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Abstract

A time-domain topological sensitivity (TS) approach is developed for elastic-wave imaging of
media of arbitrary geometry. The TS, which quantifies the sensitivity of the misfit cost functional
to the creation at a specified location of an infinitesimal hole, is expressed in terms of the time
convolution of the free field and a supplementary adjoint field as a function of that specified lo-
cation. Following previous studies performed under (mostly) static or time-harmonic conditions,
the TS field is here considered as a natural and computationally efficient approach for defining
a defect indicator function. This study emphasizes the implementation and exploitation of TS
fields using standard displacement-based FEM approaches, a straightforward task once the cor-
rect sensitivity formulation is available. A comprehensive set of numerical experiments on 3-D
and 2-D elastodynamic and acoustic configurations is reported, allowing to assess and highlight
many features of the proposed TS-based fast qualitative identification such as its ability to identify
multiple defects and its robustness against data noise.

Key words: Inverse scattering, Time domain topological sensitivity, Adjoint solution method,
Elastodynamics, Finite element method

1 Introduction

Three-dimensional imaging of objects hidden in a solid using elastic waves is of interest in a number
of applications such as nondestructive material testing or underground object detection. Such iden-
tification tasks require data provided by measurements that is overdetermined compared to what is
normally necessary for solving the forward elastodynamic problem for an assumed object configu-
ration. Minimization-based approaches that exploit the data through a misfit cost function bear con-
siderable computational costs associated with the elastodynamic forward solver. Global optimization
methods, especially, are currently impractical due to the large numbers of forward solutions entailed.
More traditional gradient-based optimization is a computationally reasonable alternative for this class
of inverse problems, especially when enhanced by adjoint-based shape sensitivity methods (Bonnet,
1995; Bonnet and Guzina, 2009). However, their performance depends on choosing adequately the
initial guess (location, topology and geometry) of the hidden object(s).

These considerations led to the introduction of sampling methods, which aim at computing a
defect indicator function in a non-iterative way from the available overdetermined data and may be
defined in several ways (see the review article by Potthast, 2006) using the linear sampling method
(Colton and Kirsch, 1996; Nintcheu Fata and Guzina, 2004) or the concept of topological sensitivity
(TS) considered here. The TS quantifies the perturbation induced to a cost function by the creation
of an object (e.g. a cavity) of vanishingly small characteristic size at a prescribed location z inside
the reference (i.e. defect-free) solid as a function of the sampling point z. This concept appeared in
Eschenauer et al. (1994) and Schumacher (1995) in the context of topological optimization of me-
chanical structures, and has since also been investigated in various contexts as a method for defining a
defect indicator function, see e.g. Gallego and Rus (2004); Jackowska-Strumillo et al. (2002) for 2D
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elastostatics, Feijóo (2004) for 2D linear acoustics, Guzina and Bonnet (2006) for frequency-domain
3D acoustics, Bonnet and Guzina (2004) for frequency-domain 3D elastodynamics and Masmoudi
et al. (2005) for 3D Maxwell equations. Moreover, the computational cost entailed by evaluating a
TS field is, in general, of the order of one forward solution, and therefore modest compared to that of a
standard minimization-based iterative inversion methodology. The concept of topological sensitivity
is closely related to the broader class of asymptotic methods, where unknown defects whose geome-
try involves a small parameter are sought by means of expansions of the forward solution (rather than
the misfit function) with respect to that parameter, see (e.g. Ammari and Kang, 2004, 2006).

Defect identification using TS under transient dynamical conditions have so far been the subject
of only a few investigations, notably Dominguez et al. (2005) where the connection with time-reversal
is explored, Bonnet (2006) in which an adjoint-based form of the TS is derived for 3-D elastodynam-
ics and acoustics, Malcolm and Guzina (2008) and Chikichev and Guzina (2008) where the case of
penetrable inclusions in acoustic and elastic media (respectively) is considered, and Bellis and Bonnet
(2009) which is devoted to a specialized formulation for crack identification problems. This article
addresses defect identification in elastic solids by means of the TS function defined for small-cavity
nucleation in the context of 3-D time-domain elastodynamics. In a previous publication (Bonnet,
2006), the TS function was obtained as a bilinear expression featuring the (time-forward) free field
and the (time-backward) adjoint solution by considering the asymptotic behavior of a system of gov-
erning integral equations based on the transient full-space elastodynamic Green’s tensor, the corre-
sponding (analogous and simpler) formulation for scalar waves was derived as a by-product, and a
semi-analytical example based on transient 3-D acoustic data was presented. As in many other deriva-
tions of TS formulations published thus far, the integral-equation setting is convenient for performing
the mathematical asymptotic analysis but is then just one of several possible approaches for doing
numerical computations once the necessary formulae are established.

The intended contributions of this article are two-fold. Firstly, on the theoretical side, the deriva-
tion of the TS field proposed in Bonnet (2006) is clarified and extended as follows: (a) the validity
of the previously-established asymptotic behaviour of the time-domain governing integral equation
(and hence of the resulting TS formulation) is shown to depend on smoothness assumptions on the
free field, an issue not touched upon in Bonnet (2006); (b) a simpler and more compact version
of the derivation, using Green’s tensors rather than full-space fundamental solutions, is presented;
(c) proofs are also given for two-dimensional problems. Secondly, a comprehensive set of numeri-
cal experiments, including 3-D elastodynamic examples, is reported and discussed. Unlike previous
publications where the time-domain TS is computed by means of specialized techniques based on
Green’s tensors, this study emphasizes the implementation and exploitation of TS fields using the
standard displacement-based FEM, and indeed the ease of doing so once the correct sensitivity for-
mulation is available. To the authors’ best knowledge, this article presents the first comprehensive
numerical study of TS-based defect identification methodology in time-dependent 3-D settings and
implemented within general-purpose computational environments.

This article is organized as follows. The forward and inverse problems of interest are reviewed
in Section 2. Topological sensitivity is defined and established, in both direct and adjoint-based
forms, in Section 3, the more technical parts of the derivations being deferred to Appendix A for
ease of reading. Section 4 then discusses some important features of the methodology and introduces
additional concepts and notations pertaining to the FEM-based implementation and its exploitation in
subsequently presented numerical results. Then, the results of FEM-based numerical experiments are
presented and discussed in Sections 5 (2-D scalar wave equation) and 6 (3-D and 2-D elastodynamics).

2 Cavity identification model problem

Let Ω denote a finite elastic body in RD (d = 3 or d = 2), bounded by the external surface S and
characterized by the shear modulus μ, Poisson’s ratio ν and mass density ρ, and referred in the
following as the reference body. A cavity (or a set thereof) B bounded by the closed traction-free
surface(s) Γ is embedded in Ω. The external surface S, which is identical for the reference domain
Ω and the cavitated domain Ω(B) = Ω \B, is split into a Neumann part SN and a Dirichlet part
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SD, respectively associated with prescribed time-varying tractions t̄ and displacements ū. Under this
dynamical loading, an elastodynamic state uB arises in Ω(B), which satisfies the following set of
field equations, boundary and initial conditions (hereinafter referred to for generic B as P(B)):

P(B) :

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

[LuB

]
(ξ, t) = 0 (ξ ∈Ω(B), t� 0)

t[uB](ξ, t) = 0 (ξ ∈Γ, t� 0)

t[uB](ξ, t) = t̄(ξ, t) (ξ ∈SN, t� 0)

uB(ξ, t) = ū(ξ, t) (ξ ∈SD, t� 0)

uB(ξ, 0) = u̇B(ξ, 0) = 0 (ξ ∈Ω(B))

(1)

where ξ and t denotes the position vector and the time; L denotes the governing Navier space-time
partial differential operator defined by

Lw(ξ, t) = ∇ · σ[w](ξ, t)− ρẅ(ξ, t) (2)

where σ[w] = C :∇w denotes the elastic stress tensor associated with a displacement w, the fourth-
order elasticity tensor C being given (for isotropic materials) by

C = 2μ

[
Isym +

ν

1− 2ν
I ⊗ I

]
(3)

(with Isym and I respectively denoting the symmetric fourth-order and the second-order identity
tensors), t[w] = σ[w]·n is the traction vector associated with w (n being the unit normal on S∪Γ
oriented outward from Ω(B)), and ( ˙ ) and (¨) indicate first- and second-order time derivatives.

Cavity identification problem. The location, topology and geometry of an unknown cavity system
Btrue (or equivalently Γtrue) is sought by exploiting measured values of the response of the flawed solid
Ωtrue = Ω(Btrue) arising due to the probing excitation. Specifically, the displacement uobs induced
in Ωtrue by (ū, t̄) is monitored over the measurement surface Sobs ⊂ SN and time interval t ∈ [0, T ]
(other possibilities, e.g. finite sets of measurement locations and/or times, being also allowed by the
ensuing treatment). Ideally, a defect configuration Btrue such that

utrue(ξ, t) = uobs(ξ, t) (ξ ∈Sobs, 0� t� T ) (4)

is sought, where utrue solves problem P(Btrue) defined by (1). In practice, due to many factors
(e.g. incomplete and/or inexact measurements, modelling uncertainties), the cavity is sought so as
to minimize a misfit cost functional which is naturally (in the present context) expressed as a double
integral over the measurement surface and the experiment duration:

J(Ω(B), T ) =

∫ T

0

∫
Sobs

ϕ[uB(ξ, t), ξ, t] dSξ dt (5)

where Ω(B) is a trial cavitated solid defined by the trial cavity B, uB solves problem P(B) defined
by (1), and the misfit function ϕ is chosen so as to define a distance between uB and uobs. Numerical
experiments presented herein are based on the commonly-used least squares misfit function:

ϕ[w, ξ, t] =
1

2
|w − uobs(ξ, t)|2 (6)

3 Topological sensitivity

3.1 Small-cavity asymptotics

The topological sensitivity of the cost functional (5) is defined as its sensitivity with respect to the
creation of an infinitesimal object of characteristic size ε at a given location z in Ω. Here, such
infinitesimal object is taken to be a trial cavity Bε(z), defined by Bε(z) = z + εB in terms of its
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center z, its shape specified by the unit bounded set B ⊂ RD (with boundary S and volume |B|)
containing the origin, and its radius ε > 0. The corresponding trial cavitated solid is denoted Ωε(z).
Following Sokolowski and Zochowski (1999) or Garreau et al. (2001), one seeks the asymptotic
behavior of J(Ωε(z), T ) as ε → 0 through the expansion:

J(Ωε(z), T ) = J(Ω, T ) + η(ε)|B|T(z, T ) + o(η(ε)) (ε → 0) (7)

where the function η(ε), to be determined, vanishes in the limit ε → 0 and the topological sensitivity
T(z, T ) is a function of the sampling point z and duration T .

To evaluate the expansion (7) and find the value of T(z, T ), it is necessary to consider the asymp-
totic behavior of the displacement uε governed by problem P(Bε(z)). Towards that aim, it is conve-
nient to decompose uε as

uε(ξ, t) = u(ξ, t) + vε(ξ, t) (8)

where the free field u is the response of the cavity-free domain Ω to the prescribed excitation, i.e.

P(∅) :

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

[Lu](ξ, t) = 0 (ξ ∈Ω, t� 0)

t[u](ξ, t) = t̄(ξ, t) (ξ ∈SN, t� 0)

u(ξ, t) = ū(ξ, t) (ξ ∈SD, t� 0)

u(ξ, 0) = u̇(ξ, 0) = 0 (ξ ∈Ω)

(9)

while the scattered field vε solves⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

[Lvε
]
(ξ, t) = 0 (ξ ∈Ω, t� 0)

t[vε](ξ, t) = −t[u](ξ, t) (ξ ∈Γε(z), t� 0)

t[vε](ξ, t) = 0 (ξ ∈SN, t� 0)

vε(ξ, t) = 0 (ξ ∈SD, t� 0)

vε(ξ, 0) = v̇ε(ξ, 0) = 0 (ξ ∈Ω),

(10)

with Γε(z) denoting the boundary of Bε(z). Since the scattered field is expected to vanish for in-
finitesimal cavities, i.e. ‖vε(ξ, t)‖ = o(ε), expansion (7) is sought by invoking the first-order Taylor
expansion of ϕ w.r.t. to its first argument. The topological sensitivity T(z, T ) and the leading asymp-
totic behaviour η(ε) are thus to be identified on the basis of:

∫ T

0

∫
Sobs

∂ϕ

∂u
[u(ξ, t), ξ, t]vε(ξ, t) dSξ dt = η(ε)|B|T(z, T ) + o

(
η(ε)

)
(11)

In what follows, emphasis will be given to the 3-D case.

3.2 Leading contribution of vε as ε → 0

To address this issue, it is convenient to reformulate the governing boundary-initial problem (10) in
terms of an integral equation. Let U(x, t, ξ) and T (x, t, ξ;n) denote the time-impulsive elastody-
namic Green’s tensors, defined such that ek ·U (x, t, ξ) and ek ·T (x, t, ξ) are the displacement and
traction vectors at ξ ∈ Ω resulting from a unit time-impulsive point force acting at x in the k-th
direction at time t=0 and satisfying the boundary conditions

U(x, t, ξ) = 0 (ξ ∈SD, t� 0), T (x, t, ξ;n) = 0 (ξ ∈SN, t� 0), (12)

One also defines the elastodynamic full-space fundamental tensors U∞(x, t, ξ) and T∞(x, t, ξ;n)
in a similar way, replacing boundary conditions (12) with decay and radiation conditions at infinity
(Eringen and Suhubi, 1975, see Appendix A.2). The governing integral equation for the scattered
field vε then reads (see Appendix A.1)

1

2
vε(x, t) +−

∫
Γε(z)

T (x, t, ξ;n) � vε(ξ, t) dSξ = −
∫
Γε(z)

U(x, t, ξ) � t(ξ, t) dSξ

(x∈Γε(z), t� 0), (13)
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in which −
∫

indicates a (strongly singular) integral defined in the Cauchy principal value (CPV) sense
and � denotes the time convolution at instant t� 0 defined by

[a � b](ξ, t) =

∫ t

0
a(ξ, τ)·b(ξ, t− τ) dτ. (14)

where the inner product appearing in the integral is such that a ·b is a tensor of the lowest possible
order (e.g. U � t has order 1, ∇u � σ[v] is a scalar), and generic tensor fields a and b respectively
verify initial and final conditions

a(·, τ) = ȧ(·, τ) = 0 (τ � 0), b(·, τ) = ḃ(·, τ) = 0 (τ � t) (15)

Equations governing the leading contribution of vε on Γε(z) as ε → 0 are sought as the asymp-
totic form of integral equation (13). For this purpose, scaled coordinates x̄ orξ̄, defined by

x̄ = (x− z)/ε, ξ̄ = (ξ − z)/ε (x, ξ ∈Γε(z); x̄, ξ̄ ∈S) (16)

are introduced. Consequently, the volume and surface differential elements in ξ-space are rescaled
according to

(a) dVξ = ε3 dV̄ξ̄, (b) dSξ = ε2 dS̄ξ̄ (ξ ∈Γε(z), ξ̄ ∈S) (17)

where dV̄ξ̄, dS̄ξ̄ denote corresponding volume and surface differential elements on B and S , respec-
tively. The leading behavior as ε → 0 of the right- and left-hand sides of integral equation (13) are
then given by the following Lemmas 1 and 2, whose proof is given in Appendix A.2.

Lemma 1. Assume that τ 
→ ∇u(ξ, τ) is Lipschitz-continuous (uniformly for ξ in a neighbourhood
of z) and differentiable in a neighbourhood of τ = t. Then, one has∫

Γε(z)
U(x, t, ξ) � t(ξ, t) dSξ = ε

{∫
S
U∞(x̄, ξ̄)⊗n(ξ̄) dV̄ξ̄

}
:σ[u](z, t) + o(ε) (x∈Γε(z))

(18)
where U∞(x̄, ξ̄) is the elastostatic full-space (Kelvin) fundamental displacement, given by (A.12).

Lemma 2. Let the vector function v̄ε(ξ̄, t) be defined by v̄ε(ξ̄, t) = vε(ξ, t), with ξ̄ and ξ related
through (16). Then, one has

−
∫
Γε(z)

T (x, t, ξ;n)�vε(ξ, t) dSξ = −
∫
S
T∞,ε(x̄, t, ξ̄;n)� v̄

ε(ξ̄, t) dS̄ξ̄ + o(‖v̄ε(·, t)‖) (x∈Γε(z))

(19)
where T∞,ε is the full-space elastodynamic fundamental traction tensor defined in terms of rescaled
wave velocities cL/ε, cT/ε and ‖v̄ε(·, t)‖ is a norm of ξ̄ 
→ v̄ε(ξ̄, t), e.g. its L2-norm on S .

Lemma 1 means that the leading contribution to the right-hand side of integral equation (13) as
ε → 0 has a special structure wherein the time variable t and the (normalized) space variable x̄ are
separated. Lemma 2 indicates that the left-hand side of integral equation (13) is of order O(‖vε‖) as
ε → 0. Lemmas 1 and 2 together thus suggest to seek the leading contribution tov̄ε(ξ̄, τ) = vε(ξ, τ)
as ε → 0 in the following form, in which the third-order tensor function ξ̄ ∈ S 
→ V(ξ̄) is to be
determined:

v̄ε(ξ̄, t) = εV(ξ̄) :σ[u](z, t) + o(ε) (ξ ∈Γε(z), ξ̄ ∈S). (20)

Lemma 3. Let v̄ε(ξ̄, t) be of form (20) for some V(ξ̄). Under the assumptions of Lemma 1, one has

−
∫
Γε(z)

T (x, t, ξ;n)�vε(ξ, t) dSξ = ε

{
−
∫
S
T∞(x̄, ξ̄;n)·V(ξ̄) dS̄ξ̄

}
:σ[u](z, t)+o(ε) (x∈Γε(z))

(21)
where T∞(x̄, ξ̄;n) is the traction associated with the elastostatic Kelvin solution, given by (A.22).

Proof. See Appendix A.2.
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Combining lemmas 1 and 3, one finds that representation (20) indeed holds provided that V solves
the integral equation

1

2
V(x̄) +−

∫
S
T∞(x̄, ξ̄;n)·V(ξ̄) dS̄ξ̄ = −

∫
S
U∞(x̄, ξ̄)⊗n(ξ̄) dS̄ξ̄ (x̄∈S) (22)

Upon inspection, (22) can in fact be interpreted as an integral equation formulation governing the
solutions Vk� = V�k = (ek⊗e�) :V to a set of six canonical elastostatic exterior problems

∇ξ̄ ·(C :∇ξ̄Vk�)(ξ̄) = 0 (ξ̄ ∈R3 \B),
(C :∇ξ̄Vk�)(ξ̄)·n(ξ̄) = −1

2
(nk(ξ̄)e� + n�(ξ̄)ek) (ξ̄ ∈S)

1� k� 
� 3 (23)

which are independent of z, ε and time. The tensor function V (̄ξ) is in fact completely defined,
through problems (23), by B.

The scattered field vε at any point of Sobs (and more generally at any point away from the trial
cavity Bε(z)) is given by the integral representation formula (see Appendix A.1):

vε(x, t) =

∫
Bε(z)

{
ρU(x, t, ξ) � ü(ξ, t) +E(x, t, ξ) � σ(ξ, t)

}
dVξ

−
∫
Γε(z)

T k(x, t, ξ;n) � vε(ξ, t) dSξ (x∈Sobs, t� 0), (24)

where E(x, t, ξ) denotes the strain associated with U(x, t, ξ). Expanding the first integral by means
of (17a) and a Taylor expansion of the densities about ξ= z, substituting (20) and introducing scaled
coordinates ξ̄ into the second integral, one obtains the leading contribution of vε as ε → 0 as:

vε(x, t) = ε3W (x, t;z) + o(ε3) (25)

with
W (x, t;z) = |B|{ [C :E(x, t,z)] � [A :σ](z, t) + ρU̇(x, t,z) � u̇(z, t)

}
(26)

and where the constant polarization tensor A depends only on B (through V) and is defined by

A = C−1 − 1

|B|
{∫

S
n(ξ̄)⊗V(ξ̄) dS̄ξ̄

}
(27)

Inserting (25) into (11), the TS T(z, t) and leading behavior η(ε) are then found to be given by

T(z, T ) =

∫ T

0

∫
Sobs

∂ϕ

∂u
[u(ξ, t), ξ, t]·W (ξ, t;z) dSξ dt, η(ε) = ε3 (28)

Expression (28) provides a useful basis for discussing some of the features of the time-domain
TS, see Sec. 4.1. It can also conceivably be used for the purpose of computing the field T(z, T ), and
is indeed so used in Chikichev and Guzina (2008) wherein Ω is an elastic half-space with a traction-
free surface, a configuration for which the Green’s tensor is known. For arbitrary reference bodies
Ω, an implementation of (28) would require a numerical evaluation of the Green’s tensor for source
points located on Sobs (typically taken as Gauss quadrature points associated with the evaluation of
the integral over Sobs) and field points taken as sampling points z.

However, a computationally more efficient approach for evaluating the field T(z, T ), based on an
adjoint solution, is usually preferable and was used for all numerical examples presented thereafter.

3.3 Adjoint field formulation

The adjoint formulation, previously presented in Bonnet (2006) and now summarized for complete-
ness, stems from treating the integral in (11) as one of the terms arising in the elastodynamic reci-
procity identity. For any generic domain O and pair of elastodynamic states u1,u2 satisfying the
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homogeneous elastodynamic field equations in O as well as homogenous initial conditions

u1(ξ, 0) = u̇1(ξ, 0) = 0 and u2(ξ, 0) = u̇2(ξ, 0) = 0 (ξ ∈O),

the following reciprocity identity holds (see e.g. Eringen and Suhubi, 1975; Achenbach, 2003):∫
∂O

{t[u1] � u2 − t[u2] � u1}(ξ, t) dSξ = 0 (29)

Defining the adjoint state û as the solution of:⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

[Lû](ξ, t) = 0 (ξ ∈Ω, 0� t� T )

t[û](ξ, t) =
∂ϕ

∂u
[u(ξ, T − t), ξ, T − t] (ξ ∈Sobs, 0� t� T )

t[û](ξ, t) = 0 (ξ ∈SN\Sobs, 0� t� T )

û(ξ, t) = 0 (ξ ∈SD, 0� t�T )

û(ξ, 0) = ˙̂u(ξ, 0) = 0 (ξ ∈Ω)

(30)

using relation (29) with V = Ωε(z), u1 = û and u2 = vε and exploiting the relevant boundary
conditions in (10) and (30), equation (11) becomes:

η(ε)|B|T(z, T ) + o
(
η(ε)

)
= −

∫
Γε(z)

{t[û] � vε}(ξ, t) dSξ −
∫
Γε(z)

{t[u] � û}(ξ, t) dSξ (31)

On inserting the asymptotic behavior (20) in the first integral, recasting the second integral as a
volume integral over Bε(z) using the divergence identity, and working out the leading contribution
as ε → 0 in the resulting equality, one arrives at

T(z, T ) = {σ[û] � (A : σ[u]) + ρ ˙̂u � u̇}(z, T ), η(ε) = ε3 (32)

where the polarization tensor A is again defined by (27).

Remark 1. The O(εD) asymptotic behavior (32) of J(Ωε(z), T ) relies on vε approaching (up to a
scaling factor) a static solution as ε → 0. This requires the free-field to be sufficiently regular at
(z, t), e.g. according to the sufficient condition given in Lemmas 1 and 2. To put this another way,
the TS (32) may (invoking the Fourier convolution theorem) be formulated as the inverse Fourier
transform of the (previously established in Bonnet and Guzina, 2004) frequency-domain expression

T(z, ω) = {σ[û] : (A : σ[u])− ρω2û·u}(z, ω)

The Fourier integral then converges if ω 
→ T(z, ω)∈L1(R), i.e. provided the high-frequency content
of the excitation is limited. Related considerations are developed in Ammari et al. (2009), where the
order in ε of the leading perturbation by a small inclusion of the fundamental solution of the transient
wave equation is shown to depend on the high-frequency content of the time-modulated point source.

Remark 2. In a previous article (Bonnet, 2006), the small-cavity asymptotics was conducted by
relying on estimates

U(x, t, ξ) � a(ξ, t) =
1

ε
U∞(x̄, ξ̄)·a(z, t) +O(1) (a)

T (x, t, ξ;n) � b(ξ, t) =
1

ε2
T∞(x̄, ξ̄;n)·b(z, t) +O(1) (b)

(x, ξ ∈Γε(z))

(i.e. identities (27) therein) instead of Lemmas 1 and 2, yielding the same result (32) but in a not
entirely correct way: (i) these estimates hold under smoothness conditions on a, b, similar to the
sufficient conditions given in Lemmas 1 and 2, that were not mentioned, and (ii) estimate (b) above is
in fact not directly applicable here as it is needed for b(ξ, t)= vε(ξ, t), which is not defined at ξ= z.
Lemmas 1 and 2 were therefore needed to fix this flaw in the asymptotic analysis.
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Remark 3. The cavity-identification setting of the model inverse problem formulated in Section 2 is
consistent with, but does not constitute a mathematical prerequisite for, the small-cavity asymptotics
developed in this section. In fact, the latter procedure may in principle be applied to any cost function
of format (5) whatsoever, regardless of its physical meaning or engineering motivation.

Remark 4. The same canonical problems (23) and subsequent polarization tensor (27) also occur in
Bonnet (2006) and in a previous frequency-domain formulation of the TS (Guzina and Bonnet, 2004).

Remark 5. The foregoing analysis has been performed for the 3-D case, deemed the most important,
but can be reproduced with the necessary adjustments for the 2-D case (see Appendix A.4), leading
to similar results where η(ε) = ε2 instead of η(ε) = ε3.

4 Discussion and implementation

4.1 Discussion

Topological sensitivity as a defect indicator function. T(z, T ) quantifies the sensitivity of the
featured cost functional J to a perturbation of the reference medium in the form of an infinitesimal
cavity at z. It is then natural to consider T(z, T ) as a possible defect indicator function, as was
previously done on several occasions (see Introduction), whereby actual defects are expected to be
located at sampling points z at which T(z, T ) attains its most pronounced negative values, i.e. at
which a sufficiently small defect would induce the most pronounced decrease of J. In other words,
infinitesimal trial cavities placed at such sampling points improve the fit between simulated and actual
measurements, and intuition then suggests that finite defects having the same location also induce a
decrease of the cost function. It is important to emphasize that such exploitation of the information
provided by the field T(·, T ) is natural but not backed by a rigorous mathematical proof, despite the
fact that the analysis of the cost function leading to the definition and evaluation of T(z, T ) is itself
mathematically rigorous. It is however substantiated by various numerical experiments performed for
several classes of physical settings (see references given in Introduction). The present study aims at
contributing to this substantiation within the present context of time-domain elastodynamics, seldom
considered in this context, through the examples of Secs. 5 and 6.

Topological sensitivity allows non-iterative approximate global search. Defect identification
based on the TS field T(·, T ) of a misfit function has the following important characteristics:
(a) The numerical procedure is non iterative, as it just requires two solutions evaluated on the ref-

erence (defect-free) configuration, namely the free field (9) and the adjoint field (30). It is thus
computationally much faster than usual iterative optimization-based inversion methods. This
non-iterative nature is also one of the main features of the linear sampling method (Arens, 2001;
Nintcheu Fata and Guzina, 2007).

(b) The approach is of a qualitative nature, as the underlying approximation (7) of J does not lend
itself to optimization w.r.t. ε.

(c) It is global in nature, as (i) it does not require an initial guess, and (ii) it allows simultaneous
identification of multiple defects without prior knowledge of their number (see last example of
Sec. 5 and the dual-cavity example in Sec. 6.2).

(d) The experimental information about sought defects entering T(·, T ) is entirely contained in the
adjoint solution (through the definition of the adjoint forces in terms of the density ϕ).

(e) A TS field may be defined and computed using the present approach for cost functions associated
to any overdetermined data, no matter how scarce, which makes TS-based identification a very
flexible approach.

Transient vs time-harmonic data; time reversal. Compared to previous works based on wave-
based imaging under time-harmonic conditions (e.g. Bonnet and Guzina, 2004; Feijóo, 2004; Guzina
and Bonnet, 2006; Masmoudi et al., 2005), the time-domain approach to TS benefits from richer
data as it exploits measurements taken over a duration T (the mathematical framework allowing to
exploit other ways to collect data over time). Dominguez et al. (2005) have compared this approach
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to imaging processes based on time reversal (Cassereau et al., 1990), since the adjoint fieldû defined
by (30) constitutes a time-reversed state related to the field vtrue scattered by the actual defect Btrue.

Influence of measurement noise. When observed values uobs differ from their true counterpart
utrue because of measurement noise or modelling uncertainties, the sensitivity of T(·, T ) to such
uncertainties is directly related to the sensitivity of the adjoint solution to the same uncertainties. In
the frequently-used case of least-squares cost functionals, based on (possibly weighted) L2 norms of
measurement residuals δ = u−uobs, the adjoint forces featured in (30) depend linearly on δ. More
generally, misfit functionals based on a Lα norm (with 1<α<∞) lead to O(‖δ‖α−1) adjoint forces
(the cases α = 1, ∞ do not satisfy the required differentiability of misfit density ϕ). As T(·, T )
also depends linearly on the adjoint solution (irrespective of the nature of the cost functional), the
perturbation undergone by the topological sensitivity of least-squares cost functions is, when using
L2 norms, linear in the measurement uncertainties. This suggests that identification procedures based
on the TS field are better-behaved with respect to measurement noise than usual inversion procedures,
known to be highly sensitive to the latter unless properly regularized. Indeed, numerical results of
Sec. 6.5, based on misfit functionals without regularization term, corroborate this expectation.

Dynamical versus static measurements. Expression (28) shows the value of T(z, T ) to be influ-
enced by that of W (·, ·;z). The latter, defined by (26) in terms of the elastodynamic Green’s dis-
placement and strain tensors, is a decreasing function of the distance d(z, Sobs) of z to Sobs. Hence,
sampling points located close to Sobs are more apt to lead to high (negative) values of T, increasing
the risk of false identifications there when seeking a buried defect. Moreover, it is instructive to com-
pare the behavior of T for sampling points remote from the observation surface according to whether
T is evaluated under dynamic (i.e. time-dependent) or static (i.e. time-independent) loading condi-
tions. Indeed, W (·, ·;z) behaves like [d(z, Sobs)]−1 in the former case, but like [d(z, Sobs)]−2 in the
latter case: (i) this behavior is directly observed for E(·, ·;z) on the full-space Green’s tensor, see
Eqs. (A.4ab) and remark 6, and is also explicit for scalar half-space Green’s functions, constructed
from their full-space counterpart using the method of images; (ii) the second term in (25) vanishes in
the time-independent case. The static TS is thus a priori less sensitive than its dynamic counterpart to
defects that are remote from the measurement surface.

Computational issues. Anticipating on the finite element implementation discussed next, all nu-
merical results of Secs. 5 and 6 are based on solving linear dynamical problems in the time domain,
using an unconditionally-stable version of the Newmark time-marching algorithm. Such linear evolu-
tion problems have well-established convergence properties with respect to decreasing mesh size and
time step, and hence do not raise mesh dependency issues. Note however that discretization error af-
fecting displacement solutions affect quadratically the TS due to the bilinear structure of formula (32).
The meshes and time steps used thereafter are chosen solely so as to adequately model geometry and
represent expected spatial and time variations in the computed “true”, free and adjoint solutions. Also,
no attempt to improve the accuracy of computed stresses through refined postprocessing of displace-
ment solutions has been made (although such procedures might conceivably improve TS evaluation),
so as to show the usefulness of the TS concept within a standard FEM framework.

4.2 Implementation and numerical experiments

In spite of the previously-mentioned current lack of a mathematical proof to validate rigorously the
heuristic idea of a TS-based defect indicator function, it is nevertheless useful to evaluate its practical
efficiency through numerical experiments. This study aims at establishing the ability of the time-
domain TS to identify defects (here mostly taken as impenetrable objects such as cavities in elastic
solids), emphasizing the computational efficiency of the approach and its ease of implementation
within a standard finite element framework, and discussing the main features of such wave-based
imaging approach. In the sections to follow, results from numerical experiments will be presented for
the 2-D scalar wave equation (Section 5), then for 2-D and 3-D elastodynamics (Section 6).

9



Discretization. Aiming at a FEM-based implementation of the time-domain topological sensitivity
of J, let Ωh and Ωh(B) denote FEM discretizations of the reference domain Ω and any cavitated trial
domain Ω(B), whose meshes are assumed to coincide over the (discretized) observation surface Sobs

h .
Then, a discretized least-squares cost function is be set up in the form

Jh(Ωh(B), T ) =
nobs∑
i=1

nT∑
j=0

1

2
‖uB,h(ξi, tj)− uobs

h (ξi, tj)‖2 (33)

where nobs denote the number of nodes located on Sobs
h , {t0 = 0, . . . , tnT

= T} is a sequence of
discrete time instants (a constant time step Δt being assumed for simplicity), and uB,h, u

obs
h denote

the FE-computed trial displacement and the observed displacement sampled at the nodes of Sobs
h ,

respectively. For the purposes of computing the TS field, it is necessary to set up the discretized
reference domain Ωh, whereas the discretized trial domain Ωh(B) is introduced for the purpose of a
consistent definition of Jh but is not actually needed.

In the numerical results to follow, the data uobs
h is generated synthetically, using a discretized

version Ωtrue
h of the "true" domain with the defects (or set thereof) to be identified. In that case, the

meshes of Ωtrue
h and Sobs

h are not required to coincide over Sobs
h .

All forward and adjoint solutions are performed using an unconditionally-stable Newmark time-
marching scheme with parameters β=1/4, γ =1/2 (Hughes, 1987).

Discretized time convolution. A discrete version of the time convolution (14) is also adopted as

[vh �wh](ξi, tk) ≈ Δt

k∑
j=0

vh(ξi, tj)wh(ξi, tk − tj) (0� k�nT ). (34)

Then the adjoint state ûh corresponding to the discretized cost function (33) is defined on Ωh and
results from time-dependent nodal forces F̂ h over Sobs

h defined by

F̂ h(ξi, tj) = uh(ξi, tT − tj)− uobs
h (ξi, tT − tj) (1� i�nobs, 0� k�nT ) (35)

Truncated topological sensitivity. To focus on areas of Ω where T attains sufficiently low (nega-
tive) values, a thresholded version Tα of T depending on a cut-off parameter α is used in some of the
following examples. It is defined by

Tα(z, T ) =

{
T(z, T ) (T�αTmin),

0 (T>αTmin)
with Tmin = min

z
T(z, T ), α< 1, (36)

with the implicit assumption that Tmin < 0. Moreover, let Beq(α) denote the geometrical support of
Tα(z, T ), i.e. the region of Ω defined by

Beq(α) =
{
z ∈Ω

∣∣ Tα(z, T ) < 0
}
. (37)

Thus an estimation of the unknown cavity (or set thereof) suggested by the thresholded TS may be
defined in terms of Beq(α). The following additional definitions will also be useful: the characteristic
radius Req(α) of Beq(α), given by

Req =

(
1

π
|Beq|

)1/2

(2-D) , Req =

(
3

4π
|Beq|

)1/3

(3-D) , (38)

where |Beq| stands for the volume of Beq, and the distance d(α) between the centroid xeq of Beq(α)
and the true cavity centroid xtrue ∈Ω, i.e.

d = |xtrue − xeq| with xeq =
1

|Beq|
∫
Beq

ξ dVξ (39)
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Figure 1: Defect imaging using acoustic time-domain data: geometry and notations.

5 Defect imaging using acoustic time-domain data

In this set of examples, the reference domain Ω is the unit square, i.e. Ω= {0� ξ1, ξ2 � 1} (Fig. 1).
The primary field is governed by the two-dimensional scalar wave equation of e.g. linear acous-
tics. The identification of a set Btrue of impenetrable obstacles, such that a homogeneous Neumann
boundary condition describing a zero normal velocity is prescribed on the obstacle boundary Γtrue,
is considered, based on four (simulated) experiments of duration T . The free pressure field u(k)

associated to experiment number k is defined through the boundary-initial value problem

Δu(k)(ξ, t)− ü(k)(ξ, t) = 0 (ξ ∈Ω, 0� t�T )

∇u(k)(ξ, t)·n(ξ) = 1 (ξ ∈Sk, 0� t� T )

∇u(k)(ξ, t)·n(ξ) = 0 (ξ ∈S� (
 
= k), 0� t� T )

u(k)(ξ, 0) = u̇(k)(ξ, 0) = 0 (ξ ∈Ω)

(40)

where each S� is one of the sides of the square boundary of Ω, numbered according to Fig. 1, and Δ
denotes the two-dimensional Laplacian operator. Note that the wave velocity is set to c = 1, so that
the travel time of waves propagating vertically from S1 to S3 or horizontally from S2 to S4 is one
unit of time. All simulations presented in this section were performed using a finite element method
based on a piecewise-linear interpolation, i.e. three-noded triangular elements. The cost function

J (k)(B,T ) =
1

2

∫ T

0

∫
S1+S2+S3+S4

|u(k)B (ξ, t)− u
(k)
obs(ξ, t)|2 dsξ dt

is then introduced (in a discretized form similar to (33)), where u(k)true denotes the pressure field arising

in Ωtrue = Ω \Btrue from the external excitation defined in (40), u(k)obs is the corresponding (possibly

polluted) observation, and u
(k)
Γ is the predicted measurement for an assumed configuration B of the

obstacle. The topological sensitivity T(z, T ) of J(k), such that

J (k)(Ωε(z), T ) = J (k)(Ω, T ) + ε2|B|T(z, T ) + o(ε2)

is given (following an analysis similar to that of Sec. 3) by

T(z, T ) =
{
2π∇u(k) �∇û(k) +

4π

3
u(k)û(k)

}
(z, t)

Identification of a single scatterer. Let Btrue denote the ellipse with parameters as given for scat-
terer 1 in Table 1 (where “inclination” refers to the angle between the ξ1-direction and the major
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Figure 2: Identification of a single scatterer: meshes used for generating the synthetic data (left) and
computing the topological sensitivity (right).

principal axis). The meshes used for generating the synthetic data u
(k)
true and for computing u, û and

T(·, T ) (Fig. 2) feature 16 268 and 9 841 DOFs, respectively.
Figure 3 shows the distribution of Tα(·, T ) obtained for the above-defined single-scatterer iden-

tification problem (having used T = 2, α = 1/2 and Δt = 2.5 10−2). The region Beq(α) clearly
pinpoints correctly the location of the defect, while its size gives a reasonable estimation of the actual
defect size. Figure 4 moreover shows, by means of a sequence of blow-ups of the region surrounding
the actual defects for α ranging from 0.1 to 0.9, that Beq(α) is relatively insensitive to the choice of
α within a fairly wide range of values (approximately 0.2�α� 0.6 for this example).

Figure 5 then illustrates how the choice of experiment configuration and duration affects the
results. Figure 5(a), which repeats Fig. 3, is based on the single experiment k = 1 and a duration
T =2 large enough for a wave emanating from S1 to hit the defect and send scattered signals back to
various parts of the boundary. Hence, the cost function contains enough data about the object to make
an identification possible. In contrast, under the same conditions but with data collected only until
T = 1, the scattering of a wave emanating from S1 seldom has sufficient time to send information to
the boundary, and the defect is not identified (Fig. 5(b)). Using the same reduced experiment duration
T = 1 but with an incident wave emanating from surface S4, located closer to the defect, some of
the scattered signals reach the boundary before t = 1 resulting in an identification (Fig. 5(c)) that
is not as good as in Fig. 5(a) but still acceptable. Finally, maintaining T = 1 and using a multiple
experiment k = 1, 2, 3, 4 (with experiments k = 3, 4 contributing most of the usable data due to the
chosen duration) yields again a satisfactory identification (Fig. 5(d)). These observations entirely
conform with what one would expect based on physical intuition.

Figure 3: Identification of a single scatterer: distribution of thresholded topological sensitivity Tα,
with T =2 and α=1/2.
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(a) α = 0.1 (b) α = 0.2 (c) α = 0.3

(d) α = 0.4 (e) α = 0.5 (f) α = 0.6

(g) α = 0.7 (h) α = 0.8 (i) α = 0.9

Figure 4: Identification of a single scatterer: influence of cut-off parameter α.

(a) k=1, T =2 (b) k=1, T =1

(c) k=4, T =1 (d) k=1, 2, 3, 4, T =1

Figure 5: Identification of a single scatterer: influence of experiment configuration and duration.

Simultaneous identification of a multiple scatterer. The simultaneous identification of a set of
four elliptical scatterers, whose characteristics are gathered in Table 1, is now considered. The mesh
used for generating the synthetic data u

(k)
true now features 24 098 DOFs. The resulting distribution

of Tα(·, T ) obtained for a multiple simulated experiment k = 1, 2, 3, 4 with duration T = 2 and a
cut-off α = 0.5 is shown in Fig. 6. The corresponding region Beq(α) is split into four connected
components, each one correctly located at one of the defects. The identification is simultaneous in
that the topological sensitivity is computed at once on the basis of the free and adjoint solutions, with
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Scatterer # Semiaxes Centroid Inclination
1

√
26/100, 3

√
26/500 (0.30, 0.65) tan−1(1/5)

2
√
29/100, 3

√
26/400 (0.60, 0.35) tan−1(5/2)

3
√
17/100, 3

√
17/200 (0.25, 0.30) tan−1(1/5)

4
√
13/100, 3

√
13/200 (0.55, 0.75) tan−1(5/2)

Table 1: Identification of a multiple scatterer: geometrical parameters.

Figure 6: Identification of a multiple scatterer, with k = 1, 2, 3, 4 and T = 2: TS field T (left) and its
thresholded version Tα with α=1/2 (right).

no prior information about the number of defects fed into the computation.

6 Defect imaging using elastodynamic time-domain data

6.1 Methodology

Synthetic experiment configuration. The reference elastic domains considered are the unit cube
Ω= {0� ξ1, ξ2, ξ3 � 1} or the unit square Ω= {0� ξ1, ξ2 � 1}. The material parameters μ, ν, ρ are
set so that the longitudinal wave velocity (which is fastest) is unity:

cL =
√

μ/ρκ2 = 1 (41)

(with κ defined by (A.5)), so that T =1 corresponds to the travel time of longitudinal waves propagat-
ing between any two opposite faces of ∂Ω in a direction normal to them. For both 3D and 2D cases,
a single synthetic experiment is considered throughout this section, whereby a compressional loading
t̄ =−H(t)e2 (where H(t) denotes the Heaviside step function) is applied on the face ξ2 = 1 of ∂Ω
while a homogenous Dirichlet condition is prescribed on the face SD = {ξ2 = 0}. The observation
surface is taken as the whole Neumann surface: Sobs

h =SN = ∂Ωh \SD.
The reference mesh Ωh is based on an isoparametric piecewise-linear interpolation employing

three-noded triangular elements and 1988 nodes (2D case) or four-noded tetrahedral elements and
19683 nodes (3D case). Moreover, to guard against the "inverse crime" (Colton and Kress, 1998), the
synthetic data uobs is computed by means of a finer discretization, with Ωtrue

h discretized into isopara-
metric piecewise-quadratic elements, i.e. six-noded triangular elements (2D case) or ten-noded tetra-
hedral elements (3D case), arranged for convenience so that the elements of Ωh and Ωtrue

h coincide
on Sobs. The simulated displacements at the vertex nodes of Ωtrue

h on Sobs are then retained (and the
values at the midside nodes discarded), which provide the nodal values of uobs on Sobs

h used in the
discrete cost function (33).
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(a) R1 =0.05, xtrue =(0.75, 0.75) (b) R1 =0.1, xtrue = (0.4, 0.5)

Figure 7: Single cavity identification, 2D: thresholded TS field Tα with α=0.75.

6.2 Single or dual cavity identification

In this section, the effectiveness of the topological sensitivity indicator is assessed on 2-D or 3-D
single- or dual-cavity configurations, with the simulated experiment duration set to T =1.

The thresholded TS Tα(·, T ) for a single unknown circular cavity and a set of two unknown
circular cavities are presented, for two configurations in each case, in Figs. 7 and 8, respectively (with
details on cavity geometry provided therein). In each figure, case (a) corresponds to unknown cavities
close enough to the excitation surface, so that the experiment duration T =1 lets sufficient amount of
information reach the observation surface, leading to satisfactory identification for both the single- or
dual-cavity cases. In contrast, case (b) for each figure features a cavity located in such a way that little
information about its presence can reach the observation surface within the time frame T = 1, and
these cavities are poorly located by the Tα(·, T ) distribution. In addition, a computation on two finer
meshes of the thresholded TS of Fig. 7(a), keeping the same measurement grid and definition (35) of
adjoint nodal forces, indicates that Tα(·, T ) is only moderately sensitive to mesh size (Fig. 9).

Then, similar numerical experiments are conducted for the 3-D case, with results for single- or
dual-cavity configurations shown in Figs. 10 and 11 (where details on cavity geometry are again
provided therein, and the correct cavity boundaries are depicted as blue spheres). Moreover, the
regions Beq(α) defined by (37), plotted respectively in Figs. 12 and 13 for the single- and dual-
cavity cases, are seen to indicate the correct location and number of sought cavities based on the sole
information uobs and do not predict other, spurious, defects.

(a) α=0.75, R1 =R2 =0.05,
xtrue

1 = (0.25, 0.75), xtrue
2 =(0.75, 0.75)

(b) α=0.65, R1 =0.05, R2 =0.1,
xtrue

1 = (0.2, 0.75), xtrue
2 = (0.75, 0.55)

Figure 8: Dual cavity identification, 2D: thresholded TS field Tα.
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(a) Same mesh as Fig. 7 (1988 nodes) (b) Refined mesh 1 (3027 nodes) (c) Refined mesh 2 (4416 nodes)

Figure 9: Single cavity identification, 2D (R1 = 0.05, xtrue = (0.75, 0.75)): thresholded TS field Tα

with α=0.75 for three different meshes.

(a) R=0.05, xtrue = (0.75, 0.75, 0.75) (b) R=0.1, xtrue = (0.4, 0.4, 0.5)

Figure 10: Single cavity identification, 3D: thresholded TS field Tα with α=0.

(a) R1 =R2 =0.05, xtrue
1 = (0.25, 0.25, 0.75),

xtrue
2 = (0.75, 0.75, 0.75)

(b) R1 =0.05 R2 =0.1, xtrue
1 = (0.25, 0.25, 0.75),

xtrue
2 = (0.75, 0.75, 0.5)

Figure 11: Dual cavity identification, 3D: thresholded TS field Tα with α=0.

6.3 Influence of experiment duration

The duration T over which data is collected will obviously have a major effect on the results, an effect
which is now investigated. For this purpose, in addition to the previously-defined unit cube or square
Ω, an elongated variant Ω′ of Ω such that −1� ξ2 � 1 is also considered, with S′

D = {ξ2 =−1} and
all other dimensions and boundary conditions defined as before, and the corresponding observation
surface S′obs set as S′obs =S′

N = ∂Ω′ \S′
D.

Figures 14 and 15 plot d(0.75) and Req(0.75) as functions of the simulated experiment duration
T for the identification of a single cavity of radius R = 0.1 embedded in domain Ω or Ω′. Both
the 2-D case (with xtrue

1 = (0.5, 0.5) in Ω or xtrue
2 = (−0.5, 0.5) in Ω′) and the 3-D case (with
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(a) R = 0.05, α=0.6 (b) R = 0.1, α=0.6

Figure 12: Single cavity identification, 3D: Beq(α).

(a) R1 = R2 = 0.05, α=0.6 (b) R1 = 0.05 R2 = 0.1, α=0.7

Figure 13: Dual cavity identification, 3D: Beq(α).

xtrue
1 = (0.5, 0.5, 0.5) in Ω or xtrue

2 = (0.5, −0.5, 0.5) in Ω′) are considered. These results can
be divided into three cases (indicated on Figs. 14 and 15 using circled ‘1’, ‘2’ and ‘3’ symbols)
according to the value taken by T . For 0 < T � T1 (where T1 is typically the time for the wave to
reach the cavity), the identification is not satisfactory, as was to be expected since the scattered waves
do not have time to reach Sobs and be recorded in the cost function. Next, the case T1 � T � T2

(relatively narrow in terms of the range of T ) corresponds to d decreasing, and Req increasing, with
T i.e. estimations of defect location and size that are sensitive to the experiment duration (figures
14(b), 15(a), 15(b)) and hence also not reliable. Finally, in the case T � T2 (with T2 large enough
for a substantial amount of information to reach Sobs), d reaches small values (indicating a correct
identification of the cavity location) while Req, the estimated cavity size, attains stable values.

6.4 Influence of observation surface configuration

All results so far were based on dense and full-aperture measurements (for a single experiment). The
effect of relaxing either the measurement grid density or the measurement aperture is now considered.

Influence of measurement grid density. The influence of using coarser measurement grids fea-
turing N ×N points on each face of SN is now considered. Figure 16 illustrates the effect of a
decreasing measurement density (i.e. decreasing N ) on the computed field Tα(·, T ). The numerical
value of Tα(·, T ) is seen to decrease, reflecting the fact that the definition (33) of J and that of the
adjoint forces (35) is strongly influenced by the number of measurement points. This in itself is of
secondary importance, as (i) the support of Tα(·, T ), not its numerical value, is of primary impor-
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(a) R=0.1, xtrue
1 = (0.5, 0.5) (b) R=0.1, xtrue

2 = (0.5, −0.5)

Figure 14: Influence of experiment duration: identification under 2-D conditions.

(a) R=0.1, xtrue
1 = (0.5, 0.5, 0.5) (b) R=0.1, xtrue

2 = (0.5, −0.5, 0.5)

Figure 15: Influence of experiment duration: identification under 3-D conditions.

tance, and (ii) one could easily renormalize the definition of J. However, one also notices that a
decreasing measurement density induces a qualitative deterioration of the identification provided by
Tα(·, T ). This observation is confirmed by Fig. 17, where the reconstructed cavity is taken to be the
support Beq(α) of Tα(·, T ) and which shows that α must decrease with N to have Beq(α) reasonably

(a) N =27 (b) N =14

(c) N =9 (d) N =7

Figure 16: Influence of measurement grid density on thresholded TS field Tα (α=0, R=0.1)
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(a) N =27 α = 0.75 (b) N =14 α = 0.75

(c) N =9 α = 0.4 (d) N =7 α = 0.35

Figure 17: Influence of measurement grid density: blurring effect on B eq(α).

estimating Btrue for all grid densities. Remarkably, the cavity location remains correctly estimated
even as the shape of Beq(α) becomes irregular due to the decreasing number of observation points.

Influence of limited aperture. Here, the effect of restricting the observation surface to a portion
Sobs � SN of the boundary is examined. Figure 18 shows the identification result in terms of Beq(α)
for two cases with limited aperture. For data collected on the top face ξ2 = 1 (Fig. 18(a)), the obser-
vation surface is orthogonal to the propagation direction of the compressional wave in the reference

(a) Sobs = {ξ2 =1} (b) Sobs = {ξ3 =0}
Figure 18: Influence of limited aperture: distribution of Tα for two choices of Sobs.
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(a) Sobs = {ξ2 =1} (b) Sobs = {ξ3 =1}
Figure 19: Influence of limited aperture: Beq(α) for two choices of partial observation surface S obs.

solid, and the horiozontal location of the sought cavity is correctly found while its vertical estimated
position is offset compared to the correct one. For data collected on the lateral face ξ3 =0 (Fig. 18(b)),
the TS field does not resolve correctly the unknown cavity. Moreover, plots of Beq(α) corresponding
to observations surfaces Sobs = {ξ2 = 1} and Sobs = {ξ3 = 1} (chosen closest to Btrue to yield suf-
ficient usable data) indicate satisfactory reconstruction of Btrue (Fig. 19). For the two cases shown,
Btrue is better estimated along the direction orthogonal to Sobs, with the best identification obtained
in Fig. 19(a) corresponding to Sobs orthogonal to the propagation direction of the incident wave.

6.5 Influence of data noise

In this section the influence of data noise is studied by considering noisy simulated data of the form

uobs
h (·, tj) = utrue

h (·, tj) + σχumax
j , umax

j =
{

max
1≤i≤nobs

([
utrue
h (ξi, tj)−uh(ξi, tj)

]·ek)}ek (42)

where χ is a Gaussian random variable with zero mean and unit standard deviation. Figure 20 depicts
the behavior of the imaging method for increasing noise level σ. Remarkably, the cavity location is
correctly estimated even for high noise levels (Figs. 20(c) and 20(d)). TS-based identification thus
still yields usable results if applied to noisy data, as anticipated in Sec. 4.1 based on the mathematical
structure of the TS formula, even though no regularization is used in the cost functional. This feature
is very promising for applications. Note that the reference utrue

h used in (42) is itself “noisy”, being a
FEM-based approximation of utrue. The discretization error level thus superimposed to the simulated
data noise is expected not to exceed a few percent in the examples presented here (and thus to be much
lower than the noise levels of Figs. 20(c) and 20(d)). For instance, synthetic data evaluations for the
2D elastodynamic examples presented a 2.1 10−2 relative discrepancy (in L2-norm) when performed
on meshes featuring 2420 and 5453 nodes.

6.6 Identification of non-cavity defects

To conclude this series of numerical experiments, the identification of a crack and an inclusion is
now considered, whose geometrical or material characteristics do not conform to those assumed in
deriving the topological sensitivity.

Crack identification. The identification of a penny-shaped crack (radius R = 0.1, unit normal
n = − sin θe1+cos θe2) leads to results that are satisfactory in terms of crack location and size, as
shown in Fig. 21 for two choices θ=0 and θ= π/4 of the crack inclination, while lacking sensitivity
to the crack inclination. A recently-proposed specific formulation for crack problems (Bellis and
Bonnet, 2009) features a polarization tensor that depends explicitly on an assumed crack orientation,
thus offering (not yet investigated) possibilities for finding the crack orientation on that basis.
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(a) σ = 0.1, xtrue = (0.75, 0.75, 0.75), α=0.75 (b) σ = 0.2, xtrue =(0.75, 0.75, 0.75), α=0.75

(c) σ = 0.5, xtrue = (0.75, 0.75, 0.75), α=0.75 (d) σ = 1, xtrue = (0.75, 0.75, 0.75), α=0.6

Figure 20: Influence of data noise on T: Beq(α) for various levels of noise.

(a) θ = 0 (horizontal), α=0, xtrue = (0.75, 0.75, 0.75) (b) θ = π/4 (inclined), α=0, xtrue = (0.75, 0.75, 0.75)

Figure 21: Penny-shaped crack identification: thresholded TS field Tα.

Inclusion identification. The identification of a penetrable spherical inclusion characterized by the
radius R = 0.1 and material parameters μ�, ν� = ν, ρ� = ρ is now considered. The TS defined for
cavities is found to identify satisfactorily soft spherical inclusions (such that μ� � μ), see Fig. 22.
However, employing this method for stiff inclusions (such that μ� >μ) leads to an contrast inversion
in the TS field, the defect location now corresponding to a maximum of T(·, T ). Moreover, the TS
defined for spherical elastic inclusions with assumed material parameters μ�, ν�, ρ�, given by

T�(z, T ) = {σ[û] � (A� : σ[u]) + (ρ− ρ�) ˙̂u � u̇}(z, T ) (43)
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(a) μ� =0.1μ, α=0, xtrue =(0.75, 0.75, 0.75) (b) μ� =0.5μ, α=0, xtrue = (0.75, 0.75, 0.75)

Figure 22: Identification of a soft spherical inclusion using cavity-related thresholded TS field T α.

(a) μ� =5μ, α=0, xtrue =(0.75, 0.75, 0.75) (b) μ� =10μ, α=0, xtrue = (0.75, 0.75, 0.75)

Figure 23: Identification of a stiff spherical inclusion using inclusion-related thresholded TS field T �
α.

with the polarization tensor A� given by (B.2) and established in Chikichev and Guzina (2008), has
also been implemented within the present FEM approach. Then, the TS field T� computed for the
correct values of μ�, ν�, ρ� is seen in Fig. 23 to allow a correct identification of a stiff inclusion.

7 Conclusion

In this study, the concept of topological sensitivity (TS) is developed for elastic and acoustic-wave
imaging of media of arbitrary geometry using data in the time domain. On seeking the limiting form
of the boundary integral equation governing the scattered field caused by a cavity with vanishing
size ε, the TS field is found to be expressed in terms of the time convolution of the free field and an
adjoint field. The εD asymptotic behavior of the cost function revealed by the analysis, identical to
that established earlier for identification in static of frequency-domain settings, requires a degree of
smoothness of the free field with respect to the time variable. The main analysis is devoted to 3-D
configurations, but 2-D time-domain formulations are addressed as well.

While its derivation and formulation results from a mathematically rigorous asymptotic analysis,
subsequent applications of the TS concept to the identification of finite-sized defects remains heuris-
tic. Here, a comprehensive set of numerical examples is presented so as to substantiate the usefulness
of the TS in applications and assess its performances. In contrast with the relatively involved analysis
required to arrive at the correct formulation of the TS field, subsequent numerical implementations
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are quite simple. To emphasize the ease of application of the TS concept, all examples presented
in this article rely on straightforward FEM formulations of the free and adjoint field, rather than
more-specialized integral-equation techniques previously used by the same group of authors. Several
important features of the method are discussed through these examples, including its ability to iden-
tify multiple defects or to withstand significant data noise, and the effect of restrictions on the data
through insufficient experiment duration or partial aperture. It is important to note that most examples
consider identification based on a single (simulated) time-domain experiment.

From this study, it can be concluded that computing and exploiting the TS field constitutes a pow-
erful and efficient tool for defect identification, as it is very simple to implement, computationally
much faster than minimization-based inversion methods, and allows multiple defect identification
without prior information. The present “one-shot” TS-based identification is qualitative rather than
quantitative in nature. In addition to the stand-alone one-shot TS-based procedure emphasized in
this article (of a qualitative rather than quantitative nature, and hence useful if speed or ease of im-
plementation is more important than accurate defect sizing), the TS may also be implemented using
an iterative matter removal strategy of the kind used in topology optimization (Allaire et al., 2005;
Garreau et al., 2001), or be used in computing good initial guesses for subsequent refined inversion
(perhaps based on exploiting Beq(α) and Req(α) defined by (37), (38)). Quantitative defect identifi-
cation may also be achieved on the basis of time-domain versions (to be developed) of higher-order
topological expansions along the lines of Bonnet (2008, 2009).
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Appendix A Asymptotic behaviour of elastodynamic integral operators

Appendix A.1 Elastodynamic governing BIE

The integral representation formula for the scattered field vε reads (Eringen and Suhubi, 1975)

vε(x, t) = −
∫
Γε(z)

{
T (x, t, ξ;n) � vε(ξ, t) +U(x, t, ξ) � t[u](ξ, t)

}
dSξ (A.1)

In the present situation, where the free field featured in the right-hand side of (A.1) is also defined
inside the cavity region Bε(z), one has

−
∫
Γε(z)

U(x, t, ξ) � t[u](ξ, t) dSξ =

∫
Bε(z)

[
ρU(x, t, ξ) � ü(ξ, t) +E(x, t, ξ) � σ[u](ξ, t)

]
dVξ

by virtue of the divergence formula (note that −n in (A.1) is the outward unit normal to Bε(z)) and
the field equation (9a) verified by u. Integral equation (13) then follows by invoking the following
property of time convolution (14), easily established using integration by parts and conditions (15):

[a � b̈](ξ, t) = [ȧ � ḃ](ξ, t) = [ä � b](ξ, t)

Appendix A.2 Elastodynamic fundamental solutions and proof of Lemmas 1 to 3

The time convolutions featured in integral equation (13) can be expressed as

U(x, t, ξ) � t(ξ, t) = U [x, t, ξ|ei ·t(ξ, ·)]·ei (A.2a)

T (x, t, ξ;n) � vε(ξ, t) = T [x, t, ξ;n|ei ·vε(ξ, ·)]·ei (A.2b)

where U [x, t, ξ|f ] and T [x, t, ξ;n|f ] are the time-modulated elastodynamic Green’s tensors, defined
such that ek ·U and ek ·T are the displacement and traction vectors at ξ ∈ Ω resulting from a point
force acting at x in the k-direction with prescribed time-varying magnitude f(t). The latter solve the
boundary-initial value problem

LξU [x, t, ξ|f ] + δ(ξ−x)f(t)I = 0 (ξ ∈Ω, t� 0) (A.3a)

T [x, t, ξ;n|f ] = 0 (ξ ∈SN, t� 0) (A.3b)

U [x, t, ξ|f ] = 0 (ξ ∈SD, t� 0) (A.3c)

U [x, 0, ξ|f ] = U̇ [x, 0, ξ|f ] = 0 (ξ ∈Ω) (A.3d)

Similarly, let U∞[x, t, ξ|f ] and T∞[x, t, ξ;n|f ] denote the time-modulated infinite-space funda-
mental solution, which satisfy equations (A.3a), (A.3d) with Ω=R3 and radiation conditions instead
of boundary conditions (A.3b), (A.3c), and is given by (Eringen and Suhubi, 1975)

U∞[x, t, ξ|f ] = 1

4πμr

[
A[x, t, ξ|f ] I +B[x, t, ξ|f ] (r̂⊗ r̂)

]
(A.4a)

E[x, t, ξ|f ] = 1

8πμr2

[
B[x, t, ξ|f ](r̂⊗I) +D[x, t, ξ|f ](Isym ·r̂) + 2E[x, t, ξ|f ](r̂⊗ r̂⊗ r̂)

]
(A.4b)

T∞[x, t, ξ;n|f ] = 1

4πr2

[
C[x, t, ξ|f ] (r̂⊗n) +D[x, t, ξ|f ] (r̂⊗n+ (r̂ ·n)I)

+ 2E[x, t, ξ|f ] (n·r̂)r̂⊗ r̂
]

(A.4c)

where r=(ξ−x), r= ‖r‖, r̂= r/r, κ is the ratio of bulk wave velocities as defined by

κ2 =
c2T
c2L

=
1− 2ν

2(1 − ν)
=

μ

λ+ 2μ
(A.5)
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and with A=A[x, t, ξ|f ], . . . defined by

A[x, t, ξ|f ] = f
(
t− r

cT

)
+

∫ κ

1
ηf

(
t− ηr

cT

)
dη

B[x, t, ξ|f ] = −3A[x, t, ξ|f ] + 2f
(
t− r

cT

)
+ κ2f

(
t− r

cL

)
C[x, t, ξ|f ] = 2B[x, t, ξ|f ]− (1− 2κ2)

{
f
(
t− r

cL

)
+

r

cL
ḟ
(
t− r

cL

)}
D[x, t, ξ|f ] = 2B[x, t, ξ|f ]− f

(
t− r

cT

)
− r

cT
ḟ
(
t− r

cT

)
E[x, t, ξ|f ] = −3B[x, t, ξ|f ]−D[x, t, ξ|f ]− κ2

{
f
(
t− r

cL

)
+

r

cL
ḟ
(
t− r

cL

)}
.

(A.6)

Define now the time-modulated complementary elastodynamic Green’s tensor UC by

U [x, t, ξ|f ] = U∞[x, t, ξ|f ] +UC[x, t, ξ|f ] (A.7)

By virtue of superposition arguments, UC is governed by the boundary-initial value problem

LξUC[x, t, ξ|f ] = 0 (ξ ∈Ω, t� 0)

T C[x, t, ξ;n|f ] = −T∞[x, t, ξ;n|f ] (ξ ∈SN, t� 0)

UC[x, t, ξ|f ] = −U∞[x, t, ξ|f ] (ξ ∈SD, t� 0)

UC[x, 0, ξ|f ] = U̇C[x, 0, ξ|f ] = 0 (ξ ∈Ω)

(A.8)

One can then show (using e.g. an integral representation formula) that UC[x, t, ξ|f ] is bounded in the
limit ξ → x, i.e. that the singular behavior of U [x, t, ξ|f ] at ξ=x is identical to that of its full-space
counterpart U∞[x, t, ξ|f ]. Hence, one has

UC[z+εx̄, t,z+εξ̄|f ] = O(1) (ε → 0) (A.9)

Proof of Lemma 1. With decomposition (A.7) of U [x, t, ξ|f ] in mind, consider first the evaluation
of the leading contribution to ∫

Γε(z)
U∞(x, t, ξ) � t(ξ, t) dSξ (A.10)

as ε → 0, where U∞(x, t, ξ) � t(ξ, t) is, by virtue of (A.2a), given by (A.4a) with f(t) = ei ·t(ξ, t).
Setting f(τ) = f(t) + (f(τ)−f(t)) = f(t)+Δf(τ) = in (A.6), one obtains

A[x, t, ξ|f ] = 1+κ2

2
f(t) +A[x, t, ξ|Δf ], B[x, t, ξ|f ] = 1−κ2

2
f(t) +B[x, t, ξ|Δf ]. (A.11)

The cofactors of f(t) in (A.11) correspond to a constant point force of unit magnitude, and hence
yield, through (A.4a), the elastostatic full-space Green’s tensor (i.e. Kelvin’s solution) U∞(x̄, ξ̄):

U∞(x̄, ξ̄) =
1

8πμr̄

[
(1+κ2)I + (1−κ2)ˆ̄r⊗ ˆ̄r

]
(A.12)

Moreover, the Lipschitz-continuity assumption made on t 
→ σ[u](ξ, t) implies that

|f(t)−f(τ)| � K|t−τ |, |ḟ(τ)| � K 0� τ � t

(with K the Lipschitz continuity modulus of f ) and hence that

A[x, t, ξ|Δf ] � KCAr/cT, B[x, t, ξ|Δf ] � KCBr/cT (A.13)

with appropriate constants CA, CB. Combining (A.4a), (A.11) and (A.13), one thus obtains

U∞(x, t, ξ) � t(ξ, t) = U∞(x, ξ)·t(ξ, t) +U∞(x, t, ξ) �Δt(ξ, t),
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∥∥U∞(x, t, ξ) �Δt(ξ, t)
∥∥ � CUK, (A.14)

where CU is a constant. Hence, upon introducing scaling (16), (17) into (A.10), noting that U∞(ξ,x)
is homogeneous of degree −1 in ξ̄− x̄, making use of the expansion σ[u](ξ, t) = σ[u](z, t)+o(1),
and invoking (A.14), one obtains∫

Γε(z)
U∞(x, t, ξ) � t(ξ, t) dSξ = ε

{∫
S
U∞(x̄, ξ̄)⊗n(ξ̄) dS̄ξ̄

}
:σ[u](z, t) + o(ε) (A.15)

Finally, Lemma 1 follows from (A.7), (A.15) together with the following estimate stemming from (A.9):∫
Γε(z)

UC(x, t, ξ) � t(ξ, t) dSξ = O(ε2). (A.16)

Remark 6. The presence of rḟ(t−r/cL,T) in expressions (A.6) of C,D,E implies that the fundamental
strains E[x, t, ξ|f ] and stresses behave as O(r−1) in the time-modulated case (ḟ 
= 0) but as as
O(r−2) in the static case (ḟ =0).

Proof of Lemma 2. The proof again exploits decomposition (A.7). First, upon introducing scaled
coordinates (16) into expression (A.4c) of T∞ and definitions (A.6) of C[x, t, ξ|f ],D[x, t, ξ|f ] and
E[x, t, ξ|f ] (wherein f(t)= vεi (ξ, t) according to A.2b), it is a simple matter to show that

T∞(x, t, ξ;n) � vε(ξ, t) =
1

ε2
T∞,ε(x̄, t, ξ̄;n) � v̄

ε(ξ̄, t) (A.17)

where T∞,ε is defined by (A.4c) and (A.6) with wave velocities cL, cT replaced by rescaled values
cL/ε and cT/ε. Equation (A.17) and scaling (17) then imply

−
∫
Γε(z)

T∞(x, t, ξ;n) � vε(ξ, t) dSξ = −
∫
S
T∞,ε(x̄, t, ξ̄;n) � v̄

ε(ξ̄, t) dS̄ξ̄ (A.18)

Moreover, owing to the boundedness (A.9) of the complementary Green’a tensor UC, one has, upon
using again coordinate scaling (16):

−
∫
Γε(z)

T C(x, t, ξ;n) � v
ε(ξ, t) dSξ = O(ε2)‖v̄ε(·, t)‖ (A.19)

where ‖v̄ε(·, t)‖ is a norm of ξ̄ 
→ v̄ε(ξ̄, t), e.g. its L2-norm over S . Lemma 2 then follows from
combining (A.18) and (A.19).

Proof of Lemma 3. The proposed ansatz (20) is, by assumption in Lemma 1, Lipschitz-continuous
w.r.t. t. It is therefore appropriate to investigate the behavior of T∞ as defined by (A.4c) and (A.6) for
a Lipschitz-continuous time-modulation f . Proceeding along the lines of Lemma 1, and in particular
invoking again the decomposition f(τ) = f(t) + (f(τ)−f(t)) = f(t)+Δf(τ) =, one has

C[x̄, t, ξ̄|f ] = κ2f(t) + C[x̄, t, ξ̄|Δf ]

D[x̄, t, ξ̄|f ] = −κ2f(t) +D[x̄, t, ξ̄|Δf ]

E[x̄, t, ξ̄|f ] = −3

2
(1−κ2)f(t) + E[x̄, t, ξ̄|Δf ]

(A.20)

Substituting the above values into (A.4c) and (A.6), one obtains the decomposition

T∞[x̄, t, ξ̄|f ] = T∞(x̄, ξ̄;n)f(t) + T∞[x̄, t, ξ̄|Δf ] (A.21)

with T∞(x̄, ξ̄;n), the traction associated with the elastostatic Kelvin solution U∞(x̄, ξ̄), given by

T∞(x̄, ξ̄;n) =
1

4πr̄2

[
κ2

(
ˆ̄r⊗n− n⊗ ˆ̄r − (ˆ̄r ·n)I)+ 3(κ2−1)(ˆ̄r ·n)ˆ̄r⊗n

]
. (A.22)
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Decomposition (A.21) is in particular applicable to T∞,ε[. . . |f ] defined by replacing velocities cL, cT

by the rescaled values cL/ε, cT/ε in T∞[. . . |f ]. Owing to the assumed Lipschitz continuity of f , one
easily shows that ∥∥T∞,ε[x̄, t, ξ̄|Δf ]

∥∥ � CTKε (ε → 0)

where K is the Lipschitz constant of f and CT is a constant. Consequently, using the fact that
T∞(x̄, ξ̄;n)f(t) is unaffected by the wave velocity rescaling, decomposition (A.21) implies

T∞,ε[x̄, t, ξ̄|f ] = T∞(x̄, ξ̄;n)f(t) + o(1) (ε → 0)

Lemma 3 then follows from equating f(t) to the components of εV (̄ξ) : σ[u](z, t), according
to (A.2b), in the above estimate.

Appendix A.3 3-D Scalar wave equation

The reference domain Ω ⊂ R3 is now filled by an acoustic fluid characterized by the wave velocity
c. The acoustic pressure field uB generated by given excitations p̄(ξ, t) (proportional to normal wall
acceleration) and ū(ξ, t) (applied pressure) in the presence of a (possibly multiply-connected) sound-
hard obstacle occupying a region B bounded by Γ is governed by the following set of equations:

P(B) :

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

[LcuB
]
(ξ, t) = 0 (ξ ∈Ω, t� 0)

q[uB ](ξ, t) = 0 (ξ ∈Γ, t� 0)

q[uB ](ξ, t) = p̄(ξ, t) (ξ ∈SN, t� 0)

uB(ξ, t) = ū(ξ, t) (ξ ∈SD, t� 0)

uB(ξ, 0) = u̇B(ξ, 0) = 0 (ξ ∈Ω)

(A.23)

where w 
→ q[w] =∇w·n is the normal derivative operator and Lc, defined by

[Lcw] (ξ, t) = Δw(ξ, t)− 1

c2
ẅ(ξ, t) (A.24)

is the governing partial differential operator of linear acoustics. Objective functions of format (5),
with densities now having the form ϕ

[
uB(ξ, t), ξ, t

]
, are again considered. Define a small scatterer

Bε(z) of size ε as in Sec. 3, and let u denote the free field (which solves P(∅)) and vε the scattered
field (such that the total field uε = u+vε solves problem P(Bε(z))). The governing integral equation
for the scattered field vε reads

1

2
vε(x, t) +−

∫
Γε(z)

H[x, t, ξ;n|vε(ξ, t)] dSξ = −
∫
Γε(z)

G[x, t, ξ;n|q[u](ξ, t)] dSξ

(x∈Γε(z), t� 0), (A.25)

where the time-modulated Green’s function G[x, t, ξ|f ] solves the boundary-initial value problem

Lc,ξG[x, t, ξ|f ] = 0 (ξ ∈Ω, t� 0)

G[x, t, ξ|f ] = 0 (ξ ∈SD, t� 0),

H[x, t, ξ|f ] = 0 (ξ ∈SN, t� 0),

G[x, 0, ξ|f ] = Ġ[x, 0, ξ|f ] = 0 (ξ ∈Ω)

(A.26)

and with H[x, t, ξ;n|f ] = ∇ξG[x, t, ξ|f ] ·n(ξ). Moreover, let G∞[x, t, ξ|f ] denote the time-
modulated full-space fundamental solution, given by (Eringen and Suhubi, 1975)

G∞[x, t, ξ|f ] = 1

4πr
f
(
t− r

c

)
(A.27)

∇ξG∞[x, t, ξ|f ] = − 1

4πr2

[
f
(
ξ, t− r

c

)
+

r

c
ḟ
(
t− r

c

)]
r̂ (A.28)
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and define the complementary Green’s function GC, bounded in the limit ξ → x, by GC[x, t, ξ|f ] =
G[x, t, ξ|f ]−G∞[x, t, ξ|f ]. The counterparts of Lemmas 1 and 2 then correspond to estimate∫

Γε(z)
G(x, t, ξ) � q[u] dSξ = ε

{∫
S
G∞(x̄, ξ̄)⊗n(ξ̄) dS̄ξ̄

}
·∇u(z, t) + o(ε), (A.29)

assuming τ 
→ ∇u(x, τ) is Lipschitz-continuous and differentiable in a neighbourhood of τ = t, and

−
∫
Γε(z)

H[x, t, ξ;n|vε(ξ, t)] dSξ =

∫
S
H∞,ε(x̄, ξ̄;n)v̄

ε(ξ̄, t) dS̄ξ̄ + o(‖v̄ε‖) (ε → 0) (A.30)

(with H∞(x̄, ξ̄;n) = ∇ξ̄G∞(x̄, ξ̄) ·n(ξ), H∞,ε defined by (A.28) with c replaced with c/ε, and
v̄ε(ξ̄, t) defined by v̄ε(ξ̄, t) = vε(ξ, t) with ξ̄ and ξ related through (16)). Estimates (A.29) and (A.30),
established following the steps used for Lemmas 1 and 2, suggest the following asymptotic behavior
for vε(ξ, t):

v̄ε(ξ̄, t) = εV(ξ̄, t)·∇u(z, t) + o(ε) (ξ ∈Γε(z), ξ̄ ∈S) (A.31)

Upon substituting (A.31) into the right-hand side of (A.30), making use of the assumed Lipschitz
continuity of τ 
→ ∇u(x, τ), and retaining only the leading O(ε) contributions as ε → 0 accord-
ing to (A.29) and (A.30), V is readily found to verify an integral equation that corresponds to the
following canonical exterior problem for the vector Laplace equation:

Δξ̄V(ξ̄) = 0 (ξ̄ ∈R3 \B), ∇ξ̄V(ξ̄)·n(ξ̄) = −n(ξ̄) (ξ̄ ∈S) (A.32)

The scattered field vε at any point of Sobs is then found (inserting (A.31) into the integral representa-
tion formula associated with integral equation (A.25)) to have the expansion

vε(x, t) = ε3|B|{∇ξG(x, t,z) � [A·∇u](z, t) + ρU̇(x, t,z) � u̇(z, t)
}
+ o(ε3) (A.33)

where the constant second-order polarization tensor A=A(B) depends only on B and is defined by

A = I − 1

|B|
{∫

S
n(ξ̄)⊗V(ξ̄) dS̄ξ̄

}
(A.34)

Finally, upon defining the adjoint solution û as the solution of the initial-boundary value problem⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

[Lcû
]
(ξ, t) = 0 (ξ ∈Ω, 0� t� T ),

q[û](ξ, t) =
∂ϕ

∂u
[u(ξ, T − t), ξ, T − t] (ξ ∈Sobs, 0� t� T ),

q[û](ξ, t) = 0 (ξ ∈SN\Sobs, 0� t� T ),

û(ξ, t) = 0 (ξ ∈SD, 0� t� T ),

û(ξ, 0) = ˙̂u(ξ, 0) = 0 (ξ ∈Ω),

(A.35)

using reciprocity identity (29) suitably modified for linear acoustics, and exploiting the relevant
boundary conditions, expansion (11) with u and vε respectively replaced with u and vε yields

η(ε)|B|T(z, T ) + o
(
η(ε)

)
=

∫ T

0

∫
Sobs

∂ϕ

∂u
[u(ξ, t), ξ, t]vε(ξ, t) dSξ dt

= −
∫
Γε(z)

{
q[û] � vε + q[u] � û

}
(ξ, t) dSξ

= ε3|B|{∇û � (A·∇u) +
1

c2
˙̂u � u̇

}
(z, t) + o(ε3) (A.36)

with the polarization tensor A still defined by (A.34). Hence, the TS T(z, t) and leading behavior
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η(ε) are found to be given by

T(z, t) =
{∇û � (A·∇u) +

1

c2
˙̂u � u̇

}
(z, t), η(ε) = ε3 (A.37)

Appendix A.4 Two-dimensional case

The time-modulated full-space fundamental solution is given by (Eringen and Suhubi, 1975)

G∞[x, t, ξ|f ] = 1

2π

∫ η�(r,t)

0

1

[η2+r2]1/2
f
(
t− [η2+r2]1/2

c

)
dη (A.38)

∇ξG∞[x, t, ξ|f ] = − 1

2π
r

∫ η�(r,t)

0

{
1

[η2+r2]3/2
f
(
t− [η2+r2]1/2

c

)
+

1

c[η2+r2]
ḟ
(
t− [η2+r2]1/2

c

)}
dη (A.39)

where ξ,x now denote points in the two-dimensional space spanned by (e1,e2), and the upper bound
η�(r, t) of the above integrals stems from the causality condition f(τ)= 0, τ < 0 and is given by

η�(r, t) = [(ct)2 − r2]1/2 (A.40)

Proof of lemma 1. Assume that τ 
→ ∇u̇(ξ, τ) is bounded for 0� τ � t uniformly in a neighbour-
hood V (z) of z, which implies that τ 
→ ∇u(ξ, τ) is Lipschitz-continuous for 0� τ � t uniformly
in V (z). Hence, for some positive constant K, one has

‖∇u̇(ξ, τ)‖ � K, ‖∇u(ξ, τ)−∇u(ξ, τ ′)‖ � K|τ −τ ′| 0� τ, τ ′ � t, ξ ∈ V (z) (A.41)

Here, the tail effect, i.e. the fact (reflected in the integration bounds of (A.38), (A.39), and typical of
2-D time-domain fundamental solutions) that a time-impulsive source generates at (ξ, t) a nonzero
response over a continuous time interval, entails a proof method that is slightly more involved than
for the previously-addressed 3-D cases. First, the main quantity of interest is recast into a domain
integral along the lines of Appendix A.1:

−
∫
Γε(z)

G∞(x, t, ξ) � q[u](ξ, t) dSξ

=

∫
Bε(z)

{∇ξG∞(x, t, ξ) �∇u(ξ, t) +
1

c2
G∞(x, t, ξ) � ü(ξ, t)

}
dVξ (A.42)

Now, setting f(τ) = f(t)+Δf(τ) in (A.39) and equating f(τ) to the components of ∇u(ξ, τ) in
the resulting equality, one obtains

∇ξG∞(x, t, ξ) �∇u(ξ, t) = G∞(x, ξ)·∇u(ξ, t) +∇ξG∞(x, t, ξ) �∇Δu(ξ, t), (A.43)

where G∞(x, ξ) is the static 2-D full-space Laplace fundamental solution, given by

G∞(x, ξ) = − 1

2π
r

∫ η�(r,t)

0

1

[η2+r2]3/2
dη = − 1

2π
ln r, ∇ξG∞(x, ξ) = − 1

2πr2
r (A.44)

(with the second equality established via analytical integration). Moreover, utilizing the assumed Lip-
schitz continuity of t 
→ ∇u(ξ, t) for bounding the last term in (A.43) yields (noting that η�(r, t)� ct)

∣∣∇ξG∞(x, t, ξ)�∇Δu(ξ, t)
∣∣ � r

2π

2K

c

∫ η�(r,t)

0

dη
η2+r2

=
K

πc
tan−1

[(ct)2
r2

−1
]1/2

� K

2c
(A.45)

with the last inequality stemming from the fact that −π/2 � tan−1x � π/2 for any x. Next,
introducing the scaled coordinates (16), one obtains (by virtue of ∇ξG∞(x, ξ) being homogeneous
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of degree −1 in x−ξ)

G∞(x, ξ)·∇u(ξ, t) =
1

ε
G∞(x̄, ξ̄)·[∇u(z, t) + o(1)] (A.46)

Finally, upon integrating decomposition (A.43) over Bε, applying estimates (A.45) and (A.46), and
noting that dVξ = ε2 dV̄ξ̄ for the present 2-D case, one obtains (with the last equality stemming from
applying the divergence formula):

∫
Bε(z)

∇ξG∞(x, t, ξ) �∇u(ξ, t) dVξ = ε

{∫
B
∇ξ̄G∞(x̄, ξ̄) dV̄ξ̄

}
·∇u(ξ, t) + o(ε)

= ε

{∫
S
G∞(x̄, ξ̄)⊗n(ξ̄) dS̄ξ̄

}
·∇u(ξ, t) + o(ε) (A.47)

Finally, assuming in addition that ü(ξ, τ) is uniformly bounded, i.e. |ü(ξ, τ)|�M for some positive
constant M , for ξ ∈ V (z), 0� τ � t, one has

∣∣G∞(x, t, ξ) � ü(ξ, t)
∣∣ = ∣∣G∞[x, t, ξ|ü(ξ, t)] ∣∣ � M

2πc2

∫ η�(r,t)

0

1

[η2+r2]1/2
dη

=
M

2πc2
ln
[
ct+ η�(r, t)

] − ln r (A.48)

which implies, for ε small enough to have Bε(z)⊂ V (z) and after effecting scaling (16):

∣∣∣∫
Bε(z)

G∞(x, t, ξ) � ü(ξ, t) dVξ
∣∣∣ � M

2πc2
εO(ε ln ε) = o(ε) (A.49)

Hence, combining (A.47) and (A.49), one arrives at an estimate formally identical to (A.29) where
of course B is now the unit disk and G∞ the 2-D static fundamental solution.

Proof of lemma 2. Introducing the scaled coordinates (16) into (A.39), performing the change of
variable η = εη̄ in the resulting integral and noting that its upper bound η̄�(r̄, t) is given by (A.40)
with r and c respectively replaced by r̄ and c/ε. The 2-D analog of Lemma 2 is then readily obtained
by invoking again the decomposition G[x, t, ξ|f ] = G∞[x, t, ξ|f ]+GC[x, t, ξ|f ] and noting that∫

Γε(z)
HC[x, t, ξ|vε(ξ, t)] dSξ = ε

∫
S
HC[x̄, t, ξ̄|v̄ε(ξ, t)] dS̄ξ̄ = O(ε‖v̄ε(·, t)‖).

Proof of lemma 3. The proposed ansatz (A.31) is, by assumption in Lemma 1, Lipschitz-continuous
w.r.t. t, which leads to investigating the behavior of H∞ as defined through (A.39) for a Lipschitz-
continuous time-modulation f . Proceeding along the lines of Lemma 1, and in particular invoking
yet again the decomposition f(τ) = f(t)+Δf(τ), one finds

H∞[x̄, t, ξ̄|f ] = H∞(x̄, ξ̄)f(t) +H∞[x̄, t, ξ̄|Δf ]

where the cofactor H∞(x̄, ξ̄) of f(t), established via analytical integration, is the normal derivative
of the static fundamental solution (A.44). Moreover, exploiting the Lipschitz-continuity of f in the
now-familiar way leads to

∣∣H∞[x̄, t, ξ̄|Δf ]
∣∣ � r̄

2πc2
2K

c

∫ η�ε (r̄,t)

0

dη̄
η̄2+ r̄2

=
K

πc
tan−1

[
1− (ct)2

r̄2

]1/2
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Two-dimensional elastodynamics. The infinite-plane time-modulated fundamental solution for
two-dimensional elastodynamics is given by (Eringen and Suhubi, 1975):

U∞[x, t, ξ|f ] = 1

ρc2T
GT∞[x, t, ξ|f ]I

+
1

4πρ
∇ξ∇ξ

{∫ t−r/cL

0
τGL∞[x, t−τ, ξ|f ] dτ −

∫ t−r/cT

0
τGT∞[x, t−τ, ξ|f ] dτ

}
r (A.50)

where GL∞, GT∞ are defined by (A.38) with c= cL and c= cT, respectively. Lemma 1 to 3 can then
be established by adapting the proof for the scalar case, a task left to the reader.

Appendix B Summary of explicit formulae for polarization tensors

Explicit formulae for polarization tensors A have been established in earlier works (e.g. Sokolowski
and Zochowski, 1999; Garreau et al., 2001; Guzina and Bonnet, 2004) for many situations. More-
over, the recent book by Ammari and Kang (2007) presents a comprehensive study of the concept
of polarization tensor in connection with small-defect asymptotics and homogenization. For the case
of spherical or (resp. circular) cavities nucleating in 3D (resp. 2D) isotropic elastic bodies, one has
|B|=4π/3 (3D) or |B|= π (2D)

A =
3(1 − ν)

2μ(7− ν)

[
5Isym − 1 + 5ν

2(1 + ν)
I ⊗ I

]
(3D) (B.1a)

A =
1

μ(1 + ν)

[
2Isym − 2ν2 − ν + 1

2(1 + ν)(1− ν)
I ⊗ I

]
(2D plane stress) (B.1b)

A =
1− ν

μ

[
2I sym − 1

2(1 + ν)
I ⊗ I

]
(2D plane strain) (B.1c)

The polarization tensor associated with the nucleation of a small spherical elastic inclusion with
assumed elastic constants μ�, ν� is given (see Chikichev and Guzina, 2008) by

A� = AdevIsym +
1

3
(Asph −Adev)I ⊗ I (B.2)

having set⎧⎪⎪⎨
⎪⎪⎩

Asph = − 3(1− 2ν)

2μ(1 + ν)

(1− ν)(χ̄− 1)

(1 + ν)(χ̄− 1) + 3(1− ν)

Asph = − 1

2μ

15(1 − ν)(μ̄− 1)

(8− 10ν)(μ̄ − 1) + 15(1 − ν)

with χ̄ =
μ�(1 + ν�)(1− 2ν)

μ(1 + ν)(1− 2ν�)
, μ̄ =

μ�

μ

The second-order polarization tensor associated with the nucleation of a small spherical sound-hard
obstacle in an acoustic medium is given by

(a) A =
3

2
I (3-D), (b) A = 2I (2-D) (B.3)
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