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A bstract. Contrary to the sequential world, the processes nvolved in
a distributed system do not necessarily know when a com putation is
gloally nished. T hispaper investigates the problem of the detection of
the term ination of local com putations.

W e de ne four types of term ination detection: no detection, detection
of the local term ination, detection by a distributed observer, detection
of the global term ination. W e give a com plete characterisation (except
in the local term nation detection case where a partial one is given) for
each of this term ination detection and show that they de ne a strict
hierarchy. T hese results em phasise the di erence between com putability
of a distributed task and tem ination detection.

Furthem ore, these characterisations encom pass all standard criteria that
are usually form ulated : topological restriction (tree, rings, or triangu-
lated networks ...), topological know ledge (size, diam eter ...), and local
know ledge to distinguish nodes (dentities, sense of direction). T hese re-
sults are now presented as corollaries of generalising theorem s. A s a very
special and In portant case, the techniques are also applied to the elec—
tion problem . Though given in the m odel of local com putations, these
results can give qualitative insight for sim ilar resuls in other standard
m odels.

T he necessary conditions involve graphs covering and quasicovering; the
su cient conditions (constructive localcom putations) are based upon an
enum eration algorithm ofM azurkiew icz and a stable properties detection
algorithm of Szym anski, Shiand Prywes.
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1 Introduction

T his paper presents results concerming two fundam ental problem s In the area
of distribbuted com puting: the term ination detection problem and the election
problem . T he proofs are done In them odel of local com putations and usem ainly
comm on results and tools. N am ely, they use M azurkiew icz’ algorithm ],
the Szym anskiShiP rywes algorithm ], coverings and quasicoverings of
graphs.

11 TheM odel

W e consider netw orks of processors w ith arbitrary topology. A network is rep—
resented as a connected, undirected graph where vertices denote processors and
edges denote direct com m unication links. Labels are attached to vertices and
edges. T he dentities of the vertices, a distinguished vertex, the num ber of pro-
cessors, the diam eter of the graph or the topology are exam ples of labels attached
to vertices; w eights, m arks for encoding a spanning tree or the sense of direction
are exam ples of labels attached to edges.

T he basic com putation step is to m odify labels locally, that is, on a subgraph
of xed radius 1 of the given graph, according to certain rules depending on the
subgraph only (local com putations). T he relabelling is perform ed untilno m ore
transform ation is possble, ie., untila nom al form is obtained. This isa m odel

rst proposed by A .M azurkiew icz ].

T hism odelhas num erous interests. A s any rigorously de ned m odel, it gives
an abstract toolto think about som e problem s in the eld of distributed com —
puting ndependently of the w ide variety ofm odels used to represent distributed
system s ]. A s classicalm odels in program m ing, it enables to build and to
prove com plex system s, and so, to get them right. And quoting D . Angliin in
], this kind of m odelm akes it possible to put forward phenom ena com —
mon to other m odels. It is true that this m odel is strictly stronger than other
standard m odels (like m essage passing system s), but then, I possibility results
rem ains true in weakerm odels. Furthem ore, any positive solution in thism odel
m ay guide the research of a solution in a weakerm odel or be in plem ented In a
weaker m odel using random ised algorithm s.F inally, this m odel gives nice prop—
erties and exam ples using classical com binatorialm aterial, hence we believe this
m odelhasa very light overhead in order to understand and to explain distributed
problam s.

W e acknow ledge, and underline, that the results presented here m ight be
quantitatively di erent from other m odels, but we clain that they are not sig—
ni cantly di erent: they are qualitatively sin ilar, as are all the m possibility
results proved in di erent m odels since the sem inal work of Anghiin. A1l of
them use the sam e \lifting technique", even though not on exactly the sam e
kind of graph m orphisn R ng8dM az9 ) K 94 BV 02d]. Thus it seem s possible
to extend the general results of this paper to m ore standard m odels lke the
\m essage passing m odel". M oreover, this direction has already given som e re—
sults £GM TOTLM 07 GM 0d]. Note also that all the questions addressed in




this paper are not speci ¢ of the m odel of local com putations. E g, is there a
unique (universal) algorithm that can solve the election problem on the fam ily
Gn in Of netw orks that adm it an election algorithm ? T hough this very set Gy i
can be di erent depending on the m odel of com putations that is used, we clain

that the generic answer is no and that ourm ain in possibility result can be ex—
tended to any other m odel. T he reader should note that this question has not
been previously thoroughly answered in any m odel (see the discussion about the
election problem on Section @) .

1.2 Related W orks

Among m odels related to our m odel there are local com putation system s as
de ned by Rosenstiehlet al. ], Angluin Eng8d], Yam ashita and K am eda
K v 99}, Boldi and Vigna BV9YBV0]] and Naor and Stockm eyer NS991. In
RFH 74] a synchronousm odel is considered, w here vertices represent (ddentical)
determ Inistic nite autom ata.T hebasic com putation step is to com pute the next
state of each processor according to its state and the states of its neighbours. In
] an asynchronousm odel is considered. A basic com putation step m eans
that two ad gcent vertices exchange their labels and then com pute new ones. In
] an asynchronousm odel is studied w here a basic com putation step m eans
that a processor either changes its state and sends a m essage or it receives a
m essage. In ] netw orks are directed graphs coloured on their arcs;
each processor changes its state depending on its previous state and on the states
of its inneighbours. A ctivation of processorsm ay be synchronous, asynchronous
or interleaved . In ] the ain isa study ofdistributed com putations that can
be done In a network w ithin a tin e Independent of the size of the network.

1.3 The Term ination D etection P roblem

Starting w ith the works by Angluin ] and Ttaiand Rodeh [R81], m any
papers have discussed the question: what functions can be com puted by dis-
tributed algorithm s in netw orks w here know ledge about the netw ork topology is
Iim ited?

Two Im portant factors lin iting the com putational pow er of distributed sys-
tem s are symm etry and explicit term ination. Som e functions can be com puted
by an algorithm that term inates im plicitly but not by an explicitly term inating
algorithm . In an iIn plicitly term inating algorithm , each execution is nite and
in the last state of the execution each node has the correct result. H ow ever, the
nodes are not aw are that their state is the last one in the execution; with an
explicitly term inating algorithm , nodes know the local or global term ination of
the algorithm .

Known Results about the Term ination D etection Problem . Im possi-
bility proofs for distributed com putations quite often use the reply technique.
Starting from a (supposedly correct) execution of an algorithm , an execution is



constructed in which the sam e steps are taken by nodes In a di erent network.
The m echanics of distributed execution dictate that this can happen, if the
nodes are ocally in the sam e situation, and this is precisely what is expressed by
the existence of coverings. T he in possibility result im plies that such aw areness
can never be obtained In a nite com putation.D uring the nineteen eighties there
werem any proposals for term ination detection algorithm s:such algorithm strans-
form Inplicitly into explicitly term nating algorithm s. Several conditions were
found to allow such algorithm s (thus to null the di erence between im plicitly
and explicitly com putable functions) and for each of these conditions a speci ¢
algorithm was given (see M at871,Lyn9d,reldd) . T hese conditions include:

. a unique lader exists in the network,

. the network is known to be a tree,

. the diam eter of the netw ork is known,

. the nodes have di erent identi cation num bers.

W N

The M ain Result. In this paper we show that these four conditions are just
goecial cases of one com m on criterion, nam ely that the localknow ledge of nodes
prohibits the existence of quasicoverings of unbounded radius. W e also prove,
by generalisihg the existing im possibility proofs to the lim it, that In fam ilies
w ith quasicoverings of unbounded radius, term ination detection is in possible.
Inform ally, we prove (see T heoram ) :

A distributed task T = (F ;S) is locally com putabke with explicit term ination
detection if and only if

1.04 S is covering-lifting closed on F ,
1.0.4i there exists a recursive function r such that for any H , there is no strict
quasi-covering of H of radiusr® ) in F .

A ctually, we Investigate di erent term ination detection schem es: localterm i-
nation detection, observed termm nation detection and global term ination detec—
tion. T his is explained later In this Introduction.

This is the st tim e, to our know ledge, that com putability of a distributed
task (that is known to relate to \local sym m etries") is flly distinguished from
the problem of detecting a kind of term ination of a distributed com putation.

Structural K now ledge and Labelled G raphs The de nition of coverings
and quasicoverings are extended to inclide node and link labellings as well. In
the extension it is required that a node ism apped to a node w ith the sam e label,
and links arem apped to linksw ith the sam e label. O ur approach then naturally
abstracts aw ay the di erence betw een anonym ous or non-anonym ous, centred or
uniform netw orks. Indeed, the netw ork being centred ism odelled by considering
as localknow ledge that the graph fam ily is the collection of graphs that contain
exactly one node w ith the label kader.

Speci c assum ptions (leader, dentities, sense of direction, know ledge of size)
now are exam ples of localknow ledge that prevents certain quasicoverings, thus



allow Ing termm ination detection to take place. W eak sense of direction W SD)
allow s to distinguish closed from open walks, which is su ciently strong to rule

out all non-trivial quasicoverings. T hus term nation detection is possible in all
system swith W SD .

1.4 The E lection P roblem

A sa very fundam entaland illustrative problem , we Investigate the election prob—
lem . The election problem is one of the paradigm s of the theory of distributed
com puting. twas rstposed by LelLann ]. C onsidering a netw ork of pro—
cessors the election problem is to arrive at a con guration where exactly one
processor is in the state elected and all other processors are In the state non-
elected. T he elected vertex isused to m ake decisions, to centralise or to broadcast
som e inform ation.

Known Results about the E lection Problem . Graphs where election is
possiblewere already studied but the algorithm susually involred som e particular
know ledge. Soling the problem fordi erent know ledge hasbeen investigated for
som e particular cases (see AW 04 JLyn9d,[fel0(] for details) including:

. the network is known to be a tree,

. the network is known to be com plete,

. the network is known to be a grid or a torus,

. the nodes have di erent identi cation num bers,

. the netw ork isknown to be a ring and has a know n prin e num ber of vertices.

g W

T he classical proof techniques used for show ing the non-existence of election
algorithm arebased on coverings ],which isanotion known from algebraic
topology ]. A graph G is a covering of a graph H if there is a surjctive
morphiam from G to H which is locally bipctive. The general dea, used for
In possibility proofs, is as follow s. IEG and H are two graphs such that G covers
H and G & H , then every local com putation on H induces a local com putation
on G and every labelwhich appearsin H appearsat leasttwice In G : T hususing
H it isalways possibl to build a com putation in G such that the label elected
appears tw ice. By thisway it is proved that there is no election algorithm for G
and H (Bng8(] Theorem 45).

A labelling is said to be locally bijpctive if vertices w ith the sam e label are
not In the sam e ball and have isom orphic labelled neighbourhoods. A graph G
is non-am biguous if any locally bifctive labelling is bifctive. M azurkiew icz has
proved that, know Ing the size of graphs, there exists an election algorithm for
the class of non-am biguous graphs ]. T his distributed algorithm , applied
to a graph of size n; assigns bipctively num bers of [L:n] to vertices of G : The
elected vertex is the vertex having the num ber 1:

In ] the notion of quasicovering has been introduced to study the
problem of term nation detection.A graph G is a quasicovering of a graph H
if G is locally a covering of H (locally m eans that there is a vertex v of G and
a positive Integer k such that the ball centred on v of radius k is a covering of a
ballofH ).



TheM ain Result. W e characterise w hich know ledge isnecessary and su cient
to have an election algorithm , or equivalently, w hat is the general condition for a
class of graphsto adm it an election algorithm : T heorem .Su client conditions
given below are just special cases of criteria of T heorem .

W e explain new parts in this theorem . Tt is well known (see above) that
the existence of an election algorithm needs graphs m inin al for the covering
relation. W e prove in this paper that if a graph is m Inin al for the covering
relation and adm its quasicoverings of arbitrary large radiis in the fam ily there
isno election algorithm .T hispart can be ilustrated by the fam ily of prim e rings.
Tndeed, prin e rings are m Inim al for the covering relation nevertheless there is
no election algorithm for this fam ily: w ithout the know ledge of the size, a ring
adm its quasicovering prin e rings of arbitrary large radius.

T hese two results prove one sense of T heorem . To prove the converse:

{ W e rem ark that non-am biguous graphs are precisely graphs which arem in—
n al for the covering relation.

{ W e extend the M azurkiew icz algorithm to labelled graphs.

{ W e prove that the M azurkiew icz algorithm applied in a labelled graph G
enables the \cartography", on each node of G , of a Jabelled graph H such
that G is a quasicovering of H ; and when the com putation is term inated
G isa covering ofH :

{ Wede ne and we use an extension of an algorithm by Szym anski, Shiand
Prywes ] w hich enables the distribbuted detection of stable properties
n a labelled graph.

{ W e prove that the boundedness of the radius of quasicoverings of a given
labelled graph enables to each node v to detect the term hnation of the
M azurkiew icz algorithm and nally each node can decide if it is elected
by testing if it has obtained num ber 1 by the M azurkiew icz algorithm .

1.5 Tools

C overings, C om putations and Sym m etry Breaking. The st step of
a node In a distributed com putation depends only on local initial know ledge
of this node; only after receiving inform ation from neighbours, the steps m ay
depend on initialknow ledge ofthese neighbours. (H ere initialknow ledge includes
the node’s nput, topological know ledge, degree, etc.) T hus, consider a labelled
graph G that containsa node v w ith initialknow ledge x, executing a distributed
algorithm A .IfG containsanothernode, w say,w ith the sam e lnitialknow ledge,
or a di erent labelled graph H contains a node w ith this know ledge, these nodes
may thus execute the same rst step if A is executed. Now lt v in G have
neighbours w ith initial know ledge a, b, and ¢ and assum e that in the labelled
graph H , node w also hasneighboursw ith initialknow ledge a, b, and c.W e thus
create a \local sim ilarity" to G of, In this case, a radius 1. In this situation,
not only will node w start with the sam e step as node v, but also w ill receive
the sam e nform ation after the rst step, and consequently w ill also perform the
sam e second step.



D istributed tasks like election, enum eration (assigning di erent num bers to
the nodes), and m utual exclision require the netw ork to reach a non-sym m etric
state. A network state is symm etric if it contains di erent nodes that are in
exactly the sam e situation; not only their local states, but also the states of
their neighbours, of their neighbours’ neighbours, etc. That is, there exists a
\local sim ilarity" between di erent nodes of in nite radius.

T he replay argum ent show s that di erent nodes that are locally sin ilar w ith
in nite radius will exhibit the sam e behaviour In some In nite com putation.
Thus, there is no algorithm that guarantees that the symm etry ceases in all

nite com putations. Sym m etry could be broken only by random ised protocols.

Tt is not di cult to see that local sim ilarity of In nite radiis m ay exist in

nite graphs. T he classicalexam ple is a ring R ¢ of six nodes, w ith initial states
a, b, c,a, b, c. Indeed, the two nodes w ith state a both have neighbours in state
b and ¢, and so on, so the local sin ilarity exists over an In nite radius.

Thering R¢ can bem apped into a ring R 3 w ith only three nodes, w ith initial
statesa, b, and ¢, In such a way that each node ism apped to a node w ith the sam e
initial state and with the sam e states in neighbours. Such a m apping is called a
covering and is the m athem atical tool to prove the existence of sym m etries.

The M azurkiew icz A lgorithm . The proofs of our resuls used the funda-
m entalM azurkiew icz distributed enum eration algorithm .A distributed enum er—
ation algorithm on a graph G is a distribbuted algorithm such that the result of
any com putation is a labelling of the vertices that is a bijction from V (G) to
£f1;2;::5¥V G)g.In ], M azurkiew icz presents a distrdbuted enum eration
algorithm for the class of non-am biguous graphs (graphs such that any localbi-
Ective labelling is a bijpctive labelling) . In this paper w e prove that the fam ily of
non-am biguous graphs is the fam ily of graphsm inim al for the covering relation.

W e prove also that a run of the M azurkiew icz algorithm on a labelled graph
G (notnecessarily m inin alfor the covering relation) enables the com putation on
each vertex of G ofa graph H quasicovered by G (the quasicovering becom es
a covering when the algorithm halts): we obtain a universal algorithm .

The Szym anski, Shy and Prywes A lgorithm and Q uasi-C overings R e—
late to Term ination D etection. Termn ination detection requires that a node
certi es, In a nite com putation, that all nodes of the netw ork have com pleted
their com putation. However, In a nite com putation only inform ation about a
bounded region in the network can be gathered. T he algorithm by Szym anski,
Shy, and P rywes does this for a region of pre-speci ed diam eter; the assum ption
is necessary that the diam eter of the entire network isknown. T his In plies that,
term nation detection, unlike sym m etry breaking, is possible in every graph, but
provided som e know kedge.

N etw ork know ledge In an algorithm ism odelled by a graph fam ily in which
the algorithm is required to work. T he detection algorithm by Szym anskiet al.
can be generalised In thisway to work in a labelled graph fam ily F . N odes ob—
serve their neighbourhood and determ ine in what labelled graph H ofF they are.
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T hen they try to get a bound k on the radius to which a di erent labelled graph
of F' can be locally sin ilar to H , and then certify that allnodesw ithin distance
k are com pleted. T he universal temm ination detection algorithm thus com bines
the M azurkiew icz algorithm w ith (m inin al) topologicalknow ledge ] and
a known term ination detection algorithm .

O foourse the approach fails ifa labelled graph H 2 F is locally sin ilar, w ith
unbounded radius, to other graphs in F . Localsin ilarities of this type are m ade
precise in the notion of quasi-coverings. Fortunately, the in possibility proofs
for term ination detection can be extended to cover exactly those fam ilies of
labelled graphsthat contain such unbounded-radius coverings.C onsequently, the
sketched universalterm ination detection algorithm isthem ost generalalgorithm
possible.

O ther Term ination D etections In fact, in the previous algorithm , what is
detected isthat alloutput values are correctly com puted: the task is term nated,
the distrbuted algorithm isnot temm inated. Indeed, w thout sym m etry breaking
conditions, we cannot detect the end of the algorithm .G iIren a sym m etric net—
work, the \last" step can be perform ed on at least two nodes. W e call this kind
of detection observed term ination detection because in this case, the algorithm

acts as an \obsarver" that know s when the underlying com putation of values
is nished. W e do not ask this observer algorithm to detect its own tem ina—
tion. T hus we distinguished the detection of the global term ination of the task
from the detection of the termm ination of the detection... This is presented in
T heorem .

Tn order to precise w hat can be explicit term ination, wede nealso otherkinds
ofterm ination detection :detection of the localterm ination (the nodesknow when
they enter their nalstep) and gblalterm ination detection (one node know sthat
the distrbuted algorithm is nished). This last termm nation detection schem e
is characterised in T heorem that adds classical coveringsbased sym m etry
breaking conditions to the characterisation of observed term ination detection.

Such re nem ents of the notion of term ination of a distributed algorithm are
necessary to address all kind of term ination that are encountered in distributed
com puting. O ne can think in particular about the com position of distributed al-
gorithm s w here observed tem ination detection seem s not enough decentralised.

For example, from Th. , it can be shown that they are no distributed
algorithm w ith detection of the global term ination for such com putations —that
are usually prelin nary to generaldistributed tasks — lke com puting the degree
ofa node, or any com putations that invole only a localpart ofthe network (lke
in ]). Indeed, on a huge network, w ithout know ledge of som ething lke a
bound of the diam eter, a node can not even know ifa very distant node has ever
started the distributed algorithm . T heorem gives a characterisation when
the task is uniform , ie., when the sam e value has to be com puted everyw here
in the network. O pen problem s rem ains for this kind of term ination detection.

Finally, we show that, as it seem s intuitively, these notions form a strict
hierarchy.
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1.6 Summ ary

Section 2 review s the de nitions of coverings and quasi-coverings. It presents lo—
cal com putations and their relationsw ith coverings and quasi-coverings. Section
3 presents local com putations, coverings, quasi-coverings w ith their properties
that we need In the sequelofthe paper. Section 4 isdevoted to theM azurkiew icz
algorithm , Szym anski, Shy and Prywes algorithm and som e extensions. In Sec—
tion 5, wede ne form ally our four notions of term ination detection (no detection,
local term ination, observed termm ination, global term nation) and gives num er—
ous exam ples. O ur m ain results conceming the tem ination detection problem
and the election problem are form ulated and proved in Section 6 and Section
8. Section 7 presents som e applications of the theorem s that present classical
netw ork hypothesises as corollaries.

T his paper is an extended and im proved version of the extended abstracts

[1T00] (the tem ination probkm ) and EM 03] (the election probkm ).

2 Basic N otions and N otations

2.1 G raphs

T he notationsused here are essentially standard R 0s00].W e only consider nite,
undirected, connected graphs w ithout multiple edges and selfdoop. If G is a
graph, then V (G ) denotes the set of vertices and E (G ) denotes the set of edges.
Two vertices u and v are said to be adjpcent if fu;vg belongs to E (G): The
distance betw een tw o vertices u;v is denoted d(u;v). T he set of neighbours of v
in G ; denoted N (v); is the set of all vertices of G ad pcent to v: For a vertex
v; we denote by B¢ (v) the ballof radius 1 w ith center v; that is the graph w ith
verticesN ¢ (v) [ fvg and edges ffu;vg2 E (G) ju2 V (G )g:W e also denote by
B¢ (v;r) the ballof center v and radiusr 2 N .

A hom om orphism between G and H isamapping :V G) ! V #H) such
that if fu;vg isan edge of G then £ (@U); (v)g isan edge of H . Sihce we deal
only with graphs w ithout selfdoop, we have (u) &€ (v) whenever fu;vg is an
edge of G . Note also that ©Ng (u)) Ny ( ()):For an edge fu;vg of G we
de ne (fu;vg) = £ @U); (Vv)g;thisextends toamappihgV G)[E G) !
VH)[E H):Wesay that is an isom orphisn if is bipctive and ! isa
hom om orphisn , too. W e write G / G % whenever G and G are isom orphic. A
class ofgraphsw illbe any set of graphs containing allgraphs isom orphic to som e
of its elem ents. T he class of all graphs w ill be denoted G.

For any set S, card (S) denotes the cardinality of S. For any integer g, we

2.2 Labelled G raphs

T hroughout the paper we will consider graphs where vertices and edges are
labelled w ith labels from a recursive alphabet L . A graph labelled over L w illbe
denoted by (G; ),whereG isagraphand :V G)[E (G)! L isthe labelling
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function. The graph G is called the underlying graph and the m appinhg isa
labelling of G . For a labelled graph (G; ), 1ab((G; )) is the set of labels that
occur in (G; ); ie.,

Lb(G; )=t WMF2V G)g:

T he class of labelled graphs over som e xed alphabet L will be denoted by Gy, .
N ote that since L is recursive, also G;, is recursive.

Let G; ) and G O; O) be two labelled graphs. Then (G; ) is a subgraph
of GY% 9, denoted by G; ) G% 9, ifG isa subgraph of G%and  is the
restriction of the labelling %oV G)[E G).

Amapping :V G)! V G° isahomomorphisn from G; )to G% 9 if
is a graph hom om orphism from G to G ° which preserves the labelling, ie., such

that % x))= (x) hodsforeveryx2V G)[E G):
An occurrence of G; ) i G% ©) is an isom orphism between (G; ) and
a subgraph H ; ) of (GO; 0). It shall be denoted G ), (GO; O):

Labelled graphs w ill be designated by bold letters ke G ; H ;::: IfG isa
labelled graph, then G denotes the underlying graph.

2.3 Coverings

W e say that a graph G isa covering ofa graph H via if isa surpctive hom o—
m orphian from G onto H such that for every vertex v of V (G ) the restriction
of to B¢ (v) isa bipction onto By ( (v)).The covering is proper if G and H
are not isom orphic.

E xam ples and properties of coverings linked to networks are presented in
]. A generalization of coverings called brations has been studied
by Boldiand Vigna in ], this paper em phasizes properties which found
applications in distributed com puting.

Exampk 2.1. LetR,, n > 2,denote the ring on n verticesde ned by V R, ) =
O;n lland E R,) = ffx;vg jy = x+ 1 mod n)g. Let now m n and
mm :0/m] ! D;nlbethemappingde nedby ;1) = 1imodn), forevery
12 [0;m ]. &t is easy to check that forevery n > 2 and for every k > 2; the ring
Ry n Isa covering of the ring R, via themapping x n; -

T he notion of covering extends to labelled graphs In an obvious way. T he
lbelled graph H; %) iscovered by G; ) via ;if preserves labels and is a
covering from G to H .

A graph G is called covering-m inin al if every covering from G to som e H
is a bijpction. Note that a graph covering is exactly a covering in the classical
sense of algebraic topology, see M as9ll]. W e have the fllow ing basic property

of coverings ]:

Lemma 2.2. LetG kea coveringofH via and ktw;v, 2 V (G) ke such that
6 vp.If ()= (»)thenBg (V1) \ Bg (W)= ;.
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Lemm a 2.3. Suppose that G is a covering of H via :Let T ke a subgraph of
H:IfT isatreethen ! (T) isa set of dispint trees, each isom orphic to T :

By considering sin ple paths between any two vertices, the previous lemm a In -
plies:

Lemma 2.4. For every covering from G to H there exists an integer g such
thatcard( '@®)) = q forallv2 Vv # ):

The Integer g In the previous lemm a is called the num ber of sheets of the
covering.W e also refer to  as a g-shested covering.

Examplk 2.5. A smpl exampl ofa 2-
sheeted covering is given in Fjg.. The
In age of each vertex of G is given by
the corresponding Rom an letter. Fur—
them ore, we note that the in age of
each vertex is also given by its posi-
tion on the H pattern (the spanning
tree of H suggested in the gqure).A 1l a
exam ples of coverings below w illbe in -

plicitely described by this geom etric

schem e, that is based on T heorem @ e b

d C

Fig.1l.Them orphism is a cover—
ing from G toH .

Note also that for the ringsRy , and R, the num ber of sheets isk:
In ], it is shown that all coverings of H can be obtained from a given
spanning tree of H :

Theorem 2.6 (Rei3q]). Let H ke a graph and T a spanning tree of H . A

connected graph G is a covering of H if and only if there exist a non-negative
integer g and a set = £ ) J x5y 2 VH );fx;yg2 E H )nE (T)g of
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pemutatjonsﬂ on [1;gq] such that G is isom orphic to the graph Hy; de ned by:

VHr;, )= fx;1)Jx2V H)Ji2 I;qlg;
E@Hr;, )= f&x;1);v;D9fx;yg2 E (T); 12 [L;alg [
TR Vi ) W JEx;yg2 E H)nE (T); 12 [;9lg:

The Universal C overing. The universal covering of a graph is a special ex—
am ple of covering. It m ay be de ned as follow s ]. Let G be a graph,
let v be a vertex of G ; the universal covering of G ; denoted U (G ); is the in nite
tree whose vertex set is the set of all nite waks from v in G that do not tra-
verse the sam e edge In two consecutive steps. T wo nodes are adacent if one is
a one-step extension of the other. It is easy to verify that U (G ) is a tree, unique
up to isom orphisn and independent of the choice of v:C learly U (G ) covers G :
See Secljon@ for a m ore form alde nition.

2.4 Ambiguous G raphs and C overings

In thispartwe give thede nition ofam biguousgraphs introduced by M azurkiew icz
in Jand we show that the non-am biguousgraphs are precisely the covering—
m Inin al graphs.

A labelling is said to be locally bijctive if vertices w ith the sam e label are
not In the sam e balland have isom orphic labelled neighbourhoods. Form ally, we
have:

De nition 2.7. Maz9]] Let L be a set of lakels and ket (G; ) be a labellkd
graph. T he kkelling  is locally bijective if it veri es the follow ing two conditions:

1. Foreach v 2 V and for allvo;vOO 2 Bg (v) we have (vo) = (VOO) ifand onlk/
ifvl= vo,

2. For allv’;v?2 V such that ()= (%), the lakelld kalls B¢ (v°); ) and
B¢ &0); ) are isom orphic.

A graph G is ambiguous if there exists a non-bijctive Jalbelling of G which is
Jocally bijctive.

T he labelling of the graph G in F igure 1 proves that G is am biguous.
Locally bifctive labellings and coverings are closely related through quotient
graphs.

De nition 2.8. Let ke a hbelling of the graph G . W e de ne the quotient
graph G= by ktfing:

{VG=)= ((@G))and
{EG=)=ff ; %999v;v’2 V G) such that fv;v’g 2 E G ); w); %=
)g:

! with the convention that =) S g
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Lemma 2.9. LetG ke a graph:

1. If isa locally bifctive hlelling of G then the quotientm apping G ! G=
is a covering.
2. Every covering :G ! H de nes a locally bifctive lkelling of G :

P roof.

1. Using condition () n De njijonF we note that G= has no selfloop.
M oreover, the conditions EI) and (3) mply that isa bifction from Bg (v)
toBg- ( (v)),Poreachv2 V (G).HenceBg (v) and Bg- ( (v)) are isom or—
phic.

2.W e considerV H ) as set of abels and we labela vertex v2 V (G) by (v):
Tt is straightforw ard to verify that this labelling is locally bijpctive.

U sing the previous lemm a we obtain:

Corollary 2.10. A graph is non-am biguous ifand only if it is covering-m inim al

3 LocalCom putations

In this section we recall the de nition of local com putations and their rela-
tion with coverings ]. They m odel distributed algorithm s on netw orks
of processors of arbitrary topology. T he network is represented as a connected,
undirected graph w here vertices denote processors and edges denote direct com —
munication links. Labels (or states) are attached to vertices and edges.

G raph relabelling system s and m ore generally local com putations satisfy the
follow ing constraints, that arise naturally when describing distributed com puta—
tions w ith decentralized control:

(C 1) they do not change the underlying graph but only the labelling of its com —
ponents (edges and/or vertices), the nal labelling being the result of the
com putation,

(C 2) they are local, that is, each relabelling step changes only a connected sub—
graph ofa xed size In the underlying graph,

(C 3) they are Iocally generated, that is, the applicability of a relabelling rule only
depends on the local context of the relabelled subgraph.

T he relabelling is perform ed until no m ore transform ation is possible, ie., until
a nom al form is obtained.

3.1 LocalCom putations

Local com putations as considered here can be described In the follow Ing general
fram ework . Let G, be the class of L -abelled graphs and lt R G, Gy bea
binary relation on Gy . Then R is called a graph rewriting relation. W e assum e
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that R is closed under isom orphism , ie., ifG R G%andH ’ G then H R H®
for som e Jabelled graph H ° 7 G °. In the rem ainder of the paper R stands for
the re exivetransitive closure of R : The labelled graph G is R —irreducibke if
there isno G " such that G R G %:For G 2 Gy ; Irredr (G ) denotes the set of
R —rreducible (or just rreduchble ifR is xed) graphsobtained from G usingR ;
ie, Irredg G )= fH 5 R H and H isR —rreduchbleg:

De nition 3.1. LetR Gr Gy ke a graph rewriting relation.

1. R isa relabelling relation ifwhenever two lhakelled graphs are in relation then
the underlying graphs are equal (we say equal, not just isom orphic), ie.,

G R H impliesthatG = H :

2. R islocalif it can only m odify kalls of radius 1, ie., G; )R G; 0) n plies
that there exists a vertex v 2 V (G ) such that

)= %) Preveryx2V Bg ) [E Bg (v)):
The kkelled all B¢ (v); ) is a support of the relhbelling relation.

T he next de nition states that a local relabelling relation R is locally gen—
erated if the applicability of any relabelling depends only on the balls of radius
1.

De nition 3.2. LetR ke a rellelling relation. Then R is locally generated if

it is Jocal and the following is satis ed. For all klelled graphs G; ), G; 9,
there exists vertice v 2 V (G ), such that forall H; ), ; 9, w 2 V @ ) such
thatthe lalls B¢ (v) and By (W) are isomorphicvia ’ :V B¢ (v)) ! V By W))
and ' (v) = w, the follow ing three conditions:

1. ®x)= (&)and x)= % x)) Prallx2V Bg v)) [E Bg v));

2. ®)= ‘x), Prallx2V Bc ) [E Bc ©));

3. &)= ‘), Prallx2V Bg W))[E Bx W));
inply that G; )R G; ) fandony if H; )R H; 9.

By de nition, local com putations on graphs are com putations on graphs cor-
responding to locally generated relabelling relations.

W e only consider recursive relabelling relations such that the set of irreducible
graphs is recursive. T he purpose of all assum ptions about recursiveness done
throughout the paper is to have \reasonable" ob fcts w r.t. the com putational
pow er. Furthem ore, in order to prevent am biguousness, Turing-com putability
w il only be addressed as \recursivity", and we w ill restrict the use of the word
\com putability" to the context of local com putations.

A sequence G i)g i1 n is called an R <elklelling sequence (or relakelling se—
quence, when R is clear from the context) ifG; R G i1 for every 0 i< n
(w ith n being the length of the sequence).A relabelling sequence of length 1 isa
relalelling step. The relation R is called noetherian on a graph G if there isno
in nite relabelling sequence G g R G1 R :::;with Gy = G : The relation R is
noetherian on a set of graphs if it is noetherian on each graph of the set.F inally,
the relation R is called noetherian if it is noetherian on each graph.
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3.2 Graph Relabelling System s

W e present now graph relabelling system s as used for m odelling distributed
algorithm s, by describing the exact form of the relabelling steps. Each step will
m odify a star-graph, ie., a graph w ith a distinguished center vertex connected to
all other vertices (and having no other edge besides these edges). A s any ballof
radius one is isom orphic to a lJabelled star-graph, the support (or precondition)
of any relabelling rule w ill be supposed to be a labelled star-graph.

G raph R elabelling R ules. A graph relhlelling ruk isatripler= By,; .; S),

where B, isa stargraph and ., Earetﬂo labellingsofB,.Wereferto B,; )

as the precondition of the rule r, whereas B ; %) is referred to as the relakelling
through r.

Letr= By; +; S) be a relbbelling rule, H an (unlabelled) graph and ,

O two labellings of H . W e say that H ; %) isobtathed from #H ; ) by applhg

the rule r to the occurrence ’ of B, in H (@nd wewrite #H ; )?) H ; 9) ifthe

7

follow ing conditions are satis ed, w ith vy denoting the center of B, :

1.’ induces both an isom orphisn from B.; ) to B u,; (" (vo)) and from

Bri OB e, o t)),
2. %)= ) Prallx2 (VH)nV By (" %)) [ € H)nE By (! &),
In this case we also say that / is an occurrence of the ruler In (H ; ) and the
m age of B, under ’ is called the In age of r under ’ :

The relabelling relation =) induced by the rule r is de ned by ltting
H; )=) H; 9 ifthereexistsan occurrence ’ ofrin H ; )wih H ; )=J) @; 9:

Letr = By; r; S) and s = Bs; s; 2) be two (not necessary distinct)
relabelling rules and let

vt B o) A H; ) 's: Bsios) 4 H; )

be two occurrences of r and s respectively in (H; ). W e say that these two
occurrences overhp if

() the magesofB, by ', and B by ' have a comm on vertex, and

(i) eitherr 6 sor r=sand ', & ").

G raph R elabelling System s. A graph relakelling system is a recursive sst
R of graph relabelling rules, such that the set of labelled stargraphs that are
preconditions of a rule in R is also recursive.

T he relabelling relation =) isde ned by G; ) =) G; 9 ifthere isa
R R

ruler2 R such that G; ) =) (G;O):

r
E xam ples of graph relabelling system s are presented in ].
C learly, graph relabelling system s represent locally generated relabelling re—
lations. C onversely, any locally generated relabelling relation can be represented
by a graph relabelling system .
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Proposition 3.3. LetR ke a relakelling relation. Then R is both locally gener—
ated and a recursive relation such that the set of irreducible graphs is recursive
if and only if there exists a graph relabelling system R such that R equals :R)
P roof.G iven a locally generated relabelling relation R , we have to nd a graph
relabelling system R that generatesR .

W e de ne:

R=£f@®; ;") jB isastargraph; B; )R B; g

First, R is obviously recursive since R is. The set of preconditions of R is
also recursive, since one can check wether a precondition does not belong to the
set of R <rreducible graphs. It is then straightforw ard to verify that R generates
exactly R from De nition .

In the follow ing, we do not discrin inate between a locally generated rela—
belling relation and a graph relabelling system that generates it. T hey, both,
m odel distributed algorithm s.

G eneric Rules. W e explain here the convention under which we w ill describe
graph relabelling system s later. If the number of rules is nite then we will
describe all rules by their preconditions and relabellings. W e w i1l also describe
a fam ily of rules by a generic rule (\m eta+uk"). In this case, we w ill consider
a generic star-graph of generic center vy and of generic set of vertices B (vy).
W ithin these conventions, we w illrefer to a vertex v of the star graph by w riting
v2 B (v).If (v)isthe labelofv in the precondition, then °() willbe its label
in the relabelling. W e will om it in the description labels that are not m odi ed
by the rule. Thism eans that if (v) is a label such that Ov) is not exp licitly
described in the rule for a given v, then ) = (). In all the exam ples of
graph relabelling system s that we consider in this paper the edge labels are
never changed.

W e do not require relabelling rules to be antisym m etric, but obviously a
system w ith such rules would have som e di culties to term inate. T hus, in order
to have light preconditions for generic rules, we consider that a rule (induced by
a given generic rule) that would not m odify any label in the stargraph is not
enabled.

W ith these conventions, the only point we have to care about is to verify
that the set of graph relabelling rules and the set of preconditions described by
the generic rule are recursive.

Exam ple Our rstexampl isa (d+ 1)-coloring of reqular graphs of degree d.
This exam ple w ill allow us to use the above described conventions.

Exam pk 3.4. W e consider the graph relabelling system C olog.T he value ofthe
label of a vertex v is denoted by c(v). The \colors" used here are integers from
L;d+ 1], allvertices are initially labeled by 0. T he follow ing generic rule m eans
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that if vy is labelled by 0, then vy is relabelled by the am allest value that does

not occur as label of one of its neighbours. T he edge labels are not used iIn this
exam ple.

Colog : (d+ 1)€ oloring
P recondition :
c)=0
Relakelling :

8wp) = min (L;d+ 1lnfcw) jv2 B Grp);c) & 0g)

The guresbelow show an execution of Colos.
T he initial labelling is the follow ing:

T wo non-overlapping occurrences w here a rule can be applied are indicated
below :

A corresponding relabelling sequence is as below :
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Colo;

T he rem aining part of the relabelling sequence is for instance:
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0 0 0 0
=) =)
Colos; Colo;
2 1 2 1
0 0 3 0
1 0 1 2
3 0 3 0
=) =) =)
Colo; Colo; Colo;
2 1 2 1
3 0 3 0
2 1 2

0 3 4

O ne can note that the correctness of the algorithm follow s from the fact that
the set upon which them inin um is taken is never em pty.

3.3 D istributed C om putations of Local C om putations

The notion of relabelling sequence de ned above obviously corresponds to a
notion of sequentialcom putation.C learly, a locally generated relabelling relation
allow s parallel relabellings too, since non-overlapping balls m ay be relabelled
independently. Thus we can de ne a distributed way of com puting by saying
that two consecutive relabelling steps w ith dispint supports m ay be applied in
any order (or concurrently).M ore generally, any tw o relabelling sequences such
that one can be obtained from the other by exchanging successive concurrent
steps, lead to the sam e result.

Hence, our notion of relabelling sequence associated to a locally generated
relabelling relation m ay be regarded as a serialization ] of a distributed
com putation. This m odel is asynchronous, In the sense that several relabelling
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stepsm ay be done at the sam e tin e but we do not require that all of them have
to be perform ed. In the sequel we w ill essentially handle sequential relabelling
sequences, but the reader should keep In m Ind that such sequencesm ay be done
in parallel.

3.4 LocalCom putations and C overings

W e now present the findam ental lem m a connecting coverings and locally gen—
erated relabelling relations. It states that whenever G is a covering ofH , every
relabelling step In H can be lifted to a relabelling sequence n G , which is com —
patible w ith the covering relation. Tt was rst given In ].

Lemma 3.5 (Lifting Lemm a). LetR be a bcally generated relbelling rela—
tion and kt G ke a covering of H via :IfH R H ° then there exists G ° such
that G R G Y and G ° is a covering of H © via

Proof. It su ces to show the clain for the cass H R H Y. Suppose that the
relabelling step changes labels In By (v); or some vertex v 2 V H ). W e may
apply this relabelling step to each of the dispint labelled balls of By 7)),
since they are isom orphic to By (7). This yields G °which satis es the clain .

T his is depicted in the follow ing com m utative diagram :

G 1G?o
2 R 2
? ?
coverin gy % covering
H ! BO

3.5 LocalCom putations and Q uasi-coverings

W ewill sse now a con guration where only relabelling chains of bounded length
can be sim ulated. T he notion of quasi-coveringswas rst introduced in ]
to prove in possibility of term ination detection in som e cases. H owever the de —
nition of quastcoveringshere di ers slightly from M M W 97, providing new and
sin pli ed proofs, eg., or Lemm a @ and Lemm a .Here, the key param eter
is the radius and not the size of the quasicovering.

De nition 3.6. LetG ;H ke two hbelled graphs and ket e a partial function
on V (G ) that assigns to each elem ent of a subset of V (G ) exactly one ekm ent
of VH ): Then G is a quastcovering of H via  of radius r if there exists a
nite or in nite covering G ¢ of H via , vertices z 2 V Gg), z 2 V (G) such
that:

1. Bg (z;r) is isom orphic via ' to Bg , (z0;1),

2. the dom ain of de nition of contains B¢ (z;r); and
3. = " when restricted to V ®B (z;1)).
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Fig.2. : G ! H is a quasicovering of radiis r and associated covering
:Go ' H.

card (V B¢ (z;r))) is called the size of the quasi-covering, and z the center. The
graph G ( is called the associated covering of the quasi-covering. See F igure E

Q uasicoverings have been introduced to study the problem of the detection of
the temm ination in ]. The idea behind them is to enable the partial
sim ulation of localcom putationson a given graph in a restricted area ofa larger
graph . T he restricted area w here we can perform the sinm ulation w ill shrink whilke
the num ber of sin ulated steps increases. T he follow ing lem m a m akes precise how

much the radius shrinks when one step of sin ulation is perform ed:

Lemm a 3.7 (QuasiLifting Lem m a).LetR ke a bcally generated relakelling
relation and ket G ke a quasi-covering of H of radius r via : M oreover, kt
H R H° Then there exists G " such that G R G % and G ° is a quasi-covering of
raditsr 2 ofH %:

P roof. Let G g be the associated covering and z be the center of the ball of
radiis r. Suppose now the relabelling step H R H ° applies rule Ry and m odi es
labelsin By (v);foragivenv2 V H ). Therule R can also be applied to allthe
balls '@y (v)) yieding G J and °. Tt applied also to the balls By )))

that are included In B¢ (z;r), since they are also isom orphic to By (v).W e get
G %and Y satisfying the quasicovering properties w ith radiuisr  2: consider w

N Bgo(z;r 2):sihceanyballcontainingw is ncluded N B¢ (z;r),w and %(w)
have the sam e label

24



T his is depicted in the follow ing com m utative diagram :

1 Go

o)
? quasicovering

of radius r2
! HC

quasicovering
of radius r

T <eow @

U sing notation of this subsection:

D e nition 3.8. W e de ne the num ber of sheets g of a quasi-covering to ke the
m inn al cardinality of the sets of preim ages of vertices of H which are in the
kall:
g= min Fw2 '@PBx @;1) Bk (2;r)gF
v2V (H)
W ith this de nition, the notion of num ber of sheets is equivalent In the case
of coverings.

De nition 3.9. A quasi-covering is strict if Bg (z;r 1)6 G :
Rem ark 3.10. A non strict quasi-covering is sin ply a covering.

Remark 3.11. W ith the sam e notation, if G is a strict quasicovering of H of
raduisr then B¢ (z;r)j r:

W e have then the follow ing technical lemm a:

Lemma 3.12. LetG ke a strict quasi-covering of H ofradius r via .For any
g2 N,ifr gy H )jthen has at kast g sheets.

Proof. Note K the associated covering. The quasicovering being strict, we
have that B¢ (z;r)j] r gV H)jhence vV K )j gV H )j. W e deduce from
Lemm a@ that K has at least g shests.

Now, consider a spanning tree T of H rooted on (z).Note T; the lifting
of T rooted on z;.By T heorem @, there is g 1 distinct lifted spanning trees
Ty;:::;T4 such that the subgraph induced by T1 [ o138 connected.AsT has
adiameteratmost v H )j 1, wehave that T; [ d T Bk (zo;9yV H)J.
T hat m eans that every vertex of H has at least g prein ages in Bk (zo;r), hence
in Bg (z;1).

The follow ing expresses a link of the radius and of the size of the quasi-
covering of a given graph.

Lemma 3.13.Let H ke a graph with maxin al degree d. Then for all quasi-
covering of H of size s and radius r, we have

s @d+ 1):
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Proof.Let G be a quasicovering of H . Let z be the center, and r the radis.
B¢ (z;r) isthen a subgraph ofm axim aldegree d. By induction, rem arking that
B (z;i+ 1)nB (z;1)] dB (z;1)j weobtain that any ballofradiusr and m axim al
degreed hasa sizeatmost d+ 1)°.

This bound is obviously not optim al but su cient for our purpose. Rem ark—
ing that a g-sheeted quasicovering of a given graph H has a size greater than
ayV #H )j weget, from these two lemm as, a com plete relation between the radius
and the num ber of sheets of a quasi-covering.

3.6 Paths and Universal C overings
A path is a sequence of neighbouring vertices In a graph.

De nition 3.14. A path from uy to uy, In a graph G is a sequence =

3144 fUi;Ui+ 1g2 EG).
Furthem ore, if, for all i,
31441 ui 1 & Uiy 1 o

we say that  is a non stuttering path BV 024].
W e denote by ¢ (u) the set of paths In G starting from vertex u.For any path

De nition 3.15. LetG bea (lbelled) graph. Letu e a vertex of G . W e denote
by ® () the graph of non stuttering paths starting from u:

V®u)=f 2 ¢ @)J isnon swutteringg;
E(@ w)) = ff ; Ogj ; OZV(@(u));andthereexjstsavertexv
ofG such that °= vg:

W e denote by b the profction of ® ) on G that m aps any path to its nal
vertex.

P roposition 3.16. The graph ® @) isa covering of G via the profction b.

Proof.Letvavertex ofG .Letapath = (@Up;:::;uy)wihug= uandu, = v.
Suppose that  is not the em pty path. By construction, has as neighbours

sstf w jw 2 N W);w & u, 19.Henceb de nesan isom orphism from BE(u)( )
to Bg (v).If isthe em pty path, the proof is obvious.

For allvertices u,v, ® (u) is isom orphic to ® w) ]. W e shalldenote by
® this graph de ned up to isom orphism .W e say that ® isthe universal covering
ofG .
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B (zgi3)

Fig.3.K isa quasicovering of radius 3 of G , obtained by truncation of®
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Remark 3.17. This (possibly In nite) tree provides num erous exam ples of quasi-
coverings. For a given graph G , by truncation of the universal covering ® toa
ball of given radius, we obtain quasicoverings of G . See F ig. E .

The Reidem eister Theorem (Th. @) is another tool to easily build quasi-
covering of arbitrary radiis.

3.7 Extension of Locally G enerated R elabelling R elations
Tn this subsection, we show how the properties of a graph relabelling relation on
a fam ily F can be naturally extended to the fam ily of graphs that are covered

by a graph ofF .

De nition 3.18. LetF ke a graph fam ily. W e note the fam ily of graphs that
are covered by a graph of F .

= fH j9G 2 F ;G isa covering of H g:

Note that F is a subset of . The rst easy property is that if a R is
noetherian on F , it is also noetherian on ®,

Lemma 3.19. Let R e a rehlelling system . If R is notetherian on F, it is
also noetherian on ™.

P roof. Suppose there is an In nite relabelling chain on H 2 P .NoteG a graph
In F that isa covering ofH .By theLi ng Lemma, we get an In nite relabelling
chain on G . Hence a contradiction.

Rem ark 3.20. The closure under covering of a recursive graph fam ily is not nec-
essarily recursive. C onsider the follow Ing fam ily

F.= fG jG isa ring and there existsp;i;m 2 N such that
p" is the size of G ;
p is the i-th prin e num ber;

Turing M achine num ber i has halted before step m g:

The fam ily F. is obviously recursive and B, is obviously non recursive: it is
straighforw ard to see that deciding if a ring of prin e size can be lifted in F
corresponds to the Halting Problem for Turing M achines.

4 Fundam ental A lgorithm s

In this section, we present our two fiindam ental algorithm s.
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4.1 M azurkiew icz’ Enum eration A lgorithm

A distributed enum eration algorithm on a graph G is a distrbuted algorithm
such that the result of any com putation is a labelling of the vertices that is a
bipction from V G) to £1;2;:::;FV G ). In particular, an enum eration of the
vertices where vertices know whether the algorithm has term inated solves the
election problem . In ] M azurkiew icz presents a distributed enum eration
algorithm for covering-m inin al (hon-am biguous) graphs.

The com putation m odel in ] consists exactly in relabelling balls of
radiis 1 and the initial graph is unlabelled.

M azurkiew icz” algorithm will be denoted M . By abuse of language we still
goeak of an enum eration algorithm , even when it is applied to am biguous graphs
(for which no enum eration algorithm exists, ]) . The nal labellings that
are incorrect from the enum eration point of view have interesting properties in
the context of local com putation .N am ely, they determ ine a graph that is covered
by the input graph.

In the follow ing we describe M azurkiew icz’ algorithm ncliding its extension
to labelled graphs.

Enum eration A lgorithm .W e rstgive a generaldescription of the algorithm
M applied toagraph G :LetG = (G; ) and consider a vertex vy ofG ; and the
set £y ; :5;vqg of neighbours of vy @

T he label of the vertex vy used by M is the pair ( (vp);c(vy)) where c(vy)
isatriple (n(vp);N (vp);M (vg)) representing the ollow Ing inform ation obtained
during the com putation (form alde nitions are given below ):

{ n(v) 2 N is the num ker of the vertex vy com puted by the algorithm ,
{ N () 2 N isthe bcalview ofvy; and it iseither em pty or a fam ily of triples
de ned by:
fvi); w); (Ewi;wvig))d 1 dg;

{M () L N N isthemailox ofvy and contains the whole inform ation
received by vy at any step of the com putation.

Each vertex v attem pts to get its own num ber n (v), which will be an integer
between 1 and ¥ (G)j. A vertex chooses a num ber and broadcasts it together
w ith its label and its labelled neighbourhood all over the network. If a vertex
u discovers the existence of another vertex v with the sam e number, then it
com pares its label and is local view, ie., its num ber-labelled ball, with the
Jocalview of its rivalv. If the Jabelofv or the localview ofv is \stronger", then
u chooses another num ber. Each new num ber, w ith its local view , is broadcast
again over the network. At the end of the com putation it is not guaranteed
that every vertex has a unigue num ber, unless the graph is covering-m nim al.
However, all vertices w ith the sam e num ber w ill have the sam e label and the
sam e localview .

T he crucial property of the algorithm isbased on a totalorder on localview s
such that the localview of any vertex cannot decrease during the com putation.
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W e assum e for the rest of this paper that the set of labels L is totally ordered
by <1 :Consider a vertex vy w ith neighbourhood fv; ;::;;v4g and assum e that:

{ nvi) n(w) @ n(g);
{ ifn@i)=ny 1) then (vi) 1 (Viy1);
{ fni)=n@y1)and @)= (1) then Ew;vig) 1 Ew;vie19):

Then the bcalview N (v) is the dtuplk
(n(v1); () Evo;vig))izis;n(va); (a); (Evoivag))):

Let N, Dbe the set of all such ordered tuples.W e de ne a totalorder on N .
by com paring the num bers, then the vertex labels and nally the edge labels.
Fom ally, for two elem ents

((h1;kse); s askies)) and (0951 5€)); 15 (0o ;Ko iede))
ofN. wede ne
(@9;2;€0); 5 %05 505e00))  (iskier); =y askies))

if one of the follow Ing conditions holds:

l.n; = ng;:::;ni 1= ng 1 andng< n; for some i,

.d°< dand n; = nf;u5ng = no,

3.d=d%n; = ng;:::;nd= ng and L = 1(1);313;]1 1= ]S 1 andl_?<L 1, for som e
i,

4.d=d’andn; = nfjuyng=nfandk = Y;u5l = Jande = ) juse 1 =
e) and el<, e Prsome i.

N

IfN (u) N (v), then we say that the bcalview N (v) of v is stronger than
theoneofu:Theorder isatotalorderonN = N. [ £f;g;with, by de nition,:
; N forevery N 2 N, :

W e now describe the algorithm through a graph relabelling system . The
initial labelling of the vertex vy is ( (w); 0;775)):

The rules are described below for a given ball B (vp) with center vp. The
vertices v of B (vp) have labels ( v); 0 v);N );M (v))). The labels obtained
after applying a rule are ( v); 0 @);N °w);M °6))). W e recall that we om it
labels that are unchanged.

M {1 :D i usion rule

Precondition :
There existsv 2 B (¢) such thatM )& M (vp).
Relakelling : S
Forallv2 B (g), M O(v):= M W).
w2B (vg)
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M {2 : Renam ing rule

Precondition :
Forallv2 B (¢);M v)=M (vy).
()= 0)or
n (vp) > 0 and there exists (Ln (vp);N ) 2 M (vg) such that
( )< Dor (( w)=Dand N (vp) N))).
Relakelling :

Pwp)= 1+ maxfn 2 N JOGn;N )2 M (vp) for some ;N g.
Forevery v 2 B (§), N *(v) is obtained from N (v) by replacing the
valie ofn (vp) by n%wo):

Forevery v 2 B (¢); the m ailbbox contentsM (v) changes to

Mo ) =M @) [ £( w)in’w);Nw))3v 2 B (v)g.

4.2 Properties of M azurkiew icz’ A lgorithm

In order to m ake the paper selfcontained, we present a com plete proof of the
correctness of M azurkiew icz” algorithm in our fram ework follow ing the ideas
developed in M az971.

Let G be a labelled graph. If v is a vertex of G then the label of v af-
ter a run of M azurkiew icz’ algorithm is denoted ( (v);c (v)) wih ¢ (v) =
mn W);N (v);M (v)) and ( ;c ) denotesthe nal labelling.

Theorem 4.1. JAny run ofM azurkiew icz’ enum eration algorithm on
a connected hlelled graph G = (G; ) term inates and yieds a nal lkelling
( ;¢ ) verifying the 1w ing conditions for all vertices v;v° of G :

414 Letm be the maximalnumber in the nallbkelling, m = max n (V).
v2V (G)

Then forevery 1 p m thereissomev2V (G)withn (v)= p.
414M w)=M ).

414 ( wn @GN W) 2 M (9.

41.4v Let (Ln;N )2 M w%.Then )= L n W)=nandN ()= N for
som e vertex v if and only if there isno pair ;N9 2 M % with 1<, 1°
or 1= PandN N9,

41lvn )=n &) mples ( )= &) andN &)= N &)

41vin induces a locally bifctive akelling of G .

W e rst prove the ollow Ing lemm as. W e say that a numberm is known by
vif Gm;N)2 M (v) orsome 1land some N . In the follow ing i is an Integer
denoting a com putation step.Let ( (v); (i (v);N i (V); M ; (v)) be the label of the
vertex v after the ith step of the com putation.

Lemma 4.2. For each v;1:

n; (v) ni1v),
NiW) Nyq(v)
Mi(v) M)

_—
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P roof. The property is obviously true for the vertices that are not involved
in the rule applied at step i: For the other vertices we note that the renam —
ing rule applied to vy increm ents nj; (vy ), adds elem ents to som e m ailboxes and
m akes some N (u) stronger.M oreover the di usion rul only adds elem ents to
m aiboxes.

The fact that N; (v) N, 1 (v) comes from the de nition of . In other
words, this order ensures that the past localview s of a vertex are always weaker
than its present one.

Furthem ore, one of the nequalities is strict for at least one vertex, nam ely
the one for which the previous rule was applied.

Lemma 43.Forevery v2V (G) and (Lm ;N ) 2 M ; (v) there exists a vertex
w 2V (G) such thatn;w)=m :

P roof.A ssum e that the numberm isknownbyvand letU = fu2 V (G) jo9j<
Lny@)=mg:0bvicusly U isnotempty.Letw 2 U and let j< isuch that

l.nyw)=m;
2. forany u 2 U and for any k < 1iverifying nx () = m we have: Ny (u)
Nj(W)Z

C learly, the renam ing ruke cannot be applied tow, hencen; W) =m .

Next, we clain that whenever a num ber is known, all positive an aller num —
bers are assigned to som e vertex.

Lemma 4.4. For every vertex v 2 V (G) such that n;(v) € 0 and for every
m 2 [L;n; (V)] there exists some vertex w 2 V (G) such thatn;w) = m :

Proof. W e show this claim by induction on i. At the initial step (1= 0) the
assertion is true. Suppose that it hods for i 0. If the di usion rulk is used,
the assertion is true for i+ 1. If the renam ing ruk is applied to vy then we
Jjust have to verify it for vy, and m ore precisely for allnum bersm in the interval

being known by vy at step i+ 1, the property for n; (vp) is a consequence of
Lemma.

If the nterval fn; (vp) + 1;:::;n51 (Vo)  1g is em pty then the condition is
obviously satis ed. O therw ise by de nition of the renam ing rul, ni 1 (vp) 1
is known by vy at step i and thus Lemma n plies that there existsw & vy
such thatn; W) = ny 1 (vg) L1.Foreverym 2 fn;(vp) + 1;:::;ni01 (Vo)  1g,
we have, by induction hypothesis on w that there exists a vertex x 2 V (G ) such
that n; ®x) = m . For every such x, because vy is the only vertex changing its
nam e from step ito i+ 1, n;(x) = ni, 1 (x), which proves the assertion for step
i+ 1.

W e show now T heorem :
P roof.

A s before, we denote by ( (v); i (v);Ni(v); M ;(v))) the label of the vertex
v after the ith step of the com putation.
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A s there are nom ore than ¥ (G )jdi erent num bers assigned it follow s from
Lemma and from Lemma @ that the algorithm term nates.

T he properties 1 to 6 of the nallabelling are easily derived from the above
part of the proof.

.By Lemma @ applied to the nal labelling.

. O therw ise, the di usion rule could be applied.

. A direct corollary of the previous property.

. W e have obtained a nal labelling, thus it is a direct consequence of the
di usion rule and of the precondition of the renam ing rule.

. A direct consequence of the previous point.

6. The rstpartofDe nition @ is a consequence of the rew riting m echanism :

when a vertex v is num bered, its num ber is put In m aiboxes of adpcent

vertices. T hus vertices at distance 2 of v cannot have the sam e num ber asv:

T he second part of D e nition E is a consequence of the precondition of the

renam Ing rule: the renam ing rule could have been applied to vertices having

the sam e num ber and non-isom orphic localview s.

=W N -

ul

T his ends the proof of the theorem .

Remark 4.5. By points 1 and 6 of T heorem , and sim ilarly to ], the
algorithm com putes for non-am biguous graphs (and thus form inin al graphs by
Corollary [2.1Q), a one-to-one correspondence n  between the set of vertices of G
and the set of ntegers £1;:::;V G)JP.

4.3 Toward an Enhanced M azurkiew icz’ A lgorithm

In this section we prove that even by applying M azurkiew icz’ algorithm to a
graph G that is not covering-m inin al, we can get som e relevant inform ation. In
this case, we prove that we can interpret the m ailbbox of the nal labelling as a
graph H that each vertex can com pute and such that G is a covering of H :

For amailbox M , we de ne the graph of the \strongest" vertices as follow s.
First, or 12 L;n 2 N;N 2 N ;M L N N , we de ne the predicate
Strong (I;n;N ;M ) that is true if there isno (I%n;N % 2 M verifying

> lor 1= PandN N 9:
The graph Hy of strongest vertices of M is then de ned by

VHy )= fn jON ;1:Strong;n;N ;M )g;
EHy )= ffn;nog j9N ;1:Strong(;n;N ;M ); and 910;1OO :
N = (3 (no;lo;lm);:::) g:

W ealsode nea kbellingon thisgraphby v ()= ;LN ;M );w ith Strongn; ;N ;M )

forsom eN ;and y (fn;nog) = lOO;wjth Strong(n; LN ;M )andN = (::; (no;lo;lm);:::):
T he uniqueness of this de nition com es from the de nition of Strong and

from Theorem 4.1 5.
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Let bearmunofM :Then Hy @u); v @) doesnotdepend on u by The-
orem @2.Wethen dene G)= Hy @)7 v ) orany vertex u.F nally,
we have:

P roposition 4.6. For a given execution ofM azurkiew icz algorithm , we have
V(G)N=1fn V)2V G)g;
E( G))=ffn v);n w)gfv;wg2 E G)g:

Rem ark 4.7. Beforewe em phasize theroleof (G ),notethat (G ) can be locally
com puted by every vertex, and that the graph depends only on the labelM

T he next proposition statesthatwe can seea run ofM ascom puting a graph
covered by G : Conversely, as a \translation" from M az979, Th. 5], every graph
covered by G can be obtained by a run of the algorithm .

Proposition 4.8. Let G ke a Jabelled graph.

1. Forallruns ofM ,G isa coveringof (G ):
2. (compkteness) For allH such that G is a covering of H , there exists a run
such thatH * (G ):

P roof.

1. Sincen is locally bifctive (T heorem @.6),weobtajn from Lemm a@ that
G isa coveringof (G ):

2. W e exhibi a run ofM having the required property. Suppose that we have

an enum eration of the vertices ofH .Let Dbe the labelling of G obtained by
lifting the enum eration. T here is an execution of M azurkiew icz” algorithm
such that each vertex v of G gets (v) asa naln -labelling.
This is done In the follow ing way. F irst we apply the renam Ing rule to all
vertices In 1(1). This is possble because there is no overlapping of balls,
since G is a covering of H . Then we apply the di usion rule as long as
we can. A fter that, we apply the renam Ing rule to 1 (2). Because of the
di usion, the num ber 1 isknown by allthe vertices, so the verticesof ' (2)
get labelled by 2.And so on, untileach vertex v gets labelled by  (v).

From P roposition @.1, we can see a run of M  as com puting a covering.
Furthem ore, if the underlying graph is covering-m inin al, then (G ) is an iso—
m orphic copy ofG . T hiscopy can be com puted from theirm ailbox by any vertex,
providing a \m ap" { w ith num bers of identi cation { of the underlying netw ork .
T hus, on m inin al netw orks, the algorithm ofM azurkiew icz can actually be seen
as a cartography algorithm .

34



Interpretation of the M ailboxes at the Step i: The previous results con—
cem the Interpretation of the nalm aiboxes. Now, we consider a relabelling
chain G i)p i:Fora given iand a given vertex v we prove that it is possble to
Interpret the labelofv in G ; asa graph quasicovered by G ;:W e recallnotation.
Let G be a labelled graph.Let Dbe a run of the M azurkiew icz algorithm and
et G i)o ; beachain associated to with (Gg = G ):Ifv isa vertex ofG then
the labelofv at step iisdenoted by ( (vV);aw)) = ( (vV); (i (V);N;W);M ;(V))):
U sing the Interpretation of the previous section by de ning StrongM™ ; (v)); this
label enables In som e cases the reconstruction of the graph H y | () : W e note
(
H. ) Hy,wifitisde ned and (ni(v); (v);N;(v)) 2 StrongM ;(v))

LY ? otherw ise.

W e prove that G ; is a quasicovering of H ; (v): F irst, we need a de nition:

De nition 4.9. Let (G i)g i; ke a rellelling chain obtained with the M azurk—
dewicz algorithm and ket v be a vertex. W e associate to the vertex v and to the
step 1 the integer ra(ig)ree (V) keing the m axim al integer bounded by the diam eter
of G such that any vertex w of B (v;ra%)ree (v)) veries:H ;(v)= H;Ww):

Now we can state the m ain result of this section:

Theorem 4.10. Let G i)y i;le a rellelling chain obtained w ith the M azurki-
ew icz algorithm and ket v ke a vertex. The graph G ; is a quasi-covering of H ; (v)

centered on v of radius régree W):

Proof.Letr = ra(f;)ree (v); and ket  Dbe the partial function which associates to
the vertex u ofBg , (v;r) the vertex n; (u): The ain of the proof is to verify that
G ; Isa quasicovering via  ofH ; (v) centered on v of radius r:

U sing notation ofthe de nition of quasi-coverings, rstwede ne the covering
K :LetB bean isom orphic copy ofBg , (v;r):Thegraph K isobtained by adding
to B in nite treesde ned as follow s.

Let U Dbe the universal covering of H ; (v): Let x be a vertex of H ; (v); et
S verifying S Ng, ) ®);wede neU (x;5) as the subtree of U obtained by
considering walks rooted in x such that the st step is of the form fx;sg w ith
s2 8S:

Foreach vertex w such thatd(;w) = r;wede neU , asan isom orphic copy
toU ( w);Sy) wih

Sy = £fs2 Ng ) ( W)) j8y2 Ng, w)\ Bg, (v;r) y) 6 sg:

T he copies are dispint, ie., ifw € wothen V U, )\ V U y0) = ;:

For each vertex w such thatd(v;w) = r;weadd U, toB by dentifying the
copy ofw and the root of U, :Let K be the graph we have built by thisway.
T he isom orphisn ’ is the canonicalbifction between B |, (v;r) and B :

W e de ne the m orphisn from K to H; ) by:

{ fu2B then @)= (' '@u));and
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Fig.4. Construction of the associated covering F .

{ ifu 2 U, and t is the end-vertex of the path In H ; (v) corresponding to u
then @)= t:

F irst, we verify that is a m orphism . T here are three cases:

{ ffuandvareadpcentin U, then by construction (u)and (v)areadpcent,
{ ifu and vareadjcent in B then they areadjpcentinH y , (y) = Hy , ) thus
(u) and (v) are adpcent in H; (v);
{ ifu and v are adjcent and u belongs to B and v belongs to U ,, for som e
w ; by construction ofU ,, the vertices (u) and (v) are adjcent in H; (v):

By construction, is surjctive. To achieve the proof we verify that for all
vertices u the restriction of to Nx (u) isa bijction onto Ny | ) :
O nce m ore there are three cases.

{ Ifu2 H, forsomevertexw and ifu isnot the root ofH ,, then, by de nition
of the universal covering, the restriction of to Nk (u) is a bipction onto
Nuiw:

{ fu2 Bg (' (v);r 1):W e prove that the restriction of toNg, ( '@)) is
a bifction ontoNg | vy ( ()):By de nition of the restriction is surfctive;
furtherm ore tw o vertices in the sam e ball of radiis 1 have di erent num bers
(it isa direct consequence ofthe M azurkiew icz algorithm ) thus the restriction
is also Infctive.
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{ IfEd@;’ v)) = r then using the sam e argum ent that for the previous iem
com bined w ith the de nition of the universal covering we obtain the resul.

Remark 4.11. Thepreviousresult rem ainstrue for any radiisbounded by r;;)ree (v):

4.4 An A lgorithm to D etect Stable Properties

In this section we describe in our fram ework the algorithm by Szym anski, Shy
and Prywes (the SSP algorithm for short) ].

The SSP A lgorithm W e consider a distributed algorithm which term inates
when allprocesses reach their local term fnation conditions. E ach process is able
to determ ine only its own temm ination condition. The SSP algorithm detects an
instant in which the entire com putation is achieved.

Let G be a graph, to each node v is associated a predicate P (v) and an
integer a (v): Initially P (v) is false and a(v) isequalto 1:

T he relabelling rules are the follow ing, let vy be a vertex and let fvy; i:5vqg
the set of vertices ad pcent to v : IfP (vp) = falsethen a(vp) = 1;ifP (vp) =
true then a(vp) = 1+ M infa(vw) jO  k dg:

A G eneralization of the SSP A Ilgorithm W e present here a generalization
of the hypothesis under which the SSP rules are run. For every vertex v, the
value ofP (v) isnom ore a boolean and can have any valie.Hence we w illtak of
the valuation P .M oreover, we do not require each process to determ ine when it
reachs its own term ination condition.M oreover the valuation P m ust verify the
ollow ing property : orany , ifP (v) hasthevalie and changesto °6  then
it cannot be equalto at an other tin e. In other words, under this hypothesis,
the fiinction is constant between two m om ents w here it has the sam e value. W e
say that the valuation P is valuie-convex.

W e extend the SSP rules and we shall denote by G SSP this generalisation.
In G SSP, the counter of v is increm ented only if P is constant on the ballB (v).
A spreviously, every underlying rule that com putes in particular P (v); has to be
modi ed In order to eventually reinitialize the counter. Initially a(v) = 1 for
all vertices. The G SSP rule m odi es the counter a.

Rule_forGSSP : M odi ed rule for G SSP
P recondition :

unchanged
Relakelling :

unchanged
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For every vertex v ofB (¢),
ifP%v) 6 P (v) then

dw) = 1:
otherw ise
dw) = aw):

GSSP : G SSP rule

Precondition :

Forallv2 B (g); P v)= P (vp),
Relakelling :

dwp) = 1+ minfaw) jv2 B (v)g:

W e shallnow use the follow ing notation. Let G i)y i be a relabelling chain
associated to the algorithm G SSP.W e denote by a; (v) (reso.P; (v)) the value of
the counter (regp.of the fiinction) associated to the vertex v ofG ;: A ccording to
the de nition of the G SSP rule, we rem ark that for every vertex v, a (v) can be
increased, at each step, by 1 atm ost and that ifa (v) lncreases from h toh + 1,
that m eans that at the previous step, all the neighboursw of v were such that
aw) handP w)= P (v).The follow ing lemm a is the iterated version of this
rem ark.

Lemma 4.12. Forallj, for allv, forallw 2 B (v;a; (v)), there exists an integer
i j such that

aiw) ajv) dv;w);

Pi(w)= P;5(v):

P roof. T he proof is done by induction upon the radiusk 2 [D;a; (v)] of the ball
Fork = 0, the result is true trivially.

Suppose that the result istrue forallvertices in theballB (v;k), k  ajv) 1.
Now ,we consider a vertex w atdistance k+ 1 ofv.T he vertex w hasa neighbour
u such that d(v;u) = k.By induction hypothesis, there exists i, Jj such that
ai, (u) aj(v) kandPj ()= P5(v).

Let ibe a step, in the steps preceding i, , where the counter u reached a;, (u)
with P; (u) = Py, (u). This step exists for the counter Increases of at most 1 at
a tin e, and each tin e that P (u) ism odi ed, the counter a (u) is reinitialized to

1 modied rules for GSSP).

M oreover, according to G SSP rule, we have necessarily, a; W) aj, @) 1
and P;(w)= P;(u).Consequently a;w) aj(v) k landPijw)= P;(v).The
result is true forw and so for every vertex at distance k + 1.

In particular, this proves that at any moment j, for all v, for all w 2
B (v;aj (v)), there exists a moment i, in the past such that Py, W) = P; ().
W e now prove that, for all verticesw in the ballbajT(V) c, we can choose the sam e
i, . This is a fuindam ental property of G SSP algorithm .
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Lemma 4.13 (G SSP). Consider an execution of the G SSP algorithm under
the hypothesis that the function P is valuie-convex. For all j, for all v, there

V)

existsi J such that or allw 2 B (v;b>52c), Py (w) = P5 (V).

P roof.

- J
Lex(\‘“a (@as v))
i 4
mee S
L1
1 aj3(v) c
| i
e
i
(0)
vertex w vertex v

Fig.5.Proofschem eofLemm a :verticalaxesdenote tim e, the value betw een
brackets are Iow er bounds for the counter a.

Let i be the rst step where a; (v) = bajT(V)c and P;(v) = Pj(v).Letw 2
B (v;bajT(V)c), and denote i, a step, which existence is given by Lemm a ,
such that a;, W) a;v d(v;w) ZbajT(v)c and Py W) = P5(v).Now, let's
apply Lemm awji:h centerw atstep i, .W eobtain i° i, such thatap &)
a;, W) dw;v) bajT(V)c= a;(v)and Pyo (v) = Py, W)= P5(v).Byminin ality
ofi, i 1and nally i i, .

Now ,we apply another tin e Lemm a,wji:h center v, at step 1.W e obtain

then 1 i, such thata; W) a;j(v) d@;w) OandP; W)= P; (V).
To conclude, we obtain two steps 1 and i, such thatP; W) = P;, (W) =
P5(v),and i i i .AsP isvalueconvex,wegetP;Ww)= P5(v).

Remark 4.14. O ne third of the counter is an optin al radius of stability. It is
possible to construct exam ples w here the function P is not necessarily constant

on the ball of center v and of radius bajT(v)c+ 1.

In these settings, even if the valuation stabilizes, G SSP is alw ays guaranted
to not temm inate. In order to have noetherian relabellings system s, we de ne,
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given a relabelling system R to which GSSP is applied, A R ;P;’) to be the
relabelling system based upon R and G SSP with valuation P and adding '
to the preconditions of the G SSP Rul. Now tem ination is closely related to
the properties of P and ’ . W e de ne a property, that is only su cient, for
term ination.

De nition 4.15. The pair P;’) is uniform if for any run of A P;’ ), there
existtime iand rg 2 N such that for allvertex v, forallj i, we have ba]T(V)c:
rn , :'5W).

O bviously, a uniform pairin pliesthatA (P ;') isnoetherian.T he term nation
ofthe increase ofbajT(V) catanodev that rst stops, doesnot prevent the counter
at the other nodes to reach this particular value.

4.5 M azurkiew icz A lgorithm + G SSP A lgorithm = UniversalLocal
C om putation

Them ain idea in this section is to use the G SSP algorithm in order to com pute,
in each node, the radius of stability of M . In other words, each node u w ill know
how far other nodes agree w ith its reconstructed graph H y ().Let G = G; )
be a labelled graph, ket G i)y i be a relabelling chain associated to a run of
M azurkiew icz’ A lgorithm on the graph G : The vertex v of G ; is associated to
the Iabel ( (v); (i (v);N ; (v);M ; (v))):U sing the interpretation of section @, this
labelling enables to construct a graph that is an asynchronous netw ork snapshot,
a would-be cartography of the network.

W e now assum e the m ain relabelling system to be M , the valuation to be
H .We will have to work a bit on ’/ in order to get a noetherian system . W e
denote by A the system A M ;H ;false).The output of Ay on the node v is
< HiW)jaiw) > :

Looking only at the labels, we have, from T heorem that H is value—
convex. Then, from Lemma and T heorem , we get the m ain property
of the com putation ofA ¢ :

Theorem 4.16 (quasicovering progression).Atallstep j, for allvertex v,
the output of Ay on v is a couple < H j(v)ja; (v) > such that ifH § & ?, then
there exists a previous step i< J, such that G ; is a quasi-covering of H 5 (v) of
center v and of radius bajT(V)c.

And as the underlying M azurkiew icz A lgorithm is always term inating, we
have that the value of H w ill stabilize w ith a going to the in nite.

F inally, and considering the previous theorem , we note r* (v) = bajT(V)c, the
radius of trust for the algorithm A o at node v. In the follow ing section, we show
how to get a noetherian relabelling system from Ag.
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4.6 Computing Further Inform ations

T he follow Ing sections show thatM , M azurkiew icz’ algorithm , is actually com —
puting the m axin al Inform ation we can get distributively. In this subsection, we
precise how to extract m ore inform ation if we have m ore structuralknow ledge.
In the follow ing, we suppose we know a recursive graph fam ily F to which the
underlying netw ork belongs.

D espite the non—recursivity of (cfRem ark ), we explain how to use the
algorithm A and T heorem to determ ne when H is .n . In the rem aining
of this part, we suppose A ¢ is running and all considered H and r are outputs
of A 0.

G iven these outputs, we describe a (sequential) com putation that is done by
all the nodes.

Data:agraph H 2 G,

r2N.

Result:? orYes

repeat
K 2F /* Enum erate (@lways in the sam e order) all the graphs
of F by order of increasing diam eter */

until K is a quasi-covering of center u and radius r of H /* Loop

ends by Theorem [4.14 */
if K is a quasi-covering of radius r of H for any vertex of H and
r> (H) then

Output:Yes

else
O utput:?
end
A lgorithm 1: :KnowihgifH isin ®,
W enote - H ;u;r) the result of this (sem iIalgorithm . If one of the nput

F
is clear from the context, it is om itted.

Lemma 4.17. Suppose a graph fam ily F is given. For any graph H , any vertex

-~ (H ;u;r) term inates and outputs Y es, then H 2 2

u,any r2 N, if -

P roof.DenoteK thequasicovering thatendsthe loop of -~ for inputF ;H ;ujr.
Asr K )+ 1,K isa non-strict quasicovering.K is then a covering ofH .

The graph K being n F , we have that H 2 ®.

Lemma 4.18. LetH 2 Eb, for allvertices u;v in H , for allr,
Fujr)=Yes i £ (W;r) = Yes:

Proof. Suppose =~ (u;r) = Yes.Denote K the quasicovering that ends the
oop of » for nputu.
By condition for outputY es, wehave thatK isalso a quasicovering of center

v and radiusr ofH , hence = (v;r)= Yes:
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Wedene’;tobe ~@H;n();r () 6 Yes.
W e note Carto the system A M ;H ;’:1).Thiswillgive a noetherian system

as dem onstrated below . T he output of C arto is (H ;rt).

Theorem 4.19 (A synchronous snapshot). W ith inputsH and r* com puted
by the relhlelling system C arto, we have the follow ing properties.

4194 The sem ialorithm  ~ with inputs H and r* term inates.

4194l Atany tine, if ~@# ;r')= Yes, then H 2 ®,

419411 TfH isde ned, then there exists a previous step i, such that G ; is a
quasi-covering of H of center v and of radius r*.

P roof. The rstproperty is given by Theorem K.16[. T he second one is then by

Lemma.

A severy run of Carto isa pre x ofa run ofA o, we get the nalproperty by

4.19.

Theorem 4.20. The system Carto is noetherian.

Proof. We show that H ;’:) is uniform . UntilM temm inates, the m odi ed
G SSP part of the system has no signi cant consequences (the com putations of
r® is resetted whenever a rule of M is applied). W hen M is nished, r® starts
to Increase. Tt w ill Increase until the com putation of ! ;r%) outputs Y es on
som e node v.

At thism om ent, and at thisnode v, ' ;1 isno m ore true. A s we are working
with the nal labelling ofM , H has the sam e value on all nodes, hence from
Lemm a }.1§, the com putation of 7 willoutput Y es for the sam e value ofr® on
every node.

T hen, C arto is noetherian.

Remark 4.21. A s a an all optin isation for & it shall be noticed that it is not

to be run ifr® is sn aller than the diam eter of H .

W ithout further inform ations about F , it seem s di cult to deduce anything
m ore.

5 Term ination D etections

F irst, we recall from the previous section: et R be a locally generated relabelling
relation, ket G a labelled graph, we say that G is an irreducible con guration
modulo R if G is a R nom al form , ie., no further step with R is possible
GRGhodsforno G Y.

Trreducibility w ith respect to a relabelling relation yields a notion of m plicit
term ination : the com putation hasended —nom ore relabelling rule can be applied
—but no node is aw are of the term ination. O n the other hand, one shall ask a
node to be aw are of the term ination of the algorithm .W e w ill see that one can
de ne various avour of detection of the termm ination of a local com putation.
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{ Tem ination of the algorithm but w ithout detection : Im plicit term ination

{ Thenodesend in a term inal state, that is a state in which the node know s it
w ill stay forever (whatever is happening elsew here In the netw ork) : detection
of the local term ination

{ Thenodesknow when allothernodeshave com puted their naloutputvalie.
T his is the observed term ination detection as when term ination is detected,
som e observation com putations are not necessarily term inated. D ue to the
asynchronous aspect of local com putations, there is still som e observational
com putations that are going on.

{ A node enters a gpecial state that indicates that the algorithm has term i-
nated. T his is, obviously, the last step of the com putation.

T he three last cases are explicit term inations. Term ination of a distributed
algorithm isusually I plicitly assum ed to be (one kind of) explicit.

W ew il see that these variousnotions are distinct and form a strict hierarchy.
F irst we w ill give the form alde nitions, som e exam ples and then the characteri-
sations ofeach term ination detection. T he characterisations are com plete except
for the localterm ination detection where we have results only for uniform tasks,
that is, local com putations ending in a uniform Jabelling of the netw ork.

5.1 N orm alisation of the Labellings

In order to have a uni ed presentation of the variousresults, w e restrict ourselves
to \nom alised relabelling system s" w Lo g.

De nition 5.1. A nom alised labelled graph G is a llkelled graph whose -
lelling is of the form (mem;out ;term):

A nom alised relabelling system R is a graph rekbelling system on nor—
m alised graphs where

{ mem can ke used in preconditions and reklellkd,
{ out is only relbbelkd,
{ term is only relkelled and has a value in £? ;T ermg.

W e also use the llowing convention: if the initial hbelled graph is G =
G ;in) then it is I plicitly extended to the nom alised hlelling G ; (in;? ;7 )).
The inital value of mem is therefore given by in.

Now, we m ake the follow ing assum ptions. A 1l graphs are labelled graphs
and are all considered to be nom alised. A 1l relabelling relations are relabelling
relations of nomm alised labelled graphs.

W e also use the follow ing notations. Let G and G "be som e given nom alised
graphs then, for any vertex u 2 G (resp. 2 G Y), for any x 2 fmem;out;termg,
x @) (resp.x’(u)) is the x com ponent ofu n G (resp.G ).

T he graph x¢ is the labelled graph obtained from G by keeping only the x
com ponent.

T hispresentation will nd its justi cations w ith the follow Ing de nitions.
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5.2 Term ination D etection of R elabelling System s and of Tasks

In this section, we give the form alde nitions of the tem ination detection for
graph relabelling system s. Then we de ne what is a task, nformally it is a
relation between the set of inputs and the set of \legal" outputs.
LetF bea given graph fam ily, and R a graph relabelling system .W e denote
by Img () the set
£6°2 G, §9G 2 F;GR G %:

Im plicit Term ination There is no detection m echanism . Hence term is not
used.

De nition 5.2. A graph rellelling system R has an in plicit term ination on
F if

521 R isnoetherian on F ,
5.2 .41 the term com ponents of any graph in Imz (£ ) are allequalto ? .

If the underlying local com putation is ain ed at the com putation ofa special
value, we w ill, In order to distinguish thisvalie from the interm ediate com puted
values, only look the special purpose com ponent out. A s there isno detection of
term ination, this Jabelis w ritten all over the com putation . It becom es signi cant
only when the graph is irreducible, but no node know s when this happens.

Rem ark 53. Such ade nition isalso relevant for nite self stabilising algorithm s
D 010(]. Indeed, one can see in plicit term ination as a stabilisation . Furthem ore,
M azurkiew icz” algorithm hasbeen shown to be selfstabilizing ].

Local Term ination D etection W e willnow ask the out label to rem ain un-
changed once term is set to Term .

D e nition 5.4. A graph relabelling system has a local termm ination detection
(LTD) on F if

541 R isnoetherian on F ,

5.4 .41 term com ponents of graphs in Irredz (F ) are equalto T erm,

5441 for allgraphs G ; G 02 Imyg () such that G R GO, for every vertex u
such that term@) = T erm, then

out (u) = outo(u);

term@u) = term’ )= Term:

Remark 5.5. It shall be noted that this de nition does not form ally prevent a
node in a tem inal state to act as a gateway by m aintaining connectivity of
the active parts of the network. N ote that the mem com ponent can also be kft
unchanged w ith rules that relabel only neighbours.W e do not discuss here if, in
som e sense, a node acting only as gatew ay is really \term nated".Furtherm ore,
we will only give results for uniform tasks (to be de ned later) where these
distinctions actually give equivalent de nitions.
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O bserved Term ination D etection In thissection, werequire thatonce T erm
appears, allout valieshave to rem ain unchanged untilthe end ofthe relabellings.

De nition 5.6. A graph rekkelling relation R has an observed termm ination
detection (OTD) on F if

5.6.1 R isnoetherian on F ,
56 .41 term com ponents of graphs in Irredz (F ) are equalto T erm,
5.6.411 for allgraphs G ;G 2 Imy (F) such that GR G Y, for all vertex u
such that term@u) = T erm, then
{ termo(u) = Term,
{ rallvertex v2 G, out (v) = outo(v):

In other words, every node can know when every output valie is nal. The
point is that, in this de nition, we ask the network to detect the termm ination
of the com putation (In the sense of the out value that is com puted), but not
to detect the termm ination of that detection. In the follow ing, we usually have
one vertex that detects that the out valies are nal and then it perform s a
broadcast of T erm . T his is actually the term ination of this broadcast that we
do not ask to be detected. In som e sense, this broadcast is perform ed by an
\observer algorithm " whose term ination we do not consider.

Rem ark 5.7. Up to a broadcast, this de nition is equivalent to a \weaker" one
where it is asked that only at least one vertex of irreducible graphs has a term
labelsst to Term.

G lobal Term ination D etection There isa node that perform s explicitly the
last relabelling rule.

De nition 5.8. A graph relakelling system R has a global term ination detec—
tion (GTD) on F if

5.8.1 R isnoetherian on F ,
5841 forallgraphs G 2 Imy (F ), there exists a vertex u such thatterm(u) =
Term ifand only if G is in Irredz F ).

Term ination D etection of Tasks W enow de ne tasksby a speci cation and
a dom ain. The gpeci cation is the general description of what we want to do.
The dom ain is the set of labelled graphs where the local com putation has to
com pute the correct outputs w ith respect to the speci cation.

F irst we recall som e basic de nitions about relations.

De nition 5.9. A relation R is kfttotalon a set X if for every x 2 X , there
exists y, such that xRy.

De nition 5.10. Leta relation R on the set G;, of lalkelled graphs. Let X G .
The restriction of R to X istherehtion Ry = R\ X Gp:
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De nition 5.11. A task T is a coupk  ;S) where S is a (not necessarily
Ically generated) relabelling relation and F is a recursive hakelled graph fam ily,
such that Sy is kfttotalon F .

The set F is the dom ain of the task, S is the speci cation of the task.

N ote that, in general, a speci cation S is not particularly related to a given
graph fam ily. H ow ever, the com putability of a task does depend on the dom ain.
See the E Jection Problem in Sect.@.

A speci cation can be a decision task such as recognition of property of the
underlying graph, or consensus problem s, or the problem of election of a node
(see Section @), a task depending on the level of structuralknow ledge we have,
the com putation of a spanning tree, a d colouration of a graph, etc....

Rem ark 5.12. Tt shall be em phasised that we do not explicitly dealw ith struc—
turalknow ledge as a param eter for the algorithm . T his is exactly the sam e algo—
rithm that is applied on all the lakelled graphs. If there is any param eter to use,
this has to be done in the description of the dom ain and, m aybe, encoded in the
initial label.

Ourde nition is ain ed at em phasising the di erence between the problem -
that is the sam e for any netw ork —and the set of networks on which we want to
solve it ( if it is solvable at all ) w ith a unigque algorithm . E g., In Section ,
we show that, for any m inin al graph, there is an E lection algorithm but there
is no algorithm that solve E lection for allm inin al graphs.

K eeping in m ind the previous rem ark about structuralknow ledge, any intu-
itive task can be encoded by thisway.

Exam pk 5.13. W e describe the goeci cation ofthe d colouration problem :
wlog=£G;G; ) Jcad( G)) d;jand
8u;v)2E G); & (V)g:
A solution to the task R ;colos) jspresentedanxamp]e@.

W e now de ne the com putability of a task with respect to the di erent
avours of term ination.

De nition 5.14. A task (F ;S) is bocally com putabke with In plicit term ination
(resp. LTD,OTD, GTD) if there exists a graph relakelling system R such that

5.144 (term ination) R has an im plicit term ination (resp.LTD,OTD,GTD)
onk,
5.14 .41 (correctness) for any graphs G 2 F, G 02 Trredg G )

G Soutg o;

5.14.4i1 (complkteness) for any graph G 2 F, for any graph G ° such that
G SG 9 there exists G © such that
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In this case, we say that the graph rekbbelling relation R com putes the task
(F ;S) with no (resp. ocal, observed, gllkal) term ination detection.

Rem ark 5.15. Thereader should rem ark that previousde nitions (])
are restricted to the correctness property. This is the st time, to our know 1=
edge, that the com plkteness (that can be seen as a kind of faimess property over
the legal outputs) is addressed, thus giving its fullm eaning to the sentence \S
is ocally computed by R on F ".

M oreover, the In possibility results rem ain true even w ithout the com plete—
ness condition (see Rem ark @) .

Rem ark 5.16. The term sm essage term ination and process term nation have also
been used to denote im plicit and explicit temm ination , Introduction for
chap. 8].

W edenoteby T1(F ) (resp.Tyrp F ), Torp & ), Tegrp ) ) the set of spec—
1 cations that are locally com putable on dom ain F with inm plicit term nation
(resp. LTD,OTD,GTD). IfF is obvious from the context, we will om it it In
these notations.

From the de nitions, we have

Proposition 5.17. For any lkelled graph fam ily ¥,

Tgrp ) Torp F) Tyrp ) Ti(E):

Proof. W e give the proof, from right to lkft, as an illustration for those de ni-
tions.

A task T with localterm ination detection hasan in plicit term ination : rem ove
relabelling of term in a relabelling system that computes T with LTD .

Suppose a task T is com putable with observed tem nation detection. A
relabelling system that computes T with OTD hasLTD by de nition.

Suppose now that T is com putable w ith global term ination detection by R .
An OTD system for T can be obtained by adding a T erm Jbroadcast rule to a
relabelling system that computes T with GTD .

Before we characterise these di erent classes and show that they de ne a
strict hierarchy, we present som e exam ples.

5.3 Four Exam ples about C om puting the Size of an A nonym ous
Tree

W e illustrate these various kinds of term ination w ith the exam ple of the com pu—
tation of the size of a tree. W e give four algorithm s: w ith in plicit term ination,
w ith local temm ination detection, w ith distributed term ination detection, w ith
global term nation detection. In all cases, we start w ith the labels of the nodes
being uniform Iy set to (0;? ;72 ).

The rst three relabelling system s are variations of the fourth one. Thuswe
focus on the last relabelling system , TreeSize_G TD . T he rules are described
in their order of appearance.
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F irst w e prune the tree starting from the leaves. T he size of the pruned sub-
tree is com puted increm entally. W hen the last vertex is pruned, it know s it has

the total num ber of vertices. Tt broadcasts this value.

W hen the leaves get the broadcast value, they acknow ledge it to their neigh—
bour. Then, the last vertex to get acknow ledgem ents from all its neighbours
know s this is the end of the local com putation. It shallbe noted that this isnot

necessarily the sam e pseudo—root vertex at each wave.

W e recallthat N (vg) is the set of neighbours of vy and that, given a \m eta—
rule", we enable only rules that m odify at least one label. Proofs are left as

exercises.

Exampk 5.18.

TreeSize_Il : Pruning
Precondition :
mem(g) = 0,

9NV 2N (g);memv)= 0or8v2 N (vp);mem(v) & 0.

Relakelling :
merH(vO) =1+ 2N (VO)mem(v),

out (vg) = mem® (v ).

TreeSize_I2 : Fast B roadcast
Precondition :
8v2 N (g);mem(v) & O,
Relakelling :
out (vo) = max,sy () fout (v)g.

Exampk 5.19.

TreeSize.LTD 1 : Pruning
Precondition :
mem(y) = 0,
9NV 2N (g);mem)= 0.
Relakelling : p
merﬁ(vo) =1+ 2N (vo)mem(v).

TreeSize LTD 2 : Tree Size is C om puted

Precondition :

mem(y) = 0,

8v2 N (g);mem(v) & 0.
Relakelling :

ouﬁ)(vo) =1+ N (vo)mem(v),

mel(vp) = Size,
term (Vp)= Term.
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TreeSize_ LTD 3 : Broadcast Size

Precondition :
9v 2 N (¢);mem(v) = Size.
Relakelling :
mel (vp) = Size.
outf’ (vp) = maxy,,y o) fout (v)g.
term (Vp)= Term.
Exampk 5.20.
TreeSize_.OTD1 : Pruning
Precondition :
mem(g) = 0,
9NV 2N (g);mem)= 0.
Relakelling : p
merH(vo) =1+ voN (VO)mem(v).

TreeSize OTD 2 : Tree Size is C om puted

Precondition :
mem(g) = 0,
8v 2N (g);mem(v) & 0.
Relakelling :
oul (o) = 1+ 5y () €M),
mefl (vy) = Size.

TreeSize_ O TD 3 : Broadcast Size

Precondition :

9v 2 N (¢);mem(v) = Size.
Relakelling :

mel(vp) = Size,

outl (vp) = m axyoy o) fout (v)g.

TreeSize OTD 4 : End of Broadcast
Precondition :
card N (¢)) 2,
mem(y) = Size.
Relakelling :
mefl(vy) = Ack.

TreeSize . OTDY5 : A cknow ledgem ent
Precondition :
9v 2 N (¢);mem(v) = Ack.
Relakelling :
merH(vo) = Ack.
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TreeSize . OTD6 : Term ination D etection
P recondition :

mem(y) &€ Ack,
8v2 N (g);mem((v)= Ack.
Relakelling :
mem(y) = T erm
terrﬁ(vo) = Term.

TreeSize_ OTD 7 : Broadcast Term ination
P recondition :

9v 2 N (¢);mem(v) = Term.
Relakelling :

merfl (o) = Term,

term (Vp)= Term.

Exampk 5.21.

TreeSize GTD1 : Pruning
Precondition :
mem(y) = 0,
9NV 2 N (g);mem(v) = 0.
Relakelling :

P
meHQ(vo) =1+ voN (VO)mem(v).

TreeSize GTD 2 : Tree Size is C om puted
P recondition :

mem(g) = 0,

8v 2N (g);mem(v) & 0.
Relakelling :

P
ou@(vo) =1+ 2N (Vo)mem(v),
meffl(vy) = Size.

TreeSize_.GTD 3 : Broadcast Size
P recondition :

9v 2 N (¢);mem(v) = Size.
Relakelling :

mefﬁ(vo) = Size.

outl (vp) = m axyoy o) fout (v)g.

TreeSize_.GTD 4 : End of Broadcast
P recondition :

card N (v)) 2,
mem (g) =

Relakelling :
merﬁ(v0)= Ack.

Size.
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TreeSize GTD5 : A cknow ledgem ent
Precondition :
9v 2 N (¢);mem(v) = Ack.
Relakelling :
merﬁ(vo) = Ack.

TreeSize . GTD 6 : Term ination D etection
Precondition :
mem(y) &€ Ack,
8v 2N (g);mem(v)= Ack.
Relakelling :
term Vp)= Term.

5.4 Computing a Spanning Tree

W e consider here the problem ofbuilding a spanning tree in a graph.W e assum e
that there exists a distinguished vertex, all vertices are initially In som e neutral
state (encoded by the label ? ) except exactly one vertex which is In an active
state (encoded by the label").

T he construction of a spanning tree for a rooted netw ork is am ong the m ost
fundam entaltasksto be perform ed.T he spanning treem ay be used subsequently
for perform ing broadcast and convergecast com m unications.

LocalC om putation of a Spanning Tree W ith D etection of the G lobal
Term ination. The main idea is to use Dewey'’s pre x-based labelling. The
father of the node v is the neighbour labelled by the pre x of v. T his encoding
is necessary as, here, we restrict to no label on edges or ports. W henever the
covering algorithm is nished, the leaves acknow ledge the term nation to their
fathers until the root node know s everything is over.

T he labels mem are words upon the alphabet N.W e note : the concatena-
tion of the words and . " denotes the empty word.W e de ne the follow ing
notations in order to sin plify the description of the rules. G iven a vertex vy, we
de nenew (vo) = fv2 B (vp)Jnem(v) = ? g.W e also de ne the set of neighbours
labelled by a pre x ofthe center’s label. Let children (vp) = fv 2 B (vp)Jnem(v) 2
mem(vy)Ng G iven a set X ofnodes, we note x an injpctive function X ! N.

T he tree has a distinguished vertex, labelled (";? ;7? ), all other nodes are
labelled (? ;72 ;7)) .

Spanning treel : Spanning V ertices
Precondition :
mem(g) & ?,
new (¢) 6 ;:
Relakelling :
ifv 2 new (w),memo(v) = memVo): new (vo) (V):
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Spanning tree2 : A cknow ledgem ent
Precondition :
mem(g) 2 N,
8v 2 child(g);A ck issu x ofmem(v).
Relakelling :
mel (vg) = m em (Vo)A ck:

Spanning tree3 : G lobal Term ination D etection

Precondition :

mem(g) = ",

8v 2 child(¢);A ck issu x ofmem(v).
Relakelling :

term (Vo) = Term:

A scan be seen from the term label, local term ination and globalterm ination
are closely related but willdi er on the root node.W e can note that the nodes
know their nalnum ber from the rstapplication ofarule (the SpanningVertices
rule), but they do not term inate in order to convergecast the acknow ledgem ent
to the root.

6 Characterisations

6.1 Im plicit Term ination
W e need the follow Ing de nitions to express the local symm etry of a task.

De nition 6.1. A graph fam ily F is covering—<closed if for any graphs G ,H such
that G isa coveringofH ,G 2 F =) H 2F.
Let :G ! H ke a covering, et H ke a relabelling of H . Then the lifting
ofH Y through  is the ©lbwing kkelling: 8v 2 G , the label of v is the label of
) in H?. This Jakelkd graph is denoted ' @H Y).

T he ©ollow Ing proposition is obvious.

Proposition 6.2. LetF e a graph fam ik. T hen B is the sm allest graph fam ily
containing F that is covering-closed.

De nition 6.3. LetF ke a covering—closed graph fam ily. A relation R on F is
lifting—closed if for allgraphs G and H in F , such thatG is a covering of H via
,orallH, HRH? =) GR *®H?).

De nition 6.4. A relhlelling relation S is covering-lifting closed on F  if there
exists a lifting-closed kefttotal recursive relation ® on ® such that

§JF:SJF:
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Rem inding R em ark , w e underline that Eb, the dom ain of @, is not nec—
essarily recursive. Hence we require only that ® is recursive w ith keft nput in

P,

T he necessary condition relies upon Lifting Lemm a @ This a classical re-
sult since the work of Angluin. The su cient condition usesM azurkiew icz’ algo—
rithm . Thisresult was rst proved In a slightly di erent context in ]. n
], the algorithm was quite technically lnvolved. W e give here another,
m aybe sin pler, proofusing G SSP.

Theorem 6.5.A task F ;S) is ocally com putable with in plicit term ination if
and only if it is covering-lifting closed.

P roof. Necessary Condition. Let (F ;S) be a task that is com putable w ith in -
plicit term ination.

T here exists R that locally com putes (F ;S).W e de ne an extension ® on ©
in the ollow hgway:given H in ®, we can apply R untilan frreducible form is
obtained (this always happens because of Lemm a ) .Wetake H ®H ° for any
Irreducible labelled graph H ’ obtained from H .

By construction, ® is fttotalon . W e now show that & m eets the prop—
erties of the covering-lifting closure de nition.

First, we show that & is lifting—closed.Let H be a Iabelled graph and G 2 F
wih :G ! H a covering.

LetH © such that H $1 °.By construction, H R H %and H ' isR —rreduchble.
HenoebytheLiﬂjngLemma@,wehaveG R T | O).Furthennore TH O)
is ireducbleas @) is.Then G ® a9,

Finally, we show that the relations ®and s are equalon F .Let G ;G 0 such
that G $G °. Sthce R com putes S, we have that G SG 0,

LetG 2 F .AsR computeslocally S onF , forany G ’such thatG SG ¢, there
exists, by com pleteness, an execution that leads to an frreducible form equals to
G ’.Hence G G °.

G iven the previous result, we get ® is recursive when the left m em ber is in
® sihce S is.

Su cient Condition. W e suppose (F ;S) is covering-lifting closed. W e will
describe a graph relabelling system R 1 that com putes F ;S).

W e rstdescribe a \naive" approach. T his approach describes w hat is essen—
tially at stake here, but, rigorously, it fails for a recursivity reason.T his approach
is, that at any m om ent, to take H the com puted asynchronous snapshot w ith
M , then choose a H ° such that H 1 0 and 1ift the out labels to the vertices of
G .By covering-lifting closure, and by Prop.[4 .4, at the end of the com putation
of M , it will give a correct nal labelling. T he real problem of this approach
is that, In the general case, during the com putation, it is not possible to know
sin ply when the com puted H isreally in . Furtherm ore by Rem ark , even
know ing F , it is not com putable to decide ifa given H is in ®.

However, from Th. we have a relabelling system C arto that outputs
when H isin B°.R T is obtained by adding to C arto the follow ing rules, for any
H ’such that H $H °:
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RH ’:Pick an O utput
P recondition :
- H ;n(w);r*(vp)) = Yes:
Relakelling :

choicd(vy) = H°.

R nal:U nifying O utputs
Precondition :
forallv 2 B (¢), choice(vg) choice):
Relakelling :
forallv2 B (g), choice’w) = choice(vp):
forallv 2 B (), out’(v) = outcheicew,) @ (V) :

The nalrule ensures that the same H ’ isused all over the graph by taking
the am allest chosen one.

By Prop ., R T isnoetherian and the labelout isultin ately com puted.By
covering-lifting closure, the nalout labelling is correct.M oreover, by P roposi-
tion (com pleteness), we get the com pleteness condition about S .

Remark 6.6. If we drop the com pleteness property from the requirem ent, the
proof show s that it is only necessary and su cient to have @f Sy :

Rem ark 6.7. If it is easy (read recursive) to check whether a given graph is In
® { fr exam pk if F is covering—closed { the algorithm above is very much
sim pli ed because the m ain di culty is to know when a \P ick an output" rule
can be applied. T his reveals to be actually the case for aln ost all practical cases.

6.2 LocalTerm ination D etection of U niform Tasks

T he results of this part com es from ]. They stand only for uniform tasks,
that is, for tasks wih a uniform out label. W e adapt the de nitions to the
context of this paper and we give the m ain result. The com plte proofs (that
are basically the sam e up to the notations) and som e applications, In particular
about the problem of deducing by local com putations a structural inform ation
from another one, are given in 1.

De nition 6.8. A task is uniform if for every G 2 F, every G ’ such that
G SG Y, every vertices u;v 2 G, outgo () = outg o (v). In this case, the task is
denoted by F ;f) where £ :F | L isthe nallkbelling function.

De nition 6.9. A uniform task  ;f£) is quasicovering-lifting closed if there
exists a recursive function r : ® | N such that, if there exist graphs K , K /
in F and H such that K and K ’ are quasi-coverings of H of radius r (K ), then

fR)=fK?:

Theorem 6.10 (]) . A uniform task is locally com putablke with local ter—
m ination detection if and only if it is quasi-covering-lifting closed.
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6.3 Observed Term ination D etection

Theorem 6.11.A task T = (F ;S) is ocally com putable with observed term i-
nation detection if and only if

6.114 T is covering-lifting closed,
6.11 .41 there exists a recursive function r :¥ ! N such that for any H 2 Eb,
there is no strict quasi-covering of H of radiusr(H ) in F .

P roof. Necessary Condition. This is actually a sin ple corollary of the quasi-
lifting lemm a.

W eprove thisby contradiction.W e assum e there isa graph relabelling system
R w ith observed term ination detection that com putes the speci cation S on F .

Now we suppose there exists H 2 B that adm its strict quastcoverings of
unbounded radius in F . By Lemma , R is noetherian for H . C onsider an
execution of R of length 1.

By hypothesis, there exists K 2 F a strict quasicovering of H of radius
21+ 1.By the quasilifting lemm a, we can sin ulate on a ball of radius 21+ 1 of
K the execution of R on H .At the end of this relabelling steps, there is a node
in K that is labelled T erm . A s the quasicovering K is strict, there exists at
least one node outside of the ball that has not even taken a relabelling step of
R, hence that has not written anything to out.Hence R has not the observed
term ination property on K .A contradiction. i

Su cient Condition. In som e sense, we w ill observe the term ination ofR lby
letting r* increase a bit m ore. n order to do that, we have to relax the condition

’
I

W e de ne the condition o byﬁ:

H;n6p)rtag)) 6 Yesorrtty) rH);

H ;n(p);rt6)) 6 Yesorout () = OUtchoice(vo> n (vp)) :

{
{

Ty Ty

In order to de ne R O,weaddtoA (H ;choice);’ o) the follow ing rule:

RCH ’: Term ination D etection and P ick an O utput
Precondition :
£ H ;nWo);r" (o)) = Yes:
Relakelling :
choicd(vy) = H %

RO

: Unifying O utputs
P recondition :
forallv 2 B (¢), choice(vy) choicew):
Relakelling :
forallv2 B (), choice’() = choice p):

forallv2 B (), outo(v) = OUtchoice(vo> n)):

2 with the convAentjon that { in order to avoid the problem s of de nition of H , or its
belonging to F { in the or conditions, the right part is not \evaluated" if the left part
is true.
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RO

: Term ination D etection
Precondition :
Fp)> rH):
Relakelling :
term (Vo) = Term:

T his system com putes the task F ;S) and has an observed termm ination de-
tection.

First, R © is noetherian. T he valuation is now slightly di erent of the one
of Carto, but we can use the sam e proof as for Theorem [4.2( to prove that
(H ;choice);’ o ) isuniform .Here again, the G SSP Rul w ill stop being enabled
on each vertex for the sam e valie of r*, the one that is equaltor® )+ 1.

Now, suppose we have, at a given tine i, on a node v, rH (v)) < r*@),
then, by the hypothesis and by the Rem ark , the entire graph G ; isa
covering of H .HenceM is term inated . Furthemm ore, the second precondition of
"o ask out to be com puted on each vertex, from the sam e graph H ’as choice
is a com ponent of the valuation.

T hus the detection of term nation is correct.M oreover, by covering-closure,
the out labels are correct for the soeci cation S .

In the Hllow ing we refer to hypothesis as the relatively bounded radius
of quasi-covering condition .

6.4 G lobalTerm ination D etection
In this section, we characterise the m ost dem anding term ination m ode.

Theorem 6.12. A task ( ;S) is locally com putable with glolal term ination de—
tection if and only if

{ any llelled graph in F is covering m inim al,
{ there exists a recursive function r :¥ ! N such that for any G 2 F , there
is no quasi-covering of G of radius r (G ) in F , except G .

P roof.Necessary Condition.W e need only to prove the st item .A sm inin ality
Inplies F = Eb, the second one is a restatem ent of the one for termm ination
detection by observer.

Them inin ality of any graph in F is again a corollary of the lifting lemm a.
Suppose thereare G and H In F such that G is a strict covering of H .

W e consider a relabelling chain in H . It com es from the lifting lemm a that
this can be lifted step by stgp in G . W hen the nalstep is reached in H , and
as G isa strict covering of H , there are at least two nodes in G w here to apply
the nalTerm rule.Hence a contradiction.

Su cient Condition. T he two hypothesis in ply that task (F ;S) has the ob—
served termm nation detection property (the covering-lifting property is a trivial
tautology when all concemed graphs are m Inin al). Hence there exists a rela—
belling system R © that computesS with OTD .
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W ede neR 9 the relabelling system obtained by the union ofR © w ithout the
\Term ination D etection" rules and the rules of Section for the com putation
of a spanning tree. T he root is the vertex that getsnumber 1 In M , when this
vertex observes the term ination for R © with the ollow ng rule:

RY :Root
P recondition :
F()> r# ),
neg)= 1.
Relakelling :

merfl (Vo)=":

By m inin ality of G , there is only one vertex with number 1 when M is
nished.Hence we really get a spanning tree and not a spanning forest.

7 A pplications

In this section, we present consequences from the previous theorem s. T here are
known com putability results, som e new ones and the proof that the di erent
notions of term Ination detection are not equivalent.

W e em phasise that the follow ing results are bound to the m odel of local
com putations. Results on other m odels should be sin ilar even if strictly and
com binatorially speaking di erent. They rem ain to be precisely described and
com puted.

7.1 Dom ains and Speci cations

Consider a locally com putable task T = (F ;S).The rstrem ark isthat I plicit
term nation and LTD give conditions on the speci cation (with respect to the
dom ain) but there are (som etin es trivial) tasks on any dom ain. And on the
contrary,O TD and G TD have conditionsupon thedom ain and (weak) conditions
on the speci cation.Thedi erence between dom ainsthathaveO TD for (aIm ost)
any task and the ones that have only GTD for any tasks depends upon the
covering-m Inin ality of the graphs in the given dom ain.

A s a conclusion, w ith respect to the termm nation detection criteria, whether
wecan work wherewewantbut we cannotdo whatwewant (the speci cation has
to regpect covering-lifting and quasicovering-lifting closures), whether we can
do whatever we want, but we can do it only on particular fam ilies of netw orks.
T he m ore Interesting possible trade-o isprobably on the LTD tasksbut that is
the m ost com plex fam ilies and its com plete characterisation has yet to be done.
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7.2 Known Results as C orollaries

W e rstsum up som e results for every category of term ination detection. T hen
we show that the hierarchy is strict. W ith the rem ark from the previous sub-
section, we focus m ainly on the relevant part (dom ain or speci cation).A very
In portant application for distributed algorithm s, the E lection problem , is done
in a dedicated section, Section E

Im plicit Term ination. From Th@, we can see that what can be com puted
w ith In plicit term nation depends only of what is kept w henever there is lifting.
Such a property is called \degree+e nem ent" in the graph-theoretic context
]. Hence, what can be com puted with inplicit term nation is exactly a
com putation about the degree+e nem ent of the netw ork. See ] about an
investigation of the decision task of recognising w hether the underlying netw ork
belongs to a given class.

Exampk 7.1. W e denote by R the fam ily of rings. C onsider the follow ing task
T; = (G; r) which asks to decide whether the network is a ring or not. The
task T; is ocally com putable w ith in plicit term ination but notw ith a relabelling
system with LTD . Consider chains. Long ones are quasicoverings of arbitrary
radius for a given ring.Hence g is not quasicovering-lifting closed.

W e give a second exam ple w ith dom ain R .

Exampk 7.2. W edenote D iv the follow Ing speci cation:the out labels are taken
in N and G D G ° ifand only ifthe nalout labeldivides the size of G .

R ;D i) is covering-lifting closed as a ring G is a covering of a ring H if
and only if the size of G divides the size of H . However, D iv is not quasi-
covering-lifting closed. T here are \huge" m inim al rings that are quasi-covering
of arbitrary radius of, say, R 5.

Local Term ination D etection. See [EM 03] for num erous exam ples about of
the com putation of a structural know ledge (that is a uniform labelling) from
another one.

Exampk 7.3. Therelation C 0los isthe speci cation ofthe 3-colouringproblem .
The task T, = (R;Colos) has local term nation detection (relabelling system
given in Exam ple @) but has not observed term nation detection for there are
\huge" rings that are quasicovering of any given arbitrary radius of, say, R3.

O bserved Term ination D etection. Herewew i1l nd the frequent (som etin es
In plicit) assum ptions usually m ade by distributed algorithm s:

{ size or diam eter is known,
{ abound on the diam eter or the size is known.
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Tt shallbe noted that the com putability results from the work of Yam ashita
and K am eda belong to this category.

Exampk 74. Letn 2 N;n 6.W e note R" the rings of size at most n. W e
consider T3 = R";Colos).The radius of strict quasicovering are bounded in
R".Hence T3 has OTD, but it hasnot GTD, for the ring R is not covering—
m Inin al.

G lobal Term ination D etection Here we really nd all the well known as—
sum ptions usually m ade about distributed network algorithm s. The theorem s
adm it well known corollaries; m ore precisely from T heorem we deduce In -
m ediately that we have globaltermm ination detection for any task for the follow ing
fam ilies of graphs:

{ graphshaving a leader,

{ graphs such that each node is denti ed by a unique nam e,

{ trees.

From T heorem we deduce there is no such term ination for:

{ the fam ily of covering-m inin al anonym ous rings,
{ the fam ily of covering-m inIn alanonym ous netw orks.

Examplk 7.5. Letn 2 N.W e note PR" the rings of prin e size atmost n.W e
consider Ty = (Colos;PR™).The radius of quasicovering are bounded n PR ",
and rings of prin e size are covering-m inin al. Hence T4 isin Tgrp -

7.3 The H ierarchy is Strict

The previous exam ples T1, T, and T3 show that the hierarchy is strict and that
the four notions of term ination are di erent.

P roposition 7.6.

Terp G)=Torp G)=; ( Tyzp G) ( T:(G);
Terp R)=Torp R)=; ( Tezp R) ( T:R);
Terp R")=; ( Torp R"):

7.4 New Corollaries

New interesting corollaries are obtained from these theorem s.

M ultiple leaders From T heorem and Lemma,we get

Corollary 7.7. Any covering-lifting closed task has an OTD solution in the
follow ing fam ilies:

{ graphs having exactly k laders,
{ graphs having at last one and atm ost k kaders.

From T heorem , we deduce a negative result for the fam ily of graphs
having at least k 2 leaders.
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Link Labellings and Sense of D irection. W e recall that a hom om orphisn
’ from the labelled graph G to the labelled graph G ° is a graph hom om orphisn
from G to G° which preserves the labelling: a node is m apped to a node w ith
the sam e label and a link ism apped to a link w ith the sam e label.

T hus, a fam ily of labelled graphs induced by a weak sense ofdirection satis es
the condition of T heorem (Indeed weak sense of direction forbids
quasicoverings). T hus, for any task, observed term ination detection is possible
in all fam ilies of graphs w ith weak sense of direction.

7.5 About the Com plexity of Local C om putations

The step com plexity of M is0 () ]. D enote C the com plexity of G SSP
in the bounded radius of quasicovering context. Hence we can see that the
com plexity ofa task isbounded by O (n?+ C ). It iseasy to see that the com plexity
of G SSP is closely related to the bound r of the radius of quasi-coverings.W hen
M is termm nated, any node has to go from 0 to r with GSSP rule. Thus C
n r+ 1).

W hether the com plexity com es from the distributed gathering of inform ation
or from the term ination detection depends upon the order ofm agniude of r.

A sin ilar study ofthe com plexity ofdistribbuted algorithm sby upperdbounding
by \universalalgorithm " is done In ] w here, it shallbe noted, the notion
of quasicovering is Introduced for trees.

8 A Characterisation of Fam ilies of N etw orks in w hich
E lection is Possible

Considering a labelled graph, we say inform ally that a given vertex v has been
elected when the graph is in a global state such that exactly one vertex has the
labelE lect and all other vertices have the labelN on-E lect . The labels E lect
and Non-E lect are tem inal, ie., when they appear on a vertex they rem ain
until the end of the com putation. T his is the standard de nition.

Note that if we ask nothing about the non elected vertices, this gives an
equivalent de nition in temm s of com putability. Because when a node is elected,
it can broadcast it to all the nodes of the netw orks.

De nition 8.1. LetF ke a class of connected lakelled graphs. LetR ke a locally
generated relalelling relation, we say that R is an election algorithm for the class
F if R is noetherian and for any graph G of F and for any nom al orm G °
obtained from G ; GR G Y; there exists exactly one vertex with the kel E lect
and all other vertices have the lelN on-E lect.

W ith the notation of the previous part, we have the various de nitions for
the various kinds of term ination detection.

De nition 8.2. LetF ke a class of connected klelled graphs. Let E lection ke
the Pllowing relation: G and G ' are in reltion if and only if there exists in
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G ' exactly one vertex with the lakelE lect and all other vertices have the hbel
Non-E lect.

The in plicit(resp. LTD ,0TD,GTD )-Election on F isthetask (F ;E lection)
with im plicit (resp. local, observed, glolkal) term ination detection.

W e underline that we are looking for classes of netw orks that adm it the sam e
Election algorithm for all its elem ents. Having an algorithm that works for
severalnetw orks (say, independently of the know ledge of its size) is very im por—
tant for reliability. In this setting, saying that G adm its an E lection algorithm
am ounts to say that (fG g ;E lection) is a com putable task. It is Im portant to
note that saying that E lection is com putable on a given fam ily F does notm ean
that (£G g;Election) is a computable task for any G 2 F, but m eans that
(F ;Election) isa computable task.

W e can see that thede nition of LTD £ lection isequivalent to the standard
de nition of E lection.

W e w ill prove that the possibility ofthe LTD £ lection on F isequivalent to
the possibility ofthe G TD £ lection .But rstwe give two exam ples ofelections.

8.1 Two Exam ples

A n E lection A lgorithm in the Fam ily of A nonym ous Trees. T he follow -
Ing relabelling system elects In trees.T he setof labelsisL, = fN ;E lect ;N on-E lectq.
The initial labelon all vertices isN .

E lection_Treel : Pruning rule
Precondition :
(¥)=N,
9!'v2 B (§;1);vEe vg; (V)= N.
Relakelling :
O(Vo): Non-E lect:

Election_Tree2 : E lection rule
Precondition :
(¥)=N,
8v2B (g;l);ve vo; (V)& N .
Relakelling :
O(Vo): E lect:

Let us call a pendant vertex any vertex labelled N having exactly one
neighbour wih the label N : There are two metarules E lection_T reel and
E lection_Tree2: The m etatrule E lection_T reel consists in cutting a pendant
vertex by giving it the label Non-E lect: The label N of a vertex v becom es
Elect by the metaxule E lection_T ree2 if the vertex v has no neighbour la—
belled N : A com plete proof of this system m ay be found in ].
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An Election A lgorithm in the Fam ily of C om plete G raphs. The fol-
low ng relabelling system elects n com plete graphs. The set of labels s L =
fN ;E lect;Non-E lectg. The initial labelon all vertices is y = N .

E lection_Complete—graphl : Erasing rule
Precondition :
mem(y) = N,
9v2B §;1);ve vo;mem(v) = N .
Relakelling :
merfl(vp) = Non-E lect :

E lection_Complete-graph?2 : E lection rule
Precondition :
mem(yg) = N,
8v 2B (§;1);vE vo;mem(v) & N .
Relakelling :
merl (Vo) = Elect:

Tt is straightforw ard to verify that this system elects in the fam ily of com plete
graphs.

8.2 Characterisation of E lection

W e show that the LTD £ lection is solvable ifand only ifthe GTD £ lection is
solvable. Then we use the general characterisation of this paper to conclude.

P roposition 8.3. LetF ke a habelled graph fam ily. The LT D -E lection task on
F is com putabke if and only if the GTD £ lection is.

Proof. The su cient condition is easy (Proposition . W e focus on the
necessary condition.

Suppose R isa graph relabelling relation w ith LTD solving the E lection task
on F . In order to convert it n a graph relabelling relation with GTD, we will
add some rulesto R . W e add a rule that starts the com putation, with GTD , of
a spanning tree rooted in the E lect vertex. T his standard construction is given
in Section p 4.

Rem ark 8.4. Thisdem onstration show sthat even ifwede neatask with aLTD

avour, it can reveal to be in the GTD fam ily of tasks because of the form of
the speci cation.Furthem ore, wew illnow not distinguished between LT D (resp.
OTD,GTD )Election.

A's a corollary of T heorem , we get:
Theorem 8.5. LetF ke a clss of connected lalkelled graphs. T here exists an

Election algorithm for F if and only if

62



{ graphs of F' are m inim al for the covering relation, and

{ there exists a com putabk function r :F ! N such that for all graph G of
F , there is no quasi-covering of G of radius greater than r(G ) in F', except
G itself.

Rem ark 8.6. In fact, the E lection algorithm can be directly derived from the
C arto algorithm .W hen a node detects the term ination ofM , it sets itsout label
to Elect or Non-E lect whether it is num bered 1 or not.

8.3 A pplications

The rst attem pt of a com plete characterisation of election was rst done In
], but the results were only given when a bound upon the diam eter is
nitially known.In the generalno know ledge case, they give a \pseudo"-election
algorithm , i.e., som e E lect labels can appears during the com putation, this is
only when the com putation is nished that this label has to be unique. This is
exactly the de nition of iIn plicitF lection.

K nown results appear now as sin ple corollaries of T heorem .

{ ] Covering m inin al netw orks w here the size is known;
{ Trees, com plete graphs, grids, networks w ith identities.

T hose last fam ilies contains no gsheeted quasicovering of a given graph for
g 2, hence the r function can be tw ice the size of the graph, see Lemm a.

W e also get som e new results.An interesting result is that there isno election
algorithm for the fam ily of all the netw orks where the election is possble.

Proposition 8.7. Let G ke a klelled graph. E lection is com putabke on G if
and only if G is covering-m inin al.

Proposition 8.8. There is no Election aljorithm on the fam ily of covering-
m inn al graphs.

P roof. Ringsw ith a prin e size arem Inin al and does not regpect the relatively
bounded quasi-covering condition.

However, from T heorem I@, it is easy to derive where In plicit£ lection is
com putable.

P roposition 8.9. Election is com putablk with im plicit term ination on the fam —
ily of covering-m inim al graphs.

W e obtained as a direct corollary:

P roposition 8.10. There exists an elction algorithm for covering m inin al
graphs where a bound of the size is known.

W e can notice that no trivial extension of the proof of the M azurkiew icz
algorithm enables to obtain directly this proposition.

W e also have a new and Interesting result for graphs w ith at m ost k distin—
guished vertices:
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Proposition 8.11. Letk 2 N.Let I be a fam ily of covering-m inim al £0;1g—
lalelled graphs such that for all graph, there are at m ost k vertices labelled with
1. Then, there exists an ekction algorithm for this fam ily.

Proof.WedenerG)= k+ 1)V G )jand we ram ark that quasicovering in
I can be at m ost k-sheeted. Hence, by Lemm a , we deduce that r has the
desired property.

From this proposition we deduce that to have an E lection algorithm in a net—
work where uniqueness of an dentity is not guaranteed, we only need a bound
on the m ultiplicity of dentities.

9 Conclusion

9.1 Characterisations of term ination detection

D istributed algorithm s are very di erent from sequential ones. How to m ake
them temm inate isa di cult problem .M oreover In thispaper, we show that even
if the termm ination is given, and so can be detected by an om niscient observer,
the detection of this fact is not always possible for the nodes inside the netw ork.

In this paper, we present a quite com prehensive description of the com —
putability of tasks w ith explicit detection of the term ination.W e show one can
de ne four avours of term ination detection: in plicit term ination detection, lo—
cal term ination detection, term nation detection by a distributed observer and
global term ination detection. For each term ination detection, we give the char-
acterisations of distributed tasks that adm it such a term ination detection, and
we show they form a strict hierarchy. The local term ination detection avour
is only characterised in the case of uniform tasks. It has yet to be com pletely
Investigated.

W e prove that if we ask for in plicit or local term ination detection, we can
work in any fam ily of netw orks, but the com putable tasks are restricted.On the
other hand, we show that if we ask for global term ination detection, we have to
work on specialclassesof graphs—m inin algraphsw ith relatively bounded radius
of quasicoverings — but there, every task is com putable. T his characterisation
precisely explains num erous kind ofhypothesis that are traditionally m ade when
designing distributed algorithm s.

In conclusion, we show that a distributed task is not only described by a
goeci cation —a relation between Inputs and outputs - a dom ain —the fam ily of
networks In which we have to m eet the goeci cation — but also by the kind of
term ination detection we ask for.

9.2 Com parison w ith other m odels

Tn contrast w ith previous w orks about the com putability ofdistributed tasks, we
can say that, usually, the term nation of the distributed algorithm s is \factored
out": the nodes know at the beginning an upper bound on the num ber of steps
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it will take.For Yam ashita and K am eda m odels and Boldiand V igna m odels, it
is the particular initial know ledge that enable to determ ine how m any steps of
union of ocalview s is su clent.

Tt can be observed that, actually, the universal algorithm s In these works are
constituted by a potentially in nite loop (m erge localview sforYam ashita/K am eda
and Boldi/V igna, snapshot read-w rite for Herlihy/Shavit and Borow sky/G ami
]) and an extemal condition to say when to end the in nite loop. This
condition does not depend on the distributed com putations. In this sense, we
can say that the termm ination is factored out: it is not detected in a truly dis—
tributed way as the num ber of rounds isknown In advance, it does not depend of
what is gathered by each node In the exchange of inform ation of the distributed
algorithm .

In a kind of contrast, we can see that our asynchronous snapshot algorithm
is constituted of two parts: M azurkiew icz’ algorithm , that is always term inating

(In plicit term ination); and the generalised SSP stability detection that does
not term nate alone. T hat is this com bination that enables to detect, n a truly
distributed way, the term ination of the distrbbuted tasks.W hen to stop G SSP
is com puted from the value obtained by M azurkiew icz’ algorithm , and not from
a given a priorivalue like in the other approachs.

9.3 Im possibility results in non-faulty netw orks

T he results given In this paper show that there are also possibility /in possibility
resultseven w ith non-fautty netw orks.T hisparadox could be settled in the recent
approach of failure detectors: the various kind of distributed system s can be seen
as a perfect system (synchronous, centralised, w ith identities ...) w ith various
failure (asynchronicity, node failures, com m unication failires, ...) ].
In this contribution, we show that lack of structural know ledge (nodes do not
know exactly what is the topology of their network), and lack of structural
Inform ation (eg.unique dentities) are also a kind of ailire in this concem.

The authors wish to thank the anonym ous referees for som e helpfiil com —
m ents. T hey are also specially grateful to B runo C ourcelle, P jerre C asteran and
V Incent F ilou for their corrections and stin ulating questions regarding the pre—
vious version of this report.
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