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Abstract

A time-domain topological sensitivity (TS) approach is developed for elastic-wave imaging of
media of arbitrary geometry. The TS, which quantifies the sensitivity of the misfit cost functional
to the creation at a specified location of an infinitesimal hole, is expressed in terms of the time
convolution of the free field and a supplementary adjoint field as a function of that specified lo-
cation. Following previous studies performed under (mostly) static or time-harmonic conditions,
the TS field is here considered as a natural and computationally efficient approach for defining
a defect indicator function. This study emphasizes the implementation and exploitation of TS
fields using standard displacement-based FEM approaches, astraightforward task once the cor-
rect sensitivity formulation is available. A comprehensive set of numerical experiments on 3-D
and 2-D elastodynamic and acoustic configurations is reported, allowing to assess and highlight
many features of the proposed TS-based fast qualitative identification such as its ability to identify
multiple defects and its robustness against data noise.

Key words: Inverse scattering, Time domain topological sensitivity,Adjoint solution method,
Elastodynamics, Finite element method

1 Introduction

Three-dimensional imaging of objects hidden in a solid using elastic waves is of interest in a number

of applications such as nondestructive material testing orunderground object detection. Such iden-

tification tasks require data provided by measurements thatis overdetermined compared to what is

normally necessary for solving the forward elastodynamic problem for an assumed object configu-

ration. Minimization-based approaches that exploit the data through a misfit cost function bear con-

siderable computational costs associated with the elastodynamic forward solver. Global optimization

methods, especially, are currently impractical due to the large numbers of forward solutions entailed.

More traditional gradient-based optimization is a computationally reasonable alternative for this class

of inverse problems, especially when enhanced by adjoint-based shape sensitivity methods (Bonnet,

1995; Bonnet and Guzina, 2009). However, their performancedepends on choosing adequately the

initial guess (location, topology and geometry) of the hidden object(s).

These considerations led to the introduction of sampling methods, which aim at computing a

defect indicator function in a non-iterative way from the available overdetermined data and may be

1



defined in several ways (see the review article by Potthast, 2006) using the linear sampling method

(Colton and Kirsch, 1996; Nintcheu Fata and Guzina, 2004) orthe concept of topological sensitivity

(TS) considered here. The TS quantifies the perturbation induced to a cost function by the creation

of an object (e.g. a cavity) of vanishingly small characteristic size at a prescribed locationz inside

the reference (i.e. defect-free) solid as a function of the sampling pointz. This concept appeared in

Eschenauer et al. (1994) and Schumacher (1995) in the context of topological optimization of me-

chanical structures, and has since also been investigated in various contexts as a method for defining a

defect indicator function, see e.g. Gallego and Rus (2004);Jackowska-Strumillo et al. (2002) for 2D

elastostatics, Feijóo (2004) for 2D linear acoustics, Guzina and Bonnet (2006) for frequency-domain

3D acoustics, Bonnet and Guzina (2004) for frequency-domain 3D elastodynamics and Masmoudi

et al. (2005) for 3D Maxwell equations. Moreover, the computational cost entailed by evaluating a

TS field is, in general, of the order of one forward solution, and therefore modest compared to that of a

standard minimization-based iterative inversion methodology. The concept of topological sensitivity

is closely related to the broader class of asymptotic methods, where unknown defects whose geome-

try involves a small parameter are sought by means of expansions of the forward solution (rather than

the misfit function) with respect to that parameter, see (e.g. Ammari and Kang, 2004, 2006).

Defect identification using TS under transient dynamical conditions have so far been the subject

of only a few investigations, notably Dominguez et al. (2005) where the connection with time-reversal

is explored, Bonnet (2006) in which an adjoint-based form ofthe TS is derived for 3-D elastodynam-

ics and acoustics, Malcolm and Guzina (2008) and Chikichev and Guzina (2008) where the case of

penetrable inclusions in acoustic and elastic media (respectively) is considered, and Bellis and Bonnet

(2009) which is devoted to a specialized formulation for crack identification problems. This article

addresses defect identification in elastic solids by means of the TS function defined for small-cavity

nucleation in the context of 3-D time-domain elastodynamics. In a previous publication (Bonnet,

2006), the TS function was obtained as a bilinear expressionfeaturing the (time-forward) free field

and the (time-backward) adjoint solution by considering the asymptotic behavior of a system of gov-

erning integral equations based on the transient full-space elastodynamic Green’s tensor, the corre-

sponding (analogous and simpler) formulation for scalar waves was derived as a by-product, and a

semi-analytical example based on transient 3-D acoustic data was presented. As in many other deriva-

tions of TS formulations published thus far, the integral-equation setting is convenient for performing

the mathematical asymptotic analysis but is then just one ofseveral possible approaches for doing

numerical computations once the necessary formulae are established.

The intended contributions of this article are two-fold. Firstly, on the theoretical side, the deriva-

tion of the TS field proposed in Bonnet (2006) is clarified and extended as follows: (a) the validity

of the previously-established asymptotic behaviour of thetime-domain governing integral equation
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(and hence of the resulting TS formulation) is shown to depend on smoothness assumptions on the

free field, an issue not touched upon in Bonnet (2006); (b) a simpler and more compact version

of the derivation, using Green’s tensors rather than full-space fundamental solutions, is presented;

(c) proofs are also given for two-dimensional problems. Secondly, a comprehensive set of numeri-

cal experiments, including 3-D elastodynamic examples, isreported and discussed. Unlike previous

publications where the time-domain TS is computed by means of specialized techniques based on

Green’s tensors, this study emphasizes the implementationand exploitation of TS fields using the

standard displacement-based FEM, and indeed the ease of doing so once the correct sensitivity for-

mulation is available. To the authors’ best knowledge, thisarticle presents the first comprehensive

numerical study of TS-based defect identification methodology in time-dependent 3-D settings and

implemented within general-purpose computational environments.

This article is organized as follows. The forward and inverse problems of interest are reviewed

in Section 2. Topological sensitivity is defined and established, in both direct and adjoint-based

forms, in Section 3, the more technical parts of the derivations being deferred to Appendix A for

ease of reading. Section 4 then discusses some important features of the methodology and introduces

additional concepts and notations pertaining to the FEM-based implementation and its exploitation in

subsequently presented numerical results. Then, the results of FEM-based numerical experiments are

presented and discussed in Sections 5 (2-D scalar wave equation) and 6 (3-D and 2-D elastodynamics).

2 Cavity identification model problem

Let 
 denote a finite elastic body inR D (d = 3 or d = 2), bounded by the external surfaceS and

characterized by the shear modulus�, Poisson’s ratio� and mass density�, and referred in the

following as thereference body. A cavity (or a set thereof)B bounded by the closed traction-free

surface(s)� is embedded in
. The external surfaceS, which is identical for the reference domain


 and the cavitated domain
(B )= 
nB , is split into a Neumann partS N and a Dirichlet part

SD, respectively associated with prescribed time-varying tractions�tand displacements�u. Under this

dynamical loading, an elastodynamic stateuB arises in
(B ), which satisfies the following set of

field equations, boundary and initial conditions (hereinafter referred to for genericB asP(B )):

P(B ):

8
>>>>>>>>>><

>>>>>>>>>>:

�
LuB

�
(�;t)= 0 (� 2 
(B );t> 0)

t[uB ](�;t)= 0 (� 2 �;t> 0)

t[uB ](�;t)= �t(�;t) (� 2 SN;t> 0)

uB (�;t)= �u(�;t) (� 2 SD;t> 0)

uB (�;0)= _uB (�;0)= 0 (� 2 
(B ))

(1)
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where� andtdenotes the position vector and the time;L denotes the governing Navier space-time

partial differential operator defined by

Lw (�;t)= r � �[w ](�;t)� ��w (�;t) (2)

where�[w ]= C :r w denotes the elastic stress tensor associated with a displacementw , the fourth-

order elasticity tensorC being given (for isotropic materials) by

C = 2�

�

I
sym

+
�

1� 2�
I 
 I

�

(3)

(with I
sym andI respectively denoting the symmetric fourth-order and the second-order identity

tensors),t[w ]= �[w ]� n is the traction vector associated withw (n being the unit normal onS [ �

oriented outward from
(B )), and(_)and(�)indicate first- and second-order time derivatives.

Cavity identification problem. The location, topology and geometry of an unknown cavity system

B true (or equivalently�true) is sought by exploiting measured values of the response of the flawed solid


 true = 
(B true)arising due to the probing excitation. Specifically, the displacementuobs induced

in 
 true by (�u;�t) is monitored over the measurement surfaceSobs� SN and time intervalt2 [0;T]

(other possibilities, e.g. finite sets of measurement locations and/or times, being also allowed by the

ensuing treatment). Ideally, a defect configurationB true such that

u
true
(�;t)= u

obs
(�;t) (� 2 S

obs
;06 t6 T) (4)

is sought, whereu true solves problemP(B true) defined by (1). In practice, due to many factors

(e.g. incomplete and/or inexact measurements, modelling uncertainties), the cavity is sought so as

to minimize a misfit cost functional which is naturally (in the present context) expressed as a double

integral over the measurement surface and the experiment duration:

J(
(B );T)=

Z
T

0

Z

Sobs
’[uB (�;t);�;t]dS�dt (5)

where
(B )is a trial cavitated solid defined by the trial cavityB , u B solves problemP(B )defined

by (1), and the misfit function’ is chosen so as to define a distance betweenuB anduobs. Numerical

experiments presented herein are based on the commonly-used least squares misfit function:

’[w ;�;t]=
1

2
jw � u

obs
(�;t)j

2 (6)
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3 Topological sensitivity

3.1 Small-cavity asymptotics

The topological sensitivity of the cost functional (5) is defined as its sensitivity with respect to the

creation of an infinitesimal object of characteristic size" at a given locationz in 
. Here, such

infinitesimal object is taken to be a trial cavityB "(z), defined byB "(z) = z + "B in terms of its

centerz, its shape specified by the unit bounded setB � RD (with boundaryS and volumejBj)

containing the origin, and its radius"> 0. The corresponding trial cavitated solid is denoted
"(z).

Following Sokolowski and Zochowski (1999) or Garreau et al.(2001), one seeks the asymptotic

behavior ofJ(
"(z);T)as"! 0 through the expansion:

J(
"(z);T)= J(
;T)+ �(")jBjT(z;T)+ o(�(")) ("! 0) (7)

where the function�("), to be determined, vanishes in the limit"! 0and thetopological sensitivity

T(z;T)is a function of the sampling pointz and durationT .

To evaluate the expansion (7) and find the value ofT(z;T), it is necessary to consider the asymp-

totic behavior of the displacementu" governed by problemP(B "(z)). Towards that aim, it is conve-

nient to decomposeu" as

u"(�;t)= u(�;t)+ v
"
(�;t) (8)

where the free fieldu is the response of the cavity-free domain
 to the prescribed excitation, i.e.

P(;):

8
>>>>>>><

>>>>>>>:

�
Lu

�
(�;t)= 0 (� 2 
;t> 0)

t[u](�;t)= �t(�;t) (� 2 SN;t> 0)

u(�;t)= �u(�;t) (� 2 SD;t> 0)

u(�;0)= _u(�;0)= 0 (� 2 
)

(9)

while the scattered fieldv" solves

8
>>>>>>>>>><

>>>>>>>>>>:

�
Lv

"
�
(�;t)= 0 (� 2 
;t> 0)

t[v
"
](�;t)= � t[u](�;t) (� 2 �"(z);t> 0)

t[v
"
](�;t)= 0 (� 2 SN;t> 0)

v
"
(�;t)= 0 (� 2 SD;t> 0)

v
"
(�;0)= _v

"
(�;0)= 0 (� 2 
);

(10)

with �"(z)denoting the boundary ofB "(z). Since the scattered field is expected to vanish for in-

finitesimal cavities, i.e.kv"(�;t)k = o("), expansion (7) is sought by invoking the first-order Taylor
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expansion of’ w.r.t. to its first argument. The topological sensitivityT(z;T)and the leading asymp-

totic behaviour�(")are thus to be identified on the basis of:

Z T

0

Z

Sobs

@’

@u
[u(�;t);�;t]v

"
(�;t)dS�dt= �(")jBjT(z;T)+ o

�
�(")

�
(11)

In what follows, emphasis will be given to the 3-D case.

3.2 Leading contribution of v" as"! 0

To address this issue, it is convenient to reformulate the governing boundary-initial problem (10) in

terms of an integral equation. LetU (x;t;�)andT (x;t;�;n)denote the time-impulsive elastody-

namic Green’s tensors, defined such thatek� U (x;t;�)andek� T (x;t;�)are the displacement and

traction vectors at� 2 
 resulting from a unit time-impulsive point force acting atx in the k-th

direction at timet= 0and satisfying the boundary conditions

U (x;t;�)= 0 (� 2 SD;t> 0); T (x;t;�;n)= 0 (� 2 SN;t> 0); (12)

One also defines the elastodynamicfull-spacefundamental tensorsU 1 (x;t;�)andT1 (x;t;�;n)

in a similar way, replacing boundary conditions (12) with decay and radiation conditions at infinity

(Eringen and Suhubi, 1975, see Appendix A.2). The governingintegral equation for the scattered

field v" then reads (see Appendix A.1)

1

2
v
"
(x;t)+ �

Z

�"(z)

T (x;t;�;n)?v
"
(�;t)dS� = �

Z

�"(z)

U (x;t;�)?t(�;t)dS�

(x 2 �"(z);t> 0); (13)

in which �

R
indicates a (strongly singular) integral defined in the Cauchy principal value (CPV) sense

and?denotes the time convolution at instantt> 0defined by

[a ?b](�;t)=

Z
t

0

a(�;�)� b(�;t� �)d�: (14)

where the inner product appearing in the integral is such that a� b is a tensor of the lowest possible

order (e.g.U ?thas order 1,r u ?�[v]is a scalar), and generic tensor fieldsa andb respectively

verify initial and final conditions

a(� ;�)=_a(� ;�)= 0 (� 6 0); b(� ;�)=_b(� ;�)= 0 (� > t) (15)

Equations governing the leading contribution ofv
" on�"(z)as" ! 0 are sought as the asymp-

totic form of integral equation (13). For this purpose, scaled coordinates�x or �� , defined by
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�x = (x � z)="; �� = (� � z)=" (x;� 2 �"(z); �x;
�� 2 S) (16)

are introduced. Consequently, the volume and surface differential elements in� -space are rescaled

according to

(a) dV� = "
3 d�V��; (b) dS� = "

2 d�S�� (� 2 �"(z);
�� 2 S) (17)

where d�V��;d�S�� denote corresponding volume and surface differential elements onB andS, respec-

tively. The leading behavior as" ! 0 of the right- and left-hand sides of integral equation (13) are

then given by the following Lemmas 1 and 2, whose proof is given in Appendix A.2.

Lemma 1. Assume that� 7! r u(�;�)is Lipschitz-continuous (uniformly for� in a neighbourhood

of z) and differentiable in a neighbourhood of� = t. Then, one has

Z

�"(z)

U (x;t;�)?t(�;t)dS� = "

� Z

S

U 1 (�x;
��)
 n(��)d�V��

�

:�[u](z;t)+ o(") (x 2 �"(z))

(18)

whereU 1 (�x;
��)is theelastostaticfull-space (Kelvin) fundamental displacement, given by (A.12).

Lemma 2. Let the vector function�v"(��;t)be defined by�v"(��;t) = v
"(�;t), with�� and� related

through (16). Then, one has

�

Z

�"(z)

T (x;t;�;n)?v
"
(�;t)dS� = �

Z

S

T 1 ;"(�x;t;
��;n)?�v

"
(��;t)d�S��+ o(k�v

"
(� ;t)k) (x 2 �"(z))

(19)

whereT 1 ;" is thefull-spaceelastodynamic fundamental traction tensor defined in termsof rescaled

wave velocitiescL=";cT="andk�v"(� ;t)k is a norm of�� 7! �v"(��;t), e.g. itsL2-norm onS.

Lemma 1 means that the leading contribution to the right-hand side of integral equation (13) as

" ! 0 has a special structure wherein the time variabletand the (normalized) space variable�x are

separated. Lemma 2 indicates that the left-hand side of integral equation (13) is of orderO (kv"k)as

"! 0. Lemmas 1 and 2 together thus suggest to seek the leading contribution to�v"(��;�)= v
"(�;�)

as" ! 0 in the following form, in which the third-order tensor function �� 2 S 7! V (��) is to be

determined:

�v
"
(��;t)= "V (��):�[u](z;t)+ o(") (� 2 �"(z);

�� 2 S): (20)

Lemma 3. Let �v"(��;t)be of form (20) for someV (��). Under the assumptions of Lemma 1, one has

�

Z

�"(z)

T (x;t;�;n)?v
"
(�;t)dS� = "

�

�

Z

S

T 1 (�x;
��;n)�V (��)d�S��

�

:�[u](z;t)+ o(") (x 2 �"(z))

(21)

whereT 1 (�x;
��;n)is the traction associated with the elastostatic Kelvin solution, given by (A.22).

Proof. See Appendix A.2.
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Combining lemmas 1 and 3, one finds that representation (20) indeed holds provided thatV solves

the integral equation

1

2
V (�x)+ �

Z

S

T 1 (�x;
��;n)� V (��)d�S�� = �

Z

S

U 1 (�x;
��)
 n(��)d�S�� (�x 2 S) (22)

Upon inspection, (22) can in fact be interpreted as an integral equation formulation governing the

solutionsV k‘ = V ‘k = (ek
 e‘):V to a set of six canonicalelastostaticexterior problems

r ��� (C :r��V k‘)(
��)= 0 (�� 2 R

3
nB);

(C :r ��V k‘)(
��)� n(��)= �

1

2
(nk(

��)e‘+ n‘(
��)ek) (�� 2 S)

16 k6 ‘6 3 (23)

which are independent ofz, " and time. The tensor functionV (��) is in fact completely defined,

through problems (23), byB .

The scattered fieldv" at any point ofSobs (and more generally at any point away from the trial

cavityB "(z)) is given by the integral representation formula (see Appendix A.1):

v
"
(x;t)=

Z

B "(z)

n

�U (x;t;�)?�u(�;t)+ E (x;t;�)?�(�;t)

o

dV�

�

Z

�"(z)

T
k
(x;t;�;n)?v

"
(�;t)dS� (x 2 S

obs
;t> 0); (24)

whereE (x;t;�)denotes the strain associated withU (x;t;�). Expanding the first integral by means

of (17a) and a Taylor expansion of the densities about� = z, substituting (20) and introducing scaled

coordinates�� into the second integral, one obtains the leading contribution of v" as"! 0as:

v
"
(x;t)= "

3
W (x;t;z)+ o("

3
) (25)

with

W (x;t;z)= jBj
�
[C :E (x;t;z)]?[A :�](z;t)+ � _U (x;t;z)? _u(z;t)

	
(26)

and where the constantpolarization tensorA depends only onB (throughV ) and is defined by

A = C
� 1

�
1

jBj

�Z

S

n(��)
 V (��)d�S��

�

(27)

Inserting (25) into (11), the TST(z;t)and leading behavior�(")are then found to be given by

T(z;T)=

Z T

0

Z

Sobs

@’

@u
[u(�;t);�;t]� W (�;t;z)dS�dt; �(")= "

3 (28)

Expression (28) provides a useful basis for discussing someof the features of the time-domain

TS, see Sec. 4.1. It can also conceivably be used for the purpose of computing the fieldT(z;T), and
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is indeed so used in Chikichev and Guzina (2008) wherein
 is an elastic half-space with a traction-

free surface, a configuration for which the Green’s tensor isknown. For arbitrary reference bodies


, an implementation of (28) would require a numerical evaluation of the Green’s tensor for source

points located onSobs (typically taken as Gauss quadrature points associated with the evaluation of

the integral overSobs) and field points taken as sampling pointsz.

However, a computationally more efficient approach for evaluating the fieldT(z;T), based on an

adjoint solution, is usually preferable and was used for allnumerical examples presented thereafter.

3.3 Adjoint field formulation

The adjoint formulation, previously presented in Bonnet (2006) and now summarized for complete-

ness, stems from treating the integral in (11) as one of the terms arising in the elastodynamic reci-

procity identity. For any generic domainO and pair of elastodynamic statesu1;u2 satisfying the

homogeneous elastodynamic field equations inO as well as homogenous initial conditions

u1(�;0)= _u1(�;0)= 0 and u2(�;0)= _u2(�;0)= 0 (� 2 O );

the following reciprocity identity holds (see e.g. Eringenand Suhubi, 1975; Achenbach, 2003):

Z

@O

ft[u1]?u2 � t[u2]?u1g(�;t)dS� = 0 (29)

Defining the adjoint statêu as the solution of:

8
>>>>>>>>>>><

>>>>>>>>>>>:

�
L û

�
(�;t)= 0 (� 2 
;06 t6 T)

t[̂u](�;t)=
@’

@u
[u(�;T � t);�;T � t] (� 2 S

obs
;06 t6 T)

t[̂u](�;t)= 0 (� 2 SNnS
obs
;06 t6 T)

û(�;t)= 0 (� 2 SD;06 t6 T)

û(�;0)= _̂u(�;0)= 0 (� 2 
)

(30)

using relation (29) withV = 
"(z), u1 = û andu2 = v
" and exploiting the relevant boundary

conditions in (10) and (30), equation (11) becomes:

�(")jBjT(z;T)+ o
�
�(")

�
= �

Z

�"(z)

ft[̂u]?v
"
g(�;t)dS� �

Z

�"(z)

ft[u]? ûg(�;t)dS� (31)

On inserting the asymptotic behavior (20) in the first integral, recasting the second integral as a

volume integral overB "(z)using the divergence identity, and working out the leading contribution

as"! 0 in the resulting equality, one arrives at
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T(z;T)= f� [̂u]?(A :�[u])+ �_̂u ? _ug(z;T); �(")= "
3 (32)

where the polarization tensorA is again defined by (27).

Remark 1. TheO ("D)asymptotic behavior (32) ofJ(
"(z);T) relies onv" approaching (up to a

scaling factor) astaticsolution as" ! 0. This requires the free-field to be sufficiently regular at

(z;t), e.g. according to the sufficient condition given in Lemmas 1and 2. To put this another way,

the TS (32) may (invoking the Fourier convolution theorem) be formulated as the inverse Fourier

transform of the (previously established in Bonnet and Guzina, 2004) frequency-domain expression

T(z;!)= f� [̂u]:(A :�[u])� �!
2
û� ug(z;!)

The Fourier integral then converges if! 7! T(z;!)2 L1(R), i.e. provided the high-frequency content

of the excitation is limited. Related considerations are developed in Ammari et al. (2009), where the

order in"of the leading perturbation by a small inclusion of the fundamental solution of the transient

wave equation is shown to depend on the high-frequency content of the time-modulated point source.

Remark 2. In a previous article (Bonnet, 2006), the small-cavity asymptotics was conducted by

relying on estimates

U (x;t;�)?a(�;t)=
1

"
U 1 (�x;

��)� a(z;t)+ O (1) (a)

T (x;t;�;n)?b(�;t)=
1

"2
T 1 (�x;

��;n)� b(z;t)+ O (1) (b)
(x;� 2 �"(z))

(i.e. identities (27) therein) instead of Lemmas 1 and 2, yielding the same result (32) but in a not

entirely correct way: (i) these estimates hold under smoothness conditions ona;b, similar to the

sufficient conditions given in Lemmas 1 and 2, that were not mentioned, and (ii) estimate (b) above is

in fact not directly applicable here as it is needed forb(�;t)= v
"(�;t), which is not defined at� = z.

Lemmas 1 and 2 were therefore needed to fix this flaw in the asymptotic analysis.

Remark 3. The cavity-identification setting of the model inverse problem formulated in Section 2 is

consistent with, but does not constitute a mathematical prerequisite for, the small-cavity asymptotics

developed in this section. In fact, the latter procedure mayin principle be applied to any cost function

of format (5) whatsoever, regardless of its physical meaning or engineering motivation.

Remark 4. The same canonical problems (23) and subsequent polarization tensor (27) also occur in

Bonnet (2006) and in a previous frequency-domain formulation of the TS (Guzina and Bonnet, 2004).

Remark 5. The foregoing analysis has been performed for the 3-D case, deemed the most important,

but can be reproduced with the necessary adjustments for the2-D case (see Appendix A.4), leading

to similar results where�(")= "2 instead of�(")= "3.
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4 Discussion and implementation

4.1 Discussion

Topological sensitivity as a defect indicator function. T(z;T)quantifies the sensitivity of the

featured cost functionalJ to a perturbation of the reference medium in the form of an infinitesimal

cavity atz. It is then natural to considerT(z;T)as a possible defect indicator function, as was

previously done on several occasions (see Introduction), whereby actual defects are expected to be

located at sampling pointsz at whichT(z;T)attains its most pronounced negative values, i.e. at

which a sufficiently small defect would induce the most pronounced decrease ofJ. In other words,

infinitesimaltrial cavities placed at such sampling points improve the fitbetween simulated and actual

measurements, and intuition then suggests thatfinite defects having the same location also induce a

decrease of the cost function. It is important to emphasize that such exploitation of the information

provided by the fieldT(� ;T) is natural but not backed by a rigorous mathematical proof, despite the

fact that the analysis of the cost function leading to the definition and evaluation ofT(z;T) is itself

mathematically rigorous. It is however substantiated by various numerical experiments performed for

several classes of physical settings (see references givenin Introduction). The present study aims at

contributing to this substantiation within the present context of time-domain elastodynamics, seldom

considered in this context, through the examples of Secs. 5 and 6.

Topological sensitivity allows non-iterative approximate global search. Defect identification

based on the TS fieldT(� ;T)of a misfit function has the following important characteristics:

(a) The numerical procedure is non iterative, as it just requires two solutions evaluated on the ref-

erence (defect-free) configuration, namely the free field (9) and the adjoint field (30). It is thus

computationally much faster than usual iterative optimization-based inversion methods. This

non-iterative nature is also one of the main features of the linear sampling method (Arens, 2001;

Nintcheu Fata and Guzina, 2007).

(b) The approach is of a qualitative nature, as the underlying approximation (7) ofJ does not lend

itself to optimization w.r.t.".

(c) It is global in nature, as (i) it does not require an initial guess, and (ii) it allows simultaneous

identification of multiple defects without prior knowledgeof their number (see last example of

Sec. 5 and the dual-cavity example in Sec. 6.2).

(d) The experimental information about sought defects entering T(� ;T) is entirely contained in the

adjoint solution (through the definition of the adjoint forces in terms of the density’).

(e) A TS field may be defined and computed using the present approach for cost functions associated

to any overdetermined data, no matter how scarce, which makes TS-based identification a very

flexible approach.
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Transient vs time-harmonic data; time reversal. Compared to previous works based on wave-

based imaging under time-harmonic conditions (e.g. Bonnetand Guzina, 2004; Feijóo, 2004; Guzina

and Bonnet, 2006; Masmoudi et al., 2005), the time-domain approach to TS benefits from richer

data as it exploits measurements taken over a durationT (the mathematical framework allowing to

exploit other ways to collect data over time). Dominguez et al. (2005) have compared this approach

to imaging processes based on time reversal (Cassereau et al., 1990), since the adjoint field̂u defined

by (30) constitutes a time-reversed state related to the field vtrue scattered by the actual defectB true.

Influence of measurement noise. When observed valuesuobs differ from their true counterpart

u
true because of measurement noise or modelling uncertainties, the sensitivity ofT(� ;T) to such

uncertainties is directly related to the sensitivity of theadjoint solution to the same uncertainties. In

the frequently-used case of least-squares cost functionals, based on (possibly weighted)L2 norms of

measurement residuals� = u � u
obs, the adjoint forces featured in (30) depend linearly on� . More

generally, misfit functionals based on aL� norm (with1< � < 1 ) lead toO (k�k�� 1)adjoint forces

(the cases� = 1;1 do not satisfy the required differentiability of misfit density ’). As T(� ;T)

also depends linearly on the adjoint solution (irrespective of the nature of the cost functional), the

perturbation undergone by the topological sensitivity of least-squares cost functions is, when using

L2 norms,linear in the measurement uncertainties. This suggests that identification procedures based

on the TS field are better-behaved with respect to measurement noise than usual inversion procedures,

known to be highly sensitive to the latter unless properly regularized. Indeed, numerical results of

Sec. 6.5, based on misfit functionals without regularization term, corroborate this expectation.

Dynamical versus static measurements. Expression (28) shows the value ofT(z;T)to be influ-

enced by that ofW (� ;� ;z). The latter, defined by (26) in terms of the elastodynamic Green’s dis-

placement and strain tensors, is a decreasing function of the distanced(z;Sobs)of z to Sobs. Hence,

sampling points located close toSobs are more apt to lead to high (negative) values ofT, increasing

the risk of false identifications there when seeking a burieddefect. Moreover, it is instructive to com-

pare the behavior ofT for sampling points remote from the observation surface according to whether

T is evaluated under dynamic (i.e. time-dependent) or static(i.e. time-independent) loading condi-

tions. Indeed,W (� ;� ;z)behaves like[d(z;Sobs)]� 1 in the former case, but like[d(z;Sobs)]� 2 in the

latter case: (i) this behavior is directly observed forE (� ;� ;z)on the full-space Green’s tensor, see

Eqs. (A.4ab) and remark 6, and is also explicit for scalar half-space Green’s functions, constructed

from their full-space counterpart using the method of images; (ii) the second term in (25) vanishes in

the time-independent case. The static TS is thus a priori less sensitive than its dynamic counterpart to

defects that are remote from the measurement surface.
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Computational issues. Anticipating on the finite element implementation discussed next, all nu-

merical results of Secs. 5 and 6 are based on solvinglinear dynamical problems in the time domain,

using an unconditionally-stable version of the Newmark time-marching algorithm. Such linear evolu-

tion problems have well-established convergence properties with respect to decreasing mesh size and

time step, and hence do not raise mesh dependency issues. Note however that discretization error af-

fecting displacement solutions affect quadratically the TS due to the bilinear structure of formula (32).

The meshes and time steps used thereafter are chosen solely so as to adequately model geometry and

represent expected spatial and time variations in the computed “true”, free and adjoint solutions. Also,

no attempt to improve the accuracy of computed stresses through refined postprocessing of displace-

ment solutions has been made (although such procedures might conceivably improve TS evaluation),

so as to show the usefulness of the TS concept within a standard FEM framework.

4.2 Implementation and numerical experiments

In spite of the previously-mentioned current lack of a mathematical proof to validate rigorously the

heuristic idea of a TS-based defect indicator function, it is nevertheless useful to evaluate its practical

efficiency through numerical experiments. This study aims at establishing the ability of the time-

domain TS to identify defects (here mostly taken as impenetrable objects such as cavities in elastic

solids), emphasizing the computational efficiency of the approach and its ease of implementation

within a standard finite element framework, and discussing the main features of such wave-based

imaging approach. In the sections to follow, results from numerical experiments will be presented for

the 2-D scalar wave equation (Section 5), then for 2-D and 3-Delastodynamics (Section 6).

Discretization. Aiming at a FEM-based implementation of the time-domain topological sensitivity

of J, let
h and
h(B )denote FEM discretizations of the reference domain
and any cavitated trial

domain
(B ), whose meshes are assumed to coincide over the (discretized) observation surfaceS obs
h

.

Then, a discretized least-squares cost function is be set upin the form

Jh(
h(B );T)=

nobs
X

i= 1

nTX

j= 0

1

2
kuB ;h(�i;tj)� u

obs
h (�i;tj)k

2 (33)

wherenobs denote the number of nodes located onSobs
h

, ft0 = 0;:::;tnT = Tg is a sequence of

discrete time instants (a constant time step�tbeing assumed for simplicity), andu B ;h;u
obs
h

denote

the FE-computed trial displacement and the observed displacement sampled at the nodes ofSobs
h

,

respectively. For the purposes of computing the TS field, it is necessary to set up the discretized

reference domain
h, whereas the discretized trial domain
h(B )is introduced for the purpose of a

consistent definition ofJh but is not actually needed.
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In the numerical results to follow, the datauobs
h

is generated synthetically, using a discretized

version
 true
h

of the "true" domain with the defects (or set thereof) to be identified. In that case, the

meshes of
 true
h

andSobs
h

are not required to coincide overSobs
h

.

All forward and adjoint solutions are performed using an unconditionally-stable Newmark time-

marching scheme with parameters� = 1=4; = 1=2 (Hughes, 1987).

Discretized time convolution. A discrete version of the time convolution (14) is also adopted as

[vh ?w h](�i;tk)� �t

kX

j= 0

vh(�i;tj)w h(�i;tk � tj) (06 k6 nT): (34)

Then the adjoint statêuh corresponding to the discretized cost function (33) is defined on
h and

results from time-dependentnodal forcesF̂ h overSobs
h

defined by

F̂ h(�i;tj)= uh(�i;tT � tj)� u
obs
h (�i;tT � tj) (16 i6 n

obs
;06 k6 nT) (35)

Truncated topological sensitivity. To focus on areas of
whereT attains sufficiently low (nega-

tive) values, a thresholded versionT� of T depending on a cut-off parameter� is used in some of the

following examples. It is defined by

T�(z;T)=

(
T(z;T) (T 6 �T

min
);

0 (T > �T
min
)

with T
min

= m in
z

T(z;T);� < 1; (36)

with the implicit assumption thatTmin < 0. Moreover, letB eq(�)denote the geometrical support of

T�(z;T), i.e. the region of
defined by

B eq(�)=
�
z2 


�
�T�(z;T)< 0

	
: (37)

Thus an estimation of the unknown cavity (or set thereof) suggested by the thresholded TS may be

defined in terms ofB eq(�). The following additional definitions will also be useful: the characteristic

radiusR eq(�)of B eq(�), given by

R eq =

�
1

�
jB eqj

� 1=2

(2-D) ; R eq =

�
3

4�
jB eqj

� 1=3

(3-D) ; (38)

wherejB eqjstands for the volume ofB eq, and the distanced(�)between the centroidxeq of B eq(�)

and the true cavity centroidxtrue2 
, i.e.

d = jx
true

� xeqj with xeq =
1

jB eqj

Z

B eq
� dV� (39)
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5 Defect imaging using acoustic time-domain data

In this set of examples, the reference domain
 is the unit square, i.e.
= f06 � 1;�2 6 1g (Fig. 1).

The primary field is governed by the two-dimensional scalar wave equation of e.g. linear acous-

tics. The identification of a setB true of impenetrable obstacles, such that a homogeneous Neumann

boundary condition describing a zero normal velocity is prescribed on the obstacle boundary�true,

is considered, based on four (simulated) experiments of duration T . The free pressure fieldu(k)

associated to experiment numberk is defined through the boundary-initial value problem

�u
(k)
(�;t)� �u

(k)
(�;t)= 0 (� 2 
;06 t6 T)

r u
(k)
(�;t)� n(�)= 1 (� 2 Sk;06 t6 T)

r u
(k)
(�;t)� n(�)= 0 (� 2 S‘ (‘6= k);06 t6 T)

u
(k)
(�;0)= _u

(k)
(�;0)= 0 (� 2 
)

(40)

where eachS‘ is one of the sides of the square boundary of
, numbered according to Fig. 1, and�

denotes the two-dimensional Laplacian operator. Note thatthe wave velocity is set toc= 1, so that

the travel time of waves propagating vertically fromS1 to S3 or horizontally fromS2 to S4 is one

unit of time. All simulations presented in this section wereperformed using a finite element method

based on a piecewise-linear interpolation, i.e. three-noded triangular elements. The cost function

J
(k)
(B ;T)=

1

2

Z T

0

Z

S1+ S2+ S3+ S4

ju
(k)

B
(�;t)� u

(k)

obs(�;t)j
2ds�dt

is then introduced (in a discretized form similar to (33)), whereu(k)true denotes the pressure field arising

in 
 true = 
nB true from the external excitation defined in (40),u(k)obs is the corresponding (possibly

polluted) observation, andu(k)
�

is the predicted measurement for an assumed configurationB of the

obstacle. The topological sensitivityT(z;T)of J(k), such that

J
(k)
(
"(z);T)= J

(k)
(
;T)+ "

2
jBjT(z;T)+ o("

2
)

is given (following an analysis similar to that of Sec. 3) by

T(z;T)=

n

2�r u
(k)

?r û
(k)

+
4�

3
u
(k)
û
(k)

o

(z;t)

Identification of a single scatterer. Let B true denote the ellipse with parameters as given for scat-

terer 1 in Table 1 (where “inclination” refers to the angle between the�1-direction and the major

principal axis). The meshes used for generating the synthetic datau(k)true and for computingu;̂u and

15



S1

S4
S2

S3

Γ

Ω

x
10

1

y

Figure 1: Defect imaging using acoustic time-domain data: geometry and notations.

Figure 2: Identification of a single scatterer: meshes used for generating the synthetic data (left) and
computing the topological sensitivity (right).

T(� ;T)(Fig. 2) feature 16 268 and 9 841 DOFs, respectively.

Figure 3 shows the distribution ofT�(� ;T)obtained for the above-defined single-scatterer iden-

tification problem (having usedT = 2, � = 1=2 and�t= 2:510 � 2). The regionB eq(�)clearly

pinpoints correctly the location of the defect, while its size gives a reasonable estimation of the actual

Figure 3: Identification of a single scatterer: distribution of thresholded topological sensitivityT� ,
with T = 2and� = 1=2.
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(a) � = 0:1 (b) � = 0:2 (c) � = 0:3

(d) � = 0:4 (e) � = 0:5 (f) � = 0:6

(g) � = 0:7 (h) � = 0:8 (i) � = 0:9

Figure 4: Identification of a single scatterer: influence of cut-off parameter�.

defect size. Figure 4 moreover shows, by means of a sequence of blow-ups of the region surrounding

the actual defects for� ranging from 0.1 to 0.9, thatB eq(�) is relatively insensitive to the choice of

� within a fairly wide range of values (approximately0:26 � 6 0:6 for this example).

Figure 5 then illustrates how the choice of experiment configuration and duration affects the

results. Figure 5(a), which repeats Fig. 3, is based on the single experimentk = 1 and a duration

T = 2 large enough for a wave emanating fromS1 to hit the defect and send scattered signals back to

various parts of the boundary. Hence, the cost function contains enough data about the object to make

an identification possible. In contrast, under the same conditions but with data collected only until

T = 1, the scattering of a wave emanating fromS1 seldom has sufficient time to send information to

the boundary, and the defect is not identified (Fig. 5(b)). Using the same reduced experiment duration

T = 1 but with an incident wave emanating from surfaceS4, located closer to the defect, some of

the scattered signals reach the boundary beforet= 1 resulting in an identification (Fig. 5(c)) that

is not as good as in Fig. 5(a) but still acceptable. Finally, maintainingT = 1 and using a multiple

experimentk = 1;2;3;4 (with experimentsk = 3;4 contributing most of the usable data due to the

chosen duration) yields again a satisfactory identification (Fig. 5(d)). These observations entirely

conform with what one would expect based on physical intuition.

Simultaneous identification of a multiple scatterer. The simultaneous identification of a set of

four elliptical scatterers, whose characteristics are gathered in Table 1, is now considered. The mesh

used for generating the synthetic datau(k)true now features 24 098 DOFs. The resulting distribution
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Scatterer # Semiaxes Centroid Inclination
1

p
26=100;3

p
26=500 (0:30;0:65) tan� 1(1=5)

2
p
29=100;3

p
26=400 (0:60;0:35) tan� 1(5=2)

3
p
17=100;3

p
17=200 (0:25;0:30) tan� 1(1=5)

4
p
13=100;3

p
13=200 (0:55;0:75) tan� 1(5=2)

Table 1: Identification of a multiple scatterer: geometrical parameters.

(a) k= 1;T = 2 (b) k= 1;T = 1

(c) k= 4;T = 1 (d) k= 1;2;3;4;T = 1

Figure 5: Identification of a single scatterer: influence of experiment configuration and duration.

Figure 6: Identification of a multiple scatterer, withk= 1;2;3;4andT = 2: TS fieldT (left) and its
thresholded versionT� with � = 1=2 (right).

of T�(� ;T)obtained for a multiple simulated experimentk = 1;2;3;4 with durationT = 2 and a

cut-off � = 0:5 is shown in Fig. 6. The corresponding regionB eq(�) is split into four connected

components, each one correctly located at one of the defects. The identification is simultaneous in

that the topological sensitivity is computed at once on the basis of the free and adjoint solutions, with
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no prior information about the number of defects fed into thecomputation.

6 Defect imaging using elastodynamic time-domain data

6.1 Methodology

Synthetic experiment configuration. The reference elastic domains considered are the unit cube


= f06 �1;�2;�3 6 1g or the unit square
= f06 �1;�2 6 1g. The material parameters�;�;� are

set so that the longitudinal wave velocity (which is fastest) is unity:

cL =
p
�=��2 = 1 (41)

(with � defined by (A.5)), so thatT = 1corresponds to the travel time of longitudinal waves propagat-

ing between any two opposite faces of@
 in a direction normal to them. For both 3D and 2D cases,

a single synthetic experiment is considered throughout this section, whereby a compressional loading

�t= � H (t)e2 (whereH (t)denotes the Heaviside step function) is applied on the face�2 = 1 of @


while a homogenous Dirichlet condition is prescribed on thefaceSD = f�2 = 0g. The observation

surface is taken as the whole Neumann surface:Sobs
h

= SN = @
hnSD.

The reference mesh
h is based on an isoparametric piecewise-linear interpolation employing

three-noded triangular elements and 1988 nodes (2D case) orfour-noded tetrahedral elements and

19683 nodes (3D case). Moreover, to guard against the "inverse crime" (Colton and Kress, 1998), the

synthetic datauobs is computed by means of a finer discretization, with
 true
h

discretized into isopara-

metric piecewise-quadratic elements, i.e. six-noded triangular elements (2D case) or ten-noded tetra-

hedral elements (3D case), arranged for convenience so thatthe elements of
h and
 true
h

coincide

onSobs. The simulated displacements at the vertex nodes of
 true
h

onSobs are then retained (and the

values at the midside nodes discarded), which provide the nodal values ofuobs on Sobs
h

used in the

discrete cost function (33).

6.2 Single or dual cavity identification

In this section, the effectiveness of the topological sensitivity indicator is assessed on 2-D or 3-D

single- or dual-cavity configurations, with the simulated experiment duration set toT = 1.

The thresholded TST�(� ;T) for a single unknown circular cavity and a set of two unknown

circular cavities are presented, for two configurations in each case, in Figs. 7 and 9, respectively (with

details on cavity geometry provided therein). In each figure, case (a) corresponds to unknown cavities

close enough to the excitation surface, so that the experiment durationT = 1 lets sufficient amount of

information reach the observation surface, leading to satisfactory identification for both the single- or

dual-cavity cases. In contrast, case (b) for each figure features a cavity located in such a way that little
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information about its presence can reach the observation surface within the time frameT = 1, and

these cavities are poorly located by theT�(� ;T)distribution. In addition, a computation on two finer

meshes of the thresholded TS of Fig. 7(a), keeping the same measurement grid and definition (35) of

adjoint nodal forces, indicates thatT�(� ;T)is only moderately sensitive to mesh size (Fig. 8).

Then, similar numerical experiments are conducted for the 3-D case, with results for single- or

dual-cavity configurations shown in Figs. 10 and 11 (where details on cavity geometry are again

provided therein, and the correct cavity boundaries are depicted as blue spheres). Moreover, the

regionsB eq(�) defined by (37), plotted respectively in Figs. 12 and 13 for the single- and dual-

cavity cases, are seen to indicate the correct location and number of sought cavities based on the sole

informationuobs and do not predict other, spurious, defects.

6.3 Influence of experiment duration

The durationT over which data is collected will obviously have a major effect on the results, an effect

which is now investigated. For this purpose, in addition to the previously-defined unit cube or square


, an elongated variant
 0of 
such that� 16 �2 6 1 is also considered, withS0D = f�2 = � 1g and

all other dimensions and boundary conditions defined as before, and the corresponding observation

surfaceS0obs set asS0obs= S0N = @
0nS0D.

Figures 14 and 15 plotd(0:75)andR eq(0:75)as functions of the simulated experiment duration

T for the identification of a single cavity of radiusR = 0:1 embedded in domain
 or 
 0. Both

the 2-D case (withxtrue
1

= (0:5;0:5) in 
 or x true
2

= (� 0:5;0:5) in 
0) and the 3-D case (with

x
true
1

= (0:5;0:5;0:5) in 
 or x true
2

= (0:5;� 0:5;0:5) in 
0) are considered. These results can

be divided into three cases (indicated on Figs. 14 and 15 using circled ‘1’, ‘2’ and ‘3’ symbols)

according to the value taken byT . For0 < T 6 T1 (whereT1 is typically the time for the wave to

reach the cavity), the identification is not satisfactory, as was to be expected since the scattered waves

(a) R 1 = 0:05, x true
= (0:75;0:75) (b) R 1 = 0:1, x true

= (0:4;0:5)

Figure 7: Single cavity identification, 2D: thresholded TS fieldT� with � = 0:75.
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(a) Same mesh as Fig. 7 (1988 nodes)(b) Refined mesh 1 (3027 nodes) (c) Refined mesh 2 (4416 nodes)

Figure 8: Single cavity identification, 2D (R 1 = 0:05, x true = (0:75;0:75)): thresholded TS fieldT�
with � = 0:75 for three different meshes.

(a) �= 0:75, R 1 = R 2 = 0:05,
x

true
1 = (0:25;0:75), x true

2 = (0:75;0:75)

(b) �= 0:65, R 1 = 0:05, R 2 = 0:1,
x

true
1 = (0:2;0:75), x true

2 = (0:75;0:55)

Figure 9: Dual cavity identification, 2D: thresholded TS fieldT� .

(a) R = 0:05, x true
= (0:75;0:75;0:75) (b) R = 0:1, x true

= (0:4;0:4;0:5)

Figure 10: Single cavity identification, 3D: thresholded TS fieldT� with � = 0.

do not have time to reachSobs and be recorded in the cost function. Next, the caseT1 6 T 6 T2

(relatively narrow in terms of the range ofT ) corresponds tod decreasing, andR eq increasing, with

T i.e. estimations of defect location and size that are sensitive to the experiment duration (figures

14(b), 15(a), 15(b)) and hence also not reliable. Finally, in the caseT > T2 (with T2 large enough

for a substantial amount of information to reachSobs), d reaches small values (indicating a correct
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(a) R 1 = R 2 = 0:05, x true
1 = (0:25;0:25;0:75),

x
true
2 = (0:75;0:75;0:75)

(b) R 1 = 0:05 R 2 = 0:1, x true
1 = (0:25;0:25;0:75),

x
true
2 = (0:75;0:75;0:5)

Figure 11: Dual cavity identification, 3D: thresholded TS fieldT� with � = 0.

(a) R = 0:05, � = 0:6 (b) R = 0:1, �= 0:6

Figure 12: Single cavity identification, 3D:B eq(�).

(a) R 1 = R 2 = 0:05, �= 0:6 (b) R 1 = 0:05 R 2 = 0:1, �= 0:7

Figure 13: Dual cavity identification, 3D:B eq(�).

identification of the cavity location) whileR eq, the estimated cavity size, attains stable values.
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(a) R = 0:1, x true
1 = (0:5;0:5) (b) R = 0:1, x true

2 = (0:5;� 0:5)

Figure 14: Influence of experiment duration: identification under 2-D conditions.

(a) R = 0:1, x true
1 = (0:5;0:5;0:5) (b) R = 0:1, x true

2 = (0:5;� 0:5;0:5)

Figure 15: Influence of experiment duration: identification under 3-D conditions.

6.4 Influence of observation surface configuration

All results so far were based on dense and full-aperture measurements (for a single experiment). The

effect of relaxing either the measurement grid density or the measurement aperture is now considered.

Influence of measurement grid density. The influence of using coarser measurement grids fea-

turing N � N points on each face ofSN is now considered. Figure 16 illustrates the effect of a

decreasing measurement density (i.e. decreasingN ) on the computed fieldT�(� ;T). The numerical

value ofT�(� ;T) is seen to decrease, reflecting the fact that the definition (33) of J and that of the

adjoint forces (35) is strongly influenced by the number of measurement points. This in itself is of

secondary importance, as (i) the support ofT�(� ;T), not its numerical value, is of primary impor-

tance, and (ii) one could easily renormalize the definition of J. However, one also notices that a

decreasing measurement density induces a qualitative deterioration of the identification provided by

T�(� ;T). This observation is confirmed by Fig. 17, where the reconstructed cavity is taken to be the

supportB eq(�)of T�(� ;T)and which shows that� must decrease withN to haveBeq(�)reasonably

estimatingB true for all grid densities. Remarkably, the cavity location remains correctly estimated

even as the shape ofB eq(�)becomes irregular due to the decreasing number of observation points.

Influence of limited aperture. Here, the effect of restricting the observation surface to aportion

Sobs( SN of the boundary is examined. Figure 18 shows the identification result in terms ofB eq(�)

for two cases with limited aperture. For data collected on the top face�2 = 1 (Fig. 18(a)), the obser-

vation surface is orthogonal to the propagation direction of the compressional wave in the reference

solid, and the horiozontal location of the sought cavity is correctly found while its vertical estimated
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(a) N = 27 (b) N = 14

(c) N = 9 (d) N = 7

Figure 16: Influence of measurement grid density on thresholded TS fieldT� (� = 0, R = 0:1)

position is offset compared to the correct one. For data collected on the lateral face�3= 0(Fig. 18(b)),

the TS field does not resolve correctly the unknown cavity. Moreover, plots ofB eq(�)corresponding

to observations surfacesSobs= f�2 = 1g andSobs= f�3 = 1g (chosen closest toB true to yield suf-

ficient usable data) indicate satisfactory reconstructionof B true (Fig. 19). For the two cases shown,

B true is better estimated along the direction orthogonal toSobs, with the best identification obtained

in Fig. 19(a) corresponding toSobs orthogonal to the propagation direction of the incident wave.

6.5 Influence of data noise

In this section the influence of data noise is studied by considering noisy simulated data of the form

u
obs
h (� ;tj)= u

true
h (� ;tj)+ ��u

max
j ; u

max
j =

n

m ax
1� i� nobs

��
u

true
h (�i;tj)� uh(�i;tj)

�
� ek

�o

ek (42)

where� is a Gaussian random variable with zero mean and unit standard deviation. Figure 20 depicts

the behavior of the imaging method for increasing noise level �. Remarkably, the cavity location is

correctly estimated even for high noise levels (Figs. 20(c)and 20(d)). TS-based identification thus
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(a) N = 27 � = 0:75 (b) N = 14 � = 0:75

(c) N = 9 � = 0:4 (d) N = 7 � = 0:35

Figure 17: Influence of measurement grid density: blurring effect onB eq(�).

still yields usable results if applied to noisy data, as anticipated in Sec. 4.1 based on the mathematical

structure of the TS formula, even though no regularization is used in the cost functional. This feature

is very promising for applications. Note that the referenceu
true
h

used in (42) is itself “noisy”, being a

FEM-based approximation ofu true. The discretization error level thus superimposed to the simulated

data noise is expected not to exceed a few percent in the examples presented here (and thus to be much

lower than the noise levels of Figs. 20(c) and 20(d)). For instance, synthetic data evaluations for the

2D elastodynamic examples presented a2:110� 2 relative discrepancy (inL2-norm) when performed

on meshes featuring 2420 and 5453 nodes.

6.6 Identification of non-cavity defects

To conclude this series of numerical experiments, the identification of a crack and an inclusion is

now considered, whose geometrical or material characteristics do not conform to those assumed in

deriving the topological sensitivity.
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(a) Sobs
= f�2 = 1g (b) Sobs

= f�3 = 0g

Figure 18: Influence of limited aperture: distribution ofT� for two choices ofSobs.

(a) Sobs
= f�2 = 1g (b) Sobs

= f�3 = 1g

Figure 19: Influence of limited aperture:B eq(�)for two choices of partial observation surfaceSobs.

Crack identification. The identification of a penny-shaped crack (radiusR = 0:1, unit normal

n = � sin�e1+ cos�e2) leads to results that are satisfactory in terms of crack location and size, as

shown in Fig. 21 for two choices� = 0and� = �=4of the crack inclination, while lacking sensitivity

to the crack inclination. A recently-proposed specific formulation for crack problems (Bellis and

Bonnet, 2009) features a polarization tensor that depends explicitly on an assumed crack orientation,

thus offering (not yet investigated) possibilities for finding the crack orientation on that basis.

Inclusion identification. The identification of a penetrable spherical inclusion characterized by the

radiusR = 0:1 and material parameters�?; �? = �; �? = � is now considered. The TS defined for

cavities is found to identify satisfactorilysoft spherical inclusions (such that�? 6 �), see Fig. 22.

However, employing this method forstiff inclusions (such that�?> �) leads to an contrast inversion

in the TS field, the defect location now corresponding to amaximumof T(� ;T). Moreover, the TS

defined for spherical elastic inclusions with assumed material parameters�?;�?;�?, given by

T
?
(z;T)= f� [̂u]?(A

?
:�[u])+ (� � �

?
)_̂u ? _ug(z;T) (43)
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(a) � = 0:1, x true
= (0:75;0:75;0:75), �= 0:75 (b) � = 0:2, x true

= (0:75;0:75;0:75), �= 0:75

(c) � = 0:5, x true
= (0:75;0:75;0:75), �= 0:75 (d) � = 1, x true

= (0:75;0:75;0:75), �= 0:6

Figure 20: Influence of data noise onT: B eq(�)for various levels of noise.

(a) � = 0 (horizontal),�= 0, xtrue
= (0:75;0:75;0:75) (b) � = �=4 (inclined),�= 0, xtrue

= (0:75;0:75;0:75)

Figure 21: Penny-shaped crack identification: thresholded TS fieldT� .

with the polarization tensorA ? given by (B.2) and established in Chikichev and Guzina (2008), has

also been implemented within the present FEM approach. Then, the TS fieldT? computed for the

correct values of�?;�?;�? is seen in Fig. 23 to allow a correct identification of a stiff inclusion.
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(a) �? = 0:1�, �= 0, x true
= (0:75;0:75;0:75) (b) �? = 0:5�, �= 0, x true

= (0:75;0:75;0:75)

Figure 22: Identification of a soft spherical inclusion using cavity-related thresholded TS fieldT� .

(a) �? = 5�, �= 0, x true
= (0:75;0:75;0:75) (b) �? = 10�, �= 0, x true

= (0:75;0:75;0:75)

Figure 23: Identification of a stiff spherical inclusion using inclusion-related thresholded TS fieldT?
�

.

7 Conclusion

In this study, the concept of topological sensitivity (TS) is developed for elastic and acoustic-wave

imaging of media of arbitrary geometry using data in the timedomain. On seeking the limiting form

of the boundary integral equation governing the scattered field caused by a cavity with vanishing

size", the TS field is found to be expressed in terms of the time convolution of the free field and an

adjoint field. The"D asymptotic behavior of the cost function revealed by the analysis, identical to

that established earlier for identification in static of frequency-domain settings, requires a degree of

smoothness of the free field with respect to the time variable. The main analysis is devoted to 3-D

configurations, but 2-D time-domain formulations are addressed as well.

While its derivation and formulation results from a mathematically rigorous asymptotic analysis,

subsequent applications of the TS concept to the identification of finite-sized defects remains heuris-

tic. Here, a comprehensive set of numerical examples is presented so as to substantiate the usefulness
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of the TS in applications and assess its performances. In contrast with the relatively involved analysis

required to arrive at the correct formulation of the TS field,subsequent numerical implementations

are quite simple. To emphasize the ease of application of theTS concept, all examples presented

in this article rely on straightforward FEM formulations ofthe free and adjoint field, rather than

more-specialized integral-equation techniques previously used by the same group of authors. Several

important features of the method are discussed through these examples, including its ability to iden-

tify multiple defects or to withstand significant data noise, and the effect of restrictions on the data

through insufficient experiment duration or partial aperture. It is important to note that most examples

consider identification based on asingle(simulated) time-domain experiment.

From this study, it can be concluded that computing and exploiting the TS field constitutes a pow-

erful and efficient tool for defect identification, as it is very simple to implement, computationally

much faster than minimization-based inversion methods, and allows multiple defect identification

without prior information. The present “one-shot” TS-based identification is qualitative rather than

quantitative in nature. In addition to the stand-alone one-shot TS-based procedure emphasized in

this article (of a qualitative rather than quantitative nature, and hence useful if speed or ease of im-

plementation is more important than accurate defect sizing), the TS may also be implemented using

an iterative matter removal strategy of the kind used in topology optimization (Allaire et al., 2005;

Garreau et al., 2001), or be used in computing good initial guesses for subsequent refined inversion

(perhaps based on exploitingB eq(�)andR eq(�)defined by (37), (38)). Quantitative defect identifi-

cation may also be achieved on the basis of time-domain versions (to be developed) of higher-order

topological expansions along the lines of Bonnet (2008, 2009).
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Appendix A Asymptotic behaviour of elastodynamic integraloperators

Appendix A.1 Elastodynamic governing BIE

The integral representation formula for the scattered fieldv
" reads (Eringen and Suhubi, 1975)

v
"
(x;t)= �

Z

�"(z)

�
T (x;t;�;n)?v

"
(�;t)+ U (x;t;�)?t[u](�;t)

	
dS� (A.1)

In the present situation, where the free field featured in theright-hand side of (A.1) is also defined

insidethe cavity regionB "(z), one has

�

Z

�"(z)

U (x;t;�)?t[u](�;t)dS� =
Z

B "(z)

�
�U (x;t;�)?�u(�;t)+ E (x;t;�)?�[u](�;t)

�
dV�

by virtue of the divergence formula (note that� n in (A.1) is theoutwardunit normal toB "(z)) and

the field equation (9a) verified byu. Integral equation (13) then follows by invoking the following

property of time convolution (14), easily established using integration by parts and conditions (15):

[a ?�b](�;t)= [_a ? _b](�;t)= [�a ?b](�;t)

Appendix A.2 Elastodynamic fundamental solutions and proof of Lemmas 1 to 3

The time convolutions featured in integral equation (13) can be expressed as

U (x;t;�)?t(�;t)= U [x;t;�jei� t(�;� )]� ei (A.2a)

T (x;t;�;n)?v
"
(�;t)= T [x;t;�;njei� v

"
(�;� )]� ei (A.2b)

whereU [x;t;�jf]andT [x;t;�;njf]are the time-modulated elastodynamic Green’s tensors, defined

such thatek� U andek� T are the displacement and traction vectors at� 2 
 resulting from a point

force acting atx in thek-direction with prescribed time-varying magnitudef(t). The latter solve the

boundary-initial value problem

L�U [x;t;�jf]+ �(� � x)f(t)I = 0 (� 2 
;t> 0) (A.3a)

T [x;t;�;njf]= 0 (� 2 SN;t> 0) (A.3b)

U [x;t;�jf]= 0 (� 2 SD;t> 0) (A.3c)

U [x;0;�jf]= _U [x;0;�jf]= 0 (� 2 
) (A.3d)

Similarly, let U 1 [x;t;�jf]andT1 [x;t;�;njf]denote the time-modulated infinite-space funda-

mental solution, which satisfy equations (A.3a), (A.3d) with 
= R 3 and radiation conditions instead

of boundary conditions (A.3b), (A.3c), and is given by (Eringen and Suhubi, 1975)

U 1 [x;t;�jf]=
1

4��r

h

A[x;t;�jf]I + B [x;t;�jf](̂r
 r̂)

i

(A.4a)
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E [x;t;�jf]=
1

8��r2

h

B [x;t;�jf](̂r
 I)+ D [x;t;�jf](I
sym

�̂r)+ 2E [x;t;�jf](̂r
 r̂
 r̂)

i

(A.4b)

T 1 [x;t;�;njf]=
1

4�r2

h

C [x;t;�jf](̂r
 n)+ D [x;t;�jf]
�
r̂
 n + (̂r� n)I

�

+ 2E [x;t;�jf](n �̂r)̂r
 r̂

i

(A.4c)

wherer= (� � x), r= krk,r̂= r=r, � is the ratio of bulk wave velocities as defined by

�
2
=
c2
T

c2
L

=
1� 2�

2(1� �)
=

�

� + 2�
(A.5)

and withA = A[x;t;�jf];:::defined by

A[x;t;�jf]= f

�

t�
r

cT

�

+

Z �

1

�f

�

t�
�r

cT

�

d�

B [x;t;�jf]= � 3A[x;t;�jf]+ 2f

�

t�
r

cT

�

+ �
2
f

�

t�
r

cL

�

C [x;t;�jf]= 2B [x;t;�jf]� (1� 2�
2
)

n

f

�

t�
r

cL

�

+
r

cL

_f

�

t�
r

cL

�o

D [x;t;�jf]= 2B [x;t;�jf]� f

�

t�
r

cT

�

�
r

cT

_f

�

t�
r

cT

�

E [x;t;�jf]= � 3B [x;t;�jf]� D [x;t;�jf]� �
2

n

f

�

t�
r

cL

�

+
r

cL

_f

�

t�
r

cL

�o

:

(A.6)

Define now the time-modulated complementary elastodynamicGreen’s tensorU C by

U [x;t;�jf]= U 1 [x;t;�jf]+ UC[x;t;�jf] (A.7)

By virtue of superposition arguments,U C is governed by the boundary-initial value problem

L�U C[x;t;�jf]= 0 (� 2 
;t> 0)

T C[x;t;�;njf]= � T1 [x;t;�;njf] (� 2 SN;t> 0)

U C[x;t;�jf]= � U 1 [x;t;�jf] (� 2 SD;t> 0)

U C[x;0;�jf]= _U C[x;0;�jf]= 0 (� 2 
)

(A.8)

One can then show (using e.g. an integral representation formula) thatU C[x;t;�jf]is bounded in the

limit � ! x, i.e. that the singular behavior ofU [x;t;�jf]at� = x is identical to that of its full-space

counterpartU 1 [x;t;�jf]. Hence, one has

U C[z+ "�x;t;z+ "��jf]= O (1) ("! 0) (A.9)
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Proof of Lemma 1. With decomposition (A.7) ofU [x;t;�jf]in mind, consider first the evaluation

of the leading contribution to

Z

�"(z)

U 1 (x;t;�)?t(�;t)dS� (A.10)

as"! 0, whereU 1 (x;t;�)?t(�;t)is, by virtue of (A.2a), given by (A.4a) withf(t)= ei� t(�;t).

Settingf(�)= f(t)+ (f(�)� f(t))= f(t)+ �f(�)= in (A.6), one obtains

A[x;t;�jf]=
1+ �2

2
f(t)+ A[x;t;�j�f]; B [x;t;�jf]=

1� �2

2
f(t)+ B [x;t;�j�f]: (A.11)

The cofactors off(t) in (A.11) correspond to aconstantpoint force of unit magnitude, and hence

yield, through (A.4a), theelastostaticfull-space Green’s tensor (i.e. Kelvin’s solution)U 1 (�x;
��):

U 1 (�x;
��)=

1

8���r

�
(1+ �

2
)I + (1� �

2
)̂�r
 �̂r

�
(A.12)

Moreover, the Lipschitz-continuity assumption made ont7! �[u](�;t)implies that

jf(t)� f(�)j6 K jt� �j; j_f(�)j6 K 06 � 6 t

(with K the Lipschitz continuity modulus off) and hence that

A[x;t;�j�f]6 K C Ar=cT; B [x;t;�j�f]6 K C Br=cT (A.13)

with appropriate constantsCA;CB. Combining (A.4a), (A.11) and (A.13), one thus obtains

U 1 (x;t;�)?t(�;t)= U1 (x;�)� t(�;t)+ U1 (x;t;�)?�t(�;t);


U 1 (x;t;�)?�t(�;t)


 6 CUK ; (A.14)

whereCU is a constant. Hence, upon introducing scaling (16), (17) into (A.10), noting thatU 1 (�;x)

is homogeneous of degree� 1 in �� � �x, making use of the expansion�[u](�;t)= �[u](z;t)+ o(1),

and invoking (A.14), one obtains

Z

�"(z)

U 1 (x;t;�)?t(�;t)dS� = "

�Z

S

U 1 (�x;
��)
 n(��)d�S��

�

:�[u](z;t)+ o(") (A.15)

Finally, Lemma 1 follows from (A.7), (A.15) together with the following estimate stemming from (A.9):

Z

�"(z)

U C(x;t;�)?t(�;t)dS� = O ("
2
): (A.16)

Remark 6. The presence ofr _f(t�r=cL,T)in expressions (A.6) ofC;D ;E implies that the fundamental

strainsE [x;t;�jf]and stresses behave asO (r� 1) in the time-modulated case (_f 6= 0) but as as

O (r� 2)in the static case(_f = 0).
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Proof of Lemma 2. The proof again exploits decomposition (A.7). First, upon introducing scaled

coordinates (16) into expression (A.4c) ofT 1 and definitions (A.6) ofC [x;t;�jf];D [x;t;�jf]and

E [x;t;�jf](whereinf(t)= v"i(�;t)according to A.2b), it is a simple matter to show that

T 1 (x;t;�;n)?v
"
(�;t)=

1

"2
T 1 ;"(�x;t;

��;n)?�v
"
(��;t) (A.17)

whereT 1 ;" is defined by (A.4c) and (A.6) with wave velocitiescL;cT replaced by rescaled values

cL="andcT=". Equation (A.17) and scaling (17) then imply

�

Z

�"(z)

T 1 (x;t;�;n)?v
"
(�;t)dS� = �

Z

S

T 1 ;"(�x;t;
��;n)?�v

"
(��;t)d�S�� (A.18)

Moreover, owing to the boundedness (A.9) of the complementary Green’a tensorU C, one has, upon

using again coordinate scaling (16):

�

Z

�"(z)

T C(x;t;�;n)?v
"
(�;t)dS� = O ("

2
)k�v

"
(� ;t)k (A.19)

wherek�v"(� ;t)k is a norm of�� 7! �v"(��;t), e.g. itsL2-norm overS. Lemma 2 then follows from

combining (A.18) and (A.19).

Proof of Lemma 3. The proposed ansatz (20) is, by assumption in Lemma 1, Lipschitz-continuous

w.r.t. t. It is therefore appropriate to investigate the behavior ofT 1 as defined by (A.4c) and (A.6) for

a Lipschitz-continuous time-modulationf. Proceeding along the lines of Lemma 1, and in particular

invoking again the decompositionf(�)= f(t)+ (f(�)� f(t))= f(t)+ �f(�)= , one has

C [�x;t;��jf]= �
2
f(t)+ C [�x;t;��j�f]

D [�x;t;��jf]= � �
2
f(t)+ D [�x;t;��j�f]

E [�x;t;��jf]= �
3

2
(1� �

2
)f(t)+ E [�x;t;��j�f]

(A.20)

Substituting the above values into (A.4c) and (A.6), one obtains the decomposition

T 1 [�x;t;
��jf]= T1 (�x;

��;n)f(t)+ T1 [�x;t;
��j�f] (A.21)

with T 1 (�x;
��;n), the traction associated with the elastostatic Kelvin solution U 1 (�x;

��), given by

T 1 (�x;
��;n)=

1

4��r2

h

�
2
�
�̂r
 n � n 
 �̂r � (̂�r� n)I

�
+ 3(�

2
� 1)(̂�r� n )̂�r
 n

i

: (A.22)

Decomposition (A.21) is in particular applicable toT 1 ;"[:::jf]defined by replacing velocitiescL;cT

by the rescaled valuescL=";cT=" in T 1 [:::jf]. Owing to the assumed Lipschitz continuity off, one

easily shows that

T 1 ;"[�x;t;

��j�f]

 6 CTK " ("! 0)
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whereK is the Lipschitz constant off andCT is a constant. Consequently, using the fact that

T 1 (�x;
��;n)f(t)is unaffected by the wave velocity rescaling, decomposition (A.21) implies

T 1 ;"[�x;t;
��jf]= T1 (�x;

��;n)f(t)+ o(1) ("! 0)

Lemma 3 then follows from equatingf(t) to the components of"V (��) :�[u](z;t), according

to (A.2b), in the above estimate.

Appendix A.3 3-D Scalar wave equation

The reference domain
� R 3 is now filled by an acoustic fluid characterized by the wave velocity

c. The acoustic pressure fielduB generated by given excitations�p(�;t)(proportional to normal wall

acceleration) and�u(�;t)(applied pressure) in the presence of a (possibly multiply-connected) sound-

hard obstacle occupying a regionB bounded by� is governed by the following set of equations:

P(B ):

8
>>>>>>>>><

>>>>>>>>>:

�
LcuB

�
(�;t)= 0 (� 2 
;t> 0)

q[uB ](�;t)= 0 (� 2 �;t> 0)

q[uB ](�;t)= �p(�;t) (� 2 SN;t> 0)

uB (�;t)= �u(�;t) (� 2 SD;t> 0)

uB (�;0)= _uB (�;0)= 0 (� 2 
)

(A.23)

wherew 7! q[w]= r w � n is the normal derivative operator andLc, defined by

[Lcw](�;t)= �w(�;t)�
1

c2
�w(�;t) (A.24)

is the governing partial differential operator of linear acoustics. Objective functions of format (5),

with densities now having the form’
�
uB (�;t);�;t

�
, are again considered. Define a small scatterer

B "(z)of size"as in Sec. 3, and letu denote the free field (which solvesP(;)) andv" the scattered

field (such that the total fieldu"= u+ v" solves problemP(B "(z))). The governing integral equation

for the scattered fieldv" reads

1

2
v
"
(x;t)+ �

Z

�"(z)

H [x;t;�;njv
"
(�;t)]dS� = �

Z

�"(z)

G [x;t;�;njq[u](�;t)]dS�

(x 2 �"(z);t> 0); (A.25)

where the time-modulated Green’s functionG [x;t;�jf]solves the boundary-initial value problem

Lc;�G [x;t;�jf]= 0 (� 2 
;t> 0)

G [x;t;�jf]= 0 (� 2 SD;t> 0);

H [x;t;�jf]= 0 (� 2 SN;t> 0);

G [x;0;�jf]= _G [x;0;�jf]= 0 (� 2 
)

(A.26)
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and withH [x;t;�;njf] = r �G [x;t;�jf]� n(�). Moreover, letG1 [x;t;�jf]denote the time-

modulatedfull-spacefundamental solution, given by (Eringen and Suhubi, 1975)

G 1 [x;t;�jf]=
1

4�r
f

�

t�
r

c

�

(A.27)

r �G 1 [x;t;�jf]= �
1

4�r2

h

f

�

�;t�
r

c

�

+
r

c
_f

�

t�
r

c

�i

r̂ (A.28)

and define the complementary Green’s functionG C, bounded in the limit� ! x, byGC[x;t;�jf]=

G [x;t;�jf]� G1 [x;t;�jf]. The counterparts of Lemmas 1 and 2 then correspond to estimate

Z

�"(z)

G (x;t;�)?q[u]dS� = "

� Z

S

G 1 (�x;
��)
 n(��)d�S��

�

� r u(z;t)+ o("); (A.29)

assuming� 7! r u(x;�)is Lipschitz-continuous and differentiable in a neighbourhood of� = t, and

�

Z

�"(z)

H [x;t;�;njv
"
(�;t)]dS� =

Z

S

H 1 ;"(�x;
��;n)�v

"
(��;t)d�S�� + o(k�v

"
k) ("! 0) (A.30)

(with H 1 (�x;
��;n)= r ��G 1 (�x;

��)� n(�), H1 ;" defined by (A.28) withc replaced withc=", and

�v"(��;t)defined by�v"(��;t)= v"(�;t)with�� and� related through (16)). Estimates (A.29) and (A.30),

established following the steps used for Lemmas 1 and 2, suggest the following asymptotic behavior

for v"(�;t):

�v
"
(��;t)= "V (��;t)� r u(z;t)+ o(") (� 2 �"(z);

�� 2 S) (A.31)

Upon substituting (A.31) into the right-hand side of (A.30), making use of the assumed Lipschitz

continuity of� 7! r u(x;�), and retaining only the leadingO (")contributions as" ! 0 accord-

ing to (A.29) and (A.30),V is readily found to verify an integral equation that corresponds to the

following canonical exterior problem for the vector Laplace equation:

� ��V (
��)= 0 (�� 2 R

3
nB); r ��V (

��)� n(��)= � n(��) (�� 2 S) (A.32)

The scattered fieldv" at any point ofSobs is then found (inserting (A.31) into the integral representa-

tion formula associated with integral equation (A.25)) to have the expansion

v
"
(x;t)= "

3
jBj

�
r �G (x;t;z)?[A � r u](z;t)+ �_U (x;t;z)? _u(z;t)

	
+ o("

3
) (A.33)

where the constant second-order polarization tensorA = A (B)depends only onB and is defined by

A = I �
1

jBj

�Z

S

n(��)
 V (��)d�S��

�

(A.34)
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Finally, upon defining the adjoint solution̂u as the solution of the initial-boundary value problem

8
>>>>>>>>>><

>>>>>>>>>>:

�
Lcû

�
(�;t)= 0 (� 2 
;06 t6 T);

q[̂u](�;t)=
@’

@u
[u(�;T � t);�;T � t] (� 2 S

obs
;06 t6 T);

q[̂u](�;t)= 0 (� 2 SNnS
obs
;06 t6 T);

û(�;t)= 0 (� 2 SD;06 t6 T);

û(�;0)= _̂u(�;0)= 0 (� 2 
);

(A.35)

using reciprocity identity (29) suitably modified for linear acoustics, and exploiting the relevant

boundary conditions, expansion (11) withu andv" respectively replaced withu andv" yields

�(")jBjT(z;T)+ o
�
�(")

�
=

Z T

0

Z

Sobs

@’

@u
[u(�;t);�;t]v

"
(�;t)dS�dt

= �

Z

�"(z)

�
q[̂u]?v

"
+ q[u]?û

	
(�;t)dS�

= "
3
jBj

�
r û ?(A � r u)+

1

c2
_̂u ? _u

	
(z;t)+ o("

3
) (A.36)

with the polarization tensorA still defined by (A.34). Hence, the TST(z;t)and leading behavior

�(")are found to be given by

T(z;t)=
�
r û ?(A � r u)+

1

c2
_̂u ? _u

	
(z;t); �(")= "

3 (A.37)

Appendix A.4 Two-dimensional case

The time-modulated full-space fundamental solution is given by (Eringen and Suhubi, 1975)

G 1 [x;t;�jf]=
1

2�

Z
�?(r;t)

0

1

[�2+ r2]1=2
f

�

t�
[�2+ r2]1=2

c

�

d� (A.38)

r �G 1 [x;t;�jf]= �
1

2�
r

Z �?(r;t)

0

�
1

[�2+ r2]3=2
f

�

t�
[�2+ r2]1=2

c

�

+
1

c[�2+ r2]
_f

�

t�
[�2+ r2]1=2

c

��

d� (A.39)

where�;x now denote points in the two-dimensional space spanned by(e1;e2), and the upper bound

�?(r;t)of the above integrals stems from the causality conditionf(�)= 0;� < 0and is given by

�
?
(r;t)= [(ct)

2
� r

2
]
1=2 (A.40)

Proof of lemma 1. Assume that� 7! r _u(�;�)is bounded for06 � 6 tuniformly in a neighbour-

hoodV (z)of z, which implies that� 7! r u(�;�) is Lipschitz-continuous for06 � 6 tuniformly

in V (z). Hence, for some positive constantK , one has

kr _u(�;�)k 6 K ; kr u(�;�)� r u(�;�
0
)k 6 K j� � �

0
j 06 �;�

0
6 t;� 2 V (z) (A.41)
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Here, the tail effect, i.e. the fact (reflected in the integration bounds of (A.38), (A.39), and typical of

2-D time-domain fundamental solutions) that a time-impulsive source generates at(�;t)a nonzero

response over a continuous time interval, entails a proof method that is slightly more involved than

for the previously-addressed 3-D cases. First, the main quantity of interest is recast into a domain

integral along the lines of Appendix A.1:

�

Z

�"(z)

G 1 (x;t;�)?q[u](�;t)dS�

=

Z

B "(z)

�
r �G 1 (x;t;�)?r u(�;t)+

1

c2
G 1 (x;t;�)? �u(�;t)

	
dV� (A.42)

Now, settingf(�)= f(t)+ �f(�) in (A.39) and equatingf(�) to the components ofr u(�;�) in

the resulting equality, one obtains

r �G 1 (x;t;�)?r u(�;t)= G1 (x;�)� r u(�;t)+ r�G 1 (x;t;�)?r �u(�;t); (A.43)

whereG 1 (x;�)is the static 2-D full-space Laplace fundamental solution,given by

G 1 (x;�)= �
1

2�
r

Z �?(r;t)

0

1

[�2+ r2]3=2
d� = �

1

2�
lnr; r �G 1 (x;�)= �

1

2�r2
r (A.44)

(with the second equality established via analytical integration). Moreover, utilizing the assumed Lip-

schitz continuity oft7! r u(�;t)for bounding the last term in (A.43) yields (noting that�?(r;t)6 ct)

�
�r �G 1 (x;t;�)?r �u(�;t)

�
�6

r

2�

2K

c

Z �?(r;t)

0

d�
�2+ r2

=
K

�c
tan

� 1

h
(ct)2

r2
� 1

i1=2
6
K

2c
(A.45)

with the last inequality stemming from the fact that� �=2 6 tan� 1x 6 �=2 for any x. Next,

introducing the scaled coordinates (16), one obtains (by virtue ofr �G 1 (x;�)being homogeneous

of degree� 1 in x � � )

G 1 (x;�)� r u(�;t)=
1

"
G 1 (�x;

��)� [r u(z;t)+ o(1)] (A.46)

Finally, upon integrating decomposition (A.43) overB ", applying estimates (A.45) and (A.46), and

noting that dV�= "2 d�V�� for the present 2-D case, one obtains (with the last equalitystemming from

applying the divergence formula):

Z

B "(z)

r �G 1 (x;t;�)?r u(�;t)dV� = "

�Z

B

r ��G 1 (�x;
��)d�V��

�

� r u(�;t)+ o(")

= "

�Z

S

G 1 (�x;
��)
 n(��)d�S��

�

� r u(�;t)+ o(") (A.47)
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Finally, assuming in addition that�u(�;�)is uniformly bounded, i.e.j�u(�;�)j6 M for some positive

constantM , for � 2 V (z);06 � 6 t, one has

�
�G 1 (x;t;�)? �u(�;t)

�
�=

�
�G 1 [x;t;�j�u(�;t)]

�
�6

M

2�c2

Z �?(r;t)

0

1

[�2+ r2]1=2
d�

=
M

2�c2
ln
�
ct+ �

?
(r;t)

�
� lnr (A.48)

which implies, for"small enough to haveB "(z)� V (z)and after effecting scaling (16):

�
�
�

Z

B "(z)

G 1 (x;t;�)? �u(�;t)dV�
�
�
�6

M

2�c2
"O ("ln")= o(") (A.49)

Hence, combining (A.47) and (A.49), one arrives at an estimate formally identical to (A.29) where

of courseB is now the unit disk andG 1 the 2-D static fundamental solution.

Proof of lemma 2. Introducing the scaled coordinates (16) into (A.39), performing the change of

variable� = "�� in the resulting integral and noting that its upper bound��?(�r;t) is given by (A.40)

with randcrespectively replaced by�randc=". The 2-D analog of Lemma 2 is then readily obtained

by invoking again the decompositionG [x;t;�jf]= G1 [x;t;�jf]+ GC[x;t;�jf]and noting that

Z

�"(z)

H C[x;t;�jv
"
(�;t)]dS� = "

Z

S

H C[�x;t;
��j�v

"
(�;t)]d�S�� = O ("k�v

"
(� ;t)k):

Proof of lemma 3. The proposed ansatz (A.31) is, by assumption in Lemma 1, Lipschitz-continuous

w.r.t. t, which leads to investigating the behavior ofH 1 as defined through (A.39) for a Lipschitz-

continuous time-modulationf. Proceeding along the lines of Lemma 1, and in particular invoking

yet again the decompositionf(�)= f(t)+ �f(�), one finds

H 1 [�x;t;
��jf]= H1 (�x;

��)f(t)+ H1 [�x;t;
��j�f]

where the cofactorH 1 (�x;
��)of f(t), established via analytical integration, is the normal derivative

of the static fundamental solution (A.44). Moreover, exploiting the Lipschitz-continuity off in the

now-familiar way leads to

�
�H 1 [�x;t;

��j�f]
�
�6

�r

2�c2

2K

c

Z �?
"
(�r;t)

0

d��
��2+ �r2

=
K

�c
tan

� 1

h

1�
(ct)2

�r2

i1=2
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Two-dimensional elastodynamics. The infinite-plane time-modulated fundamental solution for

two-dimensional elastodynamics is given by (Eringen and Suhubi, 1975):

U 1 [x;t;�jf]=
1

�c2T
G T1 [x;t;�jf]I

+
1

4��
r �r �

�Z t� r=cL

0

�GL1 [x;t� �;�jf]d� �

Z t� r=cT

0

�GT1 [x;t� �;�jf]d�

�

r (A.50)

whereG L1 ;G T1 are defined by (A.38) withc= cL andc= cT, respectively. Lemma 1 to 3 can then

be established by adapting the proof for the scalar case, a task left to the reader.

Appendix B Summary of explicit formulae for polarization tensors

Explicit formulae for polarization tensorsA have been established in earlier works (e.g. Sokolowski

and Zochowski, 1999; Garreau et al., 2001; Guzina and Bonnet, 2004) for many situations. More-

over, the recent book by Ammari and Kang (2007) presents a comprehensive study of the concept

of polarization tensor in connection with small-defect asymptotics and homogenization. For the case

of spherical or (resp. circular) cavities nucleating in 3D (resp. 2D) isotropic elastic bodies, one has

jBj= 4�=3 (3D) orjBj= � (2D)

A =
3(1� �)

2�(7� �)

�

5I
sym

�
1+ 5�

2(1+ �)
I 
 I

�

(3D) (B.1a)

A =
1

�(1+ �)

�

2I
sym

�
2�2 � � + 1

2(1+ �)(1� �)
I 
 I

�

(2D plane stress) (B.1b)

A =
1� �

�

�

2I
sym

�
1

2(1+ �)
I 
 I

�

(2D plane strain) (B.1c)

The polarization tensor associated with the nucleation of asmall spherical elastic inclusion with

assumed elastic constants�?;�? is given (see Chikichev and Guzina, 2008) by

A
?
= A devI

sym
+
1

3
(A sph� A dev)I 
 I (B.2)

having set

8
>><

>>:

A sph= �
3(1� 2�)

2�(1+ �)

(1� �)(�� � 1)

(1+ �)(�� � 1)+ 3(1� �)

A sph= �
1

2�

15(1� �)(�� � 1)

(8� 10�)(�� � 1)+ 15(1� �)

with �� =
�?(1+ �?)(1� 2�)

�(1+ �)(1� 2�?)
; �� =

�?

�

The second-order polarization tensor associated with the nucleation of a small spherical sound-hard

obstacle in an acoustic medium is given by

(a)A =
3

2
I (3-D); (b) A = 2I (2-D) (B.3)
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