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Proposition 4.1 The logarithm of the conditional plausibility of Ψ given Xiu is given by

ln
(
plΨ(ψ|Xiu)

)
=

N∑

i=1

ln

(
K∑

k=1

plik.πkf(xi;θk)

)

+ ν, (40)

where the plik are the plausibilities of each class k for each sample i according to soft labels mi and

ν is a constant independent of ψ.

Proof. Using the GBT (11), the plausibility of parameters can be expressed from the plausibility

of the observed values:

plΨ(ψ|Xiu) = plX1×...×XN (x1, . . . ,xN |ψ). (41)

By making the conditional cognitive independence assumption (8), this plausibility can be decom-

posed as:

plΨ(ψ|Xiu) =

N∏

i=1

plXi(xi|ψ). (42)

Using the Total Plausibility Theorem (7), we may express the plausibility plXi(xi|ψ) of an obser-

vation xi knowing the parameter value as:

plXi(xi|ψ) =
∑

C⊆Y

mYi(C|ψ)plXi|Yi(xi|C,ψ), (43)

where mYi(.|ψ) is a bba representing our beliefs regarding the class Zi of example i. This bba

comes from the combination of two information sources: the “soft” label mY
i and the proportions

π, which induce a Bayesian bba mY(·|π) with mY({ck}|π) = πk for all ck ∈ Y. As these two

sources are supposed to be distinct, they can be combined using the conjunctive rule (3):

mYi(·|ψ) = mY
i ∩©mY(·|π).

As mY(·|π) is Bayesian, the same property holds for mYi(·|ψ). We have:

mYi({ck}|ψ) =
∑

C∩ck 6=∅

mY
i (C)mY ({ck}|π) = plik πk, ∀k ∈ {1, . . . , K} (44)

mYi(C|ψ) = 0, ∀C ⊆ Y such that |C| > 1. (45)

In the right-hand side of (43), the only terms in the sum that need to be considered are those

corresponding to subsets C of Y such that |C| = 1. Consequently, we only need to express

plXi|Yi(xi|ck,ψ) for all k ∈ {1, ..., K}. There is a difficulty at this stage, since plXi|Yi(·|ck,ψ)

is the continuous probability measure with density function f(x;θk): consequently, the plausibility

of any single value would be null if observations xi had an infinite precision. However, observations

always have a finite precision, so that what we denote by plXi|Yi(xi|ck,ψ) is in fact the plausi-

bility of a infinitesimal region around xi with volume dxi1 . . . dxip (where p is the feature space

dimension). We thus have

plXi|Yi(xi|ck,ψ) = f(xi;θk)dxi1 . . .dxip. (46)

Using (44) and (46), (43) can be expressed as:

plXi(xi|ψ) =

(
K∑

k=1

plikπkf(xi;θk)

)

dxi1 . . . dxip. (47)
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Substituting this expression in (42), we obtain:

plΨ(ψ|Xiu) =

N∏

i=1

[(
K∑

k=1

plikπkf(xi;θk)

)

dxi1 . . . dxip

]

. (48)

The terms dxij can be considered as multiplicative constants that do not affect the optimization

problem. By taking the logarithm of (48), we get (40), which completes the proof. �

Remark 4.1 The bba mi defining the label of sample i does not appear in its bba form in (40), but

through the plausibilities plik. Therefore, labels sharing the same plausibility profile (i.e., the same

plausibilities of the singletons) are handled identically. This invariance comes from the probabilistic

nature of the generative model. The full expressive power of belief functions is not used, but only

|Y| parameters (to be compared to 2Y) are needed to define a label, which is an advantage when the

number of components is high.

Remark 4.2 Our estimation principle can be expressed as:

ψ̂ = argmax
ψ

L(Ψ;Xiu), (49)

with

L(Ψ;Xiu) =

N∑

i=1

ln

(
K∑

k=1

plik πk f(xi;θk)

)

. (50)

This choice of this notation is justified by the fact that (50) extends the maximum likelihood criteria

(16), (30) and (36):

– When the mi are all vacuous, we have plik = 1, ∀i, k, and the unsupervised criterion (16) is

recovered;

– In the semi-supervised case, we have

plik =







zik, ∀i ∈ {1, . . . , M}, ∀k

1, ∀i ∈ {M + 1, . . . , N}, ∀k.

In that case (50) is equivalent to (30);

– Finally, the partially supervised criterion (36) is recovered when labels are categorical bbas, in

which case we have plik = lik, ∀i, k.

Once the criterion is defined, the remaining work concerns its optimization. The next section

presents a variant of the EM algorithm dedicated to this task.

4.2. EM algorithm for Imprecise and Uncertain Labels

To build an EM algorithm able to optimize L(Ψ;Xiu), we follow a path that parallels the one

recalled in Section 3.2.

At iteration q, our knowledge of the class of example i given the current parameter estimates

comes from three sources:

(i) the class label mY
i of example i;

(ii) the current estimates π(q) of the proportions, which induce a Bayesian bba mY(·|π(q)) such

that mY({ck}|π(q)) = π
(q)
k ;
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(iii) vector xi and the current parameter estimate Ψ(q). Using (46) and the GBT (11), we have

plYi|Xi({ck}|xi,ψ) = plXi|Yi(xi|ck,ψ) = f(xi;θk)dxi1 . . . dxip.

By combining these three items of evidence using Dempster’s rule (4), we get a Bayesian bba

(since mY(·|π(q)) is Bayesian). Let us denote by t
(q)
ik the mass assigned to {ck} after combination.

We have

t
(q)
ik =

plikπ
(q)
k f(xi;θ

(q)
k )

∑K

k′=1 plik′π
(q)
k′ f(xi;θ

(q)
k′ )

, (51)

which is quite similar to (20) and (37).

Using this expression, we may decompose the log-likelihood in two parts, as in (17). This is

expressed by the following proposition.

Proposition 4.2

L(Ψ;Xiu) = Q(Ψ,Ψ(q))−H(Ψ,Ψ(q)), (52)

with:

Q(Ψ,Ψ(q)) =

N∑

i=1

K∑

k=1

t
(q)
ik ln (plikπkf(xi;θk))

H(Ψ,Ψ(q)) =

N∑

i=1

K∑

k=1

t
(q)
ik ln(tik).

Proof: We have

Q(Ψ,Ψ(q))−H(Ψ,Ψ(q)) =

N∑

i=1

K∑

k=1

t
(q)
ik ln (plikπkf(xi;θk))−

N∑

i=1

K∑

k=1

t
(q)
ik . ln(tik)

=

N∑

i=1

K∑

k=1

t
(q)
ik ln

(

plikπkf(xi;θk)

plikπkf(xi;θk)

K∑

k′=1

plik′πk′f(xi;θk′ )

)

=

N∑

i=1

K∑

k=1

t
(q)
ik ln

(
K∑

k′=1

plik′πk′f(xi;θk′)

)

=

N∑

i=1

ln






K∏

k=1

(
K∑

k′=1

plik′πk′f(xi;θk′ )

)t
(q)

ik






=

N∑

i=1

ln






(
K∑

k′=1

plik′πk′f(xi;θk′)

)
∑

K

k=1
t
(q)

ik






=

N∑

i=1

ln

(
K∑

k′=1

plik′πk′f(xi;θk′ )

)

= L(Ψ;Xiu).

�

Therefore, using the same argument as for the classical EM algorithm (Section 3.2), an algorithm

which alternates between computing tik using (51) and maximization of Q will increase the log

likelihood. The EM algorithm that performs the optimization of our criterion (49) is therefore the

classical EM algorithm, except for the E step, where the posterior distributions tik are weighted
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by the plausibility of each class plik =
∑

C∩ck 6=∅ mi(C). Note that the impact of the soft labels in

the EM algorithm has a natural interpretation.

4.3. Practical Considerations

The theoretical algorithm presented in the previous section can easily be implemented, with the

usual precautions to prevent numerical problems such as storage and manipulations of posterior

probabilities tik on log-scale. The algorithm can readily be adapted to deal with different class

conditional distributions. As an example, the pseudo-code for the implementation of our algorithm

in the classical case of multidimensional Gaussian mixture is given in Algorithm 1.

Algorithm 1 EM algorithm, pseudo-code for Gaussian mixture models with partial labels. The

notation φ(.,µ,Σ) stands for the multivariate Gaussian probability density with parameters (µ,Σ).

Inputs: {xi}i=1...N , {plik}k=1...K
i=1...N

Initialize: µ
(0)
1 , . . . ,µ

(0)
K ; Σ

(0)
1 , . . . ,Σ

(0)
K ; π

(0)
1 , . . . , π

(0)
K

while Increment in log likelihood > precision threshold do

//E step

t
(q)
ik =

plikπ
(q)
k φ(xi;µ

(q)
k ,Σ

(q)
k )

∑K

k′=1 plik′π
(q)
k′ φ(xi;µ

(q)
k′ ,Σ

(q)
k′ )

//M Step

π
(q+1)
k = 1

N

∑N

i=1 t
(q)
ik

µ
(q+1)
k = 1∑

N

i=1
t
(q)

ik

∑N

i=1 t
(q)
ik xi

Σ
(q+1)
k = 1∑

N

i=1
t
(q)

ik

∑N

i=1 t
(q)
ik (xi − µ

(q+1)
k )(xi − µ

(q+1)
k )′

q ← q + 1

end while

Outputs: µ̂k = µ
(q)
k , Σ̂k = Σ

(q)
k , π̂k = π

(q)
k , ∀k ∈ {1, . . . , K}

Some issues related to the practical implementation of this algorithm are briefly addressed below.

4.3.1. Initialization

A practical advantage of soft labels can be found in their ability to provide an interesting starting

point for the algorithm. For this, we can simply compute the pignistic transform [20] of each label

mi to supply the initial values of the posterior probabilities:

t
(0)
ik =

∑

C:ck∈C

mY
i (C)

|C|
.

4.3.2. Convergence test

The convergence of the algorithm can be checked in different ways. As proposed in the pseudo-

code of Algorithm 1, the increment in log likelihood can be monitored and a test such as:

L(Ψ(q);Xiu)− L(Ψ(q−1);Xiu)

|L(Ψ(q−1);Xiu)|
< ǫ, (53)
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where ǫ is a precision threshold set to a small value (10−6), can be used to check the conver-

gence. Another convergence test can be based on differences between successive estimates of the

parameters or latent variables (t
(q)
ik and t

(q+1)
ik ).

4.4. Discussion

To conclude this section, the problem of data dimensionality and the time complexity of our

method will now be discussed. The improvement over previous work will also be stressed.

4.4.1. Curse of Dimensionality

In real applications, it is crucial to take care of data dimensionality. It is well known that Gaus-

sian Mixture Models may perform poorly in high dimensional feature spaces: consequently, similar

problems can be expected with our method. Limiting the number of free parameters is a classi-

cal way to cope with this problem. In Ref. [50, 51], different parametrizations of the covariance

matrix with varying numbers of free parameters are proposed. Another solution to the dimension-

ality problem was recently introduced in [52, 53], assuming each class to lie in a low dimensional

manifold; constraints are then imposed on the spectral decomposition of the covariances matrix.

Finally, Bayesian regularization techniques can also be used to circumvent problems encountered

by Gaussian Mixture Models in high dimensional feature spaces [54]. Since all of these solutions

affect the M step of the EM algorithm, whereas our integration of soft label information impacts

the E step, they can easily be used in conjunction with our method.

4.4.2. Time Complexity

The complexity of one iteration of our algorithm is exactly the same as in the classical EM algo-

rithm for mixture model. Differences that may arise come from label imprecision, which influences

the number of iterations needed to converge and the problem of local maxima. The experimental

study presented in Section 5.1.3 investigates the influence of soft label imprecision on these two

aspects. In the practical application of our algorithm, the key problem will certainly be the exis-

tence of local maxima. The algorithm must therefore be initialized with different starting points

in order to find different local maxima and select the best one. Other solutions developed to cope

with this problem in unsupervised learning of mixture model such as the Deterministic Annealing

EM Algorithm [55] can also be interesting.

4.4.3. Comparison with Previous Work

As outlined in Section 1, the idea of adapting the EM algorithm to handle soft labels can be

traced back to the work of Vannoorenberghe and Smets [26, 27], which was recently extended to

categorical data by Jraidi et al. [30]. These authors proposed a variant of the EM algorithm called
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CrEM (Credal EM), based on a modification of the auxiliary function Q(Ψ,Ψ(q)) defined in (19).

However, our method differs from this previous approach in several respects:

– First, the CrEM algorithm was not derived as optimizing a generalized likelihood criterion such

as (50); consequently, its interpretation was unclear, the relationship with related work (see

Remark 4.2) could not be highlighted and, most importantly, the convergence of the algorithm

was not proven.

– In our approach, the soft labels mY
i appear in the criterion and in the update formulas for

posterior probabilities (51) only in the form of the plausibilities plik of the singletons (plausibility

profiles). In constrast, the CrEM algorithm uses the 2|Y| values in each bba mY
i . This fact has

an important consequence, as the computations involved in the E step of the CrEM algorithm

have a complexity in O(2|Y|) whereas our solution only involves calculations which scale with

the cardinality of the set of classes, that is in O(|Y|). For large numbers of classes, this can be

expected to have a major influence on running time.

– Finally, no experimental study demonstrating the interest of soft labels was presented in Ref.

[26, 27], since only two simulated examples were used to illustrate the approach. The set of

experiments presented in the next section will provide a more complete demonstration of the

interest of soft labels.

5. Simulations

To better understand the behaviour of our algorithm in the presence of imprecise and uncertain

labels, two sets of experiments were carried out. The first one aimed at giving some clues on the

influence of soft labels on the complexity of the optimization problem and on estimation accuracy,

as compared to unsupervised clustering. We studied the influence of label imprecision on these

two aspects. The second set of experiments was designed to show the benefits of soft labels when

labels are uncertain. We will show that information on label reliability encoded in soft labels can

be exploited to obtain a significant reduction of classification error rates.

5.1. Influence of Label Imprecision

The aim of this section is to show the influence of label precision on the accuracy of parameter

estimation. During the next experiments, the assumption that the true class has the highest plau-

sibility is made. This assumption will be abandoned in Subsection 5.2, where a solution to deal

with label uncertainty will be presented.

5.1.1. Imprecise and Uncertain Label Generation

First of all, we must determine how to quantify the amount of information on the true class

encoded by a soft label. This question is related to the quantification of label imprecision. Several
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uncertainty measures have been proposed to quantify the uncertainty in a belief function [56].

Among them, nonspecificity (NS) is related to imprecision and has interesting properties [57]. It is

defined as:

NS(mY) =
∑

C⊆Y

mY(C) ln(|C|). (54)

To obtain learning sets with specific properties, we varied the mean nonspecificity ns of label

sets from a quasi-supervised setting (ns = 0.05) to a quasi unsupervised setting (ns = 0.95) in

a two class problem, and we compared the results obtained with these different training sets. To

generate a training set with fixed mean nonspecificity, we drew randomly, for each learning sample,

a nonspecificity value from a uniform distribution in [ns− 0.05, ns + 0.05] and we computed class

plausibilities using this value.

As an example, let us assume that we drew a nonspecificity value equal to NS = 0.3, and that

the true class of the sample is k∗. As we are only interested in the plausibility of singletons we can

constrain belief functions to be consonant; therefore, we have to find the masses assigned to focal

sets ck∗ and Y, as there are only two elements in the frame. From (54) we find mY({ck∗}) × 0 +

mY(Y) × 1 = 0.3, hence mY(Y) = 0.3. Using the fact that masses should sum to one, we find the

mass of the true class mY({ck∗}) = 1 − 0.3 = 0.7. Thus, the corresponding plausibilities used as

label are equal to plik∗ = 1 and plik = 0.3 for k 6= k∗.

5.1.2. Influence of Label Imprecision on Estimation Accuracy

First, we investigated with such principle the influence of labels on estimation accuracy. The

following simulations were performed. For each learning set size N ∈ {1000, 2000}, N samples in

a ten-dimensional feature space were drawn from a two component normal mixture with common

identity covariance matrix and balanced proportions. The distance between the two centers δ =

||µ1 − µ2|| was varied in {1, 2, 4}, in order to study different cases from strongly overlapping to

well separated classes.

For each generated sample, a nonspecificity value NS was drawn randomly from a uniform

distribution in [ns− 0.05, ns + 0.05] with ns ∈ {0.05, 0.1, 0.15, . . . , 0.95} and a soft label with that

nonspecificity value was built as explained above. For each learning set size N , mean nonspecificity

ns and distance δ between centers, two hundred learning sets were generated. The accuracy measure

was the empirical classification error rate of the trained classifier estimated on a test set of 5000

samples. As there is no model bias, differences in empirical classification error are only due to

differences in estimation accuracy. Finally, to avoid the problem of local maxima, the EM algorithm

was initialized with the parameters of the true distributions: in this way, it is guaranteed to pick

among all local maxima of the log-likelihood function the one which is in the basin of attraction

of the optimal value.

Figure 2 shows blox-plots of estimated error rates for the 200 learning sets in each configura-

tion (N, ns, δ). It clearly shows the influence of label imprecision when the estimation problem is
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(a) δ = 1, N = 1000
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(b) δ = 1, N = 2000
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(c) δ = 2, N = 1000
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(d) δ = 2, N = 2000
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(e) δ = 4, N = 1000
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Fig. 2. Boxplots (over 200 independent learning sets) of empirical classification error rates (%) as a function of average

nonspecificity of learning set labels ns ∈ {0.5, . . . 0.95}, (results of supervised learning ns = 0 and unsupervised

learning, ns = 1 are also shown), for two learning set sizes (N = 1000 or N = 2000) and different distances between

the two centers of the components (δ ∈ {1, 2, 4}).
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difficult: when the class overlap is important (δ = 1 or 2) and when the learning set is not too

large (N = 1000) we can see a significant improvement of supplying partial information on class

label. In contrast, when the problem is simple (well separated classes and large number of training

samples), we do not gain much from supplying more precise labels. These findings are natural

and consistent with theoretical studies on asymptotic efficiency of labelled samples with respect to

unlabelled samples [58]. These results show that our solution is able to take advantage of partial

information on class labels to enhance estimation accuracy, provided the soft labels are not wrong

(in these experiments, the true class always has a plausibility equal to one). We will now see that

partial label information also has an effect on the complexity of the optimization problem.

5.1.3. Influence of Label Precision on the Likelihood Landscape

The following experiment was designed to show the potential benefit of soft labels in terms of

simplification of the optimization problem. Two indicators of optimization problem complexity

were investigated: the number of iterations before convergence and the number of different local

maxima found.

The behaviour of these two indicators was analyzed with respect to the average nonspecificity

of the learning set labels. For that purpose, we drew N = 1000 samples from the same mixture

distribution as previously with δ = 2, and we simulated different sets of labels with average non-

specificity ranging from 0.1 to 0.9. For all of these learning sets, we ran the EM algorithm from two

hundred different random starting points and we counted the number of different local maxima

that were found 1 , as well as the average number of iterations until convergence. This experiment

was repeated ten times with different randomly generated soft labels, and the results were averaged

over these ten independent sets. Figure 3 displays these two indicators of optimization problem

complexity.

As expected, information on the true class of samples has a great impact on the complexity of the

optimization problem. The increase of the number of local maxima seems to be roughly exponential

as a function of the nonspecificity of class labels. Furthermore, for ns < 0.25 we noted that no

switching problem appeared whatever the chosen starting point (the predicted class of any learning

sample does not change across the successive runs the EM algorithm). When enough information

is available, the problem can be considered as convex since only one maximum is found, as in the

limit situation of supervised learning. This consideration has high practical interest as the problem

of local maxima is very important in the unsupervised learning context.

1 Two local maxima were supposed to be distinct if the distance between the vectors containing all the parameters

was larger than 0.001.
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Fig. 3. (a) Number of local maxima detected over 200 random initializations for the EM algorithm, (b) number of

iterations until convergence, as a function of average label nonspecificity.

5.2. Simulations with Label Noise

We present here simulation results that highlight the practical interest of soft labels when la-

belling errors are present. The experiment aimed at using information on class labels simulating

expert opinions. As a reasonable setting, we assumed that the expert supplies, for each sample i,

his/her more likely label ck and a measure of doubt pi. This doubt is represented by a number in

[0, 1], which can be seen as the probability that the expert knows nothing about the true label.

To handle this additional information in the belief function framework, it is natural to discount

the categorical bba associated to the guessed label with a discount rate pi [19, Page 251]. Thus, the

imperfect labels built from expert opinions are simple bbas such that mY
i ({ck∗}) = 1− pi for some

k∗, and mY
i (Y) = pi. The corresponding plausibilities are plik∗ = 1 and plik = pi for all k 6= k∗.

Such labelling can easily be handled by our method.

5.2.1. Label Simulation

Simulated and real datasets with known class labels were corrupted as follows: for each training

sample i, a number pi was drawn from a specific probability distribution to define the doubt

expressed by a hypothetical expert on the class of that sample. With probability pi, the label of

sample i was changed (to any other class with equal probabilities).

The probability distribution used to draw the pi specifies the expert’s labelling error rate. The

expected value of pi is equal to the asymptotic labelling error rate. For our experiments we used

Beta distributions with expected value equal to {0.1, 0.15, . . . , 0.4} and variance kept equal to 0.2.

5.2.2. Simulated Datasets

The first results concern simulated data. In that case, there is no modeling bias in these exper-

iments. Four data sets of size N ∈ {500, 1000, 2000, 4000} were generated from a two component
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Gaussian mixture with the same parameters as in Section 5.1.2, and with a distance δ = 2 between

the two centers. Finally, the labels were corrupted by noise as described previously. The results of

our approach with soft labels were compared to:

(i) supervised learning of the Gaussian Mixture Model, using the potentially wrong expert’s

labels;

(ii) unsupervised learning of the Gaussian Mixture Model, which does not use any information

on class label coming from experts;

(iii) a strategy based on semi-supervised learning of the Gaussian Mixture Model, which takes

into account the reliability of labels supplied by the pi’s. This strategy considers each sample

as labeled if the doubt expressed by the expert is moderate (pi ≤ 0.5) and as unlabelled

otherwise (pi > 0.5). This strategy will be called “adaptive semi-supervised learning”;

(iv) the generative probabilistic label noise model introduced in [15, 18], which learns the prob-

abilities of label flipping. This solution to deal with label noise addresses a problem close to

this one but did not use information on label reliability coming from the expert. The im-

plementation used was the one proposed in [18], and the mixture model postulated was the

same as for all methods, one cluster per class and full covariance matrix.

It should be noted that methods (i)-(iii) above are based on the same EM algorithm as our method,

with different class labels. Method (iv) is based on the same generative model, but a specific EM

algorithm, as explained in [18].

Table 1 and Figure 4 show the performances of the different classifiers trained with these learning

sets. The error rates of the different classifiers were estimated on a test set of 5000 observations

according to their real classes, the results were averaged over one hundred randomly chosen inde-

pendent training sets. For all methods, the EM algorithm was initialized with the true parameter

values. A set of paired, two-sided sign test were performed between the best method (according

to empirical classification error) and all other methods. If the null hypothesis (zero median for

the difference between the two input distributions) was rejected for all the tests at the 5% sig-

nificance level, this method was considered to perform significantly better than the others. The

corresponding error rates are printed in bold in Table 1.

As expected, when the expert’s labelling error rate increases, the error rate of supervised learning

also increases. Our solution based on soft labels does not suffer as much as supervised learning and

adaptive semi-supervised learning from label noise. Whatever the dataset size, our solution takes

advantage of additional information on the reliability of labels to keep good performances. We can

notice that, for N ∈ {1000, 2000, 4000}, the results are almost stable even if the expert’s labelling

error rate increases. Finally, our approach clearly outperforms unsupervised learning, except when

the number of samples is high (N = 4000). The comparison with the generative label noise model

is also in favor of soft labels when the number of training patterns is low and the results are similar

for N ∈ {2000, 4000}.
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(b) N = 1000
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(c) N = 2000
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(d) N = 4000

Fig. 4. Empirical classification error rates estimated by ten-fold cross validation (%) averaged over 100 independent

label sets, as a function of the asymptotic error rate of the training labels (%), and for different sample sizes. The

results were obtained using soft labels with discounting (-.+), supervised learning (-∗), unsupervised learning (- -o),

adaptive semi-supervised learning (..•) and the probabilistic label noise model (-�).

To conclude about this experiment, our solution outperforms both supervised learning, which

is an hazardous approach in this context as some labels are wrong, and unsupervised learning

that is a conservative approach because information coming from experts is discarded as it is

potentially wrong. It also outperforms semi-supervised learning which makes some errors when

choosing between considering points as labelled or not. Finally, for small sample size, our approach

yields better results than the probabilistic label noise model. This experiment has also proved the

ability of belief function based labels to carry useful information even if some labels are partially

wrong (the real class does not have a plausibility equal to one).
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Table 1

Empirical classification error rates (%) averaged over one hundred independent datasets, for different asymptotic

labelling error rates (%) and learning set sizes. Error rates in bold are significantly lower than other error rates at

the 5 % level according to paired two-sided sign tests.

Expert asymptotic error rate (%)

10 15 20 25 30 35 40

N = 500

Soft labels 17.8 18.2 18.8 19.8 21.9 24.9 30.8

Supervised 19.7 21.2 23.4 26.2 29.8 33.6 38.6

Unsupervised 37.9 37.9 38.0 37.9 37.9 37.9 37.9

Semi-Supervised 18.7 20.0 21.8 23.9 26.3 28.5 31.4

Label Noise Model 18.3 18.8 19.7 21.0 23.7 27.2 29.9

N = 1000

Soft labels 16.9 17.1 17.2 17.7 18.2 19.1 21.3

Supervised 17.9 19.0 20.3 22.1 25.0 28.8 34.0

Unsupervised 35.6 35.6 35.6 35.6 35.6 35.7 35.5

Semi-Supervised 17.3 18.2 19.1 20.4 22.2 24.2 26.1

Label Noise Model 17.1 17.4 17.4 18.1 19.0 20.5 23.8

N = 2000

Soft labels 16.4 16.5 16.6 16.8 16.9 17.2 18.0

Supervised 16.9 17.5 18.4 19.5 21.3 24.6 30.2

Unsupervised 24.5 24.5 24.5 24.6 24.5 24.5 24.5

Semi-Supervised 16.6 17.0 17.6 18.4 19.3 20.8 22.7

Label Noise Model 16.4 16.6 16.7 16.9 17.0 17.3 18.0

N = 4000

Soft labels 16.1 16.2 16.2 16.3 16.4 16.5 16.8

Supervised 16.3 16.7 17.1 17.8 19.1 21.2 25.5

Unsupervised 18.0 18.1 18.1 18.1 18.0 18.0 18.0

Semi-Supervised 16.2 16.5 16.7 17.1 17.8 18.6 19.7

Label Noise Model 16.1 16.2 16.3 16.3 16.4 16.5 16.7

5.2.3. Real datasets

We also investigated the interest of our approach with real datasets. In that case, modeling bias

may arise. We used well known datasets available on-line 2 [59], with the characteristics summarized

in Table 2. The first dataset is the well known Fisher’s Iris data. The Crabs dataset concerns

the recognition of crabs species and sexes in a population of crabs using different morphological

measurements. The Wine dataset contains the results of a chemical analysis of wines grown in a

specific area of Italy. Lastly, the Breast Cancer Wisconsin dataset deals with the recognition of

breast tumor from 30 features extracted from digitized images of fine needle aspirate (FNA) of

breast mass. The features describe the characteristics of the cell nuclei present in the image and

the task is to determine if the tumor is malignant or benign.

No preprocessing was performed except the classical centering and variance normalization. The

same process for soft label generation as above was used as for simulated data. The classification

error was estimated by ten-fold cross-validation, therefore 9/10 of the samples were used for training

2 http://mlearn.ics.uci.edu/MLRepository.html and http://rweb.stat.umn.edu/R/library/MASS/html/crabs.html.
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Table 2

Characteristics of real datasets.

name # dimensions # samples # classes

Iris 4 150 3

Crabs 5 200 4

Wine 13 178 3

Breast Cancer Wisconsin 30 569 2

with noisy labels and the remaining samples were used to estimate classification error using their

real classes. Finally, we sampled thirty independent label sets and computed the mean classification

error rate over these sets. To place the different strategies in a realistic context, we used for the

each variant of the EM algorithm an initialization procedure compatible with the information

available by this method. As no class information is available for unsupervised learning, we started

from one hundred different random initializations 3 . To solve the label switching problem resulting

from these random initializations, we computed the classification error according to the best class

permutations. For soft labels and semi-supervised learning the initialization was based on the

pignistic transformation of soft labels as explained in Section 4.3. Therefore, only one starting

point was used for semi-supervised learning and for soft labels. For these real datasets we also

compared our approach with a non parametric approach that can also deal with soft labels, the

evidential k nearest neighbor rule proposed in [10, 21]. The results of this method are supplied using

the crisp labels given by the virtual expert and the discounted labels. The number of neighbors

was fixed a priori to 10.

As for simulated data, the ability of soft labels to adequately account for label noise is visible

in Table 3 and Figure 5. For all the problems, results are quite stable even if the expert error rate

increases, which means that information on label reliability is correctly exploited to retain good

performances. We can also notice that, as with simulated data, the solution based on soft labels

significantly outperforms both supervised learning and adaptive semi-supervised learning when the

expert error rate increases. It also outperforms unsupervised learning, which is probably affected

in some cases by the problem of local maxima. Results of our method are similar to those of label

noise model for low label noise level but important differences in favor of soft labels appeared for

higher error rates. The k nearest neighbor approach gives also interesting results, except for the

dataset Crabs, where this method fails. It yields the best results for the Breast Cancer Wisconsin

dataset for low label noise level and gives good results for the Wine and Iris datasets even if

mixture models with soft labels perform better. Finally we may note that the solution based on

mixture modesl outperforms all the other methods in 14 experiments over 28.

In the different experiments, the solution based on discounting expert labels according to their

reliability to produce soft labels has demonstrated its ability to yield good parameter estimates even

3 The centers were drawn according to a Gaussian distribution estimated on the whole population, the covariance

matrix were all initialized with the one estimated on the whole dataset and the proportions were set to be equal.
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(a) Iris dataset
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(b) Wine dataset
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(c) Crabs dataset

10 15 20 25 30 35 40
0

5

10

15

20

25

30

35

Asymptotic label error rate (%)

E
m

pi
ric

al
 c

la
ss

ifi
ca

tio
n 

er
ro

r 
(%

)

 

 
Soft labels
Supervised
Unsupervised
Semi−supervised
Label Noise Model
knn bf
knn bf discounting

(d) Breast cancer dataset

Fig. 5. Empirical classification error rates estimated by ten-fold cross validation (%) averaged over thirty independent

label sets, as a function of the asymptotic error rate of the training labels (%), and for different real datasets. The

results were obtained using soft labels with discounting (-.+), supervised learning (-∗), unsupervised learning (- -o),

adaptive semi-supervised learning (..•) and probabilistic label noise model (-�).

if the expert’s labelling error rate is high. We may conclude that information on label reliability

is useful in the context of label noise, and that imprecise and uncertain labels are suitable to deal

with such additional information.

6. Conclusions

The approach presented in this paper, based on concepts coming from maximum likelihood

estimation and belief function theory, offers an interesting way to deal with imperfect and imprecise

labels. It assumes that the data are generated by a mixture model and that the class labels are belief

functions. In this context, a likelihood criterion was defined and an EM algorithm dedicated to its

optimization was presented. Simulations have shown that, even if the information on class labels

is partial, its exploitation with our approach may significantly improve the estimation accuracy

and simplify the optimization problem. Moreover, the practical interest of imprecise and imperfect

labels, as a solution to deal with label noise, has been highlighted by an experimental study using
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Table 3

Empirical classification error rates estimated by ten-fold cross validation (%) over thirty independent label sets,

with respect to expert’s asymptotic error rate on training labels, and for different real problem. Error rates in bold

are significantly lower than other error rates at the 5 % level according to paired two-sided sign tests.

Expert asymptotic error rate (%)

10 15 20 25 30 35 40

Iris

Soft labels 2.9 3.0 3.0 3.6 4.2 4.2 6.2

Supervised 7.0 9.9 11.7 14.2 16.6 19.4 23.6

Unsupervised 12.4 12.4 12.4 12.4 12.4 12.4 12.4

Semi-Supervised 4.9 8.3 9.0 12.4 14.5 16.2 21.3

Label Noise Model 2.9 3.1 3.3 4.0 6.2 8.2 15.3

k-nn TBM 5.1 5.2 6.4 7.0 10.4 13.1 18.1

k-nn TBM discounting 4.7 5.0 5.4 6.0 8.0 8.0 12.0

Wine

Soft labels 1.1 1.2 1.9 2.8 4.4 6.4 8.2

Supervised 6.2 9.6 12.8 15.8 20.1 23.9 28.6

Unsupervised 31.6 31.6 31.6 31.6 31.6 31.6 31.6

Semi-Supervised 3.4 6.2 9.5 11.7 14.0 17.0 18.1

Label Noise Model 1.6 1.7 2.5 3.9 6.1 8.6 12.4

k-nn TBM 2.5 3.3 4.1 5.7 9.2 10.7 17.2

k-nn TBM discounting 2.4 3.0 3.4 4.6 6.1 7.6 11.0

Crabs

Soft labels 6.0 5.9 6.1 6.2 6.3 6.4 6.8

Supervised 8.3 9.8 10.8 12.8 15.0 17.2 21.0

Unsupervised 7.6 7.6 7.6 7.6 7.6 7.6 7.6

Semi-Supervised 7.2 8.8 9.7 11.1 12.6 13.5 16.7

Label Noise Model 6.0 5.9 6.0 6.3 6.3 8.0 10.0

k-nn TBM 23.5 25.0 27.4 27.9 31.0 33.5 37.3

k-nn TBM discounting 23.3 25.8 27.0 28.3 30.2 32.7 35.8

Breast Cancer

Wisconsin

Soft labels 5.1 5.5 6.3 6.5 7.3 8.5 8.5

Supervised 7.7 9.1 10.5 12.2 15.0 20.2 24.9

Unsupervised 11.2 11.2 11.2 11.2 11.2 11.2 11.2

Semi-Supervised 6.2 7.6 9.5 10.3 10.9 14.7 13.9

Label Noise Model 5.9 6.1 6.9 7.3 8.2 10.9 13.3

k-nn TBM 4.0 4.9 7.3 10.3 15.1 22.6 31.1

k-nn TBM discounting 3.5 4.0 4.6 5.9 7.8 12.1 17.0

both real and experimental data.

The proposed criterion has a natural expression that is closely related to previous solutions found

in the context of probabilistic models, and also has a clear and justified origin in the context of

belief functions. Therefore, we hope that the link established by this study between probabilistic

methods and belief function-based approaches will be extended to other problems. Furthermore,

the long history of mixture models is an important advantage for our approach since a lot of tools

developed in the context of probabilistic models, such as the Bayesian Information Criterion or

other criteria for model selection, can easily be adapted to our approach.

We are working now on the application of such approach for the diagnosis of a railway signalling

system [60]. Soft labels seem to be appropriate to deal with the imprecise knowledge that experts

of this area have on the monitoring data of this complex system.
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