Some Lipschitz maps between hyperbolic surfaces with applications to Teichmüller theory

Athanase Papadopoulos, Guillaume Théret

To cite this version:

Athanase Papadopoulos, Guillaume Théret. Some Lipschitz maps between hyperbolic surfaces with applications to Teichmüller theory. Geometriae Dedicata, 2012, 161 (1), p. 63-83. 10.1007/s10711-012-9694-4 . hal-00446542

HAL Id: hal-00446542

https://hal.science/hal-00446542

Submitted on 12 Jan 2010

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

SOMELIPSCHITZMAPS BETWEEN HYPERBOLIC SURFACES W IT H APPLICATIONS TO TEICHMULLER THEORY

ATHANASE PAPADOPOULOSAND GU HLAUME THERET

Abstract

In the T eichm uller space of a hyperbolic surface of n ite type, we construct geodesic lines for T hurston 's asym m etric m etric having the property that when they are traversed in the reverse direction, they are also geodesic lines (up to reparam etrization). T he lines we construct are special stretch lines in the sense of T hurston. T hey are directed by com plete geodesic lam inations that are not chain-recurrent, and they have a nice description in term s of Fenchel-N ielsen coord inates. At the basis of the construction are certain maps w ith controlled Lipschitz constants betw een right-angled hyperbolic hexagons having three non-consecutive edges of the sam e size. U sing these m aps, we obtain Lipschitz-m in im izing m aps betw een hyperbolic particular pairs of pants and, m ore generally, betw een som e hyperbolic sufaces of n ite type w ith arbitrary genus and arbitrary num ber of boundary com ponents. T he Lipsch itzm in im izing m aps that we contruct are distinct from T hurston's stretch m aps.

A M S M athem atics Sub ject C lassi cation: 32G 15 ; 30F 30 ; 30F 60.
K eyw ords: T eichm uller space, surface w ith boundary, Thurston's asym m etric m etric, stretch line, stretch m ap, geodesic lam ination, m axim al m axim ally stretched lam ination, Lipsch itz m etric.

1. Introduction

In this paper, we prove som e results on Thurston's asym m etric m etric on $T e-$ ichm / "uller space. This m etric w as introduced by T hurston in his paper ?? .
we start by constructing Lipschitz hom eom onphism s with controlled Lipschitz constant betw een sym m etric right-angled hyperbolic hexagons, that is, convex rightangled hyperbolic hexagons having three non-adjacent edges of equal length. U sing these Lipschitz hom eom onphism S , we obtain, by doubling the hexagons, Lipschitz hom eom onphism s betw een sym m etric hyperbolic pairs of pants, that is, hyperbolic pairs of pants which have three geodesic boundary com ponents of equal lengths. These Lipschitz hom eom onphism s betw een sym m etric pairs of pants are extrem al in the sense that their Lipschitz constant is m inim alam ong all Lipschitz constants of hom eom onphism s in the sam e isotopy class. B ut these Lipschitz extrem alhom eom onphism s betw een pairs of pants are not stretch m aps in the sense of T hurston. By vary ing the Lipsch itz constants of the hom eom onphism swe construct, we obtain a path in the Teichm uller space of the pair of pants which actually coincides with a stretch line in the sense of T hurston, and we exploit the properties of such stretch lines.

W e recall that stretch lines are geodesics w ith respect to T hurston's asym m etric m etric, de ned by m inim izing the Lipschitz constant between m arked hypenbolic surfaces.

By gluing pairs of pants along their boundary com ponents, and by com bining the m aps we construct betw een pairs of pants, we obtain stretch lines in the Teichm uller space of hyperbolic surfaces of nite type, of arbitrary genus and of anbitrary num ber ofboundary com ponents, which are also geodesics (up to reparam etrization), for

[^0]Thurston's asym m etric m etric, when they are traversed in the opposite direction. T hese are the rst exam ples we know of such geodesics for this m etric.

We also recall that by a result of T hurston, given any two points g and h in Teichm uller space, there is a unique m axim ally stretched chain-recurrent geodesic lam ination (g;h) from g to h which ism axim al (w ith respect to inclusion), and that if g and h lie in that order on a stretch line directed by a com plete chain-recurrent geodesic lam ination, then $(g ; \mathrm{h})=$. W e obtain the follow ing results that are variations on this them e : W e show that if two elem ents g and h in Teichm uller space lie (in that order) on a stretch line we construct, the lam ination (g;h) is strictly sm aller than the lam ination that directs that line, and that there are several (non chain-recurrent) m axim alm axim ally stretched geodesic lam inations from g to h. In other words, the stretch lines we construct are directed by com plete geodesic lam inations that are not chain-recurrent, and unlike the chain-recurrent case, these lam inations are not uniquely de ned.

2. Thurston's stretch maps betw een hyperbolic ideal triangles and

 between pairs of pantsIn this section, we recall the de nition of a stretch m ap betw een hyperbolic ideal triangles and betw een pairs of pants. This construction is due to T hurston (see [1]).

W e start w ith a stretch m ap from a hyperbolic ideal triangle to itself.
C onsider a hyperbolic ideal triangle equipped w ith the partial foliation by horocyclic segm ents that are penpendicular to the boundary. Up to isom etry, there is a unique such object. There is a non-foliated region at the center of the triangle, bounded by three pieces of horocycles (see Figure 1). This horocyclic foliation is equipped w ith a natural transverse m easure, which is characterized by the fact that the transversem easure assigned to any arc contained in an edge of the ideal triangle coincides w ith the Lebesgue m easure induced by the hyperbolic m etric.

The non-foliated region of a hyperbolic triangle intersects each edge of the triangle at a point called the center of that edge.

Figure 1. The horocyclic foliation of an ideal triangle.

Let T be the hyperbolic ideal triangle equipped w ith its horocyclic m easured foliation, and consider a real num ber $k \quad 1$. The stretch m ap of m agnitude k of T is a hom eom onphism $f_{k}: T$! T satisfying the follow ing properties:
(1) The restriction of f_{k} to the non-foliated region of T is the identity m ap of that region.
(2) $O n$ each edge of T, f_{k} sends any point at distance x from the center of that edge to a point at distance $k x$.
(3) T he $m a p f_{k}$ preserves the horocyclic foliation of T; that is, it sends leaves to leaves.
(4) O n each leaf of the horocyclic foliation, f_{k} contracts linearly the length of that leaf.

By gluing stretch m aps betw een ideal triangles we construct stretch m aps betw een hyperbolic pairs of pants.

A hyperbolic pair of pants is a sphere w ith three open disks rem oved, equipped w ith a hyperbolic m etric in which the three boundary components are closed geodesics (the lift of such a curve to the hyperbolic universal cover seen as a subset of the hyperbolic plane H^{2} is a geodesic in H^{2}).

LetP be a hyperbolic pair of pants. W e choose a com plete geodesic lam ination in P. Such a com plete geodesic lam ination necessarily consists of three disjoint biin nite geodesics that spiral around the boundary com ponents of P, decom posing that surface into tw o hyperbolic ideal triangles. The horocyclic m easured foliations of the two ideal triangles t together sm oothly since they are both perpendicular to the edges of the ideal triangles, and therefore they form a Lipschitz line eld on the surface. For each $k \quad 1$, consider a stretch m ap ofm agnitude k de ned on each of the idealtriangles com posing P. W e obtain a new hypenbolic pair of pants P_{k} by gluing the idealtriangles together along their boundaries according to identi cations that are com patible w ith the stretch m aps. This de nes a hom eom onphism from P to another hypenbolic pair of pants P_{k}, which is called a stretch m ap (ofm agnitude k) from P to P_{k}.

The above construction can be repeated on several copies of hyperbolic pairs of pants. By gluing together these pairs of pants according to the identi cations given by the stretch m aps, we obtain a stretch m ap of m agnitude k from a hyperbolic surface S to another S_{k}. N ote that the com plete geodesic lam inations giving the decom positions into ideal triangles of the pairs of pants in S give, together with the pants decom position of S, a com plete geodesic lam ination on the surface S.
R em ark 2.1. The reader should be aw are that stretch m aps are actually de ned in a much wider generality than the one presented here. T he underlying com plete geodesic lam ination giving the decom position of the surface into ideal triangles can be chosen arbitrarily am ong the com plete geodesic lam inations and it is not necessarily the com pletion of a geodesic pants decom position as above. H ow ever, in this paper, we shall only need the special case of stretch m aps described above.

3. Extremal Lipschitzmaps between symmetric right-angled hexagons

Given two metric spaces ($\mathrm{X} ; \mathrm{d}_{\mathrm{X}}$) and ($\mathrm{Y} ; \mathrm{d}_{\mathrm{Y}}$) and a map $\mathrm{f}: \mathrm{X}$! Y between them, the Lipschitz constant Lip (f) of f is de ned as

$$
\operatorname{Lip}(f)=\sup _{x \notin y^{2} x} \frac{d_{y} f(x) ; f(y)}{d x x ; y} 2 R[f 1 g:
$$

W e shall say that the m ap f is Lipschitz if its Lipschitz constant is nite.
T he stretch m aps f_{k} betw een hyperbolic ideal triangles that we considered in the last section are exam ples of Lipschitz hom eom onphism s, w ith Lipschitz constant equal to k. N ote that the fact that this L ipschitz constant is at least k can be seen from the action of these m aps on the boundary of the ideal triangles. T he fact that the Lipschitz constant is exactly k is im plicit in T hurston 's paper 9]. It also follow s from the com putations below (see Rem ark 3.4). By using these m aps as building blocks, we recalled in 国 how one obtains L ipschitz hom eom onphism s of hyperbolic
pairs of pants and, m ore generally, of hyperbolic surfaces. T hese stretch m aps have Lieschitz constants k.

In th is section, we shallde ne Lipschitz m aps betw een som e particu lar hyperbolic right-angled hexagons, which will also have controlled Lipschitz constants, and which can be used to de ne Lipschitz hom eom onphism s betw een special hyperbolic pairs of pants, by gluing hyperbolic right-angled hexagons and taking the union of Lipschitz m aps between them. By gluing together these special pairs of pants in an appropriate m anner, th is w ill eventually y ield hom eom orphism sbetw een special hyperbolic surfaces of arbitrary n ite type, with controlled Lipsch itz constants.

A symm etric right-angled hexagon is a geodesic hexagon H in the hyperbolic plane H^{2} w ith three pairw ise non-consecutive edges having the sam e length. (N ote that th is im plies that the rem aining three edges also have the sam e length.)

W e consider a sym m etric right-angled hexagon H, and we choose three pairw ise non-consective edges of H, which we call the long edges. W e denote their com m on length by 2L. The other three non-consecutive edges are called short, and we denote their com m on length by 21 . An easy com putation using $w e l l$-known form ulae for right-angled hexagons gives

$$
\begin{equation*}
2 \sinh (1) \sinh (L)=1: \tag{1}
\end{equation*}
$$

For each real num ber $k \quad 1$, we let H_{k} be the sym m etric right-angled hexagon obtained by multiplying the lengths of the long edges of H by the factor k . W e note that this property determ ines the isom etry type of H_{k} in a unique way. W e call the edges of H_{k} that are the in ages of the long edges of H by this dilatation m ap the long edges of H_{k} and we denote their com m on length by $2 \mathrm{~L}_{\mathrm{k}}$. W e let $2 \mathrm{l}_{\mathrm{k}}$ denote the length of the other edges of H_{k}, which we call the short ones.

In this section, all the m aps betw een sym m etric right-angled hexagons that we shall consider w ill be hom eom onphism s sending the long (respectively short) edges to the long (respectively short) edges, and in general we shall not repeat this condition.

The three lengths of any three non-consecutive edges of H (respectively of H_{k}) satisfy the triangle inequality. Therefore, we can equip H (respectively H_{k}) w ith a partialm easured foliations F (respectively F_{k}) whose leaves are loci of equidistant points from the short edges. In the hypenbolic plane, equidistant points from geodesics are classicaly called hypercycles, and we shall use this term inology. T he foliations of H (respectively H_{k}) by hypercycles are show in F igure Z, and such foliations have already been considered by T hurston in his com pacti cation theory of Teichm uller space (see 目, expose 6]). There is a non-foliated region of F (respectively F_{k}) at the center of H (respectively H_{k}).

T he intersection num ber of F (respectively, F_{k}) w ith an edge of H (respectively, H_{k}) is either 2L or 0 (respectively, 2kL or 0) depending on whether the edge is long or short.

W e also equip H (respectively H_{k}) with the partial foliation G (respectively G_{k}) whose leaves are geodesic arcs penpendicular to the leaves of F (respectively F_{k}).

In Theorem 3.3, we shall construct a m ap, $h_{k}: H$! H_{k} which (leafw ise) sends F to F_{k}, and G to G_{k} and whose Lipschitz constant is k. Such a m ap is Lipschitzextrem al in its hom otopy class relative to the boundary, since the Lipsch itz constant of any m ap $f: H$! H_{k} which sends long (respectively short) edges of H to long (respectively short) edges of H_{k} is bounded below by k. The Lipschitz-extrem al m aps we shall construct are \canonical" in the sense that they preserve a pair of hypercyclic/geodesic foliations, and they are rem in iscent of T hurston's stretch m aps betw een ideal triangles. In som e precise sense that we specify below, Thurston's stretch m aps betw een ideal triangles are lim its of the Lipschitz-extrem alm aps betw een sym m etric hexagons.

Before de ning the $m a p h_{k}$, we m ake a geom etricalrem ark. C onsider the fam ily of all sym m etric right-angled hexagons H_{k} as k varies from 1 to in nity. Each of these hexagons has a center which is the center of the rotation that perm utes each triple of non-consecutive edges. For each such hexagon, consider the three geodesic rays em anating from its center and m eeting the short edges penpendicularly. P lace all the hexagons H_{k} in the hyperbolic plane so that all their centers coincide and such that all the above geodesic rays coincide as well. Now for each such hexagon H_{k}, consider the associated extended hexagon H_{k} de ned as the region of in nite area enclosed by the three geodesics in H^{2} extending the long edges of H_{k}. It follow s from Equation (17) that as L_{k} decreases, I_{k} increases, and conversely. From this, we deduce that for any $1 \mathrm{k} \quad \mathrm{k}^{0}$, we have $\mathrm{IP}_{\mathrm{k}} 0 \quad \mathrm{IP}_{\mathrm{k}}$.
W e also note that as k tends to in nity, the extended hexagon I_{k} as well as the hexagon H_{k} itself converge, in the H ausdor topology associated to the Euclidean m etric (using as in F igure B 3 the disk m odel of the hypenbolic plane) to an ideal triangle. Likew ise, ask! 1 , the m easured foliation F_{k} converges to the horocyclic foliation of the ideal triangle (represented in F igure 1) and the non-foliated region of F_{k} converges to the non-foliated region of that horocyclic foliation.
T he follow ing tw o lem m as w ill be used in the proof of T heorem 3.3 below .
Lem ma3.1. For $k^{0}>k \quad 1$, the non-foliated region of $\mathrm{F}_{\mathrm{k}^{0}}$ is strictly contained in the non-foliated region of F_{k}.

Proof. W e work in the disk m odel of the hyperbolic plane. The statem ent will follow from the construction of the sym m etric hexagons, represented in F igure 3 . In the upper part of that gure, the hexagon H_{k} (also w ith its edges extended) is drawn in bold lines, and the hexagon $\mathrm{H}_{\mathrm{k}^{0}}$ (w ith its edges extended) is drawn in dashed lines. W e have chosen the hexagons to be sym m etric w ith respect to the Euclidean center O of the unit disk. In the upper gure, the point p (respectively q) is the Euclidean center of the hypercycle that is on the boundary of non-foliated region of H_{k} (respectively $\mathrm{H}_{\mathrm{k}^{0}}$). The point a (respectively b) is a vertex of the nonfoliated region of F_{k} (respectively $\mathrm{F}_{\mathrm{k}^{0}}$). A m ore detailed view of a region draw n in the the upper part of F igure 3 is represented in the low er part. The point a^{0} (respectively b^{0}) is the center of a boundary hypercycle of the non-foliated region of F_{k} (respectively $\mathrm{F}_{\mathrm{k}^{0}}$). The Euclidean triangles O pa and O qb are hom othetic by a Euclidean hom othety of center O and factor <1. This hom othety sends the Euclidean circle arc aa^{0} to the Euclidean circle arc bb^{0}. Thus, there exists a Euclidean hom othety of center O that sends the non-foliated region of $\mathrm{H}_{\mathrm{k}}{ }^{0}$ strictly into the non-foliated region of H_{k}, which proves the lem ma.

Figure 2. The foliation by curves equidistant to the short edges of a sym m etric right-angled hexagon. The central region is not foliated, and it is bounded by three hypercycles which m eet each other tangentially.

Lem m a 3.2. In the upper half-plane model of the hyperbolic plane, consider the geodesic represented by the im aginary axis $\mathrm{iR}^{+}=$fir; $r>0 \mathrm{~g}$, and a hypercycle m aking an angle $\overline{2}_{2} 1$ with this geodesic, with $0<1<=2$. Let ' be the length of a geodesic arc joining perpendiculary the vertical geodesic and the hypercycle. Then, we have

$$
\cos _{1}=\tanh ^{\prime}:
$$

Proof. W e refer to Figure . W e param etrize the geodesic arc by the map

$$
\begin{aligned}
& :[1 ;=2]!H^{2} \\
& \text { I }(\cos ; \sin):
\end{aligned}
$$

U sing the form ula for the in nitesim allength elem ent in the upper half-planem odel, we can w rite

$$
,=\int_{1}^{Z} \frac{k^{0}() k}{\operatorname{Im}(())} d={ }_{1}^{Z}=2 \frac{d}{\sin }:
$$

C om puting the integral, we nd

$$
e^{\prime}=\tan (1=2)
$$

Figure 3. The upper gure represents, in bold lines, a sym metric right-angled hexagon H_{k}, and in dashed lines, a sym m etric right-angled hexagon $\mathrm{H}_{\mathrm{k}} 0$ w ith $\mathrm{k}^{0}>\mathrm{k}$, together w ith their extensions \hat{H}_{k} and \hat{H}_{k}^{0}. T he fact that the non-foliated region of the sym m etric hexagon H_{k}^{0} is included in the non-foliated region of the sym m etric hexagon H_{k}, for $k^{0}>k$, as it is represented in the upper gure, can be deduced from the Euclidean construction in the lower gure, in which the arcs aa ${ }^{0}$ and bbb^{0} are on the boundaries of the non-foliated regions of H_{k} and $H_{k} 0$ respectively.
and after transform ation we obtain

$$
\cos _{1}=\tanh { }^{\prime}:
$$

W e now construct the $m a p h_{k}: H \quad H_{k}$.
From the inclusion of the non-foliatied region of H_{k} into the non-foliated region
 be chosen to be contracting from the non-foliated region of H to the non-foliated region of H_{k}.

To de ne the $m a p h_{k}$, it su ces to do it in a component of the foliated region of H. C onsider such a com ponent. It is isom etric to the region C in the upper half-plane m odel of the hyperbolic plane de ned in polar coordinates by

$$
\mathrm{C}=\mathrm{fz}=\mathrm{Re}^{\mathrm{i}} \quad: 1 \quad \mathrm{R} \quad \mathrm{e}^{21} ; \quad 1 \quad=2 \mathrm{~g} ;
$$

where 1 is chosen so that the geodesic param eterized by $\eta R e^{i}, 1=2$, has length L.

From Lemm a 3.2, we have

$$
\cos _{1}=\tanh \mathrm{L}:
$$

Likew ise, the im age by h_{k} of the component C of the complem ent in H of the non-foliated region is isom etric to the region C_{k} in the upper half-plane m odel of H^{2} given by

$$
C_{k}=f z=R e^{i} \quad: 1 \quad R \quad e^{2 I_{k}} ; k \quad=2 g ;
$$

where

$$
\cos (k)=\tanh (k L):
$$

In these descriptions, the foliations F and F_{k}, are given by the hypercycles de ned by $=$ cst, while the foliations G and G_{k}, are given by the geodesics de ned by $R=$ cst. The short sides of C and C_{k} correspond to $==2$. Ourmap $h_{k} \mathrm{~m}$ aps a point A 2 C which is at distance d from the short side of C to a point which is at distance $k d$ from the short side of C_{k}. If the point A lies on the leaf of G which cuts the short side of C at distance h, then the im age of A by h_{k} belongs to the leaf that cuts the short side of C_{k} at distance $\mathrm{h} \mathrm{l}_{\mathrm{k}}=1$.

W e need to have an explicit form ula for h_{k} in order to com pute the norm of its derivative.

LetA be a point in C given in polar coordinates by (R;). D enote the coordinates of the point $h_{k}(A) 2 C_{k}$ by $\left(R^{0}{ }^{0}{ }^{0}\right)$. W e also describe the points A and $h_{k}(A)$ by their distances from the short sides, nam ely d and $k d$, and by their distances from the low est geodesic boundary of C and C_{k}, as above.

Figure 4. ' is the length of a segm ent joining perpendicularly the vertical geodesic and the hypercycle m aking an angle 1 w ith the horizontal. W e have cos $1=$ tanh '.

Let us rst com pute R^{0}. The logarithm of R and of R^{0} are the distances of the points A and $h_{k}(A)$ from the low est geodesic boundary of C and C_{k}, respectively. By what has been previously said, we have

$$
\log R^{0}=\frac{l_{k}}{l} \log R:
$$

Therefore,

$$
\mathrm{R}^{0}=\mathrm{R}^{\mathrm{I}_{k}=1}:
$$

Let us now compute ${ }^{0}$. The same computation as for the formula giving ${ }_{1}$ establishes

$$
\sin =\frac{1}{\cosh d} \text {; or } \cos =\tanh d \text { : }
$$

Therefore,

$$
d=\operatorname{argcosh} \frac{1}{\sin }:
$$

N ow,

$$
{ }^{0}=\arccos (\tanh (k d)):
$$

T hus we get the follow ing form ula for h_{k}, view ed as a m ap from C to C_{k},

$$
h_{k}(R ;)=R^{l_{k}=1} ; \arccos \left(\tanh k \operatorname{argcosh} \frac{1}{\sin } \quad\right. \text {) }
$$

N ow that the hom eom onphism h_{k} isde ned, we proceed to show that its Lipschitz constant equals k . For this, we com pute the nom of its derivative.

W e easily have

$$
\frac{@ R^{0}}{@ R}=\frac{l_{k}}{1} R^{\left(l_{k}=1\right) 1} ; \frac{@ R^{0}}{@}=0 ; \frac{@ e^{0}}{@ R}=0:
$$

Since $\arccos ^{0}(x)=\frac{1}{1 x^{2}}$, we get

$$
\begin{aligned}
\frac{@}{@} & =\frac{1}{1 \tanh ^{2}\left(k \operatorname{argcosh} \frac{1}{\sin }\right)} \frac{@}{@} \tanh k \operatorname{argcosh} \frac{1}{\sin } \\
& =\cosh \left(k \operatorname{argcosh} \frac{1}{\sin }\right) \frac{@}{@} \tanh k \operatorname{argcosh} \frac{1}{\sin }:
\end{aligned}
$$

N ow, since $\tanh ^{0}(x)=\frac{1}{\cosh ^{2}(x)}$, we have

$$
\frac{@}{@} \tanh k \operatorname{argcosh} \frac{1}{\sin }=\frac{k}{\cosh ^{2}\left(k \operatorname{argcosh} \frac{1}{\sin }\right)} \frac{@}{@} \operatorname{argcosh} \frac{1}{\sin }:
$$

Hence, since $\operatorname{argcosh}^{0}(x)=\frac{1}{x^{2} 1}$,

$$
\begin{aligned}
\frac{\varrho^{0}}{@} & =\frac{k}{\cosh \left(k \operatorname{argcosh} \frac{1}{\sin }\right)} \frac{@}{@} \operatorname{argcosh} \frac{1}{\sin } \\
& =\frac{k}{\cosh \left(k \operatorname{argcosh} \frac{1}{\sin }\right)} \frac{1}{\frac{1}{\sin ^{2}} 1} \frac{@}{@} \frac{1}{\sin } \\
& =\frac{\cos }{\cos \cosh \left(k \operatorname{argcosh} \frac{1}{\sin }\right)} \frac{\sin ^{2}}{\sin ^{2}}
\end{aligned}
$$

F inally, we have

$$
\frac{@^{0}}{@}=\frac{k^{h}}{\sin } \cosh \left(k \operatorname{argcosh} \frac{1}{\sin }\right)^{i_{1}}:
$$

T he last partial derivative can also be w ritten as

$$
\frac{@^{0}}{@}=k \frac{\cosh d}{\cosh (k d)}:
$$

W e now proceed to com pute the norm of the di erential d_{k}. Recall that the square of the norm of a vector (dx ; dy) in the tangent plane $\mathrm{T}_{\mathrm{z}}\left(\mathrm{H}^{2}\right)$ of the upper half-plane m odel of the hyperbolic plane is given by

$$
\frac{d x^{2}+d y^{2}}{y^{2}}
$$

where $z=x+i y$. In polar coordinates, this is written as

$$
\frac{d R^{2}+R^{2} d^{2}}{R^{2} \sin ^{2}}
$$

Let $V=\left(V_{R} ; V\right)$ be a non-zero tangent vector at the point ($\mathrm{R} ;$). W e com pute the norm of the di erential dh_{k} at the point (R ;). W e have

$$
\begin{aligned}
\left.\dot{j}\left(d h_{k}\right)_{(R ;} ;\right) \quad V \text { 白 } & =\dot{j}\left(\frac{@ h_{k}}{@ R} d R+\frac{@ h_{k}}{@} d\right) V^{2} j \dot{j} \\
& =\frac{1}{R^{2} \sin ^{2}} \frac{@ R^{0}}{@ R} V_{R}+\frac{@ R^{0}}{@} V^{2}+R^{2} \frac{@}{@ R} V_{R}+\frac{@}{@} V^{2} \\
& =\frac{1}{R^{2} \sin ^{2}} \frac{@ R^{0}}{@ R} V_{R}^{2}+R^{2} \frac{@}{@} V^{2}:
\end{aligned}
$$

N ote that

$$
\dot{J} V \text { 升 }=\frac{1}{R^{2} \sin ^{2}}\left(V_{R}^{2}+R^{2} V^{2}\right):
$$

T herefore, since $\left.j\left(d h_{k}\right)_{(R} ; ~\right) j j=\sup _{V \& 0} \frac{\left.j j\left(d h_{k}\right)_{(R ; ~}\right) V j j}{j J V j j}$, we get

$$
\begin{aligned}
& \left.j\left(d h_{k}\right)_{(R} ;\right) j_{j}^{j}=\sup _{V \notin 0} \frac{\frac{\varrho R^{0}}{\varrho R} V_{R}^{2}+R^{2} \frac{\varrho^{0}}{\varrho} V V^{2}}{V_{R}^{2}+R^{2} V^{2}} \\
& =\sup _{V \notin 0} \frac{\frac{\varrho R^{0}}{@ R} V_{R}^{2}+\frac{@^{0}}{@} R V V^{2}}{V_{R}^{2}+(R V)^{2}} \\
& =\sup _{V_{R}^{2}+(R V)^{2}=1} \frac{@ R^{0}}{@ R} V_{R}^{2}+\frac{@ 0}{@} R V^{2} \\
& =\max {\frac{@ R^{0}}{@ R}}^{2} ; \frac{@}{@}_{20} \text { : }
\end{aligned}
$$

W e have

$$
1 \quad \mathrm{R} \quad e^{21}:
$$

Since $l_{k}=1 \quad 1$, we get

$$
1 \quad \mathrm{R}^{\mathrm{l}_{k}=11} \quad \mathrm{e}^{2\left(\mathrm{l}_{k} l_{)}\right.}>0 ;
$$

that is,

$$
0 \quad \frac{@ R^{0}}{@ R} \quad 1:
$$

N ow, since

$$
\frac{@^{0}}{@}=k \frac{\cosh (d)}{\cosh (k d)} ;
$$

w e get, for all (R ;),

$$
0 \quad \frac{@}{@} \mathrm{k}
$$

and the equality $\frac{\varrho^{\circ}}{\varrho}=k$ is realized at the points $d=0$, that is, on the short side of C. Therefore, we obtain

$$
\sup _{(\mathbb{R} ;) 2 \mathrm{C}} \mathrm{j}_{\left.\mathrm{j}\left(\mathrm{dh}_{\mathrm{k}}\right)_{(\mathbb{R}} ;\right) j \mathrm{j}=\mathrm{k}: ~}^{\text {: }}
$$

The suprem um of the norm of dh_{k} bounds from above the Lipschitz constant of h_{k} : If $x ; y$ are two points of C and if is the geodesic path from x to y, we get

$$
d\left(h_{k}(x) ; h_{k}(y)\right) \quad l\left(h_{k}()\right)=\underbrace{Z}_{0} d(x ; y) \quad j\left(d h_{k}\right) \quad(t) \quad{ }^{0}(t) \ddot{j} d t \quad \sup _{z} \dot{j}\left(d h_{k}\right)_{z} j \dot{j} d(x ; y):
$$

T herefore, if $L\left(h_{k}\right)$ denotes the L ipschitz constant of h_{k}, we get from what precedes,

$$
L\left(h_{k}\right) \quad k:
$$

Since the long edges are dilated by the factor k, we have $L\left(h_{k}\right) \quad k$. F inally,

$$
L\left(h_{k}\right)=k:
$$

Putting all pieces together, the m ap we constructed from H to H_{k} has Lipschitz constant k.

W e sum m arize the preceding construction in the follow ing:
Theorem 3.3. Themap $h_{k}: H$! H_{k} is $k-L i p s c h i t z$. Furtherm ore for any $k^{0}<k$, there is no $\mathrm{k}^{0}-\mathrm{L}$ ipschitz m ap from H to H_{k}.
Proof. The rst part follows from the construction. Since, by de nition, a map $h_{k}: H$! H_{k} sends the long edges of H to the long edges of H_{k}, we im m ediately get Lip $\left(h_{k}\right) \quad k$. This proves the second part of the theorem.

Rem ark 3.4. W e already observed that, reasoning in the disk m odel of the hyperbolic plane and using the notion of H ausdor convergence on bounded closed subsets of that disk w ith respect to the underly ing Euclidean m etric, we can m ake a sequence of sym m etric right-angled hexagons converge to an hyperbolic ideal triangle, in such a way that the follow ing three properties hold:
(1) The partialm easured foliation of the hexagons by hypercycles converges to the partialm easured foliation of the hyperbolic ideal triangle by horocycles.
(2) T he partial foliation of the hexagons by geodesics perpendicular to the foliation by hypercycles converges to the partial foliation of the ideal triangle by geodesics penpendicular to the horocycles.
(3) The non-foliated regions of the hexagons converge to the non-foliated region of the ideal triangle.

Furtherm ore, for allk 1 , we can m ake the convergence of hexagons to the ideal triangle in such a way that $k-\mathrm{i}$ ipschitz m aps $f_{k}: H$! H_{k} converge uniform ly on com pact sets to the stretch m aps $f_{k}: T$! T betw een hypenbolic ideal triangles. T his show s in particular that the stretch m aps f_{k} have Lipschitz constant k.
W e note that Lipschitz m aps betw een pairs of pants are also considered by O tal in his paper [T^{3}], in relation w ith the W eil-P etersson m etric of T eichm uller space.

4. A symmetric metrics on T eichmuller spaces of surfaces w ith or w ithout boundary

In this section, S is a surface of nite type ($\mathrm{g} ; \mathrm{b}$), which m ay have em pty or nonem pty boundary (g denotes the genus of S and bo the num ber ofboundary com ponents). W e assum e that the E uler characteristic of S is negative. The hyperbolic structures we construct on S are such that all the boundary com ponents are closed sm ooth geodesics. W e denote by $T(S)$ or by $T_{g ; b}$ the Teichm uller space of S, that is, the space of hom otopy classes of hyperbolic m etrics on that surface.

G iven two hyperbolic structures X and Y on S, we de ne
(2)

$$
L(X ; Y)=\log \underset{f}{\operatorname{in} f L i p}(f)
$$

where the in m um is taken over the set of Lipschitz hom eom onphism $\mathrm{s} f: \mathrm{X}$! Y that are hom otopic to the identity.

Lem mat (Thurston). For any two hyperbolic metrics X and Y on S, iff (X; Y) 0 , then X and Y are isom etric by a hom eom onphism that is hom otopic to the identity.

Proof. W e follow Thurston's proof of the corresponding result in the case of surfaces w thout boundary, cf. 9, P roposition 2.1]. Since L (X ; Y) 0, there exists a sequence of hom eom orphism $S f_{n}: X!Y, n=0 ; 1 ;:::$ w ith L ipschitz constants L ip (f_{n}) converging to a realnum ber $\mathrm{L} \quad 1$. The sequence (f_{n}) is uniform ly equicontinuous, therefore up to taking a subsequence, we can assum e that (f_{n}) converges unform ly to a map f:X! Y.We have Lip (f) = L 0.W e now prove that f is surjective. Take a point y in Y, and for all $n \quad 0$, let $x_{n}=f_{n}^{1}(y)$. Up to taking a subsequence of (f_{n}), we can assum e, by com pactness, that $x_{n}!\times 2 \mathrm{X} . \mathrm{W}$ e show that $f(x)=y$. Let us x som $e>0$. W e have

$$
\mathbb{F}(x) \quad y j=\mathbb{F}(x) \quad f_{n}\left(x_{n}\right) j \quad \mathbb{F}(x) \quad f_{n}(x) j+\mathbb{F}_{n}(x) \quad f_{n}\left(x_{n}\right) j:
$$

Since f_{n} ! f uniform ly, there exists $N \quad 0$ such that for all $n \quad N$, we have If $(x) \quad f_{n}(x) j=2$. Since the fam ily $\left(f_{n}\right)$ is equicontinuous, there exists >0 such that for x_{1} and x_{2} satisfying $\dot{x}_{1} \quad x_{2} j<$, we have $f_{m}\left(x_{1}\right) \quad f_{m}\left(x_{2}\right) j \quad=2$ for allm 0 .

Since $x_{n}!x$, there exists N^{0} such that for alln N^{0}, we have $\mathrm{j}_{\mathrm{x}} \quad \mathrm{x}_{\mathrm{n}} \mathrm{j}<\quad$.
For $n \quad m a x f N$; $N^{0} g$, we have, for allm, $\dot{\mathscr{F}}_{m}(\mathrm{x}) \mathrm{f}_{\mathrm{m}}\left(\mathrm{x}_{\mathrm{n}}\right) \mathrm{j} \quad=2$. In particular, for $m=n, \dot{f}_{n}(x) \quad f_{n}\left(x_{n}\right) j \quad=2$. This shows that for every >0, we have价 $(x) \quad y j \quad$ Thus, $f(x)=y$. This shows that f is surjective.

W e cover S by a set of geom etric disks w ith disjoint interior whose total area is equal to the area of X. Them etrics X and Y have the sam e area. Since Lip (f) 1 and since f is surjective, the im age by f of a disk of radius R is a disk of radius R . Furtherm ore, f sends the boundary of any such disk to the boundary of the im age disk. W e deduce that any geom etric disk is sent by f isom etrically to a geom etric disk of the sam e radius. Furthem ore, it is easy to see that the center of such a disk is sent to the center of the im age disk.

From this, we deduce that f is locally distance-preserving. This implies that f is an isom etry.
W e call an asym m etric m etric on a set X a function that satis es the axiom s of a m etric except the sym m etry axiom, and that does not satisfy this axiom .

Proposition 4.2. The function L de ned in (2) is an asym m etric m etric on the Teichm uller space $T(S)$.

Proof. By Lem m a 4.1, L is nonnegative and separates points. T he triangle inequality is obviously satis ed. T he fact that the m etric does not satisfy the sym m etry axiom can be seen using an exam ple analogous to the one show ing the corresponding result for surfaces w ithout boundary, given by T hurston in 9$]$.

W e let S be the set of isotopy classes of sim ple closed curves on S which are not hom otopic to a point (the boundary com ponents of S are included).
T he asym m etric m etric L is an analogue, for surfaces w ith boundary, of the asym m etric m etric de ned by T hurston in 9] for surfaces w ithout boundary. In
the sam e paper, T hurston de ned the follow ing function on the T eichm uller space $T(S)$ of a surface S w thout boundary:

$$
\begin{equation*}
K(x ; y)=\log \sup _{C 2 S} \frac{l_{y}(C)}{l_{x}(C)}: \tag{3}
\end{equation*}
$$

Thurston proved that we obtain the same function K if instead of taking the in m um over the elem ents of S in (3) we take the in m um over all (not necessarily sim ple) closed curves (see [0], P roposition 3.5).

In the case where the surface S has nonem pty boundary, Form ula (B $^{\text {) }}$ does not de ne an asym m etric m etric on the Teichm uller space of S. This can easily be seen in the case where the surface is a pair of pants P. D enoting by $C_{1} ; \mathrm{C}_{2} ; \mathrm{C}_{3}$ the three boundary com ponents of the pair of pants, the function K de ned on $T(P) T(P)$ takes the form

$$
K(x ; y)=\log \sup _{i=1 ; 2 ; 3} \frac{l_{y}\left(C_{i}\right)}{l_{x}\left(C_{i}\right)}:
$$

T his function K on $T(P)$ satis es the triangle inequality, but it is not an asym m etric m etric, since it can take negative values. Furtherm ore, it does not separate points; that is, there exist distinct x and y in $\mathrm{T}(\mathrm{P})$ with $\mathrm{K}(\mathrm{x} ; \mathrm{y})=0$ (take x and y satisfy ing $I_{x}\left(C_{1}\right)=I_{y}\left(C_{1}\right)$, and $l_{x}\left(C_{i}\right)>l_{y}\left(C_{i}\right)$ for $\left.i=2 ; 3\right)$.

In fact, for any surface S w th nonem pty boundary, there exist hyperbolic m etrics X and Y such that $K(x ; y)<0$ (see []).

W e have K L . Indeed, for any k - ipschitz hom eom onphism from a hyperbolic m etric x on S to a hypenbolic m etric y on S, we easily see that we have, for every simple closed curve on $S, l_{y}(f()) k l_{x}()$, which implies K (x;y) L (x;y).

There is a m odi cation of the function K de ned in Form ula (3) which is adapted to the case of surfaces w ith or w ithout boundary, which we studied in 目] and which we now recall. The de nition involves considering essential arcs in S together with essential sim ple closed curves. We call an essential arc in S an em bedding of a closed interval, the arc having its endpoints on the boundary of S and its interior in the interior of S, and such that this arc is not hom otopic relative endpoints to an arc contained in @S. In what follow S, a hom otopy of essential arcs is alw ays relative endpoints.

If S is a surface with boundary, we let $B=B(S)$ be the union of the set of hom otopy classes of essential arcs in S w ith the set of hom otopy classes of sim ple closed curves that are hom otopic to boundary com ponents. If S is a surface w ithout boundary, the set B is assum ed to be em pty.

For any surface S w ith or w ithout boundary, we consider the function J de ned on $T(S) \quad T(S)$ by

$$
J(X ; Y)=\log \sup _{2 C[B} \frac{l_{Y}()}{l_{X}()}
$$

for all X; $Y 2 T(S)$. If the surface S has no boundary, we recover T hurston's asym m etric m etric K de ned above.

Prop osition 4.3. The function $J: T(S) T(S)!R$ is an asym m etric m etric on T (S) .

Proof. The proof follow s from 目], P ropositions 2.10 and 2.13.
It is shown in 3], Proposition 2.12, that when S has nonem pty boundary, the asym m etric m etric J can be expressed as the logarithm of the suprem um over the set B solely.

In the sam e way as for the function K, we easily see that $J \quad L$.

5. Surfaces of finite type

W enow construct Lipschitz-extrem alhom eom onphism sbetw een som e hyperbolic pairs of pants, using the hom eom onphism $s h_{k}$ betw een sym m etric hyperbolic rightangled hexagons that we constructed in Section 3. W e shall then com bine these hom eom onphism sto get L ipschitz-extrem alhom eom onph ism s of hypenbolic surfaces of arbitrary topological nite type.

W e shall call a hypenbolic pair of pants sym m etric if it is obtained by gluing along three non-consecutive boundary com ponents tw o isom etric sym m etric rightangled hexagons, and we shall alw ays assum e that these hexagons are glued along their long edges. Thus, the boundary com ponents of our pairs of pants are \short".
W e let P be a sym m etric pair of pants obtained by gluing tw o sym m etric rightangled hexagons H, and for every $k \quad 0$, we let P_{k} be a sym m etric pair of pants obtained by gluing two right-angled hexagons H_{k}. Taking the double of the m ap $h_{k}: H$! H_{k} produces amap $p_{k}: P!P_{k}$.

Theorem 5.1. The line $t 7 P_{e^{t}}(t 2 R)$ is a stretch line, and it is a geodesic for these two m etrics J and L on $\mathrm{T}_{0 ; 3}$. Furtherm ore, up to reparam etrization, this line is also a geodesic for both m etrics when it is traversed in the opposite direction.

Proof. For each $t \quad 0$, the action of the hom eom onphism $P!P_{e^{t}}$ on each boundary com ponent of P is linear (it m ultiplies arc length by e^{t}). The fact that the line $t 7 P_{e^{t}}(t 2 R)$ coincides w ith a stretch line follows from the fact that for all $t \quad 0$, the surface $P_{e^{t}}$ is obtained from P by multiplying the lengths of the boundary geodesics by the constant factor e^{t}, and this factor com pletely determ ines the resulting hyperbolic surface $P_{e^{t}}$. This also im plies that we have $J\left(P ; P_{e^{t}}\right)=t .0 n$ the other hand, since the m ap we construct is $e^{t} \mathrm{~L}$ ipschitz, we have $L\left(P ; P_{e^{t}}\right) \quad t$. T his, together w ith the inequality $J \quad L$, gives $J\left(P ; P_{e^{t}}\right)=L\left(P ; P_{e^{t}}\right)$ for allt 0 . T hus, the line $t \geqslant P_{e^{t}}$ is a geodesic for J and for L.

For the proof of the second statem ent, we rst consider the case of hexagons. Let H be a sym m etric hexagon. Choose three non-consecutive edges as the long edges of H. For each $k \quad 1$, we have a m ap $h_{k}: H \quad H_{k}$, as de ned in Section目 above, whose Lipschitz constant is k and which expands the long edges of H by the factor k. By exchanging the roles of the long and short edges, we get a m ap $g_{k}: H_{k}!H$ which expands the new long edges by a factor d_{k}, and contracts the new short edges by the factor k.

From Form ula 1), we deduce that the dilatation factor d_{k} of g_{k} is given by

$$
\begin{equation*}
d_{k}=\frac{l}{I_{k}}=\frac{\operatorname{argsinh}\left(\frac{1}{2 \sinh L}\right)}{\operatorname{argsinh}\left(\frac{1}{2 \sinh k L}\right)} \tag{4}
\end{equation*}
$$

The hom eom onphism g_{k} has Lipschitz constant d_{k} and it expands the long edges of the hyperbolic hexagon H_{k} by the factor d_{k} (see Figure 55), therefore we have

$$
\begin{gathered}
J\left(\mathrm{H}_{\mathrm{k}} ; \mathrm{H}\right)=\log \mathrm{d}_{\mathrm{k}}=\mathrm{L}\left(\mathrm{H}_{\mathrm{k}} ; \mathrm{H}\right) ; \\
\mathrm{J}\left(\mathrm{H}_{;} \mathrm{H}_{\mathrm{k}}\right)=\log \mathrm{k}=\mathrm{L}\left(\mathrm{H}_{\mathrm{H}} ; \mathrm{H}_{\mathrm{k}}\right):
\end{gathered}
$$

D oubling the hexagons, we obtain the sam e result for the sym m etric pair of pants, show ing that, up to param etrization, the linet $7 \mathrm{P}_{\mathrm{e}}$ is a geodesic in both directions for the m etrics J and L.

Rem ark 5.2. By Theorem 5.1, we have $J(x ; y)=L(x ; y)$ if the points x and y are situated on the stretch line that we construct. W e do not know whether the m etrics J and L are equal on T eichm / "uller space.

A particular hypenbolic surface S of arbitrary nite type ($\mathrm{g} ; \mathrm{b}$) can be obtained by gluing a collection of sym m etric pairs of pants in such a w ay that the feet of the seam s of adjacent pairs of pants coincide. In such a situation, we shall say that the gluing has been done w ithout torsion. For such a surface, we have the follow ing:

Theorem 5.3. The linet $7 S_{e^{t}}(t 2 R)$ is a stretch line in $T_{g ; b}$, and it is a geodesic for both asym m etric m etrics J and L on $T_{g ; b}$. $U p$ to reparam etrization, this line is also a geodesic for the sam e m etrics when it is traversed in the opposite direction. A long that line, the m etrics J and L coincide. Furtherm ore, this stretch line has the follow ing nice description in the FenchelN ielsen coordinates associated to the underlying pair of pants decom position of S : at tim e ffrom the origin, all the length param eters are m ultiplied by the constant factor e^{t}, and all the tw ist param eters are unchanged and rem ain equal to zero.

P roof. W e start w ith a sym m etric hypenbolic pair of pants P equipped w ith a com plete geodesic lam ination, and we then consider the hyperbolic surface S, hom eom onph ic to $S_{0 ; 4}$, obtained by gluing tw o copies ofP along one boundary com ponent, in such a way that the follow ing hold:

The union of the com plete geodesic lam inations of both pairs of pants is a non chain-recurrent com plete geodesic lam ination of S.
The feet of the seam s abutting on the com ponent along which we ghe coincide; that is, we glue without torsion. Here, the origin of FenchelN ielsen tw ist coordinates is m easured as a signed distance betw een feets of seam s (in the universal cover). W e refer to 10, Theorem 4.6.23] for the convention on Fenchel-N ielsen coordinates.
Let us denote by the curve in S that corresponds to the glued com ponents. There is an orientation-reversing order-two sym m etry exchanging the copies of P in S. T he surface S is equipped w ith a com plete geodesic lam ination , and the order-two sym m etry leaves the lam ination invariant.

It is now useful to describe the situation in the universal covering \mathcal{E} of S. The order-two symmetry lifts to the universal cover, and the preim age of in \mathcal{S} is left invariant by this sym m etry. The deform ation of the hyperbolic plane by the stretch m ap can be seen in \mathcal{S} as preserving a basepoint O on a lift e of and the horocycle passsing through O and centerd at the endpoint of e. The stretch deform ation is then described in a neighborhood of e by replacing the horocycle

Figure 5. The actions of the m aps f_{k} and g_{k} on sym m etric hexagons.
arcs that are contained in the spikes of each ideal triangle spiralling around e by sm aller arcs whose length has been raised to the power e^{t}. (Recall that the lengths of the horocycle pieces are all < 1.) See Figure G) for a representation 0 this stretch deform ation. This show s that the stretch deform ation commutes w ith the order-two sym m etry. H ence, the feet of the seam s coincide all along the deform ation of S by the stretch directed by. In other words, stretching along does not induce Fenchel-N ielsen torsion. T he last statem ent of the theorem is thus established. This also show sthat the line $t \eta S_{e^{t}}$ is a geodesic for both m etrics L and J, y ielding the equality $L=J$ on that line. W e now proceed to show that our line traversed in opposite direction is a geodesic for both asym m etric m etrics J and L and that these $t w o m$ etrics coincide along that line. The hom eom onphism s $g_{e^{t}}$ de ned on each pair of pants given by the pants decom position of S piece together into a hom eom onphism we also denote by $g_{e^{t}}$ from $S_{e^{t}}$ to S. The reason why these local hom eom onphism s piece together correctly is the absence of torsion along the com ponents of the pants decom position. The Lipschitz constant of the hom eom onphism $g_{e^{t}}$ thus obtained is $d_{e^{t}}$. The seam s of the pairs of pants coalesce into (sm ooth) geodesic sim ple closed curves and essential geodesic arcs that are stretched by the factor $d_{e^{t}}$ from $S_{e^{t}}$ to S. This show s that the hom eom onphism $g_{e^{t}}$ is L ipschitz-m inim izing and that $L=J$ on the line. T he proof is com plete.
R em ark 5.4. The dual m etric of an asym m etric m etric M on a set X is the asym m etric m etric de ned by $\bar{M}(x ; y)=M(y ; x)$ for every x and y in X. Equation (3) show s that the asym m etric m etric J and its dualm etric on $T(S)$ are not quasiisom etric, even restricted to our geodesics $S_{e^{t}}$. Indeed, we have seen that for t,

F igure 6. The action of a stretch m ap on the universal cover.
we have $J\left(S ; S_{e^{t}}\right)=t$ and $\bar{J}\left(S ; S_{e^{t}}\right)=l o g d_{e^{t}}$. But

$$
\begin{aligned}
& d_{e^{t}}^{t!} \quad \operatorname{argsinh} \frac{1}{2 \sinh L} \quad \operatorname{argsinh} \frac{1}{2 \sinh \left(e^{t} L\right)} \\
& \\
& \\
& t!1 \quad \operatorname{argsinh} \frac{1}{2 \sinh L} e^{e^{t} L} ;
\end{aligned}
$$

that is, $\overline{\mathrm{J}}\left(\mathrm{S} ; \mathrm{S}_{\mathrm{e}^{t}}\right) 20\left(\mathrm{e}^{\mathrm{t}}\right)$ ast! 1 .
A ctually, we already noticed in 目] and in [] that T hurston's asym m etric m etric for surfacesw ithout boundary, ofw hich J is an analogue for surfacesw ith or w ithout boundary, are not quasi-isom etric to their dualm etrics, in restriction to som especial stretch lines. T hese observations naturally lead to the follow ing:
Q uestion 5.5. Characterize the geodesic lines for T hurston's asym m etric m etric and for its analogue J for surfaces w ith boundary, such that the restriction on that line of such a m etric and its dual are quasi-isom etric ?

W e note in this respect that Choi and Ra showed in [1] that in the thick part of Teichm uller space, T hurston's asym m etric m etric and its dual m etric are both quasi-isom etric to Teichm uller's m etric. On the other hand, there exist stretch lines that are com pletely contained in the thick part (take a pseudo-A nosov map whose stable and unstable lam inations are com plete, and consider the stretch line directed by one of these two lam inations and passing by a point whose horocyclic foliation is the other lam ination); therefore, there exist stretch lines for T hurston's asym m etric m etric such that the restriction on that line of this m etric and its dual are quasi-isom etric.

W e now recall that by a result of T hurston, given any two points x and y in Teichm uller space, there is a unique m axim ally stretched chain-recurrent geodesic lam ination $(x ; y)$ from x to y which is m axim alw ith respect to inclusion, and that if x and y lie in that order on a stretch line directed by a com plete chain-recurrent geodesic lam ination , then $(x ; y)=$. The next theorem identi es this geodesic lam ination for two points x and y on the sam e stretch lines we construct, and it says in particular that this lam ination is not com plete.

Theorem 5.6. For the stretch lines that we constructed above, the m axim alm axim ally stretched lam ination ($S ; S_{e^{t}}$) is the pair of pants decom position that underlines the construction.

Proof. Let $t>0$. Them axim alm axim ally stretched chain-recurrent geodesic lam ination ($S ; S_{e^{t}}$) from S to $S_{e^{t}}$ contains the underly ing pair of pants decom position, since each curve in this decom position is maxim ally stretched. A ssum e for contradiction that $\left(S ; S_{e^{t}}\right)$ contains a larger lam ination. It then contains a bi-in nite geodesic that spirals around som e closed geodesic C in that decom position. Since
$\left(S ; S_{e^{t}}\right)$ is chain-recurrent, it contains another geodesic that spirals along the opposite side of C in the sam e direction (com pare Figure [). By a result in 目], if we perform a Thurston stretch along a completion of ($\mathrm{S} ; \mathrm{S}_{\mathrm{e}^{t}}$), then we necessarily introduce a Fenchel-N ielsen torsion about the closed geodesic C. N ow Thurston proved in [9] that we can join S to $S_{e^{t}}$ by a concatenation of T hurston stretches which are directed by com plete geodesic lam inations, all of them containing $\left(S ; S_{e^{t}}\right)$. The torsions introduced about the geodesic C are all in the same direction. Thus, there necessarily is a nonzero torsion. This contradicts Theorem 5.3. Thus, ($S ; S_{e^{t}}$) does not contain any geodesic lam ination larger than the geodesics of the pair of pants decom position. Thus, the m axim alm axim ally stretched lam ination ($S ; S_{e^{t}}$) is the pair of pants decom position.

It also follow s from the reasoning in the proof of T heorem 5.4 that the set of m axim alm axim ally stretched lam inations from S to $S_{e^{t}}$ is the set of all com pletions of the pants decom position that are now here chain-recurrent, which m eans that the geodesics spiralling around each com ponent of the pants decom position wrap in opposite directions, as illustrated in F igure 7 .

Figure 7. A non chain-recurrent geodesic lam ination. The spirals wrap around the closed curve in opposite directions.

Rem ark 5.7. G iven two points x; y in Teichm uller space and know ing the m axim al m axim ally stretched lam ination ($x ; y$) from x to y, it is in general quite di cult to nd the lam ination $(y ; x)$. For all $t>0$, the m axim alm axim ally stretched "lam ination" from $S_{e^{t}}$ to S is the union of the seam s. A s already mentioned in the proof of T heorem 5.3, by our choice of the tw ist param eters (in which the feet of the seam s coincide), in the case of closed surfaces, the union of the seam s is a union of disjoint closed geodesics (a m ulti-curve), see Figure 8. This multi-curve is m axim ally stretched by the stretch that we de ned from $S_{e^{t}}$ to S and therefore it is contained in the lam ination ($\mathrm{S}_{\mathrm{e}^{t}}$; S). In the case of a closed surface of genus 2, the preceding argum ent show s that ($\mathrm{S}_{e^{t}} ; \mathrm{S}$) is a union of seam S , since this union is a pants decom position.

Figure 8. In bold lines is represented a pants decom postion of the closed surface of genus 2 . The union of the seam s is a m ulti-curve and a pants decom position as well for the genus 2 surface.

References

[1] Y. Choi and K.Ra, Com parison betw een Teichm uller and Lipsch itz metrics, J. London M ath. Soc. 76 (2007) pp. 739-756.
[2] A. Fathi, F. Laudenbach \& V.Poenaru, Travaux de Thurston sur les surfaces A sterisque $66\{67$ (1979).
[3] L.Liu,A.Papadopoulos, W .Su and G.Theret, On length spectrum m etrics and weak m etrics on T eichm uller spaces of surfaces w ith boundary, to appear in A nnales A cadem i Scientiarum Fennic, 2010.
[4] J.P. O tal, the W eil-P etersson geom etry of Teichm uller space, to appear.
[5] A. P apadopoulos, G . Theret, $0 n \mathrm{~T}$ eichm uller's m etric and T hurston's asym m etric m etric on T eichm uller space, H andbook of T eichm uller theory, V olum e I, ed. A. P apadopoulos, Zurich: European M athem atical Society (EMS). IRMA Lectures in M athem atics and Theoretical Physics 11, pp. 111-204 (2007).
[6] A. Papadopoulos, G . Theret, Shift coordinates, stretch lines and polyhedral structures for Teichm uller space. M onatsh. M ath. 153, No. 4, 309-346 (2008).
[7] A. Papadopoulos, G. Theret, Shortening all the sim ple closed geodesics on surfaces w ith boundary, to appear in the P roceedings of the AM S.
[8] G. T heret, D ivergence et parallelism e des rayons d'etirem ent cylindriques, preprint 2009, arX iv:0907.1746v1.
[9] W .T hurston, M in im alstretch m aps betw een hyperbolic surfaces, preprint, 1986, A rxiv m ath GT/9801039.
[10] W .P.T hurston, T hree-D im ensionalG eom etry and Topology, Volum e 1, P rinceton U niversity Press, Princeton, N ew Jersey, 1997.

Athanase Papadopoulos, M ax P lanck-Inst itut fur M athematik, V ivatsgasse 7, 53111 Bonn, Germany, and : Institut de Recherche M athematique Avancee, Universite de Strasbourg and CNRS, 7 rue Rene D escartes, 67084 Strasbourg Cedex, France (address for correspondence)

E-m ail address: papadopoulos@math.u-strasbg.fr
G uillaume T heret, M ax P lanck-Inst itut fur M athem at k, V ivatsgasse 7, 53111 Bonn, G ermany

E-m ail address: guillaume.theret71@orange.fr

[^0]: D ate: January 12, 2010.

