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SO M E LIP SC H IT Z M A P S B ET W EEN H Y P ER B O LIC SU R FA C ES

W IT H A P P LIC AT IO N S T O T EIC H M �U LLER T H EO RY

ATH A N A SE PA PA D O PO U LO S A N D G U ILLAU M E TH �ER ET

A bstract. In the Teichm �ullerspace ofa hyperbolic surface of�nite type,we

constructgeodesic linesforThurston’sasym m etricm etrichaving the property

that when they are traversed in the reverse direction,they are also geodesic

lines(up to reparam etrization).Thelinesweconstructarespecialstretch lines

in the sense ofThurston.They are directed by com plete geodesic lam inations

that are not chain-recurrent, and they have a nice description in term s of

Fenchel-N ielsen coordinates.Atthe basisofthe construction arecertain m aps

with controlled Lipschitz constants between right-angled hyperbolic hexagons

having threenon-consecutive edgesofthe sam e size.U sing these m aps,weob-

tain Lipschitz-m inim izing m aps between hyperbolic particular pairs ofpants

and,m ore generally,between som e hyperbolic sufaces of�nite type with ar-

bitrary genus and arbitrary num ber ofboundary com ponents. The Lipschitz-

m inim izing m apsthatwe contruct are distinctfrom Thurston’sstretch m aps.

A M S M athem atics Subject Classi�cation:32G 15 ;30F30 ;30F60.

K eywords: Teichm �uller space,surface with boundary,Thurston’s asym m etric

m etric, stretch line, stretch m ap, geodesic lam ination, m axim al m axim ally

stretched lam ination,Lipschitz m etric.

1.Introduction

In this paper,we prove som e results on Thurston’s asym m etric m etric on Te-

ichm /"ullerspace.Thism etricwasintroduced by Thurston in hispaper??.

we start by constructing Lipschitz hom eom orphism s with controlled Lipschitz

constantbetween sym m etricright-angled hyperbolic hexagons,thatis,convex right-

angled hyperbolichexagonshaving threenon-adjacentedgesofequallength.Using

these Lipschitz hom eom orphism s,we obtain,by doubling the hexagons,Lipschitz

hom eom orphism sbetween sym m etric hyperbolic pairs ofpants,thatis,hyperbolic

pairs ofpants which have three geodesic boundary com ponents ofequallengths.

These Lipschitz hom eom orphism sbetween sym m etric pairsofpantsare extrem al

in thesensethattheirLipschitzconstantism inim alam ong allLipschitzconstants

ofhom eom orphism sin thesam eisotopy class.ButtheseLipschitzextrem alhom e-

om orphism sbetween pairsofpantsarenotstretch m apsin the senseofThurston.

By varyingtheLipschitzconstantsofthehom eom orphism sweconstruct,weobtain

a path in theTeichm �ullerspaceofthepairofpantswhich actually coincideswith a

stretch line in the sense ofThurston,and weexploitthe propertiesofsuch stretch

lines.

W erecallthatstretch linesaregeodesicswith respectto Thurston’sasym m etric

m etric,de�ned by m inim izing the Lipschitz constantbetween m arked hyperbolic

surfaces.

Bygluingpairsofpantsalongtheirboundary com ponents,and by com biningthe

m apsweconstructbetween pairsofpants,weobtain stretch linesin theTeichm �uller

spaceofhyperbolicsurfacesof�nitetype,ofarbitrary genusand ofarbitrary num -

berofboundarycom ponents,which arealsogeodesics(up toreparam etrization),for
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Thurston’sasym m etric m etric,when they are traversed in the opposite direction.

Thesearethe �rstexam plesweknow ofsuch geodesicsforthism etric.

W e also recallthat by a result ofThurston,given any two points g and h in

Teichm �ullerspace,there isa unique m axim ally stretched chain-recurrentgeodesic

lam ination�(g;h)from gtoh which ism axim al(with respecttoinclusion),and that

ifg and h liein thatorderon a stretch linedirected by a com pletechain-recurrent

geodesic lam ination �,then �(g;h)= �. W e obtain the following resultsthatare

variations on this them e: W e show that iftwo elem ents g and h in Teichm �uller

space lie (in that order) on a stretch line we construct,the lam ination �(g;h) is

strictly sm allerthan thelam ination thatdirectsthatline,and thatthereareseveral

(non chain-recurrent)m axim alm axim ally stretched geodesiclam inationsfrom g to

h.In otherwords,thestretch linesweconstructaredirected by com pletegeodesic

lam inationsthatarenotchain-recurrent,and unlikethechain-recurrentcase,these

lam inationsarenotuniquely de�ned.

2.T hurston’s stretch maps betw een hyperbolic ideal triangles and

betw een pairs of pants

In thissection,werecallthede�nition ofa stretch m ap between hyperbolicideal

triangles and between pairs ofpants. This construction is due to Thurston (see

[9]).

W e startwith a stretch m ap from a hyperbolicidealtriangleto itself.

Considera hyperbolicidealtriangleequipped with thepartialfoliation by horo-

cyclic segm entsthatare perpendicular to the boundary. Up to isom etry,there is

a unique such object. There isa non-foliated region atthe centerofthe triangle,

bounded by three piecesofhorocycles(see Figure 1). This horocyclic foliation is

equipped with anaturaltransversem easure,which ischaracterized by thefactthat

thetransversem easureassigned toany arccontained in an edgeoftheidealtriangle

coincideswith the Lebesguem easureinduced by the hyperbolicm etric.

The non-foliated region ofa hyperbolic triangle intersectseach edge ofthe tri-

angleata pointcalled the centerofthatedge.

horocycles

perpendicular

to the boundary

horocyclic arc

oflength one

non-foliated
region

Figure 1. The horocyclic foliation ofan idealtriangle.

Let T be the hyperbolic idealtriangle equipped with its horocyclic m easured

foliation,and considera realnum berk � 1.The stretch m ap ofm agnitude k ofT

isa hom eom orphism fk :T ! T satisfying the following properties:

(1) The restriction offk to the non-foliated region ofT isthe identity m ap of

thatregion.

(2) O n each edgeofT,fk sendsany pointatdistancex from thecenterofthat

edgeto a pointatdistancekx.
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(3) The m ap fk preservesthe horocyclicfoliation ofT;thatis,itsendsleaves

to leaves.

(4) O n each leafofthe horocyclic foliation,fk contractslinearly the length of

thatleaf.

By gluing stretch m aps between idealtriangles we construct stretch m aps be-

tween hyperbolicpairsofpants.

A hyperbolicpairofpantsisa sphere with three open disksrem oved,equipped

with a hyperbolic m etric in which the three boundary com ponents are closed

geodesics(theliftofsuch a curveto thehyperbolicuniversalcoverseen asa subset

ofthe hyperbolic planeH 2 isa geodesicin H 2).

LetP beahyperbolicpairofpants.W echooseacom pletegeodesiclam ination �

in P .Such a com pletegeodesiclam ination necessarily consistsofthreedisjointbi-

in�nite geodesicsthatspiralaround the boundary com ponentsofP ,decom posing

thatsurfaceinto two hyperbolicidealtriangles.Thehorocyclicm easured foliations

ofthe two idealtriangles�ttogethersm oothly since they are both perpendicular

to theedgesoftheidealtriangles,and thereforethey form a Lipschitzline�eld on

thesurface.Foreach k � 1,considera stretch m ap ofm agnitudek de�ned on each

oftheidealtrianglescom posingP .W eobtain a new hyperbolicpairofpantsPk by

gluingtheidealtrianglestogetheralongtheirboundariesaccordingtoidenti�cations

thatarecom patiblewith thestretch m aps.Thisde�nesa hom eom orphism from P

to anotherhyperbolicpairofpantsPk,which iscalled a stretch m ap (ofm agnitude

k)from P to Pk.

Theaboveconstruction can be repeated on severalcopiesofhyperbolicpairsof

pants.By gluingtogetherthesepairsofpantsaccordingto theidenti�cationsgiven

by the stretch m aps,we obtain a stretch m ap ofm agnitude k from a hyperbolic

surface S to anotherSk. Note thatthe com plete geodesic lam inationsgiving the

decom positions into idealtriangles ofthe pairs ofpants in S give,together with

the pantsdecom position ofS,a com plete geodesiclam ination on the surfaceS.

R em ark 2.1. The readershould be awarethatstretch m apsare actually de�ned

in a m uch widergenerality than the one presented here.The underlying com plete

geodesic lam ination giving the decom position of the surface into idealtriangles

can be chosen arbitrarily am ong the com plete geodesic lam inations and it is not

necessarily the com pletion ofa geodesic pantsdecom position asabove. However,

in thispaper,weshallonly need the specialcaseofstretch m apsdescribed above.

3.Extremal Lipschitz maps betw een symmetric right-angled

hexagons

G iven two m etric spaces (X ;dX ) and (Y;dY ) and a m ap f :X ! Y between

them ,the Lipschitz constantLip(f)off isde�ned as

Lip(f)= sup
x6= y2X

dY
�
f(x);f(y)

�

dX
�
x;y

� 2 R [ f1 g:

W e shallsay thatthe m ap f isLipschitzifitsLipschitz constantis�nite.

Thestretch m apsfk between hyperbolicidealtrianglesthatweconsidered in the

last section are exam ples ofLipschitz hom eom orphism s,with Lipschitz constant

equalto k.NotethatthefactthatthisLipschitzconstantisatleastk can beseen

from theaction ofthesem apson theboundary oftheidealtriangles.Thefactthat

theLipschitzconstantisexactly k isim plicitin Thurston’spaper[9].Italsofollows

from the com putationsbelow (see Rem ark 3.4). By using these m apsasbuilding

blocks,werecalled in x2 how oneobtainsLipschitzhom eom orphism sofhyperbolic
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pairsofpantsand,m oregenerally,ofhyperbolicsurfaces.Thesestretch m apshave

Lipschitzconstantsk.

In thissection,weshallde�neLipschitzm apsbetween som eparticularhyperbolic

right-angled hexagons, which willalso have controlled Lipschitz constants, and

which can beused to de�neLipschitzhom eom orphism sbetween specialhyperbolic

pairsofpants,by gluing hyperbolicright-angled hexagonsand taking the union of

Lipschitz m aps between them . By gluing together these specialpairs ofpants in

an appropriatem anner,thiswilleventually yield hom eom orphism sbetween special

hyperbolicsurfacesofarbitrary �nite type,with controlled Lipschitz constants.

A sym m etric right-angled hexagon is a geodesic hexagon H in the hyperbolic

planeH 2 with threepairwisenon-consecutiveedgeshaving thesam elength.(Note

thatthisim pliesthatthe rem aining threeedgesalso havethe sam elength.)

W econsidera sym m etricright-angled hexagon H ,and wechoosethreepairwise

non-consectiveedgesofH ,which wecallthelong edges.W edenotetheircom m on

length by2L.Theotherthreenon-consecutiveedgesarecalled short,and wedenote

their com m on length by 2l. An easy com putation using well-known form ulae for

right-angled hexagonsgives

(1) 2sinh(l)sinh(L)= 1:

Foreach realnum berk � 1,we letH k be the sym m etric right-angled hexagon

obtained by m ultiplying the lengths ofthe long edges ofH by the factor k. W e

note thatthis property determ inesthe isom etry type ofH k in a unique way. W e

callthe edgesofH k thatare the im agesofthe long edgesofH by thisdilatation

m ap the long edgesofH k and we denote theircom m on length by 2Lk.W e let2lk
denotethe length ofthe otheredgesofH k,which wecallthe shortones.

In thissection,allthe m apsbetween sym m etric right-angled hexagonsthatwe

shallconsiderwillbe hom eom orphism ssending the long (respectively short)edges

to the long (respectively short)edges,and in generalwe shallnotrepeatthiscon-

dition.

The three lengthsofany three non-consecutiveedgesofH (respectively ofH k)

satisfy the triangle inequality. Therefore,we can equip H (respectively H k)with

a partialm easured foliationsF (respectively Fk)whose leavesare lociofequidis-

tantpointsfrom the shortedges.In the hyperbolic plane,equidistantpointsfrom

geodesicsare classicaly called hypercycles,and we shalluse thisterm inology. The

foliationsofH (respectively H k)by hypercyclesare shown in Figure 2,and such

foliations have already been considered by Thurston in his com pacti�cation the-

ory ofTeichm �uller space (see [2,expos�e 6]). There is a non-foliated region ofF

(respectively Fk)atthe centerofH (respectively H k).

Theintersection num berofF (respectively,Fk)with an edgeofH (respectively,

H k)iseither2L or0 (respectively,2kL or0)depending on whethertheedgeislong

orshort.

W ealso equip H (respectively H k)with thepartialfoliation G (respectively G k)

whoseleavesaregeodesicarcsperpendicularto the leavesofF (respectively Fk).

In Theorem 3.3,we shallconstructa m ap,hk :H ! H k which (leafwise)sends

F to Fk,and G to G k and whoseLipschitzconstantisk.Such a m ap isLipschitz-

extrem alin itshom otopyclassrelativetotheboundary,sincetheLipschitzconstant

ofany m ap f :H ! H k which sendslong (respectively short)edgesofH to long

(respectively short) edges ofH k is bounded below by k. The Lipschitz-extrem al

m apsweshallconstructare\canonical"in thesensethatthey preserveapairofhy-

percyclic/geodesicfoliations,and they are rem iniscentofThurston’sstretch m aps

between idealtriangles. In som e precise sense that we specify below,Thurston’s

stretch m apsbetween idealtrianglesarelim itsofthe Lipschitz-extrem alm apsbe-

tween sym m etrichexagons.



LIPSC H IT Z M A PS 5

Beforede�ning them ap hk,wem akea geom etricalrem ark.Considerthefam ily

ofallsym m etric right-angled hexagonsH k ask variesfrom 1 to in�nity. Each of

thesehexagonshasa centerwhich isthe centeroftherotation thatperm uteseach

tripleofnon-consecutiveedges.Foreach such hexagon,considerthethreegeodesic

raysem anating from itscenterand m eeting theshortedgesperpendicularly.Place

allthe hexagonsH k in the hyperbolic plane so thatalltheircenterscoincide and

such thatallthe abovegeodesic rayscoincide aswell.Now foreach such hexagon

H k,considerthe associated extended hexagon bH k de�ned asthe region ofin�nite

areaenclosed by thethreegeodesicsin H 2 extendingthelongedgesofH k.Itfollows

from Equation (1)thatasLk decreases,lk increases,and conversely.From this,we

deduce thatforany 1 � k � k0,wehave bH k0 � bH k.

W ealso notethatask tendsto in�nity,theextended hexagon bH k aswellasthe

hexagon H k itselfconverge,in the Hausdor� topology associated to the Euclidean

m etric (using as in Figure 3 the disk-m odelofthe hyperbolic plane) to an ideal

triangle.Likewise,ask ! 1 ,them easured foliation Fk convergestothehorocyclic

foliation ofthe idealtriangle(represented in Figure1)and the non-foliated region

ofFk convergesto the non-foliated region ofthathorocyclicfoliation.

Thefollowing two lem m aswillbe used in the proofofTheorem 3.3 below.

Lem m a 3.1. Fork0> k � 1,the non-foliated region ofFk0 isstrictly contained in

the non-foliated region ofFk.

Proof. W e work in the disk m odelofthe hyperbolic plane. The statem ent will

follow from the construction ofthe sym m etric hexagons,represented in Figure 3.

In the upperpartofthat�gure,the hexagon H k (also with itsedgesextended)is

drawn in bold lines,and the hexagon H k0 (with its edges extended) is drawn in

dashed lines. W e have chosen the hexagonsto be sym m etric with respect to the

Euclidean centerO ofthe unitdisk.In the upper�gure,the pointp (respectively

q)istheEuclidean centerofthehypercyclethatison theboundary ofnon-foliated

region ofH k (respectively H k0).Thepointa (respectively b)isa vertex ofthenon-

foliated region ofFk (respectively Fk0). A m ore detailed view ofa region drawn

in the the upper part ofFigure 3 is represented in the lower part. The point a0

(respectively b0)is the centerofa boundary hypercycle ofthe non-foliated region

ofFk (respectively Fk0). The Euclidean triangles O pa and O qb are hom othetic

by a Euclidean hom othety ofcenter O and factor < 1. This hom othety sends

the Euclidean circle arc aa0 to the Euclidean circle arc bb0. Thus,there exists a

Euclidean hom othety ofcenterO thatsendsthe non-foliated region ofH k0 strictly

into the non-foliated region ofH k,which provesthe lem m a. �

Figure 2. The foliation by curvesequidistantto the shortedgesofa

sym m etricright-angled hexagon.Thecentralregion isnotfoliated,and

itisbounded by three hypercycleswhich m eeteach othertangentially.
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Lem m a 3.2. In the upper half-plane m odelofthe hyperbolic plane,consider the

geodesic represented by the im aginary axis iR+ = fir;r > 0g, and a hypercycle

m aking an angle �

2
� �1 with this geodesic,with 0 < �1 < �=2. Let‘ be the length

ofa geodesic arc � joining perpendiculary the verticalgeodesic and the hypercycle.

Then,we have

cos�1 = tanh‘:

Proof. W e referto Figure4.W e param etrizethe geodesicarc� by them ap

� :[�1;�=2]! H
2

� 7! (cos�;sin�):

Usingtheform ulaforthein�nitesim allength elem entin theupperhalf-planem odel,

wecan write

‘=

Z �=2

�1

k�0(�)k

Im (�(�))
d� =

Z �=2

�1

d�

sin�
:

Com puting the integral,we�nd

e
�‘ = tan(�1=2)

a

a

b

b

a0

a0

b0

b0

p

p

q

qO

Figure 3. The upper �gure represents, in bold lines, a sym m etric

right-angled hexagon H k,and in dashed lines,a sym m etricright-angled

hexagon H k0 with k
0
> k,together with their extensions Ĥ k and Ĥ

0

k.

The fact that the non-foliated region ofthe sym m etric hexagon H
0

k
is

included in the non-foliated region ofthe sym m etric hexagon H k,for

k
0
> k,asitisrepresented in theupper�gure,can bededuced from the

Euclidean construction in thelower�gure,in which thearcsaa
0
and bb

0

areon theboundariesofthenon-foliated regionsofH k and H k0 respec-

tively.
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and aftertransform ation weobtain

cos�1 = tanh‘:

�

W e now constructthe m ap hk :H ! H k.

From theinclusion ofthenon-foliatied region ofH k into thenon-foliated region

ofH forallk � 1(Lem m a3.1),itwillfollow thatthem ap hk weshallconstructcan

be chosen to be contracting from the non-foliated region ofH to the non-foliated

region ofH k.

To de�ne the m ap hk,itsu�cesto do itin a com ponentofthe foliated region

ofH . Consider such a com ponent. It is isom etric to the region C in the upper

half-planem odelofthe hyperbolicplane de�ned in polarcoordinatesby

C = fz= Re
i� : 1� R � e

2l
;�1 � � � �=2g;

where�1 ischosen so thatthe geodesicparam eterized by � 7! Rei�,�1 � � � �=2,

haslength L.

From Lem m a 3.2,wehave

cos�1 = tanhL:

Likewise,the im age by hk ofthe com ponent C ofthe com plem ent in H ofthe

non-foliated region isisom etric to the region Ck in the upperhalf-plane m odelof

H
2 given by

Ck = fz = Re
i� : 1� R � e

2lk ; �k � � � �=2g;

where

cos(�k)= tanh(kL):

In thesedescriptions,thefoliationsF and Fk,aregiven by thehypercyclesde�ned

by � = cst,while the foliations G and Gk,are given by the geodesics de�ned by

R = cst. The shortsidesofC and Ck correspond to � = �=2. O urm ap hk m aps

a pointA 2 C which isatdistance d from the shortside ofC to a pointwhich is

atdistancekd from theshortsideofCk.Ifthe pointA lieson theleafofG which

cuts the shortside ofC atdistance h,then the im age ofA by hk belongsto the

leafthatcutsthe shortsideofCk atdistance hlk=l.

W e need to havean explicitform ula forhk in orderto com pute the norm ofits

derivative.

LetA beapointinC givenin polarcoordinatesby(R;�).Denotethecoordinates

ofthe pointhk(A)2 Ck by (R 0;�0). W e also describe the pointsA and hk(A)by

theirdistancesfrom the shortsides,nam ely d and kd,and by theirdistancesfrom

the lowestgeodesicboundary ofC and Ck,asabove.

i ‘

�1

�

Figure 4. ‘ is the length ofa segm ent� joining perpendicularly the

verticalgeodesic and the hypercycle m aking an angle �1 with the hori-

zontal.W e have cos�1 = tanh‘.
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Letus�rstcom pute R 0.The logarithm ofR and ofR 0 are the distancesofthe

pointsA and hk(A)from the lowestgeodesic boundary ofC and Ck,respectively.

By whathasbeen previously said,we have

logR 0=
lk

l
logR:

Therefore,

R
0= R

lk =l:

Let us now com pute �0. The sam e com putation as for the form ula giving �1

establishes

sin� =
1

coshd
;or cos� = tanhd:

Therefore,

d = argcosh

�
1

sin�

�

:

Now,

�
0= arccos(tanh(kd)):

Thuswegetthe following form ula forhk,viewed asa m ap from C to Ck,

hk(R;�)=

�

R
lk =l;arccos(tanh

�
kargcosh

�
1

sin�

��
)

�

:

Now thatthehom eom orphism hk isde�ned,weproceedtoshow thatitsLipschitz

constantequalsk.Forthis,we com putethe norm ofitsderivative.

W e easily have

@R 0

@R
=
lk

l
R
(lk =l)�1 ;

@R 0

@�
= 0;

@�0

@R
= 0:

Sincearccos0(x)= �
1

p
1� x2

,weget

@�0

@�
= �

1
r

1� tanh
2
(kargcosh

�
1

sin �

�

)

@

@�

�

tanh
�
kargcosh

�
1

sin�

���

= � cosh(kargcosh

�
1

sin�

�

)
@

@�

�

tanh
�
kargcosh

�
1

sin�

���

:

Now,sincetanh
0
(x)=

1

cosh
2
(x)

,we have

@

@�

�

tanh
�
kargcosh

�
1

sin�

���

=
k

cosh
2
(kargcosh

�
1

sin �

�

)

@

@�
argcosh

�
1

sin�

�

:

Hence,sinceargcosh
0
(x)= 1p

x2�1
,

@�0

@�
=

� k

cosh(kargcosh

�
1

sin �

�

)

@

@�
argcosh

�
1

sin�

�

=
� k

cosh(kargcosh

�
1

sin �

�

)

1
q

1

sin2 �
� 1

@

@�

1

sin�

=
ksin�

cos�cosh(kargcosh

�
1

sin �

�

)

cos�

sin2 �
:

Finally,wehave

@�0

@�
=

k

sin�

h

cosh(kargcosh

�
1

sin�

�

)

i�1
:



LIPSC H IT Z M A PS 9

The lastpartialderivativecan also be written as

@�0

@�
= k

coshd

cosh(kd)
:

W e now proceed to com pute the norm ofthe di�erentialdhk. Recallthat the

square ofthe norm ofa vector(dx;dy) in the tangentplane Tz(H
2)ofthe upper

half-planem odelofthe hyperbolicplane isgiven by

dx2 + dy2

y2
;

wherez = x + iy.In polarcoordinates,thisiswritten as

dR 2 + R 2d�2

R 2 sin2 �
:

Let V = (VR ;V�) be a non-zero tangentvector at the point (R;�). W e com pute

the norm ofthe di�erentialdhk atthe point(R;�).W e have

jj(dhk)(R ;�)� V jj
2 = jj(

@hk

@R
dR +

@hk

@�
d�)� V jj

2

=
1

R 2 sin2 �

��@R 0

@R
VR +

@R 0

@�
V�
�2
+ R

2
�@�0

@R
VR +

@�0

@�
V�
�2
�

=
1

R 2 sin2 �

��@R 0

@R
VR

�2
+ R

2
�@�0

@�
V�
�2
�

:

Note that

jjV jj
2 =

1

R 2 sin2 �
(V 2

R + R
2
V
2
� ):

Therefore,since jj(dhk)(R ;�)jj= supV 6= 0

jj(dhk)(R ;�)�V jj

jjV jj
,weget

jj(dhk)(R ;�)jj
2 = sup

V 6= 0

�
�
@R

0

@R
VR

�2
+ R 2

�
@�

0

@�
V�
�2

V 2
R
+ R 2V 2

�

�

= sup
V 6= 0

�
�
@R

0

@R
VR

�2
+
�
@�

0

@�
R V�

�2

V 2
R
+ (R V�)

2

�

= sup
V 2

R
+ (R V�)

2= 1

��@R 0

@R
VR

�2
+
�@�0

@�
R V�

�2
�

= m ax

n�
@R 0

@R

�2
;

�
@�0

@�

�2o

:

W e have

1� R � e
2l
:

Since lk=l� 1,weget

1 � R
lk =l�1 � e

2(lk �l) > 0;

thatis,

0�
@R 0

@R
� 1:

Now,since

@�0

@�
= k

cosh(d)

cosh(kd)
;

weget,forall(R;�),

0 �
@�0

@�
� k
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and the equality @�
0

@�
= k isrealized atthe pointsd = 0,thatis,on the shortside

ofC .Therefore,weobtain

sup
(R ;�)2C

jj(dhk)(R ;�)jj= k:

Thesuprem um ofthenorm ofdhk boundsfrom abovetheLipschitzconstantof

hk:Ifx;y aretwo pointsofC and if isthe geodesicpath from x to y,weget

d(hk(x);hk(y))� l(hk())=

Z d(x;y)

0

jj(dhk)(t)� 
0(t)jjdt� sup

z

jj(dhk)zjjd(x;y):

Therefore,ifL(hk)denotestheLipschitzconstantofhk,wegetfrom whatprecedes,

L(hk)� k:

Since the long edgesaredilated by the factork,we haveL(hk)� k.Finally,

L(hk)= k:

Putting allpieces together,the m ap we constructed from H to H k has Lipschitz

constantk.

W e sum m arizethe preceding construction in the following:

T heorem 3.3.The m ap hk :H ! H k isk-Lipschitz.Furtherm oreforany k
0< k,

there isno k0-Lipschitz m ap from H to H k.

Proof. The �rst part follows from the construction. Since,by de�nition,a m ap

hk :H ! H k sendsthe long edgesofH to the long edgesofH k,we im m ediately

getLip(hk)� k.Thisprovesthe second partofthe theorem . �

R em ark 3.4. W e already observed that,reasoning in the disk m odelofthe hy-

perbolic plane and using the notion ofHausdor� convergence on bounded closed

subsetsofthatdisk with respectto theunderlying Euclidean m etric,wecan m ake

a sequence ofsym m etric right-angled hexagons converge to an hyperbolic ideal

triangle,in such a way thatthe following threepropertieshold:

(1)The partialm easured foliation ofthe hexagonsby hypercyclesconvergesto

the partialm easured foliation ofthe hyperbolicidealtriangleby horocycles.

(2)The partialfoliation ofthe hexagonsby geodesicsperpendicular to the fo-

liation by hypercycles converges to the partialfoliation ofthe idealtriangle by

geodesicsperpendicularto the horocycles.

(3)Thenon-foliated regionsofthehexagonsconvergeto thenon-foliated region

ofthe idealtriangle.

Furtherm ore,forallk � 1,wecan m aketheconvergenceofhexagonstotheideal

triangle in such a way thatk-Lipschitz m apsfk :H ! H k convergeuniform ly on

com pactsets to the stretch m apsfk :T ! T between hyperbolic idealtriangles.

Thisshowsin particularthatthe stretch m apsfk haveLipschitzconstantk.

W enotethatLipschitzm apsbetween pairsofpantsarealso considered by O tal

in hispaper[4],in relation with the W eil-Petersson m etric ofTeichm �ullerspace.

4.A symmetric metrics on T eichm �uller spaces of surfaces w ith or

w ithout boundary

In this section,S is a surface of�nite type (g;b),which m ay have em pty or

nonem pty boundary (g denotesthegenusofS and bthenum berofboundary com -

ponents).W eassum ethattheEulercharacteristicofS isnegative.Thehyperbolic

structuresweconstructon S aresuch thatalltheboundary com ponentsareclosed

sm ooth geodesics.W e denote by T(S)orby Tg;b the Teichm �ullerspace ofS,that

is,the spaceofhom otopy classesofhyperbolicm etricson thatsurface.
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G iven two hyperbolicstructuresX and Y on S,wede�ne

(2) L(X ;Y )= loginf
f
Lip(f)

where the in�m um istaken overthe setofLipschitz hom eom orphism sf :X ! Y

thatarehom otopicto the identity.

Lem m a 4.1 (Thurston).Foranytwohyperbolicm etricsX andY on S,ifL(X ;Y )�

0,then X and Y are isom etric by a hom eom orphism thatishom otopic to the iden-

tity.

Proof. W e follow Thurston’sproofofthe corresponding resultin the case ofsur-

faceswithoutboundary,cf.[9,Proposition 2.1].Since L(X ;Y )� 0,there existsa

sequence ofhom eom orphism sfn :X ! Y ,n = 0;1;:::,with Lipschitz constants

Lip(fn)convergingtoarealnum berL � 1.Thesequence(fn)isuniform lyequicon-

tinuous,therefore up to taking a subsequence,we can assum e that(fn)converges

uniform ly to a m ap f :X ! Y .W e haveLip(f)= L � 0.W e now provethatf is

surjective.Takea pointy in Y ,and foralln � 0,letxn = f�1n (y).Up to taking a

subsequence of(fn),we can assum e,by com pactness,thatxn ! x 2 X .W e show

thatf(x)= y.Letus�x som e� > 0.W e have

jf(x)� yj= jf(x)� fn(xn)j� jf(x)� fn(x)j+ jfn(x)� fn(xn)j:

Since fn ! f uniform ly,there exists N � 0 such that foralln � N ,we have

jf(x)� fn(x)j� �=2. Since the fam ily (fn) is equicontinuous,there exists � > 0

such thatforx1 and x2 satisfying jx1 � x2j< �,we have jfm (x1)� fm (x2)j� �=2

forallm � 0.

Sincexn ! x,there existsN 0 such thatforalln � N 0,we havejx � xnj< �.

Forn � m axfN ;N 0g,wehave,forallm ,jfm (x)� fm (xn)j� �=2.In particular,

for m = n,jfn(x)� fn(xn)j� �=2. This shows that for every � > 0,we have

jf(x)� yj� �.Thus,f(x)= y.Thisshowsthatf issurjective.

W ecoverS by a setofgeom etricdiskswith disjointinteriorwhosetotalarea is

equalto theareaofX .Them etricsX and Y havethesam earea.SinceLip(f)� 1

and sincef issurjective,theim ageby f ofa disk ofradiusR isa disk ofradiusR.

Furtherm ore,f sendstheboundary ofany such disk to theboundary ofthe im age

disk.W e deduce thatany geom etric disk issentby f isom etrically to a geom etric

disk ofthe sam e radius. Furtherm ore,it is easy to see that the center ofsuch a

disk issentto the centerofthe im agedisk.

From this,we deduce thatf islocally distance-preserving.Thisim pliesthatf

isan isom etry. �

W ecallan asym m etric m etric on a setX a function thatsatis�estheaxiom sof

a m etric exceptthe sym m etry axiom ,and thatdoesnotsatisfy thisaxiom .

P roposition 4.2. The function L de�ned in (2) is an asym m etric m etric on the

Teichm �uller space T(S).

Proof. By Lem m a 4.1,L isnonnegativeand separatespoints.Thetriangleinequal-

ity isobviously satis�ed. The factthatthe m etric doesnotsatisfy the sym m etry

axiom can beseen usingan exam pleanalogoustotheoneshowingthecorresponding

resultforsurfaceswithoutboundary,given by Thurston in [9]. �

W eletS bethesetofisotopy classesofsim pleclosed curveson S which arenot

hom otopicto a point(the boundary com ponentsofS areincluded).

The asym m etric m etric L is an analogue,for surfaces with boundary,ofthe

asym m etric m etric de�ned by Thurston in [9]for surfaces without boundary. In
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the sam e paper,Thurston de�ned the following function on the Teichm �ullerspace

T(S)ofa surfaceS withoutboundary:

(3) K (x;y)= logsup
C 2S

ly(C )

lx(C )
:

Thurston proved that we obtain the sam e function K ifinstead oftaking the

in�m um overtheelem entsofS in (3)wetakethein�m um overall(notnecessarily

sim ple)closed curves(see [9],Proposition 3.5).

In the case where the surface S hasnonem pty boundary,Form ula (3)doesnot

de�nean asym m etricm etricon theTeichm �ullerspaceofS.Thiscan easily beseen

in thecasewherethesurfaceisa pairofpantsP .Denoting by C1;C2;C3 thethree

boundary com ponentsofthepairofpants,thefunction K de�ned on T(P )� T(P )

takesthe form

K (x;y)= log sup
i= 1;2;3

ly(Ci)

lx(Ci)
:

Thisfunction K on T(P )satis�esthetriangleinequality,butitisnotan asym m etric

m etric,sinceitcan takenegativevalues.Furtherm ore,itdoesnotseparatepoints;

thatis,thereexistdistinctx and yin T(P )with K (x;y)= 0(takex and ysatisfying

lx(C1)= ly(C1),and lx(Ci)> ly(Ci)fori= 2;3).

In fact,foranysurfaceS with nonem ptyboundary,thereexisthyperbolicm etrics

X and Y such thatK (x;y)< 0 (see[7]).

W ehaveK � L.Indeed,forany k-Lipschitzhom eom orphism from a hyperbolic

m etric x on S to a hyperbolic m etric y on S,we easily see thatwe have,forevery

sim ple closed curve on S,ly(f())� klx(),which im pliesK (x;y)� L(x;y).

Thereisam odi�cation ofthefunction K de�ned in Form ula(3)which isadapted

to thecaseofsurfaceswith orwithoutboundary,which westudied in [3]and which

wenow recall.Thede�nition involvesconsidering essentialarcsin S togetherwith

essentialsim ple closed curves. W e callan essentialarc in S an em bedding ofa

closed interval,the arc having itsendpointson the boundary ofS and itsinterior

in the interiorofS,and such thatthisarc isnothom otopic relative endpointsto

an arc contained in @S. In what follows,a hom otopy ofessentialarcs is always

relativeendpoints.

IfS is a surface with boundary,we let B = B(S) be the union ofthe set of

hom otopy classesofessentialarcsin S with the setofhom otopy classesofsim ple

closed curvesthatarehom otopictoboundary com ponents.IfS isasurfacewithout

boundary,the setB isassum ed to be em pty.

Forany surfaceS with orwithoutboundary,weconsiderthefunction J de�ned

on T(S)� T(S)by

J(X ;Y )= log sup
2C[B

lY ()

lX ()

for allX ;Y 2 T(S). If the surface S has no boundary,we recover Thurston’s

asym m etricm etricK de�ned above.

P roposition 4.3. The function J :T(S)� T(S)! R isan asym m etric m etric on

T(S).

Proof. The prooffollowsfrom [3],Propositions2.10 and 2.13. �

Itis shown in [3],Proposition 2.12,that when S has nonem pty boundary,the

asym m etricm etric J can be expressed asthe logarithm ofthe suprem um overthe

setB solely.

In the sam eway asforthe function K ,weeasily seethatJ � L.
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5.Surfaces of finite type

W enow constructLipschitz-extrem alhom eom orphism sbetween som ehyperbolic

pairsofpants,using thehom eom orphism shk between sym m etrichyperbolicright-

angled hexagons that we constructed in Section 3. W e shallthen com bine these

hom eom orphism stogetLipschitz-extrem alhom eom orphism sofhyperbolicsurfaces

ofarbitrary topological�nite type.

W e shallcalla hyperbolic pair ofpants sym m etric ifit is obtained by gluing

along three non-consecutiveboundary com ponentstwo isom etric sym m etric right-

angled hexagons,and we shallalwaysassum ethatthese hexagonsare glued along

theirlong edges.Thus,theboundary com ponentsofourpairsofpantsare\short".

W eletP bea sym m etricpairofpantsobtained by gluing two sym m etricright-

angled hexagonsH ,and forevery k � 0,we letPk be a sym m etric pairofpants

obtained by gluing two right-angled hexagonsH k. Taking the double ofthe m ap

hk :H ! H k producesa m ap pk :P ! Pk.

T heorem 5.1. The line t7! Pet (t2 R) is a stretch line,and itis a geodesic for

these two m etricsJ and L on T0;3.Furtherm ore,up to reparam etrization,thisline

isalso a geodesic for both m etricswhen itistraversed in the opposite direction.

Proof. Foreach t� 0,the action ofthe hom eom orphism P ! Pet on each bound-

ary com ponent ofP is linear (it m ultiplies arc length by et). The fact that the

line t7! Pet (t2 R)coincideswith a stretch line followsfrom the factthatforall

t� 0,thesurfacePet isobtained from P by m ultiplying the lengthsofthe bound-

ary geodesicsby the constantfactoret,and thisfactorcom pletely determ inesthe

resulting hyperbolic surfacePet.Thisalso im pliesthatwe haveJ(P;Pet)= t.O n

the otherhand,since the m ap we constructiset-Lipschitz,we have L(P;Pet)� t.

This,togetherwith the inequality J � L,givesJ(P;Pet)= L(P;Pet)forallt� 0.

Thus,the line t7! Pet isa geodesicforJ and forL.

For the proofofthe second statem ent,we �rst consider the case ofhexagons.

Let H be a sym m etric hexagon. Choose three non-consecutive edges as the long

edgesofH . Foreach k � 1,we have a m ap hk :H ! H k,asde�ned in Section

3 above,whose Lipschitz constantisk and which expandsthe long edgesofH by

the factor k. By exchanging the rolesofthe long and shortedges,we geta m ap

gk :H k ! H which expandsthe new long edgesby a factordk,and contractsthe

new shortedgesby the factork.

From Form ula (1),wededuce thatthe dilatation factordk ofgk isgiven by

(4) dk =
l

lk
=

argsinh (
1

2sinhL
)

argsinh (
1

2sinhkL
)

Thehom eom orphism gk hasLipschitzconstantdk and itexpandsthelong edges

ofthe hyperbolic hexagon H k by the factordk (see Figure5),thereforewehave

J(H k;H )= logdk = L(H k;H );

J(H ;H k)= logk = L(H ;H k):

Doubling thehexagons,weobtain thesam eresultforthesym m etricpairofpants,

showingthat,up toparam etrization,thelinet7! Pet isageodesicin both directions

forthe m etricsJ and L. �

R em ark 5.2. By Theorem 5.1,we have J(x;y) = L(x;y) ifthe points x and y

are situated on the stretch line that we construct. W e do notknow whether the

m etricsJ and L areequalon Teichm /"ullerspace.
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A particularhyperbolic surface S ofarbitrary �nite type (g;b)can be obtained

by gluing a collection ofsym m etricpairsofpantsin such a way thatthefeetofthe

seam sofadjacentpairsofpantscoincide.In such a situation,weshallsay thatthe

gluing hasbeen donewithouttorsion.Forsuch a surface,wehavethe following:

T heorem 5.3.Thelinet7! Set (t2 R)isa stretchlinein Tg;b,and itisa geodesic

forboth asym m etric m etricsJ and L on Tg;b.Up to reparam etrization,thisline is

also a geodesic for the sam e m etrics when itis traversed in the opposite direction.

Along thatline,the m etrics J and L coincide. Furtherm ore,this stretch line has

the following nice description in the Fenchel-Nielsen coordinates associated to the

underlyingpairofpantsdecom position ofS:attim etfrom theorigin,allthelength

param etersarem ultiplied by theconstantfactoret,and allthetwistparam etersare

unchanged and rem ain equalto zero.

Proof. W estartwith a sym m etrichyperbolicpairofpantsP equipped with a com -

plete geodesic lam ination,and we then considerthe hyperbolic surface S,hom eo-

m orphictoS0;4,obtained bygluingtwocopiesofP alongoneboundarycom ponent,

in such a way thatthe following hold:

� Theunion ofthe com plete geodesiclam inationsofboth pairsofpantsisa

non chain-recurrentcom plete geodesiclam ination ofS.

� The feet of the seam s abutting on the com ponent along which we glue

coincide; that is, we glue without torsion. Here, the origin ofFenchel-

Nielsen twistcoordinatesism easured asa signed distancebetween feetsof

seam s (in the universalcover). W e refer to [10,Theorem 4.6.23]for the

convention on Fenchel-Nielsen coordinates.

Letusdenoteby � thecurvein S thatcorrespondstotheglued com ponents.There

is an orientation-reversing order-two sym m etry exchanging the copies ofP in S.

ThesurfaceS isequipped with acom pletegeodesiclam ination �,and theorder-two

sym m etry leavesthe lam ination � invariant.

Itisnow usefulto describe the situation in the universalcovering eS ofS. The

order-two sym m etry lifts to the universalcover,and the preim age of� in eS is

left invariantby this sym m etry. The deform ation ofthe hyperbolic plane by the

stretch m ap can be seen in eS as preserving a basepoint O on a lift e� of� and

the horocycle passsing through O and centerd atthe endpoint ofe�. The stretch

deform ation is then described in a neighborhood ofe� by replacing the horocycle

a

fk

gk

L

L

kL

kL

H
H k

Figure 5. The actionsofthe m apsfk and gk on sym m etric hexagons.
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arcs that are contained in the spikes of each idealtriangle spiralling around e�

by sm aller arcs whose length has been raised to the power et. (Recallthat the

lengths ofthe horocycle pieces are all< 1.) See Figure 6) for a representation

o this stretch deform ation. This shows that the stretch deform ation com m utes

with the order-two sym m etry. Hence,the feetofthe seam scoincide allalong the

deform ation ofS by the stretch directed by �. In otherwords,stretching along �

doesnotinduceFenchel-Nielsen torsion.Thelaststatem entofthetheorem isthus

established. This also showsthat the line t7! S
e
t is a geodesic forboth m etrics

L and J,yielding the equality L = J on thatline. W e now proceed to show that

ourlinetraversed in oppositedirection isa geodesicforboth asym m etricm etricsJ

and L and thatthese two m etricscoincide along thatline. The hom eom orphism s

get de�ned on each pair of pants given by the pants decom position of S piece

togetherinto a hom eom orphism we also denote by get from Set to S. The reason

why theselocalhom eom orphism spiecetogethercorrectly isthe absenceoftorsion

along the com ponentsofthe pantsdecom position. The Lipschitz constantofthe

hom eom orphism get thusobtained isdet.The seam softhe pairsofpantscoalesce

into (sm ooth) geodesic sim ple closed curves and essentialgeodesic arcs that are

stretched by thefactordet from Set to S.Thisshowsthatthehom eom orphism get

isLipschitz-m inim izing and thatL = J on the line.The proofiscom plete. �

R em ark 5.4. The dualm etric of an asym m etric m etric M on a set X is the

asym m etricm etricde�ned by M (x;y)= M (y;x)forevery x and y in X .Equation

(4)showsthattheasym m etricm etricJ and itsdualm etricon T(S)arenotquasi-

isom etric,even restricted to ourgeodesicsSet.Indeed,wehaveseen thatfort� 0,

Figure 6. The action ofa stretch m ap on the universalcover.
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wehaveJ(S;Set)= tand J(S;Set)= logdet.But

det � t! 1 argsinh
� 1

2sinhL

� �
argsinh

� 1

2sinh(e�t L)

�

� t! 1 argsinh
� 1

2sinhL

�
e
e
t
L
;

thatis,J(S;Set)2 O (et)ast! 1 .

Actually,wealready noticed in [5]and in [8]thatThurston’sasym m etricm etric

forsurfaceswithoutboundary,ofwhich J isan analogueforsurfaceswith orwithout

boundary,arenotquasi-isom etrictotheirdualm etrics,in restrictiontosom especial

stretch lines.Theseobservationsnaturally lead to the following:

Q uestion 5.5. Characterize the geodesic linesforThurston’sasym m etric m etric

and foritsanalogueJ forsurfaceswith boundary,such thattherestriction on that

line ofsuch a m etricand itsdualarequasi-isom etric?

W e note in thisrespectthatChoiand Ra� showed in [1]thatin the thick part

ofTeichm �ullerspace,Thurston’sasym m etric m etric and its dualm etric are both

quasi-isom etric to Teichm �uller’s m etric. O n the other hand,there exist stretch

lines thatare com pletely contained in the thick part(take a pseudo-Anosov m ap

whose stable and unstable lam inationsare com plete,and considerthe stretch line

directed by one ofthese two lam inationsand passing by a pointwhose horocyclic

foliation istheotherlam ination);therefore,thereexiststretch linesforThurston’s

asym m etricm etricsuch thattherestriction on thatlineofthism etricand itsdual

arequasi-isom etric.

W e now recallthat by a result ofThurston,given any two points x and y in

Teichm �ullerspace,there isa unique m axim ally stretched chain-recurrentgeodesic

lam ination �(x;y)from x to y which ism axim alwith respectto inclusion,and that

ifx and y liein thatorderon a stretch linedirected by a com pletechain-recurrent

geodesiclam ination �,then �(x;y)= �.The nexttheorem identi�esthisgeodesic

lam ination for two points x and y on the sam e stretch lines we construct,and it

saysin particularthatthislam ination isnotcom plete.

T heorem 5.6. Forthe stretch linesthatwe constructed above,the m axim alm axi-

m ally stretched lam ination �(S;Set)isthe pair ofpantsdecom position thatunder-

linesthe construction.

Proof. Lett> 0.Them axim alm axim ally stretched chain-recurrentgeodesiclam i-

nation �(S;Set)from S to Set containstheunderlying pairofpantsdecom position,

sinceeach curvein thisdecom position ism axim ally stretched.Assum eforcontra-

diction that �(S;Set) contains a larger lam ination. It then contains a bi-in�nite

geodesic thatspiralsaround som e closed geodesic C in thatdecom position. Since

�(S;Set)ischain-recurrent,itcontainsanothergeodesicthatspiralsalong the op-

posite side ofC in the sam e direction (com pare Figure 7). By a result in [6],

ifwe perform a Thurston stretch along a com pletion of�(S;Set),then we nec-

essarily introduce a Fenchel-Nielsen torsion about the closed geodesic C . Now

Thurston proved in [9]thatwe can join S to Set by a concatenation ofThurston

stretcheswhich aredirected by com pletegeodesiclam inations,allofthem contain-

ing �(S;Set). The torsions introduced about the geodesic C are allin the sam e

direction. Thus,there necessarily is a nonzero torsion. This contradicts Theo-

rem 5.3. Thus, �(S;Set) does not contain any geodesic lam ination larger than

the geodesics ofthe pair ofpants decom position. Thus,the m axim alm axim ally

stretched lam ination �(S;Set)isthe pairofpantsdecom position. �
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It also follows from the reasoning in the proofofTheorem 5.6 that the set of

m axim alm axim allystretched lam inationsfrom S toSet isthesetofallcom pletions

ofthe pants decom position that are nowhere chain-recurrent,which m eans that

the geodesicsspiralling around each com ponentofthe pants decom position wrap

in oppositedirections,asillustrated in Figure7.

Figure 7. A non chain-recurrent geodesic lam ination. The spirals

wrap around the closed curve in opposite directions.

R em ark 5.7.G iven twopointsx;y in Teichm �ullerspaceand knowingthem axim al

m axim ally stretched lam ination �(x;y)from x to y,itisin generalquite di�cult

to �nd the lam ination �(y;x). For allt > 0,the m axim alm axim ally stretched

"lam ination" from Set to S is the union ofthe seam s. As already m entioned in

the proofofTheorem 5.3,by ourchoiceofthe twistparam eters(in which the feet

ofthe seam scoincide),in the case ofclosed surfaces,the union ofthe seam sisa

union ofdisjointclosed geodesics(a m ulti-curve),seeFigure8.Thism ulti-curveis

m axim ally stretched by the stretch thatwe de�ned from Set to S and thereforeit

iscontained in the lam ination �(Set;S).In thecaseofa closed surfaceofgenus2,

the preceding argum entshowsthat�(Set;S)is a union ofseam s,since thisunion

isa pantsdecom position.

Figure 8. In bold lines is represented a pants decom postion ofthe

closed surface ofgenus2. The union ofthe seam s isa m ulti-curve and

a pantsdecom position aswellforthe genus2 surface.
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