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Abstract

A time-domain topological sensitivity (TS) approach is €leped for elastic-wave imaging of
media of arbitrary geometry. The TS, which quantifies thesgigity of the misfit cost functional
to the creation at a specified location of an infinitesimakh@ expressed in terms of the time
convolution of the free field and a supplementary adjointifaed a function of that specified lo-
cation. Following previous studies performed under (nystlatic or time-harmonic conditions,
the TS field is here considered as a natural and computdiiaeféitient approach for defining
a defect indicator function. This study emphasizes the émgintation and exploitation of TS
fields using standard displacement-based FEM approaclsésightforward task once the cor-
rect sensitivity formulation is available. A comprehemsset of numerical experiments on 3-D
and 2-D elastodynamic and acoustic configurations is redpetlowing to assess and highlight
many features of the proposed TS-based fast qualitativifabation such as its ability to identify
multiple defects and its robustness against data noise.

Key words: Inverse scattering, Time domain topological sensitiviijoint solution method,
Elastodynamics, Finite element method

1 Introduction

Three-dimensional imaging of objects hidden in a solid gigilastic waves is of interest in a number
of applications such as nondestructive material testingnolerground object detection. Such iden-
tification tasks require data provided by measurementsishaterdetermined compared to what is
normally necessary for solving the forward elastodynamablem for an assumed object configu-
ration. Minimization-based approaches that exploit thia darough a misfit cost function bear con-
siderable computational costs associated with the elasémdic forward solver. Global optimization

methods, especially, are currently impractical due toaingd numbers of forward solutions entailed.
More traditional gradient-based optimization is a compaotelly reasonable alternative for this class
of inverse problems, especially when enhanced by adja@iséth shape sensitivity methofls (Bohnet,
f[99%;[Bonnet and Guzind, 2009). However, their performategeends on choosing adequately the

initial guess (location, topology and geometry) of the leidabject(s).
These considerations led to the introduction of samplinghods, which aim at computing a

defect indicator function in a non-iterative way from theitable overdetermined data and may be



defined in several ways (see the review articlg by Polth@$)2using the linear sampling method

(Colton and Kirsdh[ 1994; Nintcheu Fata and Gugzina, P004h@iconcept of topological sensitivity

(TS) considered here. The TS quantifies the perturbationciedi to a cost function by the creation
of an object (e.g. a cavity) of vanishingly small charastigisize at a prescribed locatianinside

the reference (i.e. defect-free) solid as a function of #mading pointz. This concept appeared in

Eschenauer et pll (1994) apd Schumgcher (1995) in the ¢arftéopological optimization of me-

chanical structures, and has since also been investigatedious contexts as a method for defining a
defect indicator function, see elg. Gallego and Rus (2q@&Bkowska-Strumillo et hlf (2002) for 2D
elastostaticd, Feijpd (2004) for 2D linear acousfics, Gaznd Bonnk{ (20D6) for frequency-domain
3D acoustics| Bonnet and Gugirfa (2004) for frequency-dor8& elastodynamics and Masmoudi

et aI! (200p) for 3D Maxwell equations. Moreover, the comagiohal cost entailed byI evaluating a
TSfield is, in general, of the order of one forward solutiamg ¢herefore modest compared to that of a
standard minimization-based iterative inversion mettmglo The concept of topological sensitivity
is closely related to the broader class of asymptotic methetiere unknown defects whose geome-
try involves a small parameter are sought by means of expassif the forward solution (rather than

the misfit function) with respect to that parameter, see fEngmari and Kang, 2004, 2006).

Defect identification using TS under transient dynamicaiditions have so far been the subject

of only a few investigations, notably Dominguez dt pl. (A0@&ere the connection with time-reversal
is explored[ Bonng{(20pP6) in which an adjoint-based forrthefTS is derived for 3-D elastodynam-
ics and acoustic$, Malcolm and Guzifa (008) hnd ChikiclmelyGuzink [[2008) where the case of

penetrable inclusions in acoustic and elastic media (otispéy) is considered, ard Bellis and Bonnet

(2009) which is devoted to a specialized formulation forckralentification problems. This article
addresses defect identification in elastic solids by me&ttseol' S function defined for small-cavity
nucleation in the context of 3-D time-domain elastodynamitn a previous publicatior{ (Bonhet,
P008), the TS function was obtained as a bilinear expredsituring the (time-forward) free field
and the (time-backward) adjoint solution by considering dsymptotic behavior of a system of gov-
erning integral equations based on the transient full-sgdastodynamic Green'’s tensor, the corre-
sponding (analogous and simpler) formulation for scalaresavas derived as a by-product, and a
semi-analytical example based on transient 3-D acousticvdas presented. As in many other deriva-
tions of TS formulations published thus far, the integmgli&tion setting is convenient for performing
the mathematical asymptotic analysis but is then just ongewéral possible approaches for doing
numerical computations once the necessary formulae ablisbied.

The intended contributions of this article are two-foldrsHi, on the theoretical side, the deriva-
tion of the TS field proposed in Bonhdt (2D06) is clarified artkeded as follows: (a) the validity

of the previously-established asymptotic behaviour oftthe-domain governing integral equation



(and hence of the resulting TS formulation) is shown to ddpam smoothness assumptions on the
free field, an issue not touched upon[in Bohriet (R006); (byveplgr and more compact version
of the derivation, using Green’s tensors rather than fadlee fundamental solutions, is presented,;
(c) proofs are also given for two-dimensional problems. oBdty, a comprehensive set of humeri-
cal experiments, including 3-D elastodynamic examplegpoerted and discussed. Unlike previous
publications where the time-domain TS is computed by me#mspecialized techniques based on
Green's tensors, this study emphasizes the implementatidnexploitation of TS fields using the
standard displacement-based FEM, and indeed the easengf stbionce the correct sensitivity for-
mulation is available. To the authors’ best knowledge, #rticle presents the first comprehensive
numerical study of TS-based defect identification methoglplin time-dependent 3-D settings and
implemented within general-purpose computational erwirents.

This article is organized as follows. The forward and inegpsoblems of interest are reviewed
in Section[R. Topological sensitivity is defined and essfgd, in both direct and adjoint-based
forms, in Sectior{]3, the more technical parts of the dewveibeing deferred tb_ Appendiq A for
ease of reading. Sectiph 4 then discusses some importamtefe@f the methodology and introduces
additional concepts and notations pertaining to the FEStamplementation and its exploitation in
subsequently presented numerical results. Then, theésedflHEM-based numerical experiments are

presented and discussed in Sect{gns 5 (2-D scalar waveé@tuatdp (3-D and 2-D elastodynamics).

2 Cavity identification model problem

Let denote a finite elastic body iR ° (d = 3 ord = 2), bounded by the external surfaceand
characterized by the shear modulus Poisson’s ratio and mass density, and referred in the
following as thereference body A cavity (or a set thereofy bounded by the closed traction-free
surface(s) is embedded in. The external surface, which is identical for the reference domain
and the cavitated domain® ) = nB, is split into a Neumann pat \ and a Dirichlet part
Sp, respectively associated with prescribed time-varyiagtionst and displacements. Under this
dynamical loading, an elastodynamic state arises in (B ), which satisfies the following set of

field equations, boundary and initial conditions (here®rafeferred to for generis asp B )):

. Lug ( ;5= 0 (2 B)it>0)
% tg ]( ;8 =0 (2 ;£50)
P®B):_ thsl ;0)=t( ;v ( 2%it>0) 1)
% ug ( ;B =u( ;v ( 2%;t>0)
" oup(i0)=us(;00=0 (2 @)



where andtdenotes the position vector and the timegenotes the governing Navier space-time

partial differential operator defined by
Lw ( ;=1 W15t w (b (2)

where [ ]= C :r w denotes the elastic stress tensor associated with a digpdantw , the fourth-

order elasticity tensor being given (for isotropic materials) by
cC=2 Iy — 1 I 3)
1 2

(with Y™ and 1 respectively denoting the symmetric fourth-order and theosd-order identity
tensors)tiv 1= [ ] n is the traction vector associated with(n being the unit normal o8 [

oriented outward from 8 )), and () and ( ) indicate first- and second-order time derivatives.

Cavity identification problem. The location, topology and geometry of an unknown cavityesys

B U (or equivalently ™®)is sought by exploiting measured values of the responsesdfawed solid
tue _ (g '€ arising due to the probing excitation. Specifically, thepllisementu °PS induced

in  "epy (u;t) is monitored over the measurement surfa®€s sy and time intervak2 ;T ]

(other possibilities, e.g. finite sets of measurement ionatand/or times, being also allowed by the

ensuing treatment). ldeally, a defect configuratidft® such that
u™e( ) = S ;) ( 28506 t6T) @)

is sought, wherei"™® solves problenp @ ™) defined by [[L). In practice, due to many factors
(e.g. incomplete and/or inexact measurements, modellngrtainties), the cavity is sought so as
to minimize a misfit cost functional which is naturally (iretpresent context) expressed as a double
integral over the measurement surface and the experimeatiatu

Z
J( B);T)= "fug ( ;v); ;tldsdt (5)

0 g obs

where (B ) is a trial cavitated solid defined by the trial cavity u z solves problene B ) defined
by (@), and the misfit function is chosen so as to define a distance betweemndu °PS. Numerical

experiments presented herein are based on the commortylasst squares misfit function:

T;ostl= < u®( ;03 (6)



3 Topological sensitivity

3.1 Small-cavity asymptotics

The topological sensitivity of the cost functiong] (5) isfided as its sensitivity with respect to the
creation of an infinitesimal object of characteristic sizat a given locationz in . Here, such
infinitesimal object is taken to be a trial caviby- (z), defined byB«(z) = z + "B in terms of its
centerz, its shape specified by the unit bounded et RP (with boundarys and volume= )
containing the origin, and its radius> 0. The corresponding trial cavitated solid is denotedz ).

Following [Sokolowski and Zochows$k[ (1999) pr Garreau dt(@0D0]), one seeks the asymptotic

behavior ofJ( «(z);T)as" ! 0through the expansion:

J(w(@z)T)=J(;T)+ MBI E;T)+ o (M) "0 (7)

where the function ("), to be determined, vanishes in the limit 0 and thetopological sensitivity
T (z;T ) is a function of the sampling pointand duratiorr .

To evaluate the expansiof} (7) and find the value ¢f;T ), it is necessary to consider the asymp-
totic behavior of the displacement governed by problere B« (z)). Towards that aim, it is conve-
nient to decompose - as

un( ;B =u( ;0+ v( ;b 8)

8
%Lu(;t)=0 ( 2 ;t>0)
SOt ;D =t( ;b ( 2;t>0)
P(;): 9
% u( ;H=u( ;v ( 29;>0)

u( ;0)=u(;00=0 (2 )

8Lv (;6)=0 ( 2 ;t>0)
§ eV I 0=t ;D (2 .(z)it> 0)

th ' 1( ;0= 0 (2 g;t>0) (10)
§ v'( ;=0 ( 2%;t>0)

vi(;0=v(;00=0 (2 );

with « (z) denoting the boundary &f « (z). Since the scattered field is expected to vanish for in-

finitesimal cavities, i.ekv" ( ;t)k = o("), expansion[|7) is sought by invoking the first-order Taylor



expansion of w.r.t. to its first argument. The topological sensitivityz ;T ) and the leading asymp-
totic behaviour (") are thus to be identified on the basis of:

Z -7

E Q’ "
—f( ;b); ;v ( ;pdsde= MBI (z;T)+o0 (M) (11)

0 gobs Qu

In what follows, emphasis will be given to the 3-D case.

3.2 Leading contribution of v'as" ! 0

To address this issue, it is convenient to reformulate theiging boundary-initial problen (ILO) in
terms of an integral equation. Lst (x;t; )andT (x;t; ;n) denote the time-impulsive elastody-
namic Green’s tensors, defined such that U x;t; )ande T x;t; ) are the displacement and
traction vectors at 2 resulting from a unit time-impulsive point force actingatin the k-th

direction at timect= 0 and satisfying the boundary conditions

U it; )=0 ( 2%;t>0); T (x;t; ;n)=0 ( 2%;t>0); (12)

One also defines the elastodynarhit-spacefundamental tensors ; x;t; )andT; x;t; ;n)
in a similar way, replacing boundary conditioffs](12) wittcalg and radiation conditions at infinity

(Eringen and Suhub[, 1975, ske Appendix|A.2). The goverimtegral equation for the scattered
field v" then reads (sde Appendix A.1)

®2 n(z);t>0); (13)

R
in which indicates a (strongly singular) integral defined in the @guyarincipal value (CPV) sense

and 2 denotes the time convolution at instant 0 defined by

B?bl( ;= a(; ) b(;t H)d : (14)
0

where the inner product appearing in the integral is suchahab is a tensor of the lowest possible
order (e.g.U ?thasorder 1r u 2 []is a scalar), and generic tensor fiekdandb respectively

verify initial and final conditions
a( ;)=a(;)=0(60); bl; kt;)=0(>t (15)

Equations governing the leading contributionvofon «(z)as"™ ! 0 are sought as the asymp-

totic form of integral equation| (1L.3). For this purpose, sedatoordinates or , defined by
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Xx= (x z)="; = ( z)=" x; 2w(z);x; 25) (16)

are introduced. Consequently, the volume and surfaceréliffeal elements in -space are rescaled
according to

(@ dv = "dv; (b)ds = "ds (2 w(z); 28) (17)

where o ; ds denote corresponding volume and surface differential efemonB ands, respec-

tively. The leading behavior as! 0 of the right- and left-hand sides of integral equatipr] (&) a
then given by the following Lemmd} 1 afjd 2, whose proof ismyivdAppendix A.D.

Lemma l. Assumethat 7 r u( ; )is Lipschitz-continuous (uniformly for in a neighbourhood

of z) and differentiable in a neighbourhood of= t Then, one has

Z Z
U x;t; )?t( ;0pds =" Ui x; ) n()d  : plEz;HD+ oM &2 «(z))

v (z) S
(18)

whereu ; (x; ) is theelastostatidull-space (Kelvin) fundamental displacement, giverj b i

Lemma 2. Let the vector function” ( ;t) be defined by" ( ;t) = v ( ;t), with and related

through [Ip). Then, one has

Tt n)ev (ds = Tioakit ) () d +okv (k) k20 (2))

v (z) S
(19)
whereT ; ,» is thefull-spaceelastodynamic fundamental traction tensor defined in tesfmescaled

wave velocitiesy ="; cr="andkv" ( ;tkisanormof 7 v"( ;t), e.g. itsL?>-norm ons.

Lemma 1 means that the leading contribution to the rightiheide of integral equationf (13) as
" 1 0 has a special structure wherein the time varialdad the (normalized) space variableare
separated. Lemma 2 indicates that the left-hand side afriatequation[(13) is of ordey kv"k) as
"1 0. Lemmas 1 and 2 together thus suggest to seek the leadinipetion tov" ( ; )= v ( ; )
as" ! 0in the following form, in which the third-order tensor fur@mt 2 s 7 Vv ( )is to be
determined:

ViD= " (): Llz;o+ oM (2 w(z); 29): (20)

Lemma 3. Letv" ( ;t) be of form@O) for some ( ). Under the assumptions of Lemﬂ'\a 1, one has

z z
T (x;t; jn)?v (;Hds ="  T; x; ;n)vOd : Llz;H+ro &2 «(2))

n(z) S
(21)
whereT ; (x; ;n)is the traction associated with the elastostatic Kelvirutioh, given by[(A.22).
Proof. Sed Appendix Al2. O



Combining lemmaf]|1 arjdl 3, one finds that representdtidnf@@ed holds provided that solves

the integral equation

Z 7
1
—V (%) + T, x; ;n) VOB = Ui x; ) n()ds x28) (22)

2 S S

Upon inspection,[(22) can in fact be interpreted as an iategguation formulation governing the

solutionsv .- = V 4 = (e, e-):V to a set of six canonicalastostaticexterior problems

r CxVye)()=0 ( 2R’nB);
. 16 k6 ‘63 (23)
Cx Vi) n0= Sx( e+ ni()a) (28)

which are independent of, " and time. The tensor function ( ) is in fact completely defined,
through problems[(23), by.
The scattered fielg" at any point ofs°PS (and more generally at any point away from the trial

cavity B « (z)) is given by the integral representation formula (see AppeA.1):

v4 n o
v (x;t) = U (x;t; )2u( ;H+E (x;6 )2 ( ;0 dv
B (z) Z
T &;t; ;n)?2v ( ;t)ds (XZSObS; t> 0); (24)

" (z)

wherekE (x;t; )denotes the strain associated withx ;t; ). Expanding the first integral by means
of (C?a) and a Taylor expansion of the densities abostz, substituting[(20) and introducing scaled

coordinates into the second integral, one obtains the leading contdbuwifv' as" ! 0 as:
vt = "W &itiz)+ o(™) (25)

with

W ;5z)= Bj CE ®;52)]2 R @ 1z;0)+ U-(x;tz)2u(z;b) (26)

and where the constapblarization tensor depends only o (throughv ) and is defined by

Z
1 1

A =¢C —
BI s

n() V() (27)

Inserting [2b) into[(1), the TS (z ;t) and leading behavior (") are then found to be given by

Z
T(z;T)=

72 ’

L ;0; ;80 W ( ;tz)dst M= (28)

0 g obs @u

Expression[(38) provides a useful basis for discussing sufitiee features of the time-domain

TS, see Se¢. 4.1. It can also conceivably be used for the peigfacomputing the field (z ;T ), and



is indeed so used in Chikichev and Gukipa (2008) wheréan elastic half-space with a traction-

free surface, a configuration for which the Green’s tensén@vn. For arbitrary reference bodies
, an implementation of[(28) would require a numerical evéidiaof the Green’s tensor for source
points located ors °°S (typically taken as Gauss quadrature points associatdutigt evaluation of
the integral overs °P9) and field points taken as sampling poiats
However, a computationally more efficient approach foreatihg the fieldr (z ;T ), based on an

adjoint solution, is usually preferable and was used fonatherical examples presented thereafter.

3.3 Adjoint field formulation

The adjoint formulation, previously presented in Bohh€0@ and now summarized for complete-
ness, stems from treating the integral in] (11) as one of tmastarising in the elastodynamic reci-
procity identity. For any generic domain and pair of elastodynamic states ;u, satisfying the

homogeneous elastodynamic field equations ias well as homogenous initial conditions

ur( ;0)=uwy( ;00=0 and u( ;0)=ux( ;00=0 ( 20);

the following reciprocity identity holds (see e[g. Eringand Suhubil 7975, Achenbadh, 2D03):

Z

ftlail?2u,  thizl?uig( ;0 ds =0 (29)
QO

Defining the adjoint state as the solution of:

8
La ( ;=20 (2 ;06teT)
LB M= (T v 5Tt ( 28506 t6 T)
< @u
tid1( ;£ =0 ( 2 %ns°S.06 t6 T) (30)
% a( ;9=20 ( 29,06 t6 T)
a( ;0)=a( ;0)0=20 (2)
using relation [(29) withv = . (z), u; = @ andu, = v" and exploiting the relevant boundary
conditions in [IP) and (30), equatign {11) becomes:
z z
MBI (z;T)+ o0 (M) = ft@]2?2v g( ;v ds ftiu]?dag( ;nds  (31)

v (z) " (z)

On inserting the asymptotic behavidr [20) in the first inéégrecasting the second integral as a
volume integral oveB » (z) using the divergence identity, and working out the leadiagtiibution

as" ! 0in the resulting equality, one arrives at



T@;T)=f RI?@ : L)+ @2ugz;T); (M= (32)

where the polarization tensar is again defined by[ (27).

Remark 1. Theo ("°) asymptotic behavior (82) af( « (z);T) relies onv" approaching (up to a
scaling factor) astaticsolution as" ! 0. This requires the free-field to be sufficiently regular at
(z;t), e.g. according to the sufficient condition given in Lemfhand[2. To put this another way,

the TS[(32) may (invoking the Fourier convolution theorem)fdrmulated as the inverse Fourier

transform of the (previously established [in_Bonnet and G 200K) frequency-domain expression

T@;!)=f @1:@ : L) '@ ug(z;!)

The Fourier integral then converges!if7 T (z;!)2 L' ®), i.e. provided the high-frequency content
of the excitation is limited. Related considerations arealeped if Ammari et &l[ (20p9), where the

order in " of the leading perturbation by a small inclusion of the fumgantal solution of the transient

wave equation is shown to depend on the high-frequency mooitéhe time-modulated point source.

Remark 2. In a previous article [(Bonnef, 20p6), the small-cavity aptotics was conducted by

relying on estimates

1
Uty )?a( ;09=-U1 ®; ) azZ;H+0(1) (@)

1 x; 2 n(z))
T ;t; in)?b( ;H)=5T1 &x; in) bE;t+0 Q) (b)

(i.e. identities (27) therein) instead of Lemnjhs 1 §hd 2dirig the same resulf (B2) but in a not
entirely correct way: (i) these estimates hold under sme$s conditions oa ;b, similar to the
sufficient conditions given in Lemnas 1 4hd 2, that were notioreed, and (i) estimate (b) above is
in fact not directly applicable here as it is needed far ;t)= v' ( ;t), which is not defined at = z.

Lemmag]1 anf] 2 were therefore needed to fix this flaw in the @sgimanalysis.

Remark 3. The cavity-identification setting of the model inverse feobformulated in Sectiof} 2 is
consistent with, but does not constitute a mathematicakprésite for, the small-cavity asymptotics
developed in this section. In fact, the latter procedure imayrinciple be applied to any cost function

of format (b) whatsoever, regardless of its physical meguwinengineering motivation.

Remark 4. The same canonical problenjs](23) and subsequent polanzgtnsor [37) also occur in

Bonnedt [2006) and in a previous frequency-domain formartetif the TS[(Guzina and Bonet, 2004).

Remark 5. The foregoing analysis has been performed for the 3-D casamedd the most important,
but can be reproduced with the necessary adjustments f@-Dease (seg Appendix A.4), leading

to similar results where (")= " instead of (")= '®.
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4 Discussion and implementation

4.1 Discussion

Topological sensitivity as a defect indicator function. T (z;T ) quantifies the sensitivity of the
featured cost functionaf to a perturbation of the reference medium in the form of amitgsimal
cavity atz. It is then natural to consider (z;T ) as a possible defect indicator function, as was
previously done on several occasions (see Introductiohgreby actual defects are expected to be
located at sampling points at which T (z;T ) attains its most pronounced negative values, i.e. at
which a sufficiently small defect would induce the most pramzed decrease of In other words,
infinitesimaltrial cavities placed at such sampling points improve theditveen simulated and actual
measurements, and intuition then suggestsfihiie defects having the same location also induce a
decrease of the cost function. It is important to emphasiaeduch exploitation of the information
provided by the fieldr ( ;T ) is natural but not backed by a rigorous mathematical praedgpide the
fact that the analysis of the cost function leading to thenitédin and evaluation of (z;T ) is itself
mathematically rigorous. It is however substantiated bijous numerical experiments performed for
several classes of physical settings (see references igitetroduction). The present study aims at
contributing to this substantiation within the presentteghof time-domain elastodynamics, seldom

considered in this context, through the examples of $SkasdBa

Topological sensitivity allows non-iterative approximae global search. Defect identification

based on the TS field ( ;T ) of a misfit function has the following important characttcs

(&) The numerical procedure is non iterative, as it just ireguwo solutions evaluated on the ref-
erence (defect-free) configuration, namely the free fig)cat@l the adjoint field[(30). It is thus
computationally much faster than usual iterative optirtiirabased inversion methods. This
non-iterative nature is also one of the main features ofitieat sampling method (Ardrs, 2001;
Nintcheu Fata and Guzinp, 2007).

(b) The approach is of a qualitative nature, as the undeylgipproximation[{7) ofr does not lend
itself to optimization w.r.t.".

(c) Itis global in nature, as (i) it does not require an itii@ess, and (i) it allows simultaneous
identification of multiple defects without prior knowledgé their number (see last example of
Sec[b and the dual-cavity example in ed. 6.2).

(d) The experimental information about sought defectsramger ( ;T ) is entirely contained in the
adjoint solution (through the definition of the adjoint fescin terms of the density).

(e) ATS field may be defined and computed using the presenbagipfor cost functions associated
to any overdetermined data, no matter how scarce, which sne8ebased identification a very

flexible approach.
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Transient vs time-harmonic data; time reversal. Compared to previous works based on wave-
based imaging under time-harmonic conditions (e.g. BoandiGuzina] 2004; Feijpp, 2404; Guzina
[ ]

and Bonnet| 2006; Masmoudi et| dl., 2D05), the time-domaprageh to TS benefits from richer

data as it exploits measurements taken over a durati@ihe mathematical framework allowing to

exploit other ways to collect data over tim¢). DominguezlbED0%) have compared this approach

to imaging processes based on time revefsal (Casserea1&d]), since the adjoint field defined

by (39) constitutes a time-reversed state related to the<ffeF scattered by the actual defextVe.

Influence of measurement noise. When observed values®®s differ from their true counterpart
u'® pecause of measurement noise or modelling uncertaintiessensitivity ofT ( ;T ) to such
uncertainties is directly related to the sensitivity of #tjoint solution to the same uncertainties. In
the frequently-used case of least-squares cost funcsiohased on (possibly weighted¥ norms of
measurement residuals= u  u°PS, the adjoint forces featured ifi {30) depend linearly arMore
generally, misfit functionals based om.a norm (with1< < 1 )leadtoo k k ') adjoint forces
(the cases = 1;1 do not satisfy the required differentiability of misfit déys’). As T ( ;T)
also depends linearly on the adjoint solution (irrespect¥ the nature of the cost functional), the
perturbation undergone by the topological sensitivityesdt-squares cost functions is, when using
L2 norms linear in the measurement uncertainties. This suggests thaffidation procedures based
on the TS field are better-behaved with respect to measuteroise than usual inversion procedures,
known to be highly sensitive to the latter unless properfutarized. Indeed, numerical results of

Sec[6.p, based on misfit functionals without regularizateym, corroborate this expectation.

Dynamical versus static measurements. Expression[(28) shows the value Diz ;T ) to be influ-
enced by that ofi ( ; ;z). The latter, defined[by (26) in terms of the elastodynamice@eedis-
placement and strain tensors, is a decreasing functioredigtanced (z ;599%) of z to s°PS. Hence,
sampling points located close #8°S are more apt to lead to high (negative) values pincreasing
the risk of false identifications there when seeking a butliefgect. Moreover, it is instructive to com-
pare the behavior af for sampling points remote from the observation surfacemliag to whether

T is evaluated under dynamic (i.e. time-dependent) or staéic time-independent) loading condi-
tions. Indeedyw ( ; ;z)behaves liked (z985)] * in the former case, but likéi (z ;S°%)] 2 in the
latter case: (i) this behavior is directly observed o ; ;z) on the full-space Green’s tensor, see
Egs. [A.4hb) and remaif 6, and is also explicit for scalaf-$@dce Green's functions, constructed
from their full-space counterpart using the method of insagié§) the second term ir{ (R5) vanishes in
the time-independent case. The static TS is thus a prigidessitive than its dynamic counterpart to

defects that are remote from the measurement surface.
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Computational issues. Anticipating on the finite element implementation discasgext, all nu-
merical results of Secf] 5 afid 6 are based on solimegr dynamical problems in the time domain,
using an unconditionally-stable version of the Newmarletimarching algorithm. Such linear evolu-
tion problems have well-established convergence pragsewith respect to decreasing mesh size and
time step, and hence do not raise mesh dependency issueshdVatver that discretization error af-
fecting displacement solutions affect quadratically tiSedTie to the bilinear structure of formu[a}(32).
The meshes and time steps used thereafter are chosen sodalycsadequately model geometry and
represent expected spatial and time variations in the ctedptrue”, free and adjoint solutions. Also,
no attempt to improve the accuracy of computed stressesghnefined postprocessing of displace-
ment solutions has been made (although such procedures coigteivably improve TS evaluation),

so as to show the usefulness of the TS concept within a stukday framework.

4.2 Implementation and numerical experiments

In spite of the previously-mentioned current lack of a matagcal proof to validate rigorously the

heuristic idea of a TS-based defect indicator functiors itévertheless useful to evaluate its practical
efficiency through numerical experiments. This study aitnestablishing the ability of the time-

domain TS to identify defects (here mostly taken as impabégrobjects such as cavities in elastic
solids), emphasizing the computational efficiency of thprapch and its ease of implementation
within a standard finite element framework, and discussiggrhain features of such wave-based
imaging approach. In the sections to follow, results frommatical experiments will be presented for

the 2-D scalar wave equation (Sect[$n 5), then for 2-D ande8aBtodynamics (Sectigh 6).

Discretization. Aiming at a FEM-based implementation of the time-domairotogical sensitivity
of g, let ,, and , B )denote FEM discretizations of the reference domaimd any cavitated trial
domain @B ), whose meshes are assumed to coincide over the (discieblaservation surface gbs,

Then, a discretized least-squares cost function is be setthe form

obs

X Rr 1 b 5
Jn( nB);T)= SKuB  ( 5it) up>S( 5tk (33)

=1 3=0
wheren®s denote the number of nodes located f¥S, ft; = 0;:::;t,, = Tgis a sequence of
discrete time instants (a constant time stepeing assumed for simplicity), and s 4 ; ugbs denote
the FE-computed trial displacement and the observed dispiant sampled at the nodesscﬂhs,
respectively. For the purposes of computing the TS fields hecessary to set up the discretized
reference domain ;,, whereas the discretized trial domain ® ) is introduced for the purpose of a

consistent definition ofi,, but is not actually needed.
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In the numerical results to follow, the dat£Ps is generated synthetically, using a discretized
version !®of the "true" domain with the defects (or set thereof) to kentified. In that case, the
meshes of ' ands S are not required to coincide ovef®s.

All forward and adjoint solutions are performed using anamtitionally-stable Newmark time-

marching scheme with parameters- 1=4; = 1=2 (Hughds] 1987).

Discretized time convolution. A discrete version of the time convolutioh [14) is also adds

n 2wnl( 55) t vp( gEwn( ;5% ) 06 k6 nr): (34)
=0
Then the adjoint state, corresponding to the discretized cost functipn (33) is @efian ,, and

results from time-dependenbdalforcesr ,, oversgbsdefined by

Fro(ut)=un( gt t) u®( gt t) (1616 n°% 06 k6 ny) (35)
Truncated topological sensitivity. To focus on areas of whereT attains sufficiently low (nega-
tive) values, a thresholded versian of T depending on a cut-off parameteiis used in some of the
following examples. It is defined by

( min
T(z;T) (To6 T7); : i
T (z;T)= _ with T™ = minT (z;T); < 1; (36)
0 T> T z
with the implicit assumption that™" < 0. Moreover, let eq( ) denote the geometrical support of

T (z;T),Ii.e. the region of defined by
Begq( )= z2 T (z;T)< 0 : (37)

Thus an estimation of the unknown cavity (or set thereofgested by the thresholded TS may be
defined interms 0B ¢q ( ). The following additional definitions will also be usefuhet characteristic
radiusReq( ) Of Beg( ), given by

1=2 1=3

1 3
Reg= —Beq] (2-D) ; Reg= 4— Beqd (3-D) ; (38)

where B ¢qjstands for the volume df ¢, and the distance ( ) between the centroileq Of Beq( )

and the true cavity centroid™®2 | i.e.

d= j(true Xeqj Wlth Xeq =

dv (39)
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5 Defect imaging using acoustic time-domain data

In this set of examples, the reference domais the unit square, i.e.= f06 1; » 6 1g(Fig. l).

The primary field is governed by the two-dimensional scalavevequation of e.g. linear acous-
tics. The identification of a set "'® of impenetrable obstacles, such that a homogeneous Neumann
boundary condition describing a zero normal velocity isspribed on the obstacle boundar{j“®,

is considered, based on four (simulated) experiments ddtidurT. The free pressure field

associated to experiment numbeis defined through the boundary-initial value problem

u® ;0 WM =0 (2 ;06t6T)
ru®( ;0 n()=1 ( 2306t6T)

(40)
ru®( ;0 n()=0 ( 296k);06t6T)

where eacls . is one of the sides of the square boundary ,afumbered according to Fid] 1, and
denotes the two-dimensional Laplacian operator. Notettigatvave velocity is set ta= 1, so that
the travel time of waves propagating vertically fr@am to S5 or horizontally froms, to s, is one
unit of time. All simulations presented in this section wpegformed using a finite element method
based on a piecewise-linear interpolation, i.e. threeeddadangular elements. The cost function

Z -7

T

.k k
J¥®;T) = ;ué (D) Uéb)s( ;H3ds dt
0 S1+ S2+ S3+ 5S4

N =

is then introduced (in a discretized form similarIﬁl(33))1eweut(,}i,ﬁ3 denotes the pressure field arising
in "™e— np e from the external excitation defined ipJ4@);. is the corresponding (possibly
polluted) observation, and® is the predicted measurement for an assumed configuratiohthe

obstacle. The topological sensitivity(z ;T ) of 7%, such that
T )Ty = 0% (GT)+ "B @;T) + o(™)
is given (following an analysis similar to that of SEE. 3) by

n 4 o
Tz;T)= 2 r u® 2r a® 4 ?u(k)ﬁ(k) (z ;%)

Identification of a single scatterer. Let B "'® denote the ellipse with parameters as given for scat-
terer 1 in Tabld]1 (where “inclination” refers to the anglevibeen the ;-direction and the major

principal axis). The meshes used for generating the s)inttjataut(ﬁffe and for computings ;& and

15



S g =

Figure 2: Identification of a single scatterer: meshes used for geiregdhe synthetic data (left) and
computing the topological sensitivity (right).

T ( ;T) (Fig]2) feature 16 268 and 9 841 DOFs, respectively.
Figure[:B shows the distribution af ( ;T ) obtained for the above-defined single-scatterer iden-
tification problem (having used = 2, = 1=2and t= 2510 2). The regionseq( ) clearly

pinpoints correctly the location of the defect, while itsesgives a reasonable estimation of the actual

o 0.1 0.2 0.3 04 0.5 0.6 0.7 0.8 0.9 1
x1

Figure 3: Identification of a single scatterer: distribution of thredded topological sensitivity |,
withT = 2and = 1=2.
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Figure 4: Identification of a single scatterer: influence of cut-offgaeter .

defect size. Figur 4 moreover shows, by means of a sequébtmwups of the region surrounding
the actual defects for ranging from 0.1 to 0.9, that¢q( ) is relatively insensitive to the choice of
within a fairly wide range of values (approximately 6 6 0% for this example).

Figure [b then illustrates how the choice of experiment coméiion and duration affects the
results. Figur¢ 5(p), which repeats Hipy. 3, is based on tigesiexperimenk = 1 and a duration
T = 2 large enough for a wave emanating fremto hit the defect and send scattered signals back to
various parts of the boundary. Hence, the cost functionaiosienough data about the object to make
an identification possible. In contrast, under the sameitiond but with data collected only until
T = 1, the scattering of a wave emanating fremseldom has sufficient time to send information to
the boundary, and the defect is not identified (Fig.]5(b)jntthe same reduced experiment duration
T = 1 but with an incident wave emanating from surfexg located closer to the defect, some of
the scattered signals reach the boundary befete1 resulting in an identification (Fid. 5[c)) that
is not as good as in Fif). 5[a) but still acceptable. FinallgjmtainingT = 1 and using a multiple
experimentk = 1;2;3;4 (with experiments = 3;4 contributing most of the usable data due to the
chosen duration) yields again a satisfactory identifica(iéig. [5(d)). These observations entirely

conform with what one would expect based on physical irgniti

Simultaneous identification of a multiple scatterer. The simultaneous identification of a set of
four elliptical scatterers, whose characteristics arbeyad in Tablg]1, is now considered. The mesh

used for generating the synthetic datd,, now features 24098 DOFs. The resulting distribution
17



Scatterer # Semi@\xes Centroid Inclinatior
1 26=100; 3. 26=500 (0:30;065) tan *(1=5)
2 29=100; 3_ 26=400 (060;0:35) tan *(5=2)
3 p§=100;3p§=2oo (025;030) tan *(1=5)
4 13=100; 3 13=200 (055;0:75) tan ! (5=2)

Table 1: Identification of a multiple scatterer: geometrical paraters.

RS

(@k=1;T=2

0 o1 oz 03 o4 05 05 07 08 08 1
x1

C©k=4;T=1 (d) k=1;2;3;4; T=1

Figure 5: Identification of a single scatterer: influence of experitrmanfiguration and duration.

X.1 . . . . . X.1

Figure 6: Identification of a multiple scatterer, with= 1;2;3;4andT = 2: TS fieldT (left) and its
thresholded versiom with = 1=2 (right).

of T ( ;T) obtained for a multiple simulated experiment 1;2;3;4 with durationT = 2 and a

cut-off = 0:5is shown in Fig[p. The corresponding regibrq( ) is split into four connected
components, each one correctly located at one of the def€bis identification is simultaneous in

that the topological sensitivity is computed at once on @ sof the free and adjoint solutions, with
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no prior information about the number of defects fed intodbmputation.

6 Defectimaging using elastodynamic time-domain data

6.1 Methodology

Synthetic experiment configuration. The reference elastic domains considered are the unit cube
=f06 1; »; 36 1lgortheunitsquare= £f06 1; ;6 1g. The material parameters; ; are

set so that the longitudinal wave velocity (which is fagtestnity:

q = = 2=1 (41)

(with  defined by[(AJ5)), so that = 1 corresponds to the travel time of longitudinal waves prapag
ing between any two opposite faces@fin a direction normal to them. For both 3D and 2D cases,
a single synthetic experiment is considered throughoatsition, whereby a compressional loading
t= H (e, (WhereH (t) denotes the Heaviside step function) is applied on the faee1 of @
while a homogenous Dirichlet condition is prescribed onfd® sy = £ ;, = 0g. The observation
surface is taken as the whole Neumann surfa(g@?z SN= @ LnSp.

The reference mesh,, is based on an isoparametric piecewise-linear intergoiagimploying

three-noded triangular elements and 1988 nodes (2D cadepmwnoded tetrahedral elements and

19683 nodes (3D case). Moreover, to guard against the $ev@ime" [Colton and Kress, 1998), the

synthetic data:°°Sis computed by means of a finer discretization, wiff¥® discretized into isopara-
metric piecewise-quadratic elements, i.e. six-nodeddgtidar elements (2D case) or ten-noded tetra-
hedral elements (3D case), arranged for convenience sthtnalements of , and ® coincide

on s, The simulated displacements at the vertex nodes!’8f on ss are then retained (and the
values at the midside nodes discarded), which provide tein@lues ofu°"s on s°PS used in the

discrete cost functior (B3).

6.2 Single or dual cavity identification

In this section, the effectiveness of the topological deitsi indicator is assessed on 2-D or 3-D
single- or dual-cavity configurations, with the simulategeriment duration set tp = 1.

The thresholded TS ( ;T) for a single unknown circular cavity and a set of two unknown
circular cavities are presented, for two configurationsaichecase, in Fig§] 7 aff 9, respectively (with
details on cavity geometry provided therein). In each figoase (a) corresponds to unknown cavities
close enough to the excitation surface, so that the expatitheationT = 1 lets sufficient amount of
information reach the observation surface, leading tefetiory identification for both the single- or

dual-cavity cases. In contrast, case (b) for each figurefesia cavity located in such a way that little
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information about its presence can reach the observatidacguwithin the time frama = 1, and
these cavities are poorly located by the( ;T ) distribution. In addition, a computation on two finer
meshes of the thresholded TS of Hig. [7(a), keeping the sarasurement grid and definitioh (35) of
adjoint nodal forces, indicates that ( ;T ) is only moderately sensitive to mesh size (Fig. 8).
Then, similar numerical experiments are conducted for Hiecase, with results for single- or
dual-cavity configurations shown in Figs,] 10 gnd 11 (wher@ilieon cavity geometry are again
provided therein, and the correct cavity boundaries aréctigpas blue spheres). Moreover, the
regionsBeq( ) defined by [37), plotted respectively in Figs] 12 13 far $ingle- and dual-
cavity cases, are seen to indicate the correct location amdber of sought cavities based on the sole

informationu®PSand do not predict other, spurious, defects.

6.3 Influence of experiment duration

The duratiorr over which data is collected will obviously have a major effen the results, an effect
which is now investigated. For this purpose, in additionhi® previously-defined unit cube or square

, an elongated variant “of suchthat 16 ,6 1is also considered, with = £ , = 1gand
all other dimensions and boundary conditions defined agdeémd the corresponding observation
surfaces ®Sset ass ©*S= s =@ ‘nsg.

Figures[I4 anfl 15 plat (0:75) andR ¢q(0:75) as functions of the simulated experiment duration

T for the identification of a single cavity of radius = 0:1 embedded in domain or ° Both
the 2-D case (withx® = (0:5;0:5)in or x U = ( 0:5;0:5) in - 9 and the 3-D case (with
x¥® = (05;05;05)in orx €= (©05; 05;05)in 9 are considered. These results can
be divided into three cases (indicated on Figs. 14 [ahd 15gusincled ‘1’, 2’ and ‘3’ symbols)
according to the value taken hy. For0 < T 6 T; (whereT; is typically the time for the wave to

reach the cavity), the identification is not satisfactopyas to be expected since the scattered waves
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-68
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-74
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G0 0.1 02 03 04 05 06 07 08 09 1 G0 0.1 02 03 04 05 06 07 08 09 1

X1 1
(@) R:= 005, x™= (0:75; 0:75) () R1= 0, x"™®= (04;05)
Figure 7: Single cavity identification, 2D: thresholded TS figldwith = 0:75.
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Figure 8: Single cavity identification, 2Dr(; = 005, x'™® = (0:75; 0:75)): thresholded TS field

with

= 0:75 for three different meshes.
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Figure 9: Dual cavity identification, 2D: thresholded TS fiald.
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Figure 10: Single cavity identification, 3D: thresholded TS field with

(b) R = 0:1, x™®= (0:4; 0:4; 05)
= 0.

do not have time to reach®’s and be recorded in the cost function. Next, the cas& T 6 T,
(relatively narrow in terms of the range of) corresponds tal decreasing, and ¢q increasing, with

T i.e. estimations of defect location and size that are deadiv the experiment duration (figures

L4(b), [15(d)] 15(k)) and hence also not reliable. Finatlythe caser > T, (with T, large enough

for a substantial amount of information to reagfP9), d reaches small values (indicating a correct
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Figure 11: Dual cavity identification, 3D: thresholded TS fiegld with = 0.
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Figure 12: Single cavity identification, 3DB eq( ).

N . . O

T2 z2
s ) e
02 i . = 0 02 : it e
o, i 702
el
04 0k =
o N 04 0 T wd , 04
02 e b 08 02 e 08
04 < o 04 e A
0.6 e 708 0.6 e 708
08 < x1 08 > z1
11 11
3 Zz3
(8 R1=R,= 005 =0% (b) R; = 005 Ry = 01, = 07

Figure 13: Dual cavity identification, 3DB eq( ).

identification of the cavity location) whila ¢q, the estimated cavity size, attains stable values.
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(@R=01,x""= (05;05) (b) R = 0:1, x5 = (05; 05)
Figure 14: Influence of experiment duration: identification under 2dnditions.

0.4 '

; ||||||'|““‘h||Anuu.w

(@R = 01, x"“e (05;05;05) ()R =01, xT= (05; 05;05)

Figure 15: Influence of experiment duration: identification under 3<dnditions.

6.4 Influence of observation surface configuration

All results so far were based on dense and full-aperture mneaents (for a single experiment). The

effect of relaxing either the measurement grid density emtieasurement aperture is now considered.

Influence of measurement grid density. The influence of using coarser measurement grids fea-
turingN N points on each face ofy is now considered. Figurg]16 illustrates the effect of a
decreasing measurement density (i.e. decreasipgn the computed field ( ;T ). The numerical
value of T ( ;T) is seen to decrease, reflecting the fact that the defifitj|Bh¢BJ and that of the
adjoint forces [(35) is strongly influenced by the number ohsugement points. This in itself is of
secondary importance, as (i) the supportrof( ;T ), not its numerical value, is of primary impor-
tance, and (ii) one could easily renormalize the definitibru.o However, one also notices that a
decreasing measurement density induces a qualitativeatateon of the identification provided by

T ( ;T). This observation is confirmed by [Fig. 17, where the recongd cavity is taken to be the
supportBeq( )of T ( ;T)and which shows that must decrease with to haverq( ) reasonably
estimatingB " for all grid densities. Remarkably, the cavity location eens correctly estimated

even as the shape Bfyq( ) becomes irregular due to the decreasing number of obsamvadints.

Influence of limited aperture. Here, the effect of restricting the observation surface pmiion
ss ( sy of the boundary is examined. Figyrg 18 shows the identifinatesult in terms of eq( )

for two cases with limited aperture. For data collected anttip face , = 1 (Fig. [L8(d)), the obser-
vation surface is orthogonal to the propagation directibthe compressional wave in the reference

solid, and the horiozontal location of the sought cavityagrectly found while its vertical estimated
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Figure 16: Influence of measurement grid density on thresholded TSifield = 0,R = 0:1)

position is offset compared to the correct one. For datactat on the lateral face = 0 (Fig.[18(D)),
the TS field does not resolve correctly the unknown cavityrédeer, plots 0B ¢q( ) corresponding
to observations surfaces®®S= £ , = 1gands®S= f 5 = 1g(chosen closest to " to yield suf-
ficient usable data) indicate satisfactory reconstruatibn ™€ (Fig.[19). For the two cases shown,
B wue IS better estimated along the direction orthogonat 8, with the best identification obtained

in Fig. [[9(d) corresponding ®°S orthogonal to the propagation direction of the incident evav

6.5 Influence of data noise

In this section the influence of data noise is studied by camiig noisy simulated data of the form

n O

m ax e st un( gt e

obs true max max
up (A =u, ( D+ uL ;o ous = . uy
1 i nobs

ex (42)

where is a Gaussian random variable with zero mean and unit stanfgafation. Figur¢ 20 depicts
the behavior of the imaging method for increasing noiselleveRemarkably, the cavity location is

correctly estimated even for high noise levels (F[gs. 28(w)[20(d)). TS-based identification thus
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Figure 17: Influence of measurement grid density: blurring effecBeg( ).

still yields usable results if applied to noisy data, asapdited in Sed. 4.1 based on the mathematical
structure of the TS formula, even though no regularizatsonsied in the cost functional. This feature
is very promising for applications. Note that the referené®® used in [4R) is itself “noisy”, being a
FEM-based approximation eft"®, The discretization error level thus superimposed to thnekited
data noise is expected not to exceed a few percent in the éespresented here (and thus to be much
lower than the noise levels of Fids. 20(c) dnd 20(d)). Fataimse, synthetic data evaluations for the
2D elastodynamic examples presentextlal0  relative discrepancy (in2-norm) when performed

on meshes featuring 2420 and 5453 nodes.

6.6 Identification of non-cavity defects

To conclude this series of numerical experiments, the ifilestion of a crack and an inclusion is
now considered, whose geometrical or material charatiterido not conform to those assumed in

deriving the topological sensitivity.
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Crack identification. The identification of a penny-shaped crack (radius= 0:1, unit normal
n= sin e+ cos &)leads toresults that are satisfactory in terms of cracitlon and size, as
shown in Fig[2]1 for two choices= 0and = =4 of the crack inclination, while lacking sensitivity

to the crack inclination. A recently-proposed specific fatation for crack problems (Bellis and

Bonnet 120009) features a polarization tensor that depexgicily on an assumed crack orientation,

thus offering (not yet investigated) possibilities for fimglthe crack orientation on that basis.

Inclusion identification. The identification of a penetrable spherical inclusion abtarized by the
radiusr = 0:1 and material parameters’; “= ; “= isnow considered. The TS defined for
cavities is found to identify satisfactorilyoft spherical inclusions (such thaf 6 ), see Fig[242.
However, employing this method fetiff inclusions (such that? > ) leads to an contrast inversion
in the TS field, the defect location now corresponding toaimumof T ( ;T ). Moreover, the TS

defined for spherical elastic inclusions with assumed risfearameters °; ?; ?, given by

T (z;T)=f BI2@7: L)+ ( e ?ug(z;T) (43)
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Figure 21: Penny-shaped crack identification: thresholded TS field

with the polarization tensak ? given by [B.2) and established [in Chikichev and GUzjna (2008s

also been implemented within the present FEM approach. ,TthenTS fieldT * computed for the

correct values of ?; ?; ?is seen in Fig[ 33 to allow a correct identification of a stiftlusion.
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7 Conclusion

In this study, the concept of topological sensitivity (TS)dieveloped for elastic and acoustic-wave
imaging of media of arbitrary geometry using data in the taoeain. On seeking the limiting form
of the boundary integral equation governing the scatteradd iaused by a cavity with vanishing
size", the TS field is found to be expressed in terms of the time datieo of the free field and an
adjoint field. The"® asymptotic behavior of the cost function revealed by thdyais identical to
that established earlier for identification in static ofgiuency-domain settings, requires a degree of
smoothness of the free field with respect to the time variablee main analysis is devoted to 3-D
configurations, but 2-D time-domain formulations are adskee as well.

While its derivation and formulation results from a mathépely rigorous asymptotic analysis,
subsequent applications of the TS concept to the identditalf finite-sized defects remains heuris-

tic. Here, a comprehensive set of numerical examples i€pted so as to substantiate the usefulness
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of the TS in applications and assess its performances. lnastrwith the relatively involved analysis
required to arrive at the correct formulation of the TS fieldbsequent numerical implementations
are quite simple. To emphasize the ease of application of $ieoncept, all examples presented
in this article rely on straightforward FEM formulations tife free and adjoint field, rather than
more-specialized integral-equation techniques prelyaused by the same group of authors. Several
important features of the method are discussed througle esmples, including its ability to iden-
tify multiple defects or to withstand significant data ngiaad the effect of restrictions on the data
through insufficient experiment duration or partial apeztut is important to note that most examples
consider identification based orsigle (simulated) time-domain experiment.

From this study, it can be concluded that computing and ékmpdothe TS field constitutes a pow-
erful and efficient tool for defect identification, as it isryesimple to implement, computationally
much faster than minimization-based inversion methodd, alows multiple defect identification
without prior information. The present “one-shot” TS-badsaentification is qualitative rather than
guantitative in nature. In addition to the stand-alone sinet TS-based procedure emphasized in
this article (of a qualitative rather than quantitativeunat and hence useful if speed or ease of im-
plementation is more important than accurate defect Sizthg TS may also be implemented using

an iterative matter removal strategy of the kind used in o optimization [Allaire et gl.[ 2005;

Garreau et 1], 20p1), or be used in computing good initiaisgas for subsequent refined inversion

(perhaps based on exploitimgkq ( ) andReq( ) defined by [37),[(38)). Quantitative defect identifi-

cation may also be achieved on the basis of time-domainorezgio be developed) of higher-order
topological expansions along the lineq of Bohtiet (089200
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Appendix A Asymptotic behaviour of elastodynamic integraloperators

Appendix A.1 Elastodynamic governing BIE

The integral representation formula for the scattered fi€éleads [Eringen and Suhlbi, 1D75)

Z

v (x;t) = T (x;t; ;n)?v ( ;0 + U (x;t; )2tlL]( ;v ds (A.1)
v (z)

In the present situation, where the free field featured inrigite-hand side of[(A]1) is also defined
insidethe cavity regiors « (z), one has

Z Z

U (x;t; )?2tl]( ;0ds = U x;t; )2u( ;D+E ;5 )2 Ll ;pdv
w(z) B (z)

by virtue of the divergence formula (note thah in (A.J) is theoutwardunit normal toB « (z)) and
the field equation[[9a) verified hy. Integral equation[(33) then follows by invoking the follimg
property of time convolution (14), easily established gsirtegration by parts and conditior[s (15):

B ?bl( ;6= &7kl jt)= &7?bl( ;b

Appendix A.2 Elastodynamic fundamental solutions and probof Lemmas[] to[3

The time convolutions featured in integral equatipr} (13) lba expressed as

U x;t )2t( ;0D=UkK;t; & t(; )l e (A.2a)

T &;t; ;n)2v ( ;0)=TRK;t; ;ne v(; )lie (A.2b)

whereu [k;t; flandT k;t; ;n I ]arethe time-modulated elastodynamic Green’s tensorsiegkfi
such thate, U andg T are the displacement and traction vectors & resulting from a point
force acting ak in thek-direction with prescribed time-varying magnitudet). The latter solve the

boundary-initial value problem

LUKt £1+ ( x)f®I=0 (2 ;t>0) (A.3a)
T k;t; ;nfl=0 ( 2%;t>0) (A.3b)

U k;t; F£1=0 ( 29;t>0) (A.3c)

U Kk;0; F£l=U-k;0; ¥£1=20 (2 (A.3d)

Similarly, letU ; k;t; flandT; k;t; ;nif]denote the time-modulated infinite-space funda-
mental solution, which satisfy equatiofis (4.3&), (A.3d)wi= r * and radiation conditions instead
of boundary conditions (A.3b)[ (A.Bc), and is given by (B5ém and Suhdbjf, 19]75)

h i
1
U1 Kt jf]=4— ARk;t; £1I+BK;t; £l 2) (A.4a)

r
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h i

E kit Fl=g——3 Bkt Fl& D)+ DK F1@¥M )+ 2B kit f£le £ 2)
(A.4b)
1 h
T, kit ;njf]=mcﬁ<;t; Ffl¢ n)+ D K;t flf n+ (¢ n)I
i
+ 2E Kk;t; flme)r ¢ (A.4c)
wherer = ( x), r= krk,£ = r=r, isthe ratio of bulk wave velocities as defined by
< (A.5)
g 20 ) + 2
and witha = A x;t; F1;:::defined by
7
r r
AR;t; fl=ft — + £t — d
Cr 1 Cr
. , r 5 r
B k;t; fl= 3AK;t fl+ 2t — + f t —
Cr aL
n r r r ©
Ck;t; Fl=2BK;t; 1 @ 2%) ft — + —£t — (A.6)
a aL a
r r r
D k;t; fl= 2B k;t; ] £t — —E£t —
Cr Cr Cr
n r r r ©
Ek;t; £l= 3BRK;t; £] Dk;ty £] * £t — + —£t —
a a a
Define now the time-modulated complementary elastodyn&néen’s tensou ¢ by
U k;t; £1=U1 kity Fl+ Uck;it; ] (A.7)

By virtue of superposition arguments,c is governed by the boundary-initial value problem

LUck;t ¥£1=0 (2 ;50
Tck;t; /mfEl= T1 Kty ;n¥l ( 2H:t>0)
(A.8)
Uck;t; f£l= U1 k;t f] ( 29;>0)
Uck;0; £l=Uck;0; f£1=0 (2

One can then show (using e.g. an integral representatiomufa) thatU ¢ x ;t; - ]is bounded in the
limit ! x,i.e.thatthe singular behavior of x ;t; Flat = x isidentical to that of its full-space

counterparty ; [;t; i1 Hence, one has

Ucle+ "x;tz+" f£1=0(@) ™! 0) (A.9)
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Proof of Lemmaf]. With decomposition[(A]7) obl ;t; - Jin mind, consider first the evaluation

of the leading contribution to

U; (x;t )?t( ;0ds (A.10)
" (z)

as" ! 0,whereu ; (x;t; )?t( ;t)is, by virtue of (A.2a), given by (Al4a) witlh ()= e t( ;b).
Settingf ( )= £@®+ (E( ) £@®)=f£@®)+ £( )= in(AH$), one obtains

1+ 2 . . 2
fO+AK;L JE£; Bkt fl= 2

ARt Fl= f+ B Kt j£l: (All)

The cofactors oft (t) in (A.11) correspond to aonstantpoint force of unit magnitude, and hence

yield, through [(A.4a), thelastostatidull-space Green’s tensor (i.e. Kelvin's solutian), (x; ):

Ui ®; )= 1+ Hr+ @ e (A.12)
Moreover, the Lipschitz-continuity assumption madecdn [ ]( ;t) implies that
o £()jeKE F B )j6 K 06 6t
(with ¥ the Lipschitz continuity modulus af) and hence that
AK;t; jE£16 K C ar=cr; B k;t; jf]16 KCpgr=cr (A.13)

with appropriate constantsa ;Cg. Combining [A.4h), [(A-11) and (A.13), one thus obtains

U1 ;5 )?2t( ;9)=01 x; ) t( ;9+Y ;85 )72 t( ;0;

Ui x;t; )2 t( ;8 6 CyukK; (A.14)

wherec y is a constant. Hence, upon introducing scal[ng (16}, (16)(A.10), noting that ; ( ;x)

is homogeneous of degreel in x, making use of the expansionu]( ;t) = f[ul@z;H+ o),
and invoking [A.I4), one obtains
v4 Z
Uip it )2t ;0ds=" U, ;) n()d : ulez;n+o™ (Al
w(z) S

Finally, Lemmd]L follows from[(A]7),[(A.15) together withlfollowing estimate stemming frorh (A.9):

Z
Uc&;t; )2t( ;pds =0 ("): (A.16)

v (z)
Remark 6. The presence aft(t r=q_t)in expressiong (A.6) af ;D ;E implies that the fundamental
strainsE [ ;t; ]and stresses behave as(r ') in the time-modulated cas&(¢ 0) but as as
O (¢ 2)in the static caset= 0).
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Proof of Lemma[. The proof again exploits decompositidn (A.7). First, upotmdducing scaled
coordinates[(J6) into expressidn (A.4c)of and definitions[(AJ6) of & ;t; ¥1;D k;t; i]land
E k;t; ](whereinf (t)= v ( ;t) according tp A.2b), it is a simple matter to show that

" 1 "
T1 x;6 n)?v (;0=5T1 &t n)2v (1) (A.17)

whereT ; .. is defined by [(A.4c) and (A.6) with wave velocities;cr replaced by rescaled values

q ="andcr=". Equation [(A.1]r) and scaling (17) then imply

Z Z

T, ;5 ;n)?v(;0dS = Tq
n(z) S

®it; m)ev (b (A.18)

Moreover, owing to the boundedne$s (A.9) of the complemmgiiaeen’a tensou ¢, one has, upon
using again coordinate scaling](16):

Z

Tcx;t; ;n)?2v ( ;0)ds = 0 (")kv ( ;bk (A.19)
" (2)

wherekv" ( ;tkisanormof 7 v"( ;1), e.g. itst>-norm overs. Lemma[R then follows from

combining [A.IB) and[(A.19).

Proof of Lemmaf. The proposed ansafz [20) is, by assumption in Lemma 1, Liggsebntinuous
w.r.t. t. Itis therefore appropriate to investigate the behaviar ofas defined by[(A.4c) andl (A.6) for
a Lipschitz-continuous time-modulatiah Proceeding along the lines of Lemifja 1, and in particular

invoking again the decompositiah( )= £ &)+ (E( ) £(&)= £@®+ £( )=,onehas

Ck;t; £l= £+ C kit J£]
D kit; £l= “£@®+D Kk;t; j£] (A.20)

Ek;t; £l= -1 HE®O+EK;t; Jf]

N w

Substituting the above values info (4.4c) ahd [A.6), onainistthe decomposition
T; kit £l1=T1 &; ;m)f®+ T kit £ (A.21)

with T, (x; ;n), the traction associated with the elastostatic Kelvintsatuu ; (x; ), given by
1 2 A A A 2 A A l
T, ®X; ;n)= —— £ n n £ @& n)I+ 3¢ @ nd n : (A.22)
Decomposition[(A.71) is in particular applicabletq ;- [: : : £ 1defined by replacing velocities ; cr
by the rescaled values="; cr="in T ; [::: ] Owing to the assumed Lipschitz continuityafone
easily shows that
Tkt JE] 6 CtK ™" "0
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whereK is the Lipschitz constant of andCt is a constant. Consequently, using the fact that

T; (x; ;n)f @ is unaffected by the wave velocity rescaling, decompasif®.2]L) implies
T oKty £1=T1 &; m)f@E+ o) "! 0)

Lemma[B then follows from equating (t) to the components ofv ( ) : l(z;t), according
to (A.2B), in the above estimate.

Appendix A.3 3-D Scalar wave equation

The reference domain R ° is now filled by an acoustic fluid characterized by the wavecigy
c The acoustic pressure field generated by given excitatiopg ;t) (proportional to normal wall
acceleration) and ( ;t) (applied pressure) in the presence of a (possibly multplyrected) sound-

hard obstacle occupying a regienbounded by is governed by the following set of equations:

. Loaug ( 9)=0 (2 ;£>0)
% qlug J( ;)= 0 (2 ;£>0)

P®): glus 1 ;0 = p( ;b ( 2 §;t>0) (A.23)
% ug ( ;0 =u( ;9 ( 2p;t> 0)

ug ( ;O)=w ( ;0)=0 ( 2 )

wherew 7 gl ]=r w n isthe normal derivative operator angddefined by
Lwl( ;0= w( ;5) —w( ;b (A.24)

is the governing partial differential operator of lineaoastics. Objective functions of formd (5),
with densities now having the form ug ( ;t); ;t, are again considered. Define a small scatterer
B« (z) of size " as in Sec[]3, and let denote the free field (which solves(;)) andv" the scattered
field (such that the total field" = u+ v" solves problenP B . (z))). The governing integral equation
for the scattered field" reads

Z Z

1. "
>V x;t)+ H k;t; ;ny ( ;0]ds = G k;t; jmnHuul ;vlds
v (z) " (z)

®2 w(z);t>0); (A.25)

where the time-modulated Green'’s functieri ;t; i ]1solves the boundary-initial value problem

LC;GR;t; £f1=0 (2 ;&850

Gk;t; f1=0 ( 29;t> 0);
(A.26)

H Kk;t; f£1=0 ( 23;t>0);

G k;0; £l1=GkK;0; ¥1=0 ( 2 )



and withH k;t; ;n¥f]l= r GKk;t; ] n( ). Moreover, let;c x;t; i ] denote the time-

modulatediull-spacefundamental solution, given by (Eringen and Suhubi, 1975)

1
Gy kit Fl-—f t - (A.27)
4 r n c i
1
r G, kit; Fl= —— £ ;t T 4+ i£t T ¢ (A.28)
4 r? c c c

and define the complementary Green'’s functiog, bounded in the limit ! x,byGeck;t; F1=
G k;t; 1 Gi k;t; 1 The counterparts of Lemnids 1 ghd 2 then correspond to d@stima

v4 v4
G (x;t; )2glulds =" G: (x; ) n()d ruz;t+ o"); (A.29)

w(z) S
assuming 7 r u(x; )isLipschitz-continuous and differentiable in a neighbmod of = t, and

z z
Hk;t; ;ny ( ;01dS = Hi #x; ;n)v( ;8 +okvk) ("! 0) (A.30)
w(z) S
(withH;, x; jn)=1r Gi1 x; ) n( ), H, defined by [A.28) withc replaced withc=", and
v'( ;odefinedby ( ;t)= v ( ;owith and related througf{16)). Estimates (A.29) 4nd (A.30),
established following the steps used for Lemifjas 1[and 2 esidige following asymptotic behavior
forv' ( ;b):

V(=" (;t) rul;h+ o™ ( 2«(z); 28S) (A.31)

Upon substituting[(A.31) into the right-hand side pf (A.3@)aking use of the assumed Lipschitz
continuity of 7 r u(x; ), and retaining only the leading (") contributions ag' ! 0 accord-
ing to (A.29) and [[A.30)v is readily found to verify an integral equation that cormsgs to the

following canonical exterior problem for the vector Laasquation:

V()=0 (2R’nB); r V() nO= n() (289) (A.32)

The scattered field" at any point ofs°*Sis then found (inserting (A-31) into the integral represent
tion formula associated with integral equatifn (4.25)) &vérthe expansion

Vi "Bir Gx;tz)? B rulzit+ U-x;tz)2ulz;t) + o(™) (A.33)
where the constant second-order polarization teasera (8 ) depends only os and is defined by

A=T1 —, n() v()d (A.34)
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Finally, upon defining the adjoint solutianas the solution of the initial-boundary value problem

8
Lo (;89=0 (2 ;06 t6T);
GBI i = m( T B T 8 (29506 t6 T);
< Qu
qfrl( ;5 =0 ( 2 qnsS;06 t6 T); (A.35)
% a( ;6 =0 ( 2%;06 t6 T);
a( ;0)=8( ;0)=0 (2 );

using reciprocity identity [(29) suitably modified for limreacoustics, and exploiting the relevant

boundary conditions, expansidn}(11) withandv" respectively replaced with andv" yields

7 .7
@, "
MBI E;T)+o (") = L ;0; ;tiv( ;pds dt
OZ SObS @u
= afl?v' + gqlil?a ( ;0 ds
v (z)
1
=mBRjrau?2@ r u)+gﬁ—?g z;t) + o(™) (A.36)

with the polarization tensax still defined by [[A.34). Hence, the T8(z;t) and leading behavior

(") are found to be given by
1
Ti= ra? @ ru)+ze?u @;; (M= (A.37)

Appendix A.4 Two-dimensional case

The time-modulated full-space fundamental solution i®gily (Eringen and Suhdilpi, 1975)

Z

1 2 (r;t) 1 [2+r2]1:2
it Fl= — £ d A.38
G1 kity ¥l=3 ) T opet t . (A.38)
1 z ? (x5t) 1 [2+r2]1:2
G ;6 fl= — —f t
r Gk Fi 2 © 0 [2+ r2P=2 c
1 [2+r2]1=2
- £ - - - A.
+ e t . d (A.39)

where ;x now denote points in the two-dimensional space spannegd; by, ), and the upper bound

? (r;t) of the above integrals stems from the causality condition)= 0; < 0and is given by
T = [en? 1 (A.40)

Proof of lemma 1. Assumethat 7 r u( ; )isboundedfo06 6 tuniformly in a neighbour-
hoodVv (z) of z, which impliesthat 7 r u( ; )is Lipschitz-continuous fob 6 6 tuniformly

in v (z). Hence, for some positive constant one has

kru( ; )k6 K; kru( ;) ru( 9%e6 K Oj 06 ;% t; 2V (z) (A.41)
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Here, the tail effect, i.e. the fact (reflected in the intéigrabounds of [(A.38),[(A.39), and typical of
2-D time-domain fundamental solutions) that a time-imjppelsource generates at ;t) a nonzero
response over a continuous time interval, entails a prodghaodkethat is slightly more involved than

for the previously-addressed 3-D cases. First, the maintgyaf interest is recast into a domain
integral along the lines ¢f Appendix A.1:

Z
G1 ;& )2gll( ;pds
Z

1
= r G, (x;t; )?2r u( ;t)+gG1 x;t )2u( ;v dv  (A.42)
B (z)

Now, settingf ( ) = £ @+ £ ( )in (A.39) and equating ( ) to the components of u( ; )in
the resulting equality, one obtains

r Gy x;t )?ru( ;=06 &; ) ru( ;H+ 161 x;t )2r u( ;9; (A.43)

whereG 1 (x; )is the static 2-D full-space Laplace fundamental solutgiven by

2 e 1

G1 x; ) ! ————d L G1 x; )
X; )= —r = — Inr; r X; )=
! 2 [ 2+ r2P=2 2 !

! _r (A49)

(with the second equality established via analytical irgdgn). Moreover, utilizing the assumed Lip-
schitz continuity ot 7 r u( ;t) for bounding the last term if (A]43) yields (noting thatr;t) 6 <
rok OO0 d K P h-

2 K
G ito)? D6 —— ——— = —tan 1 6 — (A.45
TGk e ulin 2 ¢ 2+ r? c r 20( )

with the last inequality stemming from the fact that =2 6 tan 'x 6 =2 for any x. Next,
introducing the scaled coordinatgs](16), one obtains (iyeviofr G. (x; ) being homogeneous

of degree linx )

1
Gi x; ) ru( ;H=G1 x; ) ku@E;H+od)] (A.46)

Finally, upon integrating decompositioh (Al43) ower, applying estimateq (A.#5) anfl (A]46), and

noting that & = " dv for the present 2-D case, one obtains (with the last equstitiynming from

applying the divergence formula):

Z Z

r G, (x;t; )?2ru( ;pdv=" r G, (x; )dv ru( ;£ + o™
B (z) B

=" G x; ) n()db ru( ;0+ o(") (A47)
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Finally, assuming in addition that( ; )is uniformly bounded, i.eja( ; )j6 M for some positive

constan1 ,for 2V (z); 06 6 t,one has

M 2 e 1
G it )7 )= G it (vl — T2 2a=—2
1 (x ) ?u( ) 1 x jl( )] 2 C/2 0 [2+r2]l:2
M 2
= ﬁln ct+ ‘(@mt) Ir (A.48)

which implies, for" small enough to have . (z) Vv (z) and after effecting scaling ([L6):

Z
G1 x;t; )2u( ;Hdv 6 2M—62"O "n")=o(" (A.49)

B (z)

Hence, combining (A.47) anfl (AJ49), one arrives at an esérfamally identical to[(A.29) where

of courseB is now the unit disk and ; the 2-D static fundamental solution.

Proof of lemmal[2. Introducing the scaled coordinatds](16) info (A.39), perfag the change of
variable = " in the resulting integral and noting that its upper bouhg;t) is given by [A.4D)
with r andcrespectively replaced hyandc=". The 2-D analog of LemmJ 2 is then readily obtained
by invoking again the decompositionx ;t; F1= G; k;t; F1+ Geclk;t; i land noting that

7 7
Helk;t; 7 ( ;01ds =" Hek;t; F( ;016 = 0 ("kv ( ;0k):

n(z) S
Proof of lemmaf3. The proposed ansafz (A]31) is, by assumption in Lemma 1¢hifiscontinuous
w.r.t. t, which leads to investigating the behaviortof as defined througH (A.B9) for a Lipschitz-
continuous time-modulatiofi. Proceeding along the lines of Lemrja 1, and in particulanking

yet again the decompositioh( )= £ (t)+ £ ( ), one finds
Hy kit fl=H; x; )E©+ Hy kK;t j£f]

where the cofacton ; x; ) of £ (t), established via analytical integration, is the normalvagive
of the static fundamental solutioh (A]44). Moreover, eig the Lipschitz-continuity oft in the

now-familiar way leads to

Hi kity J£] 6 —5— ——— - —tan
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Two-dimensional elastodynamics. The infinite-plane time-modulated fundamental solution fo

two-dimensional elastodynamics is given by (Eringen ancl®y[197b):

1
U, K% jf]=—éGT1 k;t; I

1 z t r=q_ Z t r=cr

tT T G, k;t ;5 ¥ud Gri k;t  ; ¥id r (A.50)
0 0

whereG |, ; G, are defined by[(A.38) withk= q andc= cr, respectively. Lemmg 1 {d 3 can then
be established by adapting the proof for the scalar casskaett to the reader.

Appendix B Summary of explicit formulae for polarization te nsors

Explicit formulae for polarization tensoes have been established in earlier works (e.g. Sokolowski

|
and Zochowski[ 1999, Garreau el 4l., 40p1; Guzina and BpROE4) for many situations. More-

over, the recent book Hy Ammari and Kardg (4007) presents guamnsive study of the concept

of polarization tensor in connection with small-defectragyotics and homogenization. For the case
of spherical or (resp. circular) cavities nucleating in 3Bsp. 2D) isotropic elastic bodies, one has
Bj=4 =3(3D)orBj= (2D)

1 1
po =G ) gpeym 1S (3D) (B.1a)
2 (7 ) 2@+ )
1 22 1
A=—"" 219 Tl o1 (2D plane stress) (B.1b)
1+ ) 201+ )@ )
1 1
A =—— 21M I I 2D pl i B.1
i ) (2D plane strain) (B.1c)

The polarization tensor associated with the nucleation sfmall spherical elastic inclusion with
assumed elastic constants; ° is given (se¢ Chikichev and GuZija, 2p08) by

, 1
A7 =RAgaI¥M+ g(Asph Agev)IT I (B.2)

having set

3 A= 3@ 2) 1 ) 1)

<P 2 4+ Ha+ HC 3@ ) L fas a2y F

s, 1 150 )( 1) L+ Ha 2%’

CASNT %78 10)( D+ 1sa )

The second-order polarization tensor associated with gicéeation of a small spherical sound-hard

obstacle in an acoustic medium is given by

(@a - 21 (3-D); b)a - 2T (2-D) (B.3)
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