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A bstract

A state coupling between the hydrostatic (volum etric) and deviatoric
parts of the free energy is introduced in a dam age m echanics m odel rele—
vant for the quasibrittle m aterials. It is shown that it descrbes the large
dilatancy of concrete under com pression and the di erent localization an-
gles and dam age levels in tension and com pression. A sinple isotropic
description isused, although sim ilar ideas can be extended to anisotropic
dam age. The m odel is denti ed w ith respect to tensile and com pression
tests and validated on bicom pression and bitension. Fully written in
three din ensions under the fram ew ork of therm odynam ics of irreversible
processes, it allow s further developm ents w ithin a nite elem ent code.

1 Introduction

At theulim ate state ofdam age, quasibrittlem aterials can be regarded as gran—
ular m aterials whose behavior, due to grain interlock, is strongly dependent on
the con nem ent. Classical yield criteria M ohrC oulom b, D rucker-P rager,...)
use the con nem ent (the hydrostatic strain) as a reinforcem ent factor. But
there is experin ental evidence that elasticity of powder m aterials, thus their
free energy, also depend on it ﬂ]. T hat point is generally not taken Into account
in dam age m odels. A s a consequence, the large dilantancy observed at these
states, for exam ple on concretes ﬂ, E], is poorly described by classical dam age
m odels as apparent Poisson’s ratio cannot exceed 0.5, the 1m it for linear elas-
ticity, while experin ents exhibit greater values. A nother speci city of concrete
behavior is the very di erent crack angles observed in tension and com pression.
Tn m ostdam agem odels, the H adam art and R ice criterion H,E] Jeadsto the sam e
localization angle in both cases. Furthem ore, for a concrete specin en, even aft-
ter a rupture In tension, som e carrying capaciy in com pression rem ains: this
Inm plies a dam age kevel at the onset of localization much lower In tension than
in com pression. The present m odel describes these e ects that are generally
m issed by m ost of dam age m odels.

Thiswork, in continuiy with E], constitutes an attem pt to use a non convex
potential in the eld of dam age m echanics. For this reason, a sin ple isotropic



dam age law is considered. A s in the K elvin’s approach ofelasticity ﬂ], plasticity
theory, soilm echanics and som e dam agem odels E], the isotropic and deviatoric
decom position is used. The retained yield criterion E] is am ooth and convex.
Them odel is denti ed w ith respect to the wellknown uniaxialand m ultiaxial
testings of E].

2 Constitutive law

H elm holtz free energy. T he dam age level is described by the scalar variable
d that ranges from 0 for sound m aterial to 1 for fully dam aged m aterial E].
T he present m odel is an isotropic one: the hydrostatic and deviatoric partitions
ofthestress = P+ 9andthestran "= "™ + " areused (details are given
in A ppendix @) .The state variables (";"";d) describe the m aterial’s state and,
w ith respect to the generalized standard m aterial fram ew ork @], the associated
therm odynam ic forces are respectively ((¢; ";Y ) where Y isthe energy release
rate density. T he proposed free energy  is:

2 (myd)=3KM™ "™y 2 1 d@+ 2rm™y Mg (1)

where " = tr(f)=p§ (A ppendix El). The new constant introduced is ’, the
other ones are the m ass density and the buk and shear m oduli, respectively
K and .Therokof’ willbe detailed further but it can be already seen that
it Introduces a cubic term In the free energy and that setting ’ = 0 leadsto a
sin ple dam age m odel in which only the deviatoric part is a ected by dam age.
T his choice has been m ade in order to get rid of the unilaterale ect of dam age
on buk m odulus (that com es from crack opening and closure) because the use
of positive parts of the strain tensor induces di culties associated w ith non
reqular free energy fId]. M Eq.[] tensors ™ and "™ can be replaced by their
algebraic valies "™ and "* @ ppendix El) .

Stress to strain relationship. T he hydrostatic and deviatoric stresses, as
therm odynam ic forces, are obtained by di erentiation of the free energy w ith
respect to " and " :

2
o= XD s 1AL @)
= 2 1 d@+2rmy 3)

Setting d = 0 leads to recover the linear isotropic elasticity law in the Kelvin's
decom position form B]. T he deviatoric stress and strain rem ain collinear to—
gether (and collinear to the unitary tensor D , see A ppendix El) .0 nce progcted
on the orthogonaltensor base (I;D ), the previous expression becom es:

b~ 3gm o rged)2; (4)
d = 2 1 4 2rgm nd; )

Letus suppose an Im posed deviatoric strain w hile the hydrostatic strain rem ains
equalto zero (isochoric transfomm ation) then a con ning pressure ( ! < 0) is



necessary to keep the volum e unchanged:
= 0;m) = 2 rd () 6)

Letussuppose now that the deviatoric strain is pined w ith an hydrostatic stress
inposed equalto zero then an induced dilatation "™ > 0 arises:

2 rd(")?
= ———: (7)

1 d

T hese tw 0 aspects are relevant to the dilatancy e ect in concrete-like m aterials.
Them icro-m echanicalpoint of view associated to these e ects is the sum ount-
ing of concrete particles, Inducing voids creation, that arises under irreversible
shearing E, @].

E lastic tangent m odulus. T he tangentm odulus isde ned asH = d_=d".
In case ofelastic transform ation, d rem ains xed, then H reducestoH % = @_=@".
From the stress to strain relations ﬂ,ﬂ), we have:

nh( h _ O;"d)

3K 2~
B = —5—I I+2-T I "+ I ®)
2~ = @d—Zld 4 rgh; 9
~= @"d_ ( ) ’ ()
414
- (10)

In this expression I is the fourth order dentity whose expression In index form
S Thg1 = (x 1+ 1 %)=2, the symbol refers to the tensor product and
(from Eq.ﬁ) ~ represents the apparent shear m odulus. Then H° has the index
sym m etries of an elasticity tensor: H O]ijd = H O]k]ij = H° T -

Inverse stress to strain relationship. W hend & 0, (thecased = 0 is
straightorward), replacing "* in Eq.E by its value (Eq.@) gives, rst, " asthe
solutions of a third order equation and, second, the relation between "* and "®:

")’ +p g = 0;
2'd" 3K @1 d) 3K ¢
p= 4 1242 Pod= 82/2d2'
h ’ " 2

n +2'd ™

= - (11)
3K

The discrin lnant = (E=3) 34 (q=2)2 leads to analyse from one to three real

solutions. This non univocal nverse relationship would not be used In nite
elem ent calculation, but we shall have to consider these three possibilities for
the sem Fanalytical resolutions in Sec.E and E

3 Free energy analysis

T he proposed H elm holtz non convex free energy exhibits com plex behavior that
has to be carefully studied. Fig. ﬂ show s the contour plot of the free energy



de ned by Eqg. ﬂ The transform ation APCZ is the com pression studied in
Sec. E and the dam age value retained for the draw ing is d(C ), the m axim um
reached during this transform ation.
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Figure 1: Iso-values of the free energy in the D ruckerP rager plane for d= 0.64

Positivity of the free energy. It signi esthat them aterial cannot restore
m ore energy than hasbeen stored inside. In linear elasticity, it isassociated w ith
the positiveness of the K elvin’s m oduli (3K ;2 ) and infers classic bounds for
the Poisson’sratio ( 16 6 0:5). In the general case, from Eq.ﬂ we have:

s
3K

<0, "> Ty (12)
2~

This condition corresponds to the forbidden dom ain inside the curve =0

in Fjgﬂ It only existswhen ~< 0. kT willbe shown in Sec.E that it cannot
be reached during a transform ation because localization occurs at least when
~= 0.
Particular lines. Lines of interest are the lociof ¢ = 0and ® = 0. From
Eq.Ewehave:
1 d
h d
i _ =0: 13
> a ) 13)
From Eq.E, this corresponds to ~ = 0. On the right side of this line on Fig.ﬂ,
~< 0. The second solution for ¢ = 0 ism ore classically "® = 0. The locus of
"= 0 Fig.fl) is given by Eq.f:
s
d 3K nh N

e (14)




Between the deviatoric axis ™ = 0 and this line, "™ > 0 and " < 0. This
represents the dilatancy e ect of the m odel: the deviatoric strain induces dila—
tancy even if the m aterial is under m oderated) pressure. T he saddle point H
isde ned as the Intersection of the two Ilines " = 0 and < = 0, we have:

s
mEy- L9 wmys L Ky g, oy B D
- o2ra’ ~2'd ’ - gr2gz
As_({H) = 0, it corresponds to an unstabl free stress state with "(H ) & 0.
Finally, it can be easily shown that the point N, corresponding to them inin um
deviatoric strain for = Oidssuchas:"" @)= 2" @H), "“N)= 2" H).

Positivity of the energy release rate. The energy release rate Y is
associated w ith the dam age d:
d s by md 2.
Y = ad 1+ 2 )y (") (16)
T he therm al dissipation is i = Y d. Asdam age d cannot physically decrease,
its positiveness im plies that if Y is negative, the evolution of the dam age m ust
stop:
h 1
" ) &= 0: a7
2 4
Tn the exam pk of Sec.[], © = 160 then this condition is "™ < 31210 > . That
region, denoted as &= 0 on Fjg. corresponds to high con nem ents out of
m ost practical applications (far to be reached in the presented exam ples); it
is strongly due to the initial choice of dam age acting only on the hydrostatic
part. O ne can rem ark that som e experin ents tend to con mn the existence of
a dam age locking at high con nem ents @].
Localization. The Hadam art and R ice criterion @, E] of localization au-—
thorizes the existence of a localization plane (a concentration of large strains)
orthogonalto the unit vector a as soon as:

<

det@H m)6 O: 18)

A tthough we still consider here elastic transform ations, we assum e this local-
ization to correspond to the apparition of a m acroscopic crack . O nce appeared,
the dam age m odel ceases to apply as the body is spolit Into pieces: it infers a
restriction to the dom ain of de nition of the m odel. Am ong possibl vectors n,
we consider ny, an eigenvector of the strain deviator tensor, then " m; = "Iny,
where "? is the corresponding eigenvalie of "™ (a principal deviatoric strain).
AsH =H"mhn thjscase,Eq. give:

3K + ~

HI:HO:ﬂI= 3 2 "(Ij ny np+ ~1: (19)
T he determ nant of this expression is:
3K + 4~
det@m;H my) = ~* — 2 nd o (20)



This shows that ~ = 0 is a su cient condition of localization. The dom ain
(grayed) on the right side of this line in Fjg.ljl w ill not be concemed by the
possible evolutions. From Eq. E, it always contains the dom ain 6 0. From
Eq.p3, " > "= 6 > 0, consdering that K , ~ and  are positive and using
Eg.d and E, we obtain a second su clent condition for localization:

wiy KT @ D Pow, (21)
4 2 'd
T he corresponding line is denoted as  on the Fjg.ﬂ. T he localization occurs
at least when a transform ation reaches the lines or ~= 0; the dom ain above
them (grayed) is not concerned by possble evolutions.
O ther rem arks about stability. The current line ! passes by the saddle

point H .From itsde nition "= P = md= 9 comes:
2 (l d)ndlm 4 Idnh"dvm: 3K nhnd 2 ld("d)zvgi: (22)

T his expression has no sin ple analytic solution and ! hasbeen drawn on F jg.ljl
w ith a steepest slope algorithm . Below !, the stress tends to bring back the
system to the stable origihalstate 0; above ! it tends to m ake the system reach
the dom ain above the line where the localization occurs. Then the dom ain
between ! and can be considered as unstable, leading to an instantaneous
evolution towards the lines and ~= 0 where the localization occurs.

4 D issipative behaviour

Y ield surface. This yield surface is based on the elastic criterion proposed

Figure 2: Initial yield surface M Pa)

by E]. Tts shape, sm ooth and convex, can be regarded as a softened approxi-
m ation of the Von M ises and R ankine criterions. It is in good agreem ent w ith
the elastic lin i denti ed by [ in biaxialtestings Fig. PJ). The rstmember



corresponds to the Von M ises expression ; the second one, due to a tensor expo—
nential, grow ths quickly for positive values of any principal stress. T hem aterial
constants are , that principally rules the lin it stress in com pression and o,
that strongly in uences the tension to com pression stress ratio. T he functions
gd) and hd), wih g() = h(0) = 1, are hardening functions (whose detailed
expressions are given by Eq. and @) .

oo d jo
L b, o exp — 3 y: (23)

£f(;d)=
i) gd) h@) 0

Nam ing ( 1; 11; 111) the eigenvalues of the stress tensor and considering sound
m aterial d = 0), this criterion w rites:

r

(o m)? + (o 2+ (1 17)?

(1 1w pyd=0) = 3

S

I 2 II 2 IIT P
+ 0 exp —— + exp + exp —— 3
0 0 0

The denti cation of ( ¢; ) isdone w ith respect to the m easured elastic lim it

Stresses © = 998 MPa in pure compression and ° = 129 MPa in pure

tension. The di erence £( %;0;0;0) £( €;0;0;0) gives:

s @0 r s r
2t .2 2 c .
0 exp —— + 2+ §= 0 exp + 2
0

@5)

wln|

0

T his equation acoepts a num eric resolition given by the intersection of the two
functions of ( that corresoond to left and right m embers. This intersection
is unique because each one is m onotonic. The valie of  is obtained from
£( %;0;0;0)= 0 or £( €;0;0;0) = 0. Num erical values of ( o; y) are reported
in table {I).

Tangent m odulus and evolution equation. In case of dissipative trans-
form ation, the consistency equation df (_;d) = 0 and the di erentialof _ (";d)
give the dam age evolution dd:

1

f f £

dd = @_+ ef ;E ¢ :HY :dr: (26)
@d @_ @d @

and the expression of the tangent m odulusH = d_=d":

"w # 1
f f
¢ @—_ @— :HO: (27)

H= I+ —
ed @d @

The inverse of the fourth rank tensor can easily be obtained In a convenient
tensorialbase ﬂ} as the nverse of a 6x6 squarem atrix. T he nvolved derivatives



are obtained w ithout di culty from Eq. ZH {Iand

£ oo d e 0 0 jo
¢ I d oh@) o = 3 28)
ed g% (@) h? d) 0

d =
et - . 1 .<.%><p @2_ o)“; 29)
Q_ gd)i9F hd) Jexp (= 0)J]
@_ d,2 l hynd
— = 2 14 n — 2 l 2’ n " : 30
a (") 19—3 1+ " (30)

T he elasticity equations ﬂ, E), the yield condition @) and the evolution equa—
tions to@) constitute the set that is required for the use ofthem odelw ithin
aFEM code.

5 Tension and com pression sim ulation

Stress to strain relationship. The stress tensor expressesas_ = e €.
D ue to the isotropy ofboth them aterialand them odel, the strain tensor w rites:
2 3
n 0 O
"=40 ~" 0 O (31)
0 0 ~

where " is the unidin ensional strain and ~ the apparent P oisson’s ratio. U sing

the profction equations @, E) and denoting D = "=1{"j (see A ppendix E),
we have:

2 P— 3
2= 6 Op 0
D = sign("@+ ~N4 0 1= 6 0, 5; (32)
0 0 1=
r
"h l 2~" "d 2 \ a2
= P = 5j(l+ ~)3: (33)

U sing these equations in Eq.@ and E leads to two expressions for the stress to
strain relationship:

4 ’'d 505

= 3K @3 2~)" —p?(l+~) "5 34)
1 2~

= 2 1 d Z’d—pg—" 1+ ~)": (35)

E lm lnating between them gives a second order equation in ~:
5,12 7d 12 7d"
~—p§—"+~2 (1 d)+6K+—p§— +2 1 d) 3K = 0: (36)

Eq.@ or @ gives from zero to two solutions for a given strain " (these
solutions correspond to di erent values of ~, then to di erent strain tensors ").



D issipative transform ations equations. The yield function @) be-
com es:
r s - !

2373 0 2 P
3c@ e&xp — +2 3 y? (37)
3gd)  h@) 0

A s In the general 3D case, from the di erential of (";d) and the consistency
equation df ( ;d) = 0 is obtained the stress to strain di erential relationship:

Qf @f @ Qf @
— —— = ——da™: (38)
Qd @ @d @d @"
From Eq.@ we have:
r exp 2
f 2 si o
@(T - ;@:d())+ - ; 39)
g hd) 2+ exp 2—0
= 0 0 S :
f 23 3d h*d 2 p-
eE 23 3@ oh’(@) 24 exp o 3 . (40)
ed 3 g?@) h? @) 0

From the stress to strain relationship (Eq.@ and @), the follow ing deriva—
tives, In which @ =@" is the tangent Youngm odulisand the discrin inant (in
Eq.@), are obtained:

@ 8 5 4 @~
—— = 3K (@1 2~) p= 'dd+ ~P" 3K +p= 'dd+ ~)" 2"—; (4l)
@" 3 3 @n
3 @_ — 2, ZHE l+ 2 (l+ )" l+ 2/ l 2~" 2(l+ )+ 2"&(42)
2 "1+ ~)ed T3 S P3 e
@~ 2 1 dy+ 12 rant3
"F = 1+ 2~) P= : (43)

Localization in tension and com pression. In the tension or com pression
state, the axis 1 is the sym m etry axis. A s axis 2 and 3 have an equivalent role,
we can de ne wih no restriction m in the plane kij;ex] as: 1 = cos( o +
sin ( )& . For dissipative transform ations, the general equations of Sec. H allow
to com putedet @ H n) num erically by searching itsm Ininum value w ith regpect
to . The non convex potential authorizes possible localization during elastic
transform ations. From Eq.E we have:

2 3
b+ @+ 4c)cos () @+ c)sin( )ocos( ) 0
nH’n=%2 @+ c)sh( )ocos( ) b+ (@ 20)stf() 05; 44)
0 0 b
2 2 4
a=K+—@1 d) = 'dl 2~)"; b= @@ d) p= 'dl 2~)"; c= —p=
3 33 3 33



Identi cation. The denti cation ofthe YoungM oduluskE = 312 GPaand
the Poisson’s ratio = 0:162 being very classic, they w ill not be detailed; the
corresponding buk and shearm oduli (K ; ) are given in tabl (ﬂ) . The proce-
dure of denti cation of ( ¢; ) isgiven in Sec.E. E Im inating d between Eq.@
and @ gives the follow ing expression that can be used w ith the experin ental
data In order to determ ine ’ :

jo
=" 3K (1 2~) )
3K"QL 2~)2 2 "@+ ~P+ o~

[ A—

> (46)
2
T he hardening fiinctions g (d) and h (d) are denti ed w ith respect to the trans-
form ation AC (see Fjg.E) . Their structure has been chosen in order to have a
am ooth transition at the yielding point A .

1+ q d; 47)

hd) = 1 d+ho( d d): (48)

Q
g
I

Table 1: M aterial constants

K v 0 ! % ho
154 134 8.004 04551 160 | 3.00 160
GPa) GPa) ™M Pa) M Pa)

U niaxialcom pression sim ulation. T he set ofequations to@) de nes
the strain driven com pression and tension curves (Fig.ﬁ and ¥4), allow Ing the
com parison w ith K upfer’s data (circles). T he com pression starts by the linear
elastic transform ation OA , with d = 0. Them aterialbegins to yield at point A
where @)= €. The transform ation ABC corresponds to the dam age grow th,
up to point C where d(C)= 064. The localization criterion is never reached
during ABC . At point P, ~ = 0:5: the m aterial begins to dilate. Unloadings
such asOBO ford= 05and OCO ford= 064 revealweak nonlinear elasticity :
it can be noticed that the curvature ofO C (the tangentm odulisdecreasesasthe
load increases) isqualitatively in good agreem entw ith the experim entsof @] for
exam ple. O f course hysteresis loops or perm anent strains are not described by
the present sim ple form of the m odel that does not takes into account plasticity
e ects. Point C corresponds to a horizontal slope for the transform ation. T hen
d = 0and, asthevalieof@f=Qd& 0 atthjspojnt,Eq.@ showsthat@ =@" =
0: the elastic transform ation O CZ has a also an horizontal tangent at point C .
AfterC,@ =@"< O, the transform ation CZ isa non linear elastic softening. T he
dam age rem ains xed at d(C ). From som e point just before 7z, an unloading
follow s the unrealistic elastic transform ation ZCO (this aspect of the m odel
rem ains to be enhanced). At point Z the localization condition relative to
the elastic transform ations Eq. @), is reached and this point is close to the

10



0 0

c11(MPa)

d(Z) = 0.64

y A6°=56°
1Y
T

€11 -2 0 2 €22=£233 (%o)

Figure 3: Uniaxial com pression sin ulation

experim ental breakdown point denti ed by Kupfer (although this valie has
not been used during the denti cation process). T he continuation of the elastic
transform ation after 7 is, ©or inform ation, drawn on Fig.ljl; as™ and " are
dependent upon " by Eq.@, they becom e sim ultaneously equal to zero at the
saddle point H . T he Iocalization arises at point Z for the angle © = 56 degrees:
the crack plane is rather close to the load axis e, as classically observed in
experim ents. T he apparent Poisson’s ratio ~ reaches 0.70 at the point Z and
this large value, that cannot be reached by a classicdam agem odel, isresponsible
of the good description of the transverse strain.

U niaxial tension sim ulation. The tension curve (Fig.@) is also referred
to points A B,C’,Z whose roles are sin ilar to the ones used In com pression.
T he yielding occurs at point A, at the denti ed value * that is, according to
Kupfer and con m ed by @], less than the half of the peak stress: this result
is di erent from the classic vision of a fragilke behavior in tension. At point C/,
Qf=Q@d = 0 then (fom Eq. @) the slope is horizontal. Tt is not reached because
the localization occurs before, at point Z, during the dissipative transform ation.
If EI] describes a postieak evolution, K upfer does not, neither thism odelw ith
the retained constants. A gain, although not used in the denti cation process,
the stress (Z2) is close to the experim ental value. T he angle of localization at
point Z is ®= 27 degrees, leading to a crack plane rather close to be orthogonal
to the tensile axis e;, as comm only observed (m oreover m ost of dam age m odels
suppose a crack at 0 degree). The lateral strain, due to low dam age values,
rem ains very am all, consistently with experin ents. The dam age value at the
localization point d(Z)= 022 isweak: although isotropic, thism odel allow s to
have a rupture In tension and to keep a loading capacity in com pression.

11
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Figure 4: Uniaxial tension sim ulation

6 Equidbiaxial sim ulations

In this section we consider an equibiaxial loading (strain driven) in order to
validate the m odel w ith the constants identi ed in tension and com pression.

Thestresstensoris_ = (e e+ e e3).Due to the initial isotropy of both
the m aterial and the m odel, the strain tensor w rites:
2 3
AN O O
"=4 09 " 05: (49)
0 0 "

wih " 6 0. The projction equations @,E) give:

2 jos 3
=6 g 0
D = sign"@+ ~)4 0 1= 6 D 5; (50)
0 0 1= 6
r __
"h 2 /\" "d 2 |l A 3
= —p? ; = gj'(l+ )J: (51)

U sing these equations in Eq.@ and E gives two expressions for the stress to
strain relationship:

3K 2 'd S
il R M S (R (52)
2 3
2 AN
= 2 1 d 2’d—p?" @+ ™" (53)

12



E IIm inating gives the follow ing second order equation which accepts from zero
to two solutions in ":
3K

,.P- g
M2T3 et 2 1 - +2 @A) 3K 23 7d"=0: (54)

O ther calculi are sim ilar to the previous case.
E quidbiaxial com pression sim ulation. D irectly dependent upon the

T 0
=3
& A
©-10 d(Z) =0.70
S 0 = 40°
-20
-30 DT>
c’ z| o
b © o J:\ o
€20 =€33 -2 0 2 4 €11 (%o)

Figure 5: E quidbiaxial com pression sim ulation

yield surface, the yield point A ig.ﬁ) iswelldepicted. T he dam age increases
during transform ation AZ up to d(Z)= 0:70, this value being greater than the
m axin alone obtained in uniaxialcom pression. At point Z2, which is before the
point C "where @£=@d = 0) the localization condition for dissipative transform a—
tions (Eq.@) isreached. T he Iocalization angle is “© = 40 degrees, consistently
w ith K upfer’s post m ortem picture. T he conical crack shape in Fjg.ﬁ has been
chosen In order to respect the sym m etry axis of the problem . W ithout contra—
diction, the observed structure is pyram idal, this shape allow ing the kinem atics
of the concrete pieces. T he localization appears too quickly and the large dila—
tancy is a little overestin ated . M oreover, this post peak region di ers according

to di erent experin entalm ethods and concretes: for exam ple the high strength

concrete tested by @] exhibits no post peak.

E quibiaxial tension sim ulation. The part before the peak stress is n
good agreem ent w ith the experim ents for both axialand lateral strains F ig.E) .
C ontrary to experin ents, a dissipative postpeak evolution C Z is described (it
represents a m nor problem com pared to the elastic transform ation CZ in the
uniaxial com pression case). The dam age d(Z)= 0%7 at ultim ate point reaches
about the sam e value than in biaxialtension. T he localization angle ™= 126
degrees obtained in this case involves cracks approxin atively orthogonal to the
load directions, very consistent w ith K upfer’s post m ortem pictures. A gain, the
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Figure 6: Equidbiaxial tension sim ulation

conical shape is only the representation of the sym m etry of the problem as the
m odelonly de nes the angle of the crack, not its shape.
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7 Conclusions

T his study show s that the sin ple coupling introduced betw een the hydrostatic
and deviatoric parts of the strain in the free energy leads to a num ber of conse—
quences, even if the prin ary e ect, the non linear elasticity, slightly in uences
the shape of the elastic discharges. T he in portant dilatancy of the concrete
at ultin ate stages is well depicted. T he localization criterion is used as an in—
dicator of the creation of a m acroscopic crack, it applies at stress and strain
levels that are quite consistent w ith experim ents. T he dam age value predicted
at localization In pure tension rem ains sn all, letting to the m aterial som e load
bearing capacity, for exam ple for further com pression. T he crack angle given by
the localization condition is di erent in tension and com pression and consistent
w ith observations.

T he description of these e ects constitutes an in provem ent w ith respect to
m ost of available dam age m odels of com parable com plexity ( ve constants are
used). They are particularly relevant when, as in earthquake engineering, the
response of a concrete structure under severe conditions is considered. The
global structure of the m odel and its em bedding therm odynam ic fram ew ork,
opens the way to num erical In plem entation w ithin a nite elem ent code.

T he Introduction of a plasticity form alism E, @] would help to describe
m issing e ects such as hysteresis loops and perm anent strains and to correct
som e frrelevant postpeak responses. T he hydrostatic part of the free energy
could be a ected by dam age In order to extent the eld of application of the
m odelto con ned states and avoid the dam age locking condition present In the
actual form . The threedim ensionnal stress to strain relationship is univocal,
how ever the iInverse one is not: interesting theoretical analysis can be done on
stress driven loadings asthey m ay lnvolve m ulti phased states (this refers to the
work of P]] in elasticity and 3, 3] in plasticity).

A ppendices

A Tensorial form aliam

For any symm etric second order tensor A the hydrostatic and deviatoric parts
are denoted respectively by A" and AY. The hydr%stiau'c part is obtained by
the projction onto the nom ed hydrostatic tensor I= 3 (where I is the identity
tensor).

h

A = A"+ (55)

h

A" = A: (56)

()JTF“_' |IJ>‘Q
wﬁ’h—c

The symbol ":" denotes the double contraction ie. A :I = Ay 4= t@).
In this m odel, the deviatoric parts ¢ and "? (of the Cauchy stress _ and the
in nitesim al strain ") will rem ain collinear but m ay be a priori of opposite
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directions. W e choose to de ne this direction w ith respect to the nom ed tensor

D given by: .
"

D = ——.
- 3

P

The nom used is the euclidean naturalone ie. JA jj= A A ;. The algebraic

nh . nd h d
")

57

values ( are de ned as:

I I
=1:ip=; = _:P=i =":D; =_:D (58)
3 3

One can rem ark that " is positive but ¢ can a priori either be positive or
nega%fg T hese profctions are known under the names p and g where p =
B=" 3and g=  3=27 %jin soilsmechanics.

B U sefulproperty of the deviator

T he sorted eigenvalues ofﬂd are ("‘; ;"%;"%I) . From Eq. E, we have:

(e e (R - ey 69
n? + nclilJr "CIiII = 0 (60)
uCIi > "?I > "CIiII 61)

T his leads to the follow ing expressions:

"d l q - "d l q -
"(Ij _ ?H + E 2 ()2 3 (H(IiI)Z ; H?H — 711 E 2 (md)2 3 (n%)z 62)
nd nd :p

_ jo
A s soon as "}; evolves betw een its bounds [ 6;"=" 6] (given respectively
by "% = "(1111 and "(111 = "? ), these functions are m onotonic and:

r
nd

nd > uCIi > p_g (63)

wlin|
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