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A bstract

A state coupling between the hydrostatic (volum etric)and deviatoric

partsofthe free energy isintroduced in a dam age m echanicsm odelrele-

vantforthequasi-brittlem aterials.Itisshown thatitdescribesthelarge

dilatancy ofconcreteundercom pression and thedi�erentlocalization an-

gles and dam age levels in tension and com pression. A sim ple isotropic

description isused,although sim ilarideascan beextended to anisotropic

dam age. The m odelisidenti�ed with respectto tensile and com pression

tests and validated on bi-com pression and bi-tension. Fully written in

three dim ensionsunderthe fram ework oftherm odynam icsofirreversible

processes,itallowsfurtherdevelopm entswithin a �nite elem entcode.

1 Introduction

Attheultim atestateofdam age,quasi-brittlem aterialscan beregarded asgran-

ularm aterialswhosebehavior,due to grain interlock,isstrongly dependenton

the con�nem ent. Classicalyield criteria (M ohr-Coulom b,Drucker-Prager,...)

use the con�nem ent (the hydrostatic strain) as a reinforcem ent factor. But

there is experim entalevidence that elasticity ofpowder m aterials,thus their

freeenergy,alsodepend on it[1].Thatpointisgenerally nottaken into account

in dam age m odels. As a consequence,the large dilantancy observed at these

states,forexam ple on concretes[2,3],ispoorly described by classicaldam age

m odelsasapparentPoisson’sratio cannotexceed 0.5,the lim itforlinearelas-

ticity,while experim entsexhibitgreatervalues.Anotherspeci�city ofconcrete

behavioristhevery di�erentcrack anglesobserved in tension and com pression.

In m ostdam agem odels,theHadam artand Ricecriterion [4,5]leadstothesam e

localization anglein both cases.Furtherm ore,fora concretespecim en,even af-

ter a rupture in tension,som e carrying capacity in com pression rem ains: this

im pliesa dam age levelatthe onsetoflocalization m uch lowerin tension than

in com pression. The present m odeldescribes these e�ects that are generally

m issed by m ostofdam agem odels.

Thiswork,in continuity with [6],constitutesan attem pttouseanon convex

potentialin the �eld ofdam age m echanics. Forthisreason,a sim ple isotropic

1



dam agelaw isconsidered.Asin theK elvin’sapproach ofelasticity [7],plasticity

theory,soilm echanicsand som edam agem odels[8],theisotropicand deviatoric

decom position is used. The retained yield criterion [9]is sm ooth and convex.

The m odelisidenti�ed with respectto the wellknown uniaxialand m ultiaxial

testingsof[3].

2 C onstitutive law

H elm holtz free energy.Thedam agelevelisdescribed by thescalarvariable

d that ranges from 0 for sound m aterialto 1 for fully dam aged m aterial[10].

Thepresentm odelisan isotropicone:thehydrostaticand deviatoricpartitions

ofthe stress� = �h + �d and thestrain "= "h + "d areused (detailsaregiven

in Appendix A).Thestatevariables("d;"h;d)describethem aterial’sstateand,

with respecttothegeneralized standard m aterialfram ework[11],theassociated

therm odynam icforcesarerespectively (�d;�h;Y )whereY istheenergy release

ratedensity.The proposed freeenergy 	 is:

2�	(" d
;"

h
;d)= 3K "

h :"h + 2�
�
1� d(1+ 2’"h)

�
"
d :"d; (1)

where "h = tr(")=
p
3 (Appendix A).The new constant introduced is ’,the

otheronesare the m assdensity � and the bulk and shearm oduli,respectively

K and �.Theroleof’ willbedetailed furtherbutitcan bealready seen that

itintroducesa cubic term in the free energy and thatsetting ’ = 0 leadsto a

sim ple dam age m odelin which only the deviatoric partisa�ected by dam age.

Thischoicehasbeen m adein orderto getrid oftheunilaterale�ectofdam age

on bulk m odulus(thatcom esfrom crack opening and closure)because the use

ofpositive parts ofthe strain tensor induces di�culties associated with non

regular free energy [12]. In Eq.1 tensors "h and "d can be replaced by their

algebraicvalues"h and "d (Appendix A).

Stress to strain relationship.Thehydrostaticand deviatoricstresses,as

therm odynam ic forces,are obtained by di�erentiation ofthe free energy with

respectto "h and "d:

�
h = 3K "

h
�

2
p
3
�’d("d)2I; (2)

�
d = 2�

�
1� d(1+ 2’"h)

�
"
d
: (3)

Setting d = 0 leadsto recoverthe linearisotropic elasticity law in the K elvin’s

decom position form [7]. The deviatoric stress and strain rem ain collinear to-

gether(and collinearto theunitary tensorD ,seeAppendix A).O nceprojected

on the orthogonaltensorbase(I;D ),the previousexpression becom es:

�
h = 3K "

h
� 2�’d("d)2; (4)

�
d = 2�

�
1� d� 2’d"h

�
"
d
: (5)

Letussupposean im posed deviatoricstrain whilethehydrostaticstrain rem ains

equalto zero (isochoric transform ation)then a con�ning pressure (�h < 0)is
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necessary to keep the volum eunchanged:

�
h("h = 0;"d)= � 2�’d("d)2: (6)

Letussupposenow thatthedeviatoricstrain isjoined with an hydrostaticstress

im posed equalto zero then an induced dilatation "h > 0 arises:

"
h(�h = 0;"d)=

2�’d("d)2

1� d
: (7)

Thesetwo aspectsarerelevantto thedilatancy e�ectin concrete-likem aterials.

Them icro-m echanicalpointofview associated to thesee�ectsisthesurm ount-

ing ofconcrete particles,inducing voidscreation,thatarisesunderirreversible

shearing [13,14].

Elastic tangentm odulus.Thetangentm odulusisde�ned asH = d�=d".

In caseofelastictransform ation,drem ains�xed,then H reducestoH 0 = @�=@".

From the stressto strain relations(2,3),we have:

H
0 =

3K � 2~�

3
I
 I+ 2~�I� �

�
I
 "

d + "
d

 I

�
; (8)

2~� =
@�d

@"d
= 2�(1� d)� 4�’d"h; (9)

� =
4�’d
p
3
: (10)

In thisexpression Iisthe fourth orderidentity whoseexpression in index form

is [I]ijkl = (�ik�jl+ �il�jk)=2,the sym bol
 refers to the tensor product and

(from Eq.5) ~� representsthe apparentshearm odulus.Then H 0 hasthe index

sym m etriesofan elasticity tensor:[H 0]ijkl= [H 0]klij= [H 0]ijlk.

Inverse stress to strain relationship. W hen d 6= 0,(the case d = 0 is

straightforward),replacing "h in Eq.5 by itsvalue(Eq.4)gives,�rst,"d asthe

solutionsofa third orderequation and,second,therelation between "h and "d:

("d)3 + p"
d + q = 0;

p =
2’d�h � 3K (1� d)

4�’2d2
; q=

3K �d

8�2’2d2
;

"
h =

�h + 2�’d
�
"d
�2

3K
: (11)

The discrim inant� = (p=3) 3 + (q=2)2 leadsto analyse from one to three real

solutions. This non univocalinverse relationship would not be used in �nite

elem ent calculation,but we shallhave to considerthese three possibilities for

the sem i-analyticalresolutionsin Sec.5 and 6.

3 Free energy analysis

Theproposed Helm holtznon convex freeenergy exhibitscom plex behaviorthat

has to be carefully studied. Fig.1 shows the contour plot ofthe free energy
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de�ned by Eq.1. The transform ation APCZ is the com pression studied in

Sec.5 and the dam age value retained for the drawing is d(C),the m axim um

reached during thistransform ation.

Figure1:Iso-valuesofthefree energy in the Drucker-Pragerplaneford= 0.64

Positivity ofthe free energy.Itsigni�esthatthem aterialcannotrestore

m oreenergythan hasbeen stored inside.In linearelasticity,itisassociated with

the positiveness ofthe K elvin’s m oduli(3K ;2�) and infers classic bounds for

the Poisson’sratio (� 16 � 6 0:5).In the generalcase,from Eq.1 we have:

�	< 0 , "
d
>

s

�
3K

2~�
"
h
: (12)

This condition corresponds to the forbidden dom ain inside the curve �	 = 0

in Fig.1. Itonly existswhen ~� < 0. Itwillbe shown in Sec.3 thatitcannot

be reached during a transform ation because localization occurs at least when

~� = 0.

Particular lines.Linesofinterestarethelociof�d = 0 and �h = 0.From

Eq.5 wehave:

"
h =

1� d

2’d
) �

d = 0: (13)

From Eq.9,thiscorrespondsto ~� = 0.O n the rightside ofthisline on Fig.1,

~� < 0.The second solution for�d = 0 ism ore classically "d = 0.The locusof

�h = 0 (Fig.1)isgiven by Eq.4:

"
d =

s

3K "h

2�’d
) �

h = 0: (14)
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Between the deviatoric axis "h = 0 and this line,"h > 0 and �h < 0. This

representsthe dilatancy e�ectofthe m odel:the deviatoricstrain inducesdila-

tancy even ifthe m aterialisunder(m oderated)pressure. The saddle pointH

isde�ned asthe intersection ofthe two lines�h = 0 and �d = 0,wehave:

"
h(H)=

1� d

2’d
; "

d(H)=
1

2’d

s

3K

�
(1� d); �	(H)=

3K (1� d)2

8’2d2
: (15)

As �(H ) = 0,it corresponds to an unstable free stress state with "(H ) 6= 0.

Finally,itcan beeasily shown thatthepointN,corresponding to them inim um

deviatoricstrain for�	= 0 issuch as:" h(N)= 2"h(H),"d(N)=
p
2"d(H).

Positivity of the energy release rate. The energy release rate Y is

associated with the dam aged:

Y = �
d�	

dd
= �(1+ 2’"h)("d)2: (16)

The therm aldissipation is _qd
i
= Y _d. Asdam age d cannotphysically decrease,

itspositivenessim pliesthatifY isnegative,the evolution ofthe dam agem ust

stop:

"
h
<
� 1

2’
) _d = 0: (17)

In theexam pleofSec.5,’ = 160 then thiscondition is"h < � 3:1210�3 .That

region,denoted as _d = 0 on Fig.1 corresponds to high con�nem ents out of

m ost practicalapplications (far to be reached in the presented exam ples);it

is strongly due to the initialchoice ofdam age acting only on the hydrostatic

part. O ne can rem ark thatsom e experim entstend to con�rm the existence of

a dam agelocking athigh con�nem ents[15].

Localization. The Hadam artand Rice criterion [4,5]oflocalization au-

thorizesthe existence ofa localization plane (a concentration oflarge strains)

orthogonalto the unitvector~n assoon as:

det(~n:H :~n)6 0: (18)

Although we stillconsider here elastic transform ations,we assum e this local-

ization to correspond to theapparition ofa m acroscopiccrack.O nceappeared,

the dam age m odelceases to apply as the body is split into pieces: it infers a

restriction to the dom ain ofde�nition ofthem odel.Am ong possiblevectors~n,

we consider~nI,an eigenvectorofthe strain deviatortensor,then "d:~nI = "dI~nI,

where "dI is the corresponding eigenvalue of"d (a principaldeviatoric strain).

AsH = H
0 in thiscase,Eq.8 give:

~nI:H
0
:~nI =

�
3K + ~�

3
� 2�"dI

�

~nI
 ~nI+ ~�I: (19)

Thedeterm inantofthisexpression is:

det(~nI:H
0
:~nI)= ~�2

�
3K + 4~�

3
� 2�"dI

�

: (20)
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This shows that ~� = 0 is a su�cient condition oflocalization. The dom ain

(grayed) on the right side ofthis line in Fig.1 willnot be concerned by the

possibleevolutions.From Eq.12,italwayscontainsthe dom ain �	6 0.From

Eq.63,"dI > "d=
p
6 > 0,considering that K ,~� and � are positive and using

Eq.9 and 10,weobtain a second su�cientcondition forlocalization:

"
d
>
3K + 4�(1� d)

4
p
2�’d

�
p
2"h: (21)

The corresponding line is denoted as� on the Fig.1. The localization occurs

atleastwhen a transform ation reachesthe lines� or ~� = 0;the dom ain above

them (grayed)isnotconcerned by possibleevolutions.

O ther rem arks about stability.Thecurrentline! passesby the saddle

pointH.From itsde�nition _"h=�h = _"d=�d com es:

2�(1� d)"d _"h � 4�’d"h"d _"h = 3K "
h _"d � 2�’d("d)2 _"d: (22)

Thisexpression hasno sim pleanalyticsolution and ! hasbeen drawn on Fig.1

with a steepest slope algorithm . Below !,the stress tends to bring back the

system to thestableoriginalstate0;above! ittendsto m akethesystem reach

the dom ain above the line � where the localization occurs. Then the dom ain

between ! and � can be considered as unstable,leading to an instantaneous

evolution towardsthe lines� and ~� = 0 wherethe localization occurs.

4 D issipative behaviour

Y ield surface. This yield surface is based on the elastic criterion proposed

Figure2:Initialyield surface(M Pa)

by [9]. Its shape,sm ooth and convex,can be regarded asa softened approxi-

m ation ofthe Von M isesand Rankine criterions.Itisin good agreem entwith

the elastic lim itidenti�ed by [3]in biaxialtestings(Fig.2). The �rstm em ber
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correspondsto theVon M isesexpression;thesecond one,dueto a tensorexpo-

nential,growthsquickly forpositivevaluesofany principalstress.Them aterial

constantsare �y,thatprincipally rulesthe lim itstressin com pression and �0,

thatstrongly inuencesthe tension to com pression stressratio. The functions

g(d)and h(d),with g(0)= h(0)= 1,are hardening functions (whose detailed

expressionsaregiven by Eq.47 and 48).

f(�;d)=
jj�djj

g(d)
+

�0

h(d)

�


exp

�
�

�0

�


 �

p
3

�

� �y: (23)

Nam ing (�I;�II;�III)theeigenvaluesofthestresstensorand considering sound

m aterial(d = 0),thiscriterion writes:

~f(�I;�II;�III;d = 0) =

r
(�II� �III)

2 + (�III� �I)
2 + (�I� �II)

2

3

+ �0

 s

exp

�
2�I

�0

�

+ exp

�
2�II

�0

�

+ exp

�
2�III

�0

�

�
p
3

!

� �y:(24)

The identi�cation of(�0;�y)isdone with respectto the m easured elasticlim it

stresses �c = � 9:98 M Pa in pure com pression and �t = 1:29 M Pa in pure

tension.The di�erence ~f(�t;0;0;0)� ~f(�c;0;0;0)gives:

�0

s

exp

�
2�t

�0

�

+ 2+ �
t

r
2

3
= �0

s

exp

�
2�c

�0

�

+ 2� �
c

r
2

3
: (25)

Thisequation acceptsa num ericresolution given by theintersection ofthetwo

functions of�0 that correspond to left and right m em bers. This intersection

is unique because each one is m onotonic. The value of�y is obtained from
~f(�t;0;0;0)= 0 or ~f(�c;0;0;0)= 0.Num ericalvaluesof(�0;�y)are reported

in table(1).

Tangent m odulus and evolution equation.In caseofdissipativetrans-

form ation,the consistency equation df(�;d)= 0 and the di�erentialof�(";d)

givethe dam ageevolution dd:

dd = �

�
@f

@d
+
@f

@�
:
@�

@d

� �1
@f

@�
:H 0 :d": (26)

and the expression ofthe tangentm odulusH = d�=d":

H =

"

I+

�
@f

@d

� �1
@�

@d


@f

@�

#�1

:H 0
: (27)

The inverse ofthe fourth rank tensor can easily be obtained in a convenient

tensorialbase[7]astheinverseofa6x6squarem atrix.Theinvolved derivatives
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areobtained withoutdi�culty from Eq.2,3 and 23:

@f

@d
= �

jj�djjg0(d)

g2(d)
�
�0h

0(d)

h2(d)

�


exp

�
�

�0

�


 �

p
3

�

; (28)

@f

@�
=

�d

g(d)jj�djj
+

1

h(d)

exp(2�=�0)

jjexp(�=�0)jj
; (29)

@�

@d
= � 2�’("d)2

I
p
3
� 2�(1+ 2’"h)"d: (30)

Theelasticity equations(2,3),theyield condition (23)and theevolution equa-

tions(26to30)constitutethesetthatisrequired fortheuseofthem odelwithin

a FEM code.

5 Tension and com pression sim ulation

Stress to strain relationship. The stresstensorexpressesas� = �~e1 
 ~e1.

Duetotheisotropy ofboth them aterialand them odel,thestrain tensorwrites:

"=

2

4
" 0 0

0 � ~�" 0

0 0 � ~�"

3

5 : (31)

where"istheuni-dim ensionalstrain and ~� theapparentPoisson’sratio.Using

theprojection equations(57,58)and denoting D = "d=jj"djj(seeAppendix A),

wehave:

D = sign("(1+ ~�))

2

4
2=
p
6 0 0

0 � 1=
p
6 0

0 0 � 1=
p
6

3

5 ; (32)

"
h =

1� 2~�
p
3

"; "
d =

r
2

3
j"(1+ ~�)j: (33)

Using these equationsin Eq.4 and 5 leadsto two expressionsforthe stressto

strain relationship:

� = 3K (1� 2~�)"�
4�’d
p
3
(1+ ~�)2"2; (34)

� = 2�

�

1� d� 2’d
1� 2~�
p
3

"

�

(1+ ~�)": (35)

Elim inating � between them givesa second orderequation in ~�:

~�2
12�’d
p
3

"+ ~�

�

2�(1� d)+ 6K +
12�’d"
p
3

�

+ 2�(1� d)� 3K = 0: (36)

Eq.34 or 35 gives from zero to two solutions � for a given strain " (these

solutionscorrespond to di�erentvaluesof~�,then to di�erentstrain tensors").
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D issipative transform ations equations. The yield function (23) be-

com es:

f
�(�;d)=

r
2

3

j�j

g(d)
+

�0

h(d)

 s

exp

�
2�

�0

�

+ 2�
p
3

!

� �y: (37)

As in the general3D case,from the di�erentialof�(";d) and the consistency

equation df�(�;d)= 0 isobtained the stressto strain di�erentialrelationship:

d�

�
@f�

@d
+
@f�

@�

@�

@d

�

=
@f�

@d

@�

@"
d": (38)

From Eq.37 wehave:

@f�

@�
=

r
2

3

sign(�)

g(d)
+

exp

�
2�

�0

�

h(d)

r

2+ exp

�
2�

�0

�; (39)

@f�

@d
= �

r
2

3

j�jg0(d)

g2(d)
�
�0h

0(d)

h2(d)

 s

2+ exp

�
2�

�0

�

�
p
3

!

: (40)

From the stressto strain relationship (Eq.34,35 and 36),the following deriva-

tives,in which @�=@"isthetangentYoung m odulusand �thediscrim inant(in

Eq.36),areobtained:

@�

@"
= 3K (1� 2~�)�

8
p
3
�’d(1+ ~�)2"�

�

3K +
4
p
3
�’d(1+ ~�)"

�

2"
@~�

@"
; (41)

3

2�"(1+ ~�)

@�

@d
=

2’
p
3

�

2"
@~�

@"
� 1+ 2~�

�

(1+ ~�)"�

�

1+ 2’
1� 2~�
p
3

"

��

2(1+ ~�)+ 2"
@~�

@"

�

;(42)

2"
@~�

@"
= � (1+ 2~�)�

� 2�(1� d)+ 12�’d"=
p
3

p
�

: (43)

Localization in tension and com pression.In thetension orcom pression

state,theaxis1 isthesym m etry axis.Asaxis2 and 3 havean equivalentrole,

we can de�ne with no restriction ~n in the plane [~e1;~e2]as: ~n = cos(�)~e1 +

sin(�)~e2. Fordissipative transform ations,the generalequationsofSec.4 allow

tocom putedet(~n:H :~n)num erically bysearchingitsm inim um valuewith respect

to �. The non convex potentialauthorizes possible localization during elastic

transform ations.From Eq.8 wehave:

~n:H
0
:~n =

2

4
b+ (a+ 4c)cos2(�) (a+ c)sin(�)cos(�) 0

(a+ c)sin(�)cos(�) b+ (a� 2c)sin2(�) 0

0 0 b

3

5 ; (44)

a = K +
�

3
(1� d)�

2

3
p
3
�’d(1� 2~�)"; b= �(1� d)�

2
p
3
�’d(1� 2~�)"; c= �

4

3
p
3
�’d(1+ ~�)":

(45)
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Identi�cation.Theidenti�cation oftheYoungM odulusE = 31:2G Paand

the Poisson’sratio � = 0:162 being very classic,they willnotbe detailed;the

corresponding bulk and shearm oduli(K ;�)are given in table (1).The proce-

dureofidenti�cation of(�0;�y)isgiven in Sec.4.Elim inating d between Eq.34

and 35 givesthe following expression that can be used with the experim ental

data in orderto determ ine ’:

’ =

p
3

2

�="� 3K (1� 2~�)

3K "(1� 2~�)2 � 2�"(1+ ~�)2 + �~�
: (46)

Thehardening functionsg(d)and h(d)areidenti�ed with respectto thetrans-

form ation AC (see Fig.3). Theirstructure hasbeen chosen in orderto have a

sm ooth transition atthe yielding pointA.

g(d) = 1+ g0

p
d; (47)

h(d) = 1� d+ h0(
p
d� d): (48)

Table1:M aterialconstants

K � �y �0 ’ g0 h0

15.4 13.4 8.004 0.4551 160 3.00 160

(G Pa) (G Pa) (M Pa) (M Pa)

U niaxialcom pression sim ulation.Thesetofequations(31to43)de�nes

the strain driven com pression and tension curves (Fig.3 and 4),allowing the

com parison with K upfer’sdata (circles). The com pression startsby the linear

elastictransform ation OA,with d = 0.Them aterialbeginsto yield atpointA

where�(A)= �c.Thetransform ation ABC correspondsto thedam agegrowth,

up to point C where d(C)= 0:64. The localization criterion is never reached

during ABC.At point P,~� = 0:5: the m aterialbegins to dilate. Unloadings

such asO BO ford = 0:5 and O CO ford = 0:64revealweak nonlinearelasticity:

itcan benoticed thatthecurvatureofO C (thetangentm odulusdecreasesasthe

loadincreases)isqualitativelyin goodagreem entwith theexperim entsof[16]for

exam ple.O fcourse hysteresisloopsorperm anentstrainsare notdescribed by

thepresentsim pleform ofthem odelthatdoesnottakesinto accountplasticity

e�ects.PointC correspondsto a horizontalslopeforthetransform ation.Then

d� = 0 and,asthevalueof@f=@d6= 0 atthispoint,Eq.38showsthat@�=@"=

0:the elastic transform ation O CZ hasa also an horizontaltangentatpointC.

AfterC,@�=@"< 0,thetransform ation CZ isanon linearelasticsoftening.The

dam age rem ains �xed at d(C ). From som e point just before Z,an unloading

follows the unrealistic elastic transform ation ZCO (this aspect ofthe m odel

rem ains to be enhanced). At point Z the localization condition relative to

the elastic transform ations (Eq.45),is reached and this point is close to the

10



Figure3:Uniaxialcom pression sim ulation

experim entalbreakdown point identi�ed by K upfer (although this value has

notbeen used during theidenti�cation process).Thecontinuation oftheelastic

transform ation after Z is,for inform ation,drawn on Fig.1;as "h and "d are

dependentupon " by Eq.33,they becom e sim ultaneously equalto zero atthe

saddlepointH.Thelocalization arisesatpointZ fortheangle�c = 56 degrees:

the crack plane is rather close to the load axis ~e1,as classically observed in

experim ents. The apparentPoisson’sratio ~� reaches 0.70 at the point Z and

thislargevalue,thatcannotbereachedbyaclassicdam agem odel,isresponsible

ofthe good description ofthe transversestrain.

U niaxialtension sim ulation. The tension curve (Fig.4)isalso referred

to points A,B,C’,Z whose roles are sim ilar to the ones used in com pression.

The yielding occursatpointA,atthe identi�ed value �t thatis,according to

K upferand con�rm ed by [17],lessthan the halfofthe peak stress:thisresult

isdi�erentfrom the classicvision ofa fragilebehaviorin tension.AtpointC’,

@f=@d= 0 then (from Eq.38)theslopeishorizontal.Itisnotreached because

thelocalization occursbefore,atpointZ,duringthedissipativetransform ation.

If[17]describesa post-peak evolution,K upferdoesnot,neitherthism odelwith

the retained constants. Again,although notused in the identi�cation process,

the stress�(Z)isclose to the experim entalvalue. The angle oflocalization at

pointZ is�t = 27degrees,leadingtoa crack planerathercloseto beorthogonal

to thetensileaxis~e1,ascom m only observed (m oreoverm ostofdam agem odels

suppose a crack at 0 degree). The lateralstrain,due to low dam age values,

rem ains very sm all,consistently with experim ents. The dam age value at the

localization pointd(Z)= 0:22 isweak:although isotropic,thism odelallowsto

havea rupture in tension and to keep a loading capacity in com pression.

11



Figure4:Uniaxialtension sim ulation

6 Equi-biaxialsim ulations

In this section we consider an equi-biaxialloading (strain driven) in order to

validate the m odelwith the constants identi�ed in tension and com pression.

Thestresstensoris� = �(~e2 
 ~e2 + ~e3 
 ~e3).Dueto theinitialisotropy ofboth

the m aterialand the m odel,the strain tensorwrites:

"=

2

4
� �̂" 0 0

0 " 0

0 0 "

3

5 : (49)

with "6 0.Theprojection equations(57,58)give:

D = sign("(1+ �̂))

2

4
� 2=

p
6 0 0

0 1=
p
6 0

0 0 1=
p
6

3

5 ; (50)

"
h =

2� �̂
p
3
"; "

d =

r
2

3
j"(1+ �̂)j: (51)

Using these equations in Eq.4 and 5 gives two expressions for the stress to

strain relationship:

� =
3K

2
(2� �̂)"�

2�’d
p
3
(1+ �̂)2"2; (52)

� = 2�

�

1� d� 2’d
2� �̂
p
3
"

�

(1+ �̂)": (53)
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Elim inating� givesthefollowingsecond orderequation which acceptsfrom zero

to two solutionsin �̂:

�̂
22
p
3�’d"+ �̂

�

2�(1� d)+
3K

2

�

+ 2�(1� d)� 3K � 2
p
3�’d"= 0: (54)

O thercalculiaresim ilarto the previouscase.

Equi-biaxial com pression sim ulation. Directly dependent upon the

Figure5:Equi-biaxialcom pression sim ulation

yield surface,theyield pointA (Fig.5)iswelldepicted.Thedam ageincreases

during transform ation AZ up to d(Z)= 0:70,thisvalue being greaterthan the

m axim aloneobtained in uniaxialcom pression.AtpointZ,(which isbeforethe

pointC’where@f=@d = 0)thelocalization condition fordissipativetransform a-

tions(Eq.18)isreached.Thelocalization angleis�cc = 40degrees,consistently

with K upfer’spostm ortem picture.Theconicalcrack shapein Fig.5 hasbeen

chosen in orderto respectthe sym m etry axisofthe problem .W ithoutcontra-

diction,theobserved structureispyram idal,thisshapeallowing thekinem atics

ofthe concrete pieces.The localization appearstoo quickly and the largedila-

tancy isalittleoverestim ated.M oreover,thispostpeak region di�ersaccording

to di�erentexperim entalm ethodsand concretes:forexam plethehigh strength

concretetested by [18]exhibitsno postpeak.

Equi-biaxialtension sim ulation. The partbefore the peak stressis in

good agreem entwith theexperim entsforboth axialand lateralstrains(Fig.6).

Contrary to experim ents,a dissipativepost-peak evolution C’Z isdescribed (it

representsa m inorproblem com pared to the elastic transform ation CZ in the

uniaxialcom pression case). The dam age d(Z)= 0:67 atultim ate pointreaches

aboutthe sam evalue than in biaxialtension.The localization angle�tt = 12:6

degreesobtained in thiscaseinvolvescracksapproxim atively orthogonalto the

load directions,very consistentwith K upfer’spostm ortem pictures.Again,the

13



Figure6:Equi-biaxialtension sim ulation

conicalshape isonly the representation ofthe sym m etry ofthe problem asthe

m odelonly de�nesthe angleofthe crack,notitsshape.
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7 C onclusions

Thisstudy showsthatthe sim ple coupling introduced between the hydrostatic

and deviatoricpartsofthestrain in thefreeenergy leadsto a num berofconse-

quences,even ifthe prim ary e�ect,the non linearelasticity,slightly inuences

the shape ofthe elastic discharges. The im portant dilatancy ofthe concrete

atultim ate stagesiswelldepicted. The localization criterion isused asan in-

dicator ofthe creation ofa m acroscopic crack,it applies at stress and strain

levelsthatare quite consistentwith experim ents.The dam agevalue predicted

atlocalization in puretension rem ainssm all,letting to the m aterialsom e load

bearingcapacity,forexam pleforfurthercom pression.Thecrack anglegiven by

thelocalization condition isdi�erentin tension and com pression and consistent

with observations.

The description ofthese e�ectsconstitutesan im provem entwith respectto

m ostofavailable dam age m odelsofcom parablecom plexity (�ve constantsare

used). They are particularly relevantwhen,asin earthquake engineering,the

response ofa concrete structure under severe conditions is considered. The

globalstructure ofthe m odeland its em bedding therm odynam ic fram ework,

opensthe way to num ericalim plem entation within a �nite elem entcode.

The introduction ofa plasticity form alism [19,20]would help to describe

m issing e�ects such as hysteresis loops and perm anent strains and to correct

som e irrelevant post-peak responses. The hydrostatic part ofthe free energy

could be a�ected by dam age in order to extent the �eld ofapplication ofthe

m odelto con�ned statesand avoid thedam agelocking condition presentin the

actualform . The three-dim ensionnalstress to strain relationship is univocal,

howeverthe inverse one isnot: interesting theoreticalanalysiscan be done on

stressdriven loadingsasthey m ay involvem ultiphased states(thisrefersto the

work of[21]in elasticity and [22,23]in plasticity).

A ppendices

A Tensorialform alism

Forany sym m etric second ordertensorA the hydrostatic and deviatoric parts

are denoted respectively by A
h
and A

d
. The hydrostatic part is obtained by

theprojection ontothenorm ed hydrostatictensorI=
p
3(whereI istheidentity

tensor).

A = A
h
+ A

d
(55)

A
h

=

�

A :
I
p
3

�
I
p
3

(56)

The sym bol":" denotes the double contraction i.e. A :I = A ij�ji = tr(A).

In thism odel,the deviatoric parts�d and "d (ofthe Cauchy stress� and the

in�nitesim alstrain ") willrem ain collinear but m ay be a priori ofopposite
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directions.W echooseto de�nethisdirection with respectto thenorm ed tensor

D given by:

D =
"d

jj"djj
(57)

Thenorm used istheeuclidean naturalonei.e.jjAjj=
p
A ijA ij.Thealgebraic

values("h;"d;�h;�d)arede�ned as:

"
h = ":

I
p
3
; �

h = � :
I
p
3
; "

d = ":D ; �
d = � :D (58)

O ne can rem ark that "d is positive but �d can a priori either be positive or

negative. These projections are known under the nam es p and q where p =

� �h=
p
3 and q=

p
3=2j�djin soilsm echanics.

B U sefulproperty ofthe deviator

Thesorted eigenvaluesof"d are("dI;"
d
II;"

d
III).From Eq.58,wehave:

("dI)
2 + ("dII)

2 + ("dIII)
2 = ("d)2 (59)

"
d
I + "

d
II+ "

d
III = 0 (60)

"
d
I > "

d
II > "

d
III (61)

Thisleadsto the following expressions:

"
d
I = �

"dII

2
+
1

2

q

2("d)2 � 3("d
II
)2 ; "

d
III = �

"dII

2
�
1

2

q

2("d)2 � 3("d
II
)2(62)

Assoon as"dII evolvesbetween itsbounds[� "d=
p
6;"d=

p
6](given respectively

by "dII = "dIII and "
d
II = "dI),thesefunctionsarem onotonicand:

r
2

3
"
d
> "

d
I >

"d
p
6

(63)
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