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A bstract

Introduction

In thi s paper,we prove som e resul ts on T hurston' s asym m etri c m etri c on Tei chm /"ul l er space. T hi s m etri c was i ntroduced by T hurston i n hi s paper ??.

we start by constructi ng Li pschi tz hom eom orphi sm s w i th control l ed Li pschi tz constantbetween sym m etric right-angl ed hyperbol ic hexagons,thati s,convex ri ghtangl ed hyperbol i c hexagonshavi ng three non-adjacentedgesofequall ength. U si ng these Li pschi tz hom eom orphi sm s,we obtai n,by doubl i ng the hexagons,Li pschi tz hom eom orphi sm s between sym m etric hyperbol ic pairs ofpants,that i s,hyperbol i c pai rs of pants w hi ch have three geodesi c boundary com ponents of equall engths. T hese Li pschi tz hom eom orphi sm s between sym m etri c pai rs ofpants are extrem al i n the sense that thei r Li pschi tz constanti s m i ni m alam ong al lLi pschi tz constants ofhom eom orphi sm si n the sam e i sotopy cl ass.B utthese Li pschi tz extrem alhom eom orphi sm s between pai rs ofpants are not stretch m aps i n the sense ofT hurston. B y varyi ng the Li pschi tz constantsofthe hom eom orphi sm swe construct,we obtai n a path i n the Tei chm ul l erspace ofthe pai rofpantsw hi ch actual l y coi nci desw i th a stretch l i ne i n the sense ofT hurston,and we expl oi t the properti es ofsuch stretch l i nes. W e recal lthatstretch l i nesare geodesi csw i th respectto T hurston' sasym m etri c m etri c,de ned by m i ni m i zi ng the Li pschi tz constant between m arked hyperbol i c surfaces.

B y gl ui ng pai rsofpantsal ong thei rboundary com ponents,and by com bi ni ng the m apsweconstructbetween pai rsofpants,weobtai n stretch l i nesi n theTei chm ul l er space ofhyperbol i c surfacesof ni te type,ofarbi trary genusand ofarbi trary numberofboundary com ponents,w hi ch areal so geodesi cs(up to reparam etri zati on),for T hurston' s asym m etri c m etri c,w hen they are traversed i n the opposi te di recti on. T hese are the rst exam pl es we know ofsuch geodesi cs for thi s m etri c.

W e al so recal lthat by a resul t of T hurston, gi ven any two poi nts g and h i n Tei chm ul l er space,there i s a uni que m axi m al l y stretched chai n-recurrent geodesi c l am i nati on (g;h)from g to h w hi ch i sm axi m al(w i th respectto i ncl usi on),and that i fg and h l i e i n thatorder on a stretch l i ne di rected by a com pl ete chai n-recurrent geodesi c l am i nati on ,then (g;h) = . W e obtai n the fol l ow i ng resul ts that are vari ati ons on thi s them e: W e show that i f two el em ents g and h i n Tei chm ul l er space l i e (i n that order) on a stretch l i ne we construct,the l am i nati on (g;h) i s stri ctl y sm al l erthan the l am i nati on thatdi rectsthatl i ne,and thatthereareseveral (non chai n-recurrent)m axi m alm axi m al l y stretched geodesi c l am i nati onsfrom g to h. In otherwords,the stretch l i nes we constructare di rected by com pl ete geodesi c l am i nati onsthatare notchai n-recurrent,and unl i ke the chai n-recurrentcase,these l am i nati ons are not uni quel y de ned.

T hurston's stretch m aps betw een hyperbolic ideal triangles and betw een pairs of pants

In thi ssecti on,we recal lthe de ni ti on ofa stretch m ap between hyperbol i c i deal tri angl es and between pai rs of pants. T hi s constructi on i s due to T hurston (see [START_REF] Hurston | M inim alstretch m aps betw een hyperbolic surfaces[END_REF] ).

W e start w i th a stretch m ap from a hyperbol i c i dealtri angl e to i tsel f. C onsi dera hyperbol i c i dealtri angl e equi pped w i th the parti alfol i ati on by horocycl i c segm ents that are perpendi cul ar to the boundary. U p to i som etry,there i s a uni que such object. T here i s a non-fol i ated regi on at the center ofthe tri angl e, bounded by three pi eces ofhorocycl es (see Fi gure 1). T hi s horocycl i c fol i ati on i s equi pped w i th a naturaltransversem easure,w hi ch i scharacteri zed by the factthat the transversem easureassi gned to any arccontai ned i n an edgeofthe i dealtri angl e coi nci des w i th the Lebesgue m easure i nduced by the hyperbol i c m etri c.

T he non-fol i ated regi on ofa hyperbol i c tri angl e i ntersects each edge ofthe triangl e at a poi nt cal l ed the center ofthat edge. Let T be the hyperbol i c i dealtri angl e equi pped w i th i ts horocycl i c m easured fol i ati on,and consi der a realnum ber k 1. T he stretch m ap ofm agnitude k ofT i s a hom eom orphi sm f k :T ! T sati sfyi ng the fol l ow i ng properti es:

(1) T he restri cti on off k to the non-fol i ated regi on ofT i s the i denti ty m ap of that regi on. (2) O n each edge ofT ,f k sendsany poi ntatdi stance x from the centerofthat edge to a poi nt at di stance kx.

(3) T he m ap f k preserves the horocycl i c fol i ati on ofT ;that i s,i t sends l eaves to l eaves. (4) O n each l eafofthe horocycl i c fol i ati on,f k contracts l i nearl y the l ength of that l eaf.

B y gl ui ng stretch m aps between i dealtri angl es we construct stretch m aps between hyperbol i c pai rs ofpants.

A hyperbol i c pai r ofpants i s a sphere w i th three open di sks rem oved,equi pped w i th a hyperbol i c m etri c i n w hi ch the three boundary com ponents are cl osed geodesi cs(the l i ftofsuch a curve to the hyperbol i c uni versalcoverseen asa subset ofthe hyperbol i c pl ane

H 2 i s a geodesi c i n H 2 ).
LetP be a hyperbol i cpai rofpants.W e choosea com pl ete geodesi cl am i nati on i n P . Such a com pl ete geodesi c l am i nati on necessari l y consi sts ofthree di sjoi nt bii n ni te geodesi cs that spi ralaround the boundary com ponents ofP ,decom posi ng thatsurface i nto two hyperbol i c i dealtri angl es.T he horocycl i c m easured fol i ati ons ofthe two i dealtri angl es t together sm oothl y si nce they are both perpendi cul ar to the edges ofthe i dealtri angl es,and therefore they form a Li pschi tz l i ne el d on the surface.Foreach k 1,consi dera stretch m ap ofm agni tude k de ned on each ofthe i dealtri angl escom posi ng P . W e obtai n a new hyperbol i c pai rofpantsP k by gl ui ng thei dealtri angl estogetheral ong thei rboundari esaccordi ng to i denti cati ons thatare com pati bl e w i th the stretch m aps. T hi sde nesa hom eom orphi sm from P to anotherhyperbol i c pai rofpantsP k ,w hi ch i scal l ed a stretch m ap (ofm agni tude k) from P to P k .

T he above constructi on can be repeated on severalcopi es ofhyperbol i c pai rs of pants.B y gl ui ng togetherthese pai rsofpantsaccordi ng to the i denti cati onsgi ven by the stretch m aps,we obtai n a stretch m ap ofm agni tude k from a hyperbol i c surface S to another S k . N ote that the com pl ete geodesi c l am i nati ons gi vi ng the decom posi ti ons i nto i dealtri angl es ofthe pai rs of pants i n S gi ve,together w i th the pants decom posi ti on ofS,a com pl ete geodesi c l am i nati on on the surface S. R em ark 2.1. T he reader shoul d be aware that stretch m aps are actual l y de ned i n a m uch w i der general i ty than the one presented here. T he underl yi ng com pl ete geodesi c l am i nati on gi vi ng the decom posi ti on of the surface i nto i deal tri angl es can be chosen arbi trari l y am ong the com pl ete geodesi c l am i nati ons and i t i s not necessari l y the com pl eti on ofa geodesi c pants decom posi ti on as above. H owever, i n thi s paper,we shal lonl y need the speci alcase ofstretch m aps descri bed above.

E xtrem al Lipschitz m aps betw een sym m etric right-angled hexagons

G i ven two m etri c spaces (X ;d X ) and (Y;d Y ) and a m ap f :X ! Y between them ,the Lipschitz constantLi p(f) off i s de ned as

Li p(f)= sup x6 = y2 X d Y f(x);f(y) d X x;y 2 R [ f1 g:
W e shal lsay that the m ap f i s Lipschitz i fi ts Li pschi tz constant i s ni te. T he stretch m apsf k between hyperbol i ci dealtri angl esthatwe consi dered i n the l ast secti on are exam pl es of Li pschi tz hom eom orphi sm s, w i th Li pschi tz constant equalto k. N ote thatthe factthat thi s Li pschi tz constanti s atl eastk can be seen from the acti on ofthese m apson the boundary ofthe i dealtri angl es.T he factthat the Li pschi tz constanti sexactl y k i si m pl i ci ti n T hurston' spaper [START_REF] Hurston | M inim alstretch m aps betw een hyperbolic surfaces[END_REF] .Ital so fol l ow s from the com putati ons bel ow (see R em ark 3. 4). B y usi ng these m aps as bui l di ng bl ocks,we recal l ed i n x2 how one obtai ns Li pschi tz hom eom orphi sm sofhyperbol i c pai rsofpantsand,m ore general l y,ofhyperbol i c surfaces.T hese stretch m apshave Li pschi tz constants k.

In thi ssecti on,weshal lde neLi pschi tzm apsbetween som eparti cul arhyperbol i c ri ght-angl ed hexagons, w hi ch w i l l al so have control l ed Li pschi tz constants, and w hi ch can be used to de ne Li pschi tz hom eom orphi sm sbetween speci alhyperbol i c pai rs ofpants,by gl ui ng hyperbol i c ri ght-angl ed hexagonsand taki ng the uni on of Li pschi tz m aps between them . B y gl ui ng together these speci alpai rs ofpants i n an appropri ate m anner,thi sw i l leventual l y yi el d hom eom orphi sm sbetween speci al hyperbol i c surfaces ofarbi trary ni te type,w i th control l ed Li pschi tz constants.

A sym m etric right-angl ed hexagon i s a geodesi c hexagon H i n the hyperbol i c pl ane H 2 w i th three pai rw i se non-consecuti ve edgeshavi ng the sam e l ength. (N ote that thi s i m pl i es that the rem ai ni ng three edges al so have the sam e l ength. ) W e consi dera sym m etri c ri ght-angl ed hexagon H ,and we choose three pai rw i se non-consecti ve edges ofH ,w hi ch we cal lthe l ong edges. W e denote thei r com m on l ength by 2L.T heotherthreenon-consecuti veedgesarecal l ed short,and wedenote thei r com m on l ength by 2l. A n easy com putati on usi ng wel l -know n form ul ae for ri ght-angl ed hexagons gi ves [START_REF] U Illa U M E T H E R E T | C om parison betw een Teichm uller and Lipschitz m etrics[END_REF] 2si nh(l)si nh(L)= 1:

For each realnum ber k 1,we l et H k be the sym m etri c ri ght-angl ed hexagon obtai ned by m ul ti pl yi ng the l engths of the l ong edges of H by the factor k. W e note that thi s property determ i nes the i som etry type ofH k i n a uni que way. W e cal lthe edges ofH k that are the i m ages ofthe l ong edges ofH by thi s di l atati on m ap the l ong edges ofH k and we denote thei r com m on l ength by 2L k . W e l et 2l k denote the l ength ofthe other edges ofH k ,w hi ch we cal lthe shortones.

In thi s secti on,al lthe m aps between sym m etri c ri ght-angl ed hexagons that we shal lconsi der w i l lbe hom eom orphi sm ssendi ng the l ong (respecti vel y short) edges to the l ong (respecti vel y short) edges,and i n generalwe shal lnot repeat thi s condi ti on.

T he three l engths ofany three non-consecuti ve edges ofH (respecti vel y ofH k ) sati sfy the tri angl e i nequal i ty. T herefore,we can equi p H (respecti vel y H k ) w i th a parti alm easured fol i ati ons F (respecti vel y F k ) w hose l eaves are l ociofequi di stant poi nts from the short edges. In the hyperbol i c pl ane,equi di stant poi nts from geodesi cs are cl assi cal y cal l ed hypercycl es,and we shal luse thi s term i nol ogy. T he fol i ati ons ofH (respecti vel y H k ) by hypercycl es are show n i n Fi gure 2,and such fol i ati ons have al ready been consi dered by T hurston i n hi s com pacti cati on theory of Tei chm ul l er space (see [ 2, expos e 6] ). T here i s a non-fol i ated regi on of F (respecti vel y F k ) at the center ofH (respecti vel y H k ).

T he i ntersecti on num berofF (respecti vel y,F k )w i th an edge ofH (respecti vel y, H k )i sei ther2L or0 (respecti vel y,2kL or0)dependi ng on w hetherthe edge i sl ong or short.

W e al so equi p H (respecti vel y H k )w i th the parti alfol i ati on G (respecti vel y G k ) w hose l eaves are geodesi c arcs perpendi cul ar to the l eaves ofF (respecti vel y F k ).

In T heorem 3. 3,we shal lconstruct a m ap,h k :H ! H k w hi ch (l eafw i se) sends F to F k ,and G to G k and w hose Li pschi tz constanti s k. Such a m ap i s Li pschi tzextrem ali n i tshom otopy cl assrel ati veto theboundary,si ncetheLi pschi tzconstant ofany m ap f :H ! H k w hi ch sends l ong (respecti vel y short) edges ofH to l ong (respecti vel y short) edges of H k i s bounded bel ow by k. T he Li pschi tz-extrem al m apsweshal lconstructare\canoni cal " i n the sensethatthey preservea pai rofhypercycl i c/geodesi c fol i ati ons,and they are rem i ni scent ofT hurston' s stretch m aps between i dealtri angl es. In som e preci se sense that we speci fy bel ow ,T hurston' s stretch m aps between i dealtri angl es are l i m i ts ofthe Li pschi tz-extrem alm aps between sym m etri c hexagons.

B efore de ni ng the m ap h k ,we m ake a geom etri calrem ark.C onsi derthe fam i l y ofal lsym m etri c ri ght-angl ed hexagons H k as k vari es from 1 to i n ni ty. Each of these hexagonshas a center w hi ch i s the center ofthe rotati on that perm utes each tri pl e ofnon-consecuti ve edges. Foreach such hexagon,consi derthe three geodesi c raysem anati ng from i ts centerand m eeti ng the shortedgesperpendi cul arl y. Pl ace al lthe hexagons H k i n the hyperbol i c pl ane so that al lthei r centers coi nci de and such that al lthe above geodesi c rays coi nci de as wel l . N ow for each such hexagon H k ,consi der the associ ated extended hexagon b H k de ned as the regi on ofi n ni te area encl osed by thethreegeodesi csi n H 2 extendi ng thel ong edgesofH k .Itfol l ow s from Equati on (1)thatasL k decreases,l k i ncreases,and conversel y.From thi s,we deduce that for any 1 k k 0 ,we have b H k 0 b H k . W e al so note thatask tends to i n ni ty,the extended hexagon b H k aswel lasthe hexagon H k i tsel fconverge,i n the H ausdor topol ogy associ ated to the Eucl i dean m etri c (usi ng as i n Fi gure 3 the di sk-m odelof the hyperbol i c pl ane) to an i deal tri angl e.Li kew i se,ask ! 1 ,the m easured fol i ati on F k convergesto the horocycl i c fol i ati on ofthe i dealtri angl e (represented i n Fi gure 1) and the non-fol i ated regi on ofF k convergesto the non-fol i ated regi on ofthat horocycl i c fol i ati on.

T he fol l ow i ng two l em m as w i l lbe used i n the proofofT heorem 3. 3 bel ow .

Lem m a 3.1. For k 0 > k 1,the non-fol iated region ofF k 0 is strictl y contained in the non-fol iated region ofF k .

Proof. W e work i n the di sk m odel of the hyperbol i c pl ane. T he statem ent w i l l fol l ow from the constructi on ofthe sym m etri c hexagons,represented i n Fi gure 3.

In the upper part ofthat gure,the hexagon H k (al so w i th i ts edges extended) i s draw n i n bol d l i nes, and the hexagon H k 0 (w i th i ts edges extended) i s draw n i n dashed l i nes. W e have chosen the hexagons to be sym m etri c w i th respect to the Eucl i dean center O ofthe uni t di sk. In the upper gure,the poi nt p (respecti vel y q)i sthe Eucl i dean centerofthe hypercycl e thati son the boundary ofnon-fol i ated regi on ofH k (respecti vel y H k 0) . T he poi nta (respecti vel y b)i sa vertex ofthe nonfol i ated regi on of F k (respecti vel y F k 0) . A m ore detai l ed vi ew of a regi on draw n i n the the upper part of Fi gure 3 i s represented i n the l ower part. T he poi nt a 0 (respecti vel y b 0 ) i s the center ofa boundary hypercycl e ofthe non-fol i ated regi on of F k (respecti vel y F k 0) . T he Eucl i dean tri angl es O pa and O qb are hom otheti c by a Eucl i dean hom othety of center O and factor < 1. T hi s hom othety sends the Eucl i dean ci rcl e arc aa 0 to the Eucl i dean ci rcl e arc bb 0 . T hus, there exi sts a Eucl i dean hom othety ofcenter O that sends the non-fol i ated regi on ofH k 0 stri ctl y i nto the non-fol i ated regi on ofH k ,w hi ch proves the l em m a.

F igure 2. T he fol i ati on by curves equi di stant to the short edges ofa sym m etri c ri ght-angl ed hexagon. T he centralregi on i s not fol i ated,and i t i s bounded by three hypercycl es w hi ch m eet each other tangenti al l y.

Lem m a 3.2. In the upper hal f-pl ane m odelof the hyperbol ic pl ane, consider the geodesic represented by the im aginary axis iR + = fir;r > 0g, and a hypercycl e m aking an angl e 2 1 with this geodesic, with 0 < 1 < =2. Let ' be the l ength ofa geodesic arc joining perpendicul ary the verticalgeodesic and the hypercycl e. T hen,we have cos 1 = tanh ':

Proof. W e refer to Fi gure 4. W e param etri ze the geodesi c arc by the m ap

:[ 1 ; =2]! H 2
7 ! (cos ;si n ): U si ng theform ul a forthei n ni tesi m all ength el em enti n theupperhal f-pl anem odel , we can w ri te

'= Z =2 1 k 0 ( )k Im ( ( )) d = Z =2 1 d si n : C om puti ng the i ntegral ,we nd e ' = tan( 1 =2) a a b b a 0 a 0 b 0 b 0 p p q q O
F igure 3. T he upper gure represents, i n bol d l i nes, a sym m etri c ri ght-angl ed hexagon H k ,and i n dashed l i nes,a sym m etri c ri ght-angl ed hexagon H k 0 w i th k 0 > k, together w i th thei r extensi ons Ĥ k and Ĥ 0 k . T he fact that the non-fol i ated regi on of the sym m etri c hexagon H 0 k i s i ncl uded i n the non-fol i ated regi on of the sym m etri c hexagon H k , for k 0 > k,as i t i s represented i n the upper gure,can be deduced from the Eucl i dean constructi on i n the l ow er gure,i n w hi ch the arcs aa 0 and bb 0 are on the boundari es ofthe non-fol i ated regi ons ofH k and H k 0 respecti vel y.

and after transform ati on we obtai n cos 1 = tanh ':

W e now construct the m ap h k :H ! H k .
From the i ncl usi on ofthe non-fol i ati ed regi on ofH k i nto the non-fol i ated regi on ofH foral lk 1 (Lem m a 3. 1),i tw i l lfol l ow thatthe m ap h k weshal lconstructcan be chosen to be contracti ng from the non-fol i ated regi on ofH to the non-fol i ated regi on ofH k .

To de ne the m ap h k ,i t su ces to do i t i n a com ponent ofthe fol i ated regi on of H . C onsi der such a com ponent. It i s i som etri c to the regi on C i n the upper hal f-pl ane m odelofthe hyperbol i c pl ane de ned i n pol ar coordi nates by

C = fz = R e i : 1 R e 2l ; 1 =2g;
w here 1 i s chosen so that the geodesi c param eteri zed by 7 ! R e i , 1 =2, has l ength L.

From Lem m a 3. 2,we have

cos 1 = tanh L:
Li kew i se, the i m age by h k of the com ponent C of the com pl em ent i n H of the non-fol i ated regi on i s i som etri c to the regi on C k i n the upper hal f-pl ane m odelof H 2 gi ven by

C k = fz = R e i : 1 R e 2l k ; k =2g;
w here cos( k )= tanh(kL):

In these descri pti ons,the fol i ati onsF and F k ,are gi ven by the hypercycl esde ned by = cst,w hi l e the fol i ati ons G and G k ,are gi ven by the geodesi cs de ned by R = cst. T he short si des ofC and C k correspond to = =2. O ur m ap h k m aps a poi nt A 2 C w hi ch i s at di stance d from the short si de ofC to a poi nt w hi ch i s at di stance kd from the shortsi de ofC k . Ifthe poi nt A l i es on the l eafofG w hi ch cuts the short si de ofC at di stance h,then the i m age ofA by h k bel ongs to the l eafthat cuts the short si de ofC k at di stance hl k =l. W e need to have an expl i ci t form ul a for h k i n order to com pute the norm ofi ts deri vati ve.

LetA bea poi nti n C gi ven i n pol arcoordi natesby (R ; ).D enotethecoordi nates ofthe poi nt h k (A ) 2 C k by (R 0 ; 0 ). W e al so descri be the poi nts A and h k (A ) by thei r di stances from the shortsi des,nam el y d and kd,and by thei r di stances from the l owestgeodesi c boundary ofC and C k ,as above. Let us rst com pute R 0 . T he l ogari thm ofR and ofR 0 are the di stances ofthe poi nts A and h k (A ) from the l owest geodesi c boundary ofC and C k ,respecti vel y. B y w hat has been previ ousl y sai d,we have l ogR 0 = l k l l ogR :

T herefore, R 0 = R l k =l : Let us now com pute 0 . T he sam e com putati on as for the form ul a gi vi ng 1 establ i shes si n = 1 cosh d

; or cos = tanh d:

T herefore, d = argcosh 1 si n :

N ow , 0 = arccos(tanh(kd)):

T hus we get the fol l ow i ng form ul a for h k ,vi ewed as a m ap from

C to C k , h k (R ; )= R l k =l ;arccos(tanh k argcosh 1 si n ) :
N ow thatthehom eom orphi sm h k i sde ned,weproceed to show thati tsLi pschi tz constant equal s k. For thi s,we com pute the norm ofi ts deri vati ve.

W e easi l y have

@R 0 @R = l k l R (l k =l) 1 ; @R 0 @ = 0; @ 0 @R = 0: Si nce arccos 0 (x)= 1 p 1 x 2
,we get

@ 0 @ = 1 r 1 tanh 2 (k argcosh 1 sin ) @ @ tanh k argcosh 1 si n = cosh(k argcosh 1 si n ) @ @ tanh k argcosh 1 si n : N ow ,si nce tanh 0 (x)= 1 cosh 2 (x) ,we have @ @ tanh k argcosh 1 si n = k cosh 2 (k argcosh 1 sin ) @ @ argcosh 1 si n : H ence,si nce argcosh 0 (x)= 1 p x 2 1 , @ 0 @ = k cosh(k argcosh 1 sin ) @ @ argcosh 1 si n = k cosh(k argcosh 1 sin ) 1 q 1 sin 2 1 @ @ 1 si n = k si n cos cosh(k argcosh 1 sin ) cos si n 2 :
Fi nal l y,we have

@ 0 @ = k si n h cosh(k argcosh 1 si n ) i 1 :
T he l ast parti alderi vati ve can al so be w ri tten as

@ 0 @ = k cosh d cosh(kd)
:

W e now proceed to com pute the norm ofthe di erenti aldh k . R ecal lthat the square ofthe norm ofa vector (dx;dy) i n the tangent pl ane T z (H 2 ) ofthe upper hal f-pl ane m odelofthe hyperbol i c pl ane i s gi ven by dx 2 + dy 2 y 2 ;

w here z = x + iy. In pol ar coordi nates,thi s i s w ri tten as

dR 2 + R 2 d 2 R 2 si n 2 :
Let V = (V R ;V ) be a non-zero tangent vector at the poi nt (R ; ). W e com pute the norm ofthe di erenti aldh k at the poi nt (R ; ). W e have

j j (dh k ) (R ; ) V j j 2 = j j ( @h k @R dR + @h k @ d ) V j j 2 = 1 R 2 si n 2 @R 0 @R V R + @R 0 @ V 2 + R 2 @ 0 @R V R + @ 0 @ V 2 = 1 R 2 si n 2 @R 0 @R V R 2 + R 2 @ 0 @ V 2 : N ote that j j V j j 2 = 1 R 2 si n 2 (V 2 R + R 2 V 2 ):
T herefore,si nce j j (dh k ) (R ; ) j j= sup V 6 = 0

jj(dh k ) (R ; ) V jj jjV jj
,we get j j (dh k ) (R ; ) j j 2 = sup

V 6 = 0 @R 0 @R V R 2 + R 2 @ 0 @ V 2 V 2 R + R 2 V 2 = sup V 6 = 0 @R 0 @R V R 2 + @ 0 @ R V 2 V 2 R + (R V ) 2 = sup V 2 R + (R V ) 2 = 1 @R 0 @R V R 2 + @ 0 @ R V 2 = m ax n @R 0 @R 2 ; @ 0 @ 2 o : W e have 1 R e 2l : Si nce l k =l 1,we get 1 R l k =l 1 e 2(l k l) > 0; that i s, 0 @R 0 @R 1:
N ow ,si nce @ 0 @ = k cosh(d) cosh(kd) ;

we get,for al l(R ; ), 0 @ 0 @ k and the equal i ty @ 0 @ = k i s real i zed at the poi nts d = 0,that i s,on the short si de ofC . T herefore,we obtai n sup

(R ; )2 C j j (dh k ) (R ; ) j j= k:
T he suprem um ofthe norm ofdh k bounds from above the Li pschi tz constantof h k : Ifx;y are two poi nts ofC and i f i s the geodesi c path from x to y,we get

d(h k (x);h k (y)) l(h k ( ))= Z d(x;y) 0 j j (dh k ) (t) 0 (t)j j dt sup z j j (dh k ) z j j d(x;y):
T herefore,i fL(h k )denotestheLi pschi tzconstantofh k ,wegetfrom w hatprecedes,

L(h k ) k:
Si nce the l ong edges are di l ated by the factor k,we have L(h k ) k. Fi nal l y,

L(h k )= k:
Putti ng al lpi eces together,the m ap we constructed from H to H k has Li pschi tz constant k.

W e sum m ari ze the precedi ng constructi on i n the fol l ow i ng:

T heorem 3.3. T he m ap h k :H ! H k is k-Lipschitz. Furtherm ore for any k 0 < k, there is no k 0 -Lipschitz m ap from H to H k .
Proof. T he rst part fol l ow s from the constructi on. Si nce, by de ni ti on, a m ap h k :H ! H k sends the l ong edges ofH to the l ong edges ofH k ,we i m m edi atel y get Li p(h k ) k. T hi s provesthe second part ofthe theorem .

R em ark 3.4. W e al ready observed that,reasoni ng i n the di sk m odelofthe hyperbol i c pl ane and usi ng the noti on of H ausdor convergence on bounded cl osed subsets ofthat di sk w i th respect to the underl yi ng Eucl i dean m etri c,we can m ake a sequence of sym m etri c ri ght-angl ed hexagons converge to an hyperbol i c i deal tri angl e,i n such a way that the fol l ow i ng three properti es hol d:

(1) T he parti alm easured fol i ati on ofthe hexagons by hypercycl es converges to the parti alm easured fol i ati on ofthe hyperbol i c i dealtri angl e by horocycl es.

(2) T he parti alfol i ati on ofthe hexagons by geodesi cs perpendi cul ar to the fol i ati on by hypercycl es converges to the parti al fol i ati on of the i deal tri angl e by geodesi cs perpendi cul ar to the horocycl es.

(3)T he non-fol i ated regi onsofthe hexagonsconverge to the non-fol i ated regi on ofthe i dealtri angl e.

Furtherm ore,foral lk 1,we can m akethe convergenceofhexagonsto the i deal tri angl e i n such a way that k-Li pschi tz m aps f k :H ! H k converge uni form l y on com pact sets to the stretch m aps f k :T ! T between hyperbol i c i dealtri angl es. T hi s show s i n parti cul ar that the stretch m aps f k have Li pschi tz constant k.

W e note thatLi pschi tz m apsbetween pai rsofpants are al so consi dered by O tal i n hi s paper [START_REF]the W eil-Petersson geom etry ofTeichm uller space[END_REF] ,i n rel ati on w i th the W ei l -Petersson m etri c ofTei chm ul l er space.

A sym m etric m etrics on T eichm uller spaces of surfaces w ith or w ithout boundary

In thi s secti on, S i s a surface of ni te type (g;b), w hi ch m ay have em pty or nonem pty boundary (g denotesthe genusofS and b the num berofboundary components). W e assum e thatthe Eul ercharacteri sti cofS i snegati ve.T he hyperbol i c structureswe constructon S are such thatal lthe boundary com ponentsare cl osed sm ooth geodesi cs. W e denote by T(S) or by T g;b the Tei chm ul l er space ofS,that i s,the space ofhom otopy cl asses ofhyperbol i c m etri cs on that surface. G i ven two hyperbol i c structures X and Y on S,we de ne [START_REF] Fathi | Travaux de T hurston sur les surfaces A st erisque[END_REF] L(X ;Y )= l ogi nf

f Li p(f)
w here the i n m um i s taken over the set ofLi pschi tz hom eom orphi sm s f :X ! Y that are hom otopi c to the i denti ty.

Lem m a 4.1 (T hurston). Forany two hyperbol ic m etricsX and Y on S,ifL(X ;Y ) 0,then X and Y are isom etric by a hom eom orphism thatis hom otopic to the identity.

Proof. W e fol l ow T hurston' s proofofthe correspondi ng resul t i n the case ofsurfaces w i thout boundary,cf. [ 9,Proposi ti on 2. 1] . Si nce L(X ;Y ) 0,there exi sts a sequence ofhom eom orphi sm s f n :X ! Y ,n = 0;1;::: ,w i th Li pschi tz constants Li p(f n )convergi ng to a realnum berL 1.T hesequence(f n )i suni form l y equi conti nuous,therefore up to taki ng a subsequence,we can assum e that (f n ) converges uni form l y to a m ap f :X ! Y . W e have Li p(f)= L 0. W e now prove that f i s surjecti ve. Take a poi nt y i n Y ,and for al ln 0,l et x n = f 1 n (y). U p to taki ng a subsequence of(f n ),we can assum e,by com pactness,that x n ! x 2 X . W e show that f(x)= y. Let us x som e > 0. W e have

j f(x) yj= j f(x) f n (x n )j j f(x) f n (x)j+ j f n (x) f n (x n )j :
Si nce f n ! f uni form l y,there exi sts N 0 such that for al ln N ,we have j f(x) f n (x)j =2. Si nce the fam i l y (f n ) i s equi conti nuous,there exi sts > 0 such that for x 1 and x 2 sati sfyi ng j x 1 x 2 j< ,we have j f m (x 1 ) f m (x 2 )j =2 for al lm 0. Si nce x n ! x,there exi sts N 0 such that for al ln N 0 ,we have j x x n j< . Forn m axfN ;N 0 g,we have,for al lm ,j f m (x) f m (x n )j =2.In parti cul ar, for m = n, j f n (x) f n (x n )j =2. T hi s show s that for every > 0, we have j f(x) yj . T hus,f(x)= y. T hi s show s that f i s surjecti ve. W e cover S by a set ofgeom etri c di sks w i th di sjoi nt i nteri or w hose totalarea i s equalto the area ofX .T he m etri csX and Y have the sam e area.Si nce Li p(f) 1 and si nce f i s surjecti ve,the i m age by f ofa di sk ofradi usR i s a di sk ofradi usR . Furtherm ore,f sends the boundary ofany such di sk to the boundary ofthe i m age di sk. W e deduce that any geom etri c di sk i s sent by f i som etri cal l y to a geom etri c di sk ofthe sam e radi us. Furtherm ore,i t i s easy to see that the center ofsuch a di sk i s sent to the center ofthe i m age di sk.

From thi s,we deduce that f i s l ocal l y di stance-preservi ng. T hi s i m pl i es that f i s an i som etry.

W e cal lan asym m etric m etric on a set X a functi on thatsati s es the axi om s of a m etri c except the sym m etry axi om ,and that does not sati sfy thi s axi om .

P roposition 4.2. T he function L de ned in (2) is an asym m etric m etric on the Teichm ull er space T(S).

Proof. B y Lem m a 4. 1,L i snonnegati veand separatespoi nts.T he tri angl ei nequali ty i s obvi ousl y sati s ed. T he fact that the m etri c does not sati sfy the sym m etry axi om can beseen usi ng an exam pl eanal ogousto theoneshow i ng thecorrespondi ng resul t for surfaces w i thout boundary,gi ven by T hurston i n [START_REF] Hurston | M inim alstretch m aps betw een hyperbolic surfaces[END_REF] . W e l et S be the set ofi sotopy cl asses ofsi m pl e cl osed curves on S w hi ch are not hom otopi c to a poi nt (the boundary com ponents ofS are i ncl uded).

T he asym m etri c m etri c L i s an anal ogue, for surfaces w i th boundary, of the asym m etri c m etri c de ned by T hurston i n [START_REF] Hurston | M inim alstretch m aps betw een hyperbolic surfaces[END_REF]for surfaces w i thout boundary. In the sam e paper,T hurston de ned the fol l ow i ng functi on on the Tei chm ul l er space T(S) ofa surface S w i thout boundary:

(3) K (x;y)= l og sup C 2 S l y (C ) l x (C ) :
T hurston proved that we obtai n the sam e functi on K i f i nstead of taki ng the i n m um overthe el em ents ofS i n (3)we take the i n m um overal l(notnecessari l y si m pl e) cl osed curves (see [START_REF] Hurston | M inim alstretch m aps betw een hyperbolic surfaces[END_REF] ,Proposi ti on 3. 5).

In the case w here the surface S has nonem pty boundary,Form ul a (3) does not de ne an asym m etri c m etri c on the Tei chm ul l erspace ofS.T hi scan easi l y be seen i n the case w here the surface i sa pai rofpantsP . D enoti ng by C 1 ;C 2 ;C 3 the three boundary com ponentsofthe pai rofpants,the functi on K de ned on T(P ) T(P ) takes the form

K (x;y)= l og sup i= 1;2;3 l y (C i ) l x (C i ) :
T hi sfuncti on K on T(P )sati s esthetri angl ei nequal i ty,buti ti snotan asym m etri c m etri c,si nce i tcan take negati ve val ues. Furtherm ore,i t does notseparate poi nts; thati s,thereexi stdi sti nctx and y i n T(P )w i th K (x;y)= 0 (takex and y sati sfyi ng l x (C 1 )= l y (C 1 ),and l x (C i )> l y (C i ) for i= 2;3). In fact,forany surfaceS w i th nonem pty boundary,thereexi sthyperbol i cm etri cs X and Y such that K (x;y)< 0 (see [START_REF] Papadopoulos | Shortening all the sim ple closed geodesics on surfaces w ith boundary[END_REF] ).

W e have K L.Indeed,forany k-Li pschi tz hom eom orphi sm from a hyperbol i c m etri c x on S to a hyperbol i c m etri c y on S,we easi l y see that we have,for every si m pl e cl osed curve on S,l y (f( )) kl x ( ),w hi ch i m pl i es K (x;y) L(x;y).

T herei sa m odi cati on ofthefuncti on K de ned i n Form ul a (3)w hi ch i sadapted to the case ofsurfacesw i th orw i thoutboundary,w hi ch we studi ed i n [START_REF] Liu | O n length spectrum m etricsand w eak m etrics on Teichm ullerspacesofsurfacesw ith boundary[END_REF]and w hi ch we now recal l .T he de ni ti on i nvol vesconsi deri ng essenti alarcsi n S togetherw i th essenti alsi m pl e cl osed curves. W e cal lan essential arc i n S an em beddi ng of a cl osed i nterval ,the arc havi ng i ts endpoi nts on the boundary ofS and i ts i nteri or i n the i nteri or ofS,and such that thi s arc i s not hom otopi c rel ati ve endpoi nts to an arc contai ned i n @S. In w hat fol l ow s,a hom otopy of essenti alarcs i s al ways rel ati ve endpoi nts.

If S i s a surface w i th boundary, we l et B = B (S) be the uni on of the set of hom otopy cl asses ofessenti alarcs i n S w i th the set ofhom otopy cl asses ofsi m pl e cl osed curvesthatarehom otopi cto boundary com ponents.IfS i sa surfacew i thout boundary,the set B i s assum ed to be em pty.

Forany surface S w i th orw i thoutboundary,we consi derthe functi on J de ned on T(S) T(S) by

J(X ;Y )= l og sup 2 C [ B l Y ( ) l X ( )
for al l X ;Y 2 T(S). If the surface S has no boundary, we recover T hurston' s asym m etri c m etri c K de ned above.

P roposition 4.3. T he function J :T(S) T(S)! R is an asym m etric m etric on T(S).

Proof. T he prooffol l ow s from [START_REF] Liu | O n length spectrum m etricsand w eak m etrics on Teichm ullerspacesofsurfacesw ith boundary[END_REF] ,Proposi ti ons 2. 10 and 2. 13. It i s show n i n [START_REF] Liu | O n length spectrum m etricsand w eak m etrics on Teichm ullerspacesofsurfacesw ith boundary[END_REF] ,Proposi ti on 2. 12,that w hen S has nonem pty boundary,the asym m etri c m etri c J can be expressed as the l ogari thm ofthe suprem um over the set B sol el y.

In the sam e way as for the functi on K ,we easi l y see that J L.

Surfaces of finite type

W enow constructLi pschi tz-extrem alhom eom orphi sm sbetween som ehyperbol i c pai rsofpants,usi ng the hom eom orphi sm sh k between sym m etri c hyperbol i c ri ghtangl ed hexagons that we constructed i n Secti on 3. W e shal lthen com bi ne these hom eom orphi sm sto getLi pschi tz-extrem alhom eom orphi sm sofhyperbol i csurfaces ofarbi trary topol ogi cal ni te type.

W e shal lcal la hyperbol i c pai r of pants sym m etric i f i t i s obtai ned by gl ui ng al ong three non-consecuti ve boundary com ponents two i som etri c sym m etri c ri ghtangl ed hexagons,and we shal lal ways assum e that these hexagons are gl ued al ong thei rl ong edges.T hus,the boundary com ponentsofourpai rsofpantsare \short".

W e l et P be a sym m etri c pai r ofpants obtai ned by gl ui ng two sym m etri c ri ghtangl ed hexagons H ,and for every k 0,we l et P k be a sym m etri c pai r ofpants obtai ned by gl ui ng two ri ght-angl ed hexagons H k . Taki ng the doubl e ofthe m ap h k :H ! H k produces a m ap p k :P ! P k .

T heorem 5.1. T he l ine t7 ! P e t (t2 R ) is a stretch l ine,and it is a geodesic for these two m etrics J and L on T 0;3 . Furtherm ore,up to reparam etrization,this l ine is al so a geodesic for both m etrics when itis traversed in the opposite direction.

Proof. For each t 0,the acti on ofthe hom eom orphi sm P ! P e t on each boundary com ponent of P i s l i near (i t m ul ti pl i es arc l ength by e t ). T he fact that the l i ne t7 ! P e t (t2 R ) coi nci des w i th a stretch l i ne fol l ow s from the fact that for al l t 0,the surface P e t i s obtai ned from P by m ul ti pl yi ng the l engths ofthe boundary geodesi cs by the constant factor e t ,and thi s factor com pl etel y determ i nes the resul ti ng hyperbol i c surface P e t . T hi s al so i m pl i es that we have J(P;P e t )= t. O n the other hand,si nce the m ap we construct i s e t -Li pschi tz,we have L(P;P e t ) t. T hi s,together w i th the i nequal i ty J L,gi ves J(P;P e t )= L(P;P e t ) for al lt 0. T hus,the l i ne t7 ! P e t i s a geodesi c for J and for L.

For the proofof the second statem ent, we rst consi der the case ofhexagons. Let H be a sym m etri c hexagon. C hoose three non-consecuti ve edges as the l ong edges ofH . For each k 1,we have a m ap h k :H ! H k ,as de ned i n Secti on 3 above,w hose Li pschi tz constant i s k and w hi ch expands the l ong edges ofH by the factor k. B y exchangi ng the rol es ofthe l ong and short edges,we get a m ap g k :H k ! H w hi ch expands the new l ong edges by a factor d k ,and contracts the new shortedges by the factor k.

From Form ul a (1),we deduce that the di l atati on factor d k ofg k i s gi ven by ( 4)

d k = l l k = argsi nh ( 1 2si nh L ) argsi nh ( 1 2si nh kL )
T he hom eom orphi sm g k hasLi pschi tz constantd k and i texpandsthe l ong edges ofthe hyperbol i c hexagon H k by the factor d k (see Fi gure 5),therefore we have

J(H k ;H )= l ogd k = L(H k ;H ); J(H ;H k )= l ogk = L(H ;H k ):
D oubl i ng the hexagons,we obtai n the sam e resul tforthe sym m etri c pai r ofpants, show i ng that,up to param etri zati on,thel i net7 ! P e t i sa geodesi ci n both di recti ons for the m etri cs J and L. R em ark 5.2. B y T heorem 5. 1,we have J(x;y) = L(x;y) i f the poi nts x and y are si tuated on the stretch l i ne that we construct. W e do not know w hether the m etri cs J and L are equalon Tei chm /"ul l er space. A parti cul ar hyperbol i c surface S ofarbi trary ni te type (g;b) can be obtai ned by gl ui ng a col l ecti on ofsym m etri c pai rsofpantsi n such a way thatthe feetofthe seam sofadjacentpai rsofpantscoi nci de. In such a si tuati on,we shal lsay thatthe gl ui ng has been done withouttorsion. For such a surface,we have the fol l ow i ng: T heorem 5.3. T he l ine t7 ! S e t (t2 R )isa stretch l ine in T g;b ,and itisa geodesic for both asym m etric m etrics J and L on T g;b . U p to reparam etrization,this l ine is al so a geodesic for the sam e m etrics when itis traversed in the opposite direction. A l ong that l ine, the m etrics J and L coincide. Furtherm ore, this stretch l ine has the foll owing nice description in the Fenchel -N iel sen coordinates associated to the underl ying pair ofpantsdecom position ofS: attim e tfrom the origin,allthe l ength param eters are m ul tipl ied by the constantfactor e t ,and allthe twistparam eters are unchanged and rem ain equalto zero.

Proof. W e startw i th a sym m etri c hyperbol i c pai rofpantsP equi pped w i th a compl ete geodesi c l am i nati on,and we then consi der the hyperbol i c surface S,hom eom orphi cto S 0;4 ,obtai ned by gl ui ng two copi esofP al ong oneboundary com ponent, i n such a way that the fol l ow i ng hol d:

T he uni on ofthe com pl ete geodesi c l am i nati ons ofboth pai rs ofpants i s a non chai n-recurrentcom pl ete geodesi c l am i nati on ofS. T he feet of the seam s abutti ng on the com ponent al ong w hi ch we gl ue coi nci de; that i s, we gl ue w i thout torsi on. H ere, the ori gi n of Fenchel -N i el sen tw i stcoordi natesi s m easured asa si gned di stance between feets of seam s (i n the uni versalcover). W e refer to [ 10, T heorem 4. 6. 23]for the conventi on on Fenchel -N i el sen coordi nates. Letusdenote by the curvei n S thatcorrespondsto the gl ued com ponents.T here i s an ori entati on-reversi ng order-two sym m etry exchangi ng the copi es of P i n S. T hesurfaceS i sequi pped w i th a com pl etegeodesi cl am i nati on ,and theorder-two sym m etry l eaves the l am i nati on i nvari ant.

It i s now usefulto descri be the si tuati on i n the uni versalcoveri ng e S ofS. T he order-two sym m etry l i fts to the uni versal cover, and the prei m age of i n e S i s l eft i nvari ant by thi s sym m etry. T he deform ati on ofthe hyperbol i c pl ane by the stretch m ap can be seen i n e S as preservi ng a basepoi nt O on a l i ft e of and the horocycl e passsi ng through O and centerd at the endpoi nt of e . T he stretch deform ati on i s then descri bed i n a nei ghborhood of e by repl aci ng the horocycl e arcs that are contai ned i n the spi kes of each i deal tri angl e spi ral l i ng around e by sm al l er arcs w hose l ength has been rai sed to the power e t . (R ecal l that the l engths of the horocycl e pi eces are al l < 1. ) See Fi gure 6) for a representati on o thi s stretch deform ati on. T hi s show s that the stretch deform ati on com m utes w i th the order-two sym m etry. H ence,the feet ofthe seam s coi nci de al lal ong the deform ati on ofS by the stretch di rected by . In other words,stretchi ng al ong does noti nduce Fenchel -N i el sen torsi on. T he l aststatem entofthe theorem i s thus establ i shed. T hi s al so show s that the l i ne t 7 ! S e t i s a geodesi c for both m etri cs L and J,yi el di ng the equal i ty L = J on that l i ne. W e now proceed to show that ourl i ne traversed i n opposi te di recti on i sa geodesi c forboth asym m etri c m etri csJ and L and that these two m etri cs coi nci de al ong that l i ne. T he hom eom orphi sm s g e t de ned on each pai r of pants gi ven by the pants decom posi ti on of S pi ece together i nto a hom eom orphi sm we al so denote by g e t from S e t to S. T he reason w hy these l ocalhom eom orphi sm s pi ece together correctl y i s the absence oftorsi on al ong the com ponents ofthe pants decom posi ti on. T he Li pschi tz constant ofthe hom eom orphi sm g e t thus obtai ned i s d e t . T he seam s ofthe pai rs ofpants coal esce i nto (sm ooth) geodesi c si m pl e cl osed curves and essenti al geodesi c arcs that are stretched by the factord e t from S e t to S. T hi sshow sthatthe hom eom orphi sm g e t i s Li pschi tz-m i ni m i zi ng and that L = J on the l i ne. T he proofi s com pl ete.

R em ark 5.4. T he dual m etric of an asym m etri c m etri c M on a set X i s the asym m etri c m etri c de ned by M (x;y)= M (y;x)forevery x and y i n X .Equati on (4)show sthatthe asym m etri c m etri c J and i ts dualm etri c on T(S)are notquasii som etri c,even restri cted to ourgeodesi csS e t . Indeed,we have seen thatfort 0, F igure 6. T he acti on ofa stretch m ap on the uni versalcover.

we have J(S;S e t )= tand J(S;S e t )= l ogd e t . B ut

d e t t! 1 argsi nh 1 2si nh L argsi nh 1 2si nh(e t L) t! 1 argsi nh 1 2si nh L e e t L ;
that i s,J(S;S e t )2 O (e t ) as t! 1 .

A ctual l y,we al ready noti ced i n [START_REF] Papadopoulos | O n Teichm uller's m etric and T hurston's asym m etric m etric on Teichm uller space,H andbook ofTeichm uller theory[END_REF]and i n [START_REF]D ivergence et parall elism e des rayons d' etirem ent cylindriques[END_REF]thatT hurston' sasym m etri c m etri c forsurfacesw i thoutboundary,ofw hi ch J i san anal ogueforsurfacesw i th orw i thout boundary,arenotquasi -i som etri cto thei rdualm etri cs,i n restri cti on to som especi al stretch l i nes. T hese observati ons natural l y l ead to the fol l ow i ng: Q uestion 5.5. C haracteri ze the geodesi c l i nes for T hurston' s asym m etri c m etri c and fori tsanal ogue J forsurfacesw i th boundary,such thatthe restri cti on on that l i ne ofsuch a m etri c and i ts dualare quasi -i som etri c ? W e note i n thi s respect that C hoiand R a showed i n [START_REF] U Illa U M E T H E R E T | C om parison betw een Teichm uller and Lipschitz m etrics[END_REF]that i n the thi ck part ofTei chm ul l er space,T hurston' s asym m etri c m etri c and i ts dualm etri c are both quasi -i som etri c to Tei chm ul l er' s m etri c. O n the other hand, there exi st stretch l i nes that are com pl etel y contai ned i n the thi ck part (take a pseudo-A nosov m ap w hose stabl e and unstabl e l am i nati ons are com pl ete,and consi der the stretch l i ne di rected by one ofthese two l am i nati ons and passi ng by a poi nt w hose horocycl i c fol i ati on i s the otherl am i nati on);therefore,there exi ststretch l i nes for T hurston' s asym m etri c m etri c such thatthe restri cti on on thatl i ne ofthi s m etri c and i ts dual are quasi -i som etri c.

W e now recal lthat by a resul t of T hurston, gi ven any two poi nts x and y i n Tei chm ul l er space,there i s a uni que m axi m al l y stretched chai n-recurrent geodesi c l am i nati on (x;y)from x to y w hi ch i sm axi m alw i th respectto i ncl usi on,and that i fx and y l i e i n that orderon a stretch l i ne di rected by a com pl ete chai n-recurrent geodesi c l am i nati on ,then (x;y)= . T he next theorem i denti es thi s geodesi c l am i nati on for two poi nts x and y on the sam e stretch l i nes we construct,and i t says i n parti cul ar that thi s l am i nati on i s not com pl ete.

T heorem 5.6. For the stretch l ines thatwe constructed above,the m axim alm axim all y stretched l am ination (S;S e t ) is the pair ofpants decom position thatunderl ines the construction.

Proof. Lett> 0. T he m axi m alm axi m al l y stretched chai n-recurrentgeodesi c l am inati on (S;S e t )from S to S e t contai nsthe underl yi ng pai rofpantsdecom posi ti on, si nce each curve i n thi s decom posi ti on i s m axi m al l y stretched. A ssum e for contradi cti on that (S;S e t ) contai ns a l arger l am i nati on. It then contai ns a bi -i n ni te geodesi c that spi ral s around som e cl osed geodesi c C i n that decom posi ti on. Si nce (S;S e t ) i s chai n-recurrent,i t contai ns another geodesi c that spi ral s al ong the opposi te si de of C i n the sam e di recti on (com pare Fi gure 7). B y a resul t i n [START_REF] Papadopoulos | Shift coordinates, stretch lines and polyhedral structures for Teichm uller space[END_REF] , i f we perform a T hurston stretch al ong a com pl eti on of (S;S e t ), then we necessari l y i ntroduce a Fenchel -N i el sen torsi on about the cl osed geodesi c C . N ow T hurston proved i n [START_REF] Hurston | M inim alstretch m aps betw een hyperbolic surfaces[END_REF]that we can joi n S to S e t by a concatenati on ofT hurston stretchesw hi ch are di rected by com pl ete geodesi c l am i nati ons,al lofthem contai ni ng (S;S e t ). T he torsi ons i ntroduced about the geodesi c C are al li n the sam e di recti on. T hus, there necessari l y i s a nonzero torsi on. T hi s contradi cts T heorem 5. 3. T hus, (S;S e t ) does not contai n any geodesi c l am i nati on l arger than the geodesi cs of the pai r of pants decom posi ti on. T hus,the m axi m alm axi m al l y stretched l am i nati on (S;S e t ) i s the pai r ofpants decom posi ti on.

It al so fol l ow s from the reasoni ng i n the proofof T heorem 5. 6 that the set of m axi m alm axi m al l y stretched l am i nati onsfrom S to S e t i sthesetofal lcom pl eti ons of the pants decom posi ti on that are now here chai n-recurrent, w hi ch m eans that the geodesi cs spi ral l i ng around each com ponent ofthe pants decom posi ti on w rap i n opposi te di recti ons,as i l l ustrated i n Fi gure 7. F igure 7. A non chai n-recurrent geodesi c l am i nati on. T he spi ral s w rap around the cl osed curve i n opposi te di recti ons. R em ark 5.7. G i ven two poi ntsx;y i n Tei chm ul l erspaceand know i ng them axi m al m axi m al l y stretched l am i nati on (x;y) from x to y,i t i s i n generalqui te di cul t to nd the l am i nati on (y;x). For al l t > 0, the m axi m al m axi m al l y stretched "l am i nati on" from S e t to S i s the uni on of the seam s. A s al ready m enti oned i n the proofofT heorem 5. 3,by our choi ce ofthe tw i st param eters (i n w hi ch the feet ofthe seam s coi nci de),i n the case ofcl osed surfaces,the uni on ofthe seam s i s a uni on ofdi sjoi ntcl osed geodesi cs(a m ul ti -curve),see Fi gure 8. T hi s m ul ti -curve i s m axi m al l y stretched by the stretch that we de ned from S e t to S and therefore i t i s contai ned i n the l am i nati on (S e t ;S). In the case ofa cl osed surface ofgenus 2, the precedi ng argum ent show s that (S e t ;S) is a uni on ofseam s,si nce thi s uni on i s a pants decom posi ti on. F igure 8. In bol d l i nes i s represented a pants decom posti on of the cl osed surface ofgenus 2. T he uni on ofthe seam s i s a m ul ti -curve and a pants decom posi ti on as w el lfor the genus 2 surface.

F igure 1 .

 1 T he horocycl i c fol i ati on ofan i dealtri angl e.

i ' 1 F igure 4 .

 14 ' i s the l ength ofa segm ent joi ni ng perpendi cul arl y the verti calgeodesi c and the hypercycl e m aki ng an angl e 1 w i th the horizontal . W e have cos 1 = tanh '.

F igure 5 .

 5 T he acti ons ofthe m aps f k and g k on sym m etri c hexagons.