0 Z i + 5)t and variance equal to (θ ′ 0 Z i + 5)t + (θ ′ 0 Z i + 5) 2 t 2 /a. Note also that the process of interest N * (•) has a conditional expectation equal to

E[N * i (t)|Z i ] = (θ ′ 0 Z i + 5) t 0
(1 -F (s-))ds, i = 1, . . . , n, which is the same as in the simulations section of the main paper, but has a larger variance than its expectation.

We put a = 2. The distributions of the variables D i and C i , the parameters and the family of weights are all set to the same values as in the main paper. In Tables 1 and2 we report the results of our estimators θ and θ ŵ,h0 over 1 000 simulations of samples of size 100 for two rates of censoring (30% and 70%). We also compare these results with the Cox estimator as previously. The average weights of ŵ were also computed. For 30% When no weights are used in the estimation procedure, the simulation results are very similar to those obtained in the main paper. However, an increase in the variance estimates can be seen in the negative binomial context compared to the Poisson framework.

As previously, the adaptive measure seems to play an important role in the estimation performance of θ 0 . However, the improvement in the quality of estimation in the negative binomial context is clearly not as remarkable as in the Poisson context. Finally, our estimators still outperform the Cox estimator. The latter is still biased and has also a greater variance than in the Poisson situation.

All these results emphasize the fact that the recurrent events, in this simulation design, have a greater variance than in the Poisson context. This seems to deteriorate the quality of estimation of all estimators. However, the adaptive choice of the weights can still improve greatly the simulation results in term of MSE, especially in the case of high censoring, where the MSE is almost divided by 3 (and divided by 1.5 for 30% of censored data). 

,h (t, u) = n i=1 t 0 K θ ′ Zi-u h dN i (s) n j=1 K θ ′ Zj-u h 1 -G(s-)
.

We first study the convergence rate of the difference between μθ,h and µ θ and their derivatives. Since no Kaplan-Meier functions are involved in this expression, we can use classical results on uniform convergence of kernel estimators, mainly from Einmahl and

Mason [2005].

We also introduce a trimming function. Its purpose is to circumvent problems caused by too small values of the denominator in the definition of μθ,h . Indeed, to ensure uniform consistency of our estimator, we need to bound this denominator away from zero. We use the same methodology as in [START_REF] Delecroix | On semiparametric M -estimation in single-index regression[END_REF]. Let f θ ′ 0 Z denote the density of θ ′ 0 Z and define the "ideal" trimming function

J θ0 (θ ′ 0 Z, c) = I(θ ′ 0 Z ∈ B 0 ) where B 0 = {u : f θ ′ 0 Z (u) ≥ c} for some constant c > 0.
As in Delecroix et al. [2006] (see also [START_REF] Lopez | Single-index regression models with right-censored responses[END_REF]), we first assume that we know some set B on which

inf{f θ ′ Z (θ ′ z) : z ∈ B, θ ∈ Θ} > c
where c is a strictly positive constant. In a preliminary step, we can use this set B to compute the preliminary trimming J B (z) = I(z ∈ B). Using this trimming function and a deterministic sequence of bandwidth h 0 satisfying (4) in Assumption 10 we define a preliminary estimator θ n of θ 0 as

θ n (w) = arg min θ∈Θ M n,w (θ, μθ )J B (z).
Given this preliminary consistent estimator of θ 0 , we use the following trimming

J n (θ ′ n Z, c) = I( fθ ′ n Z (θ ′ n Z) ≥ c
) which appears to be asymptotically equivalent to J θ0 (θ ′ 0 Z, c) (see e.g. [START_REF] Lopez | Single-index regression models with right-censored responses[END_REF]). Then, our final estimator consists of

θ(w) = arg min θ∈Θn M n,w (θ, μθ )J n (θ ′ n z, c),
where Θ n is a shrinking neighborhood of θ 0 accordingly to our preliminary estimator θ n .

As announced, the next proposition gives the rates of convergence of μθ,h and its derivatives. Since we need a convergence over θ ∈ Θ, the trimming we need to use is

J θ (θ ′ Z, c) := I( fθ ′ Z (θ ′ Z) ≥ c). But notice that J θ0 (θ ′ 0 Z, c
) can be replaced by J θ (θ ′ Z, c/2) on shrinking neighborhoods of θ 0 . Proposition 1. Under Assumption 10, for z such that J θ (θ ′ z, c) = 1 almost surely, we have

sup t≤T(n),θ,z,h nh log n μθ (t, θ ′ z) -µ θ (t, θ ′ z) μθ0 (t, θ ′ 0 z) λ1+λ2 = O P (1) , (2.1) 
sup t≤T(n),θ,z,h nh 3 log n ∇ θ μθ (t, z) -∇ θ µ θ (t, z) μθ0 (t, θ ′ 0 z) λ1+λ2 = O P (1) , (2.2) 
sup t≤T(n),θ,z,h nh 5 log n ∇ 2 θ μθ (t, z) -∇ 2 θ µ θ (t, z) μθ0 (t, θ ′ 0 z) λ1+λ2 = O P (1) . (2.3)
Proof. The proofs of (2.1)-(2.3) are all similar. The most delicate term to handle, coming from (2.3), is

Ân,h θ (t, z) := 1 nh 3 n i=1 (Z i -z) 2 μθ0 (t, θ ′ 0 z) λ1+λ2 K ′′ θ ′ Z i -θ ′ z h t 0 dN i (s) 1 -G(s-)
.

Consider the class of functions K introduced in Assumption 10. From Nolan and Pollard [1987], it can easily be seen that, using a kernel K satisfying Assumption 10, for some c ′ > 0 and ν > 0, we have

N (ε, K, • ∞ ) ≤ c ′ ε -ν , 0 < ε < 1.
Then, concerning the uniformity with respect to θ, Lemma 22 (ii) of Nolan and Polard [1987] shows that the family of functions (Z, N ) -→ Ân,h θ (t, z) satisfies the assumptions of Proposition 1 in Einmahl and Mason [2005]. Define

Ãh θ (t, z) := 1 h 3 E (Z -z) 2 μθ0 (t, θ ′ 0 z) λ1+λ2 K ′′ θ ′ Z -θ ′ z h t 0 dN (s) 1 -G(s-) , A h θ (t, z) := ∂ 2 ∂u 2 E (Z -z) 2 μθ0 (t, θ ′ 0 z) λ1+λ2 t 0 dN (s) 1 -G(s-) θ ′ Z = u f θ ′ Z (u) u=θ ′ z
and apply Talagrand's inequality (see [START_REF] Talagrand | Sharper bounds for Gaussian and empirical processes[END_REF], see also [START_REF] Einmahl | Uniform in bandwidth consistency of kernel-type function estimators[END_REF]) to obtain that

sup t≤T(n),θ,z,h | Ân,h (t, z) -Ãn,h (t, z)| = O P n -1/2 h -5/2 (log n) 1/2 .
For the bias term, classical kernel arguments (see for instance [START_REF] Bosq | Théorie de l'estimation fonctionnelle[END_REF]) show that

sup t≤T(n),θ,z,h | Ãn,h (t, z) -A n,h (t, z)| = O(h 2 ).
It remains to study μθ,hμθ,h . The following lemma gives some precision on the difference between the Kaplan Meier weights of μθ,h and the "ideal" weights involving the true function G in μθ,h . H(s-) .

Lemma 2. Let ΛG (s) = (1 -Ĝ(s-)) -1 , ΛG (s) = (1 -G(s-)) -1 and C G (t) = t 0 dG(s) 1 -G(s-) 1 -
(1) We have

sup t≤T(n) 1 -G(t) 1 -Ĝ(t) = O P (1).
(2) For all 0 ≤ β ≤ 1 and ε > 0, we have

| ΛG (s) -ΛG (s)| ≤ R n (s) ΛG (s)C G (s) β(1/2+ε) ,
where

sup s≤T(n) R n (s) = O P (n -β/2 ).
Proof.

(1) This result is a consequence of Lemma 2.6 in [START_REF] Gill | Large sample behavior of the product-limit estimator on the whole line[END_REF].

(2) For 0 ≤ β ≤ 1 and ε > 0, write [START_REF] Gill | Large sample behavior of the product-limit estimator on the whole line[END_REF] and use the first part of the current lemma to conclude the proof.

ΛG (s) -ΛG (s) = ΛG (s)C G (s) β(1/2+ε) R G (s)C G (s) -1/2-ε β R G (s) 1-β 1 -G(s-) 1 -Ĝ(s-) , where R G (s) = Ĝ(s-) -G(s-) 1 -G(s-) -1 . Since τH 0 C G (s) -1-2ε dC G (s) < ∞, apply Theorem 1 in
The next proposition gives the convergence rate of μθ,hμθ,h . Notice that if w is supported on a compact interval, we only need this result on a compact subset of [0, T (n) ] and in this case Assumption 11 is automatically fulfilled. Proposition 3. Under Assumptions 10 and 11, for z such that J θ (θ ′ z, c) = 1 almost surely, we have

sup t≤T(n),θ,z,h μθ (t, θ ′ z) -μθ (t, θ ′ z) μθ0 (t, θ ′ 0 z) λ1+λ2 = O P n -7/20 , (2.4) 
sup t≤T(n),θ,z,h h ∇ θ μθ (t, z) -∇ θ μθ (t, z) μθ0 (t, θ ′ 0 z) λ1+λ2 = O P n -7/20 , (2.5) 
sup t≤T(n),θ,z,h h 2 ∇ 2 θ μθ (t, z) -∇ 2 θ μθ (t, z) μθ0 (t, θ ′ 0 z) λ1+λ2 = O P n -7/20 . (2.6) 
Proof. We only prove (2.6) since (2.4) and (2.5) can be handled similarly. Let us consider the following term involving the second derivative of K

1 nh 3 n i=1 (Z i -z) 2 K ′′ θ ′ Z i -θ ′ z h μθ0 (t, θ ′ 0 z) λ1+λ2 f θ ′ Z (θ ′ z) -1 t 0 Λ(s) -Λ(s) dN i (s).
From Lemma 2, this term can be bounded by

O P (n -β/2 h -2 ) 1 nh n i=1 K ′′ θ ′ Z i -θ ′ z h μθ0 (t, θ ′ 0 z) -(λ1+λ2) t 0 Λ(s)C G (s) β(1/2+ε) dN i (s)
(2.7) where the O Prate does not depend on t, θ, z nor h. Now, consider the family of functions indexed by t, θ, z and h,

(Z, N ) -→ K ′′ θ ′ Z -θ ′ z h μθ0 (t, θ ′ 0 z) -(λ1+λ2) t 0 Λ(s)C G (s) β(1/2+ε) dN (s) .
This family is Euclidian (see [START_REF] Nolan | U -processes: rates of convergence[END_REF]) for an envelope

sup t,z Λ(t)C β(1/2+ε) G (t)N (t) μθ0 (t, θ ′ 0 z) λ1+λ2
which is, for β = 7/10, square integrable from Assumption 11. Then, using the results of [START_REF] Sherman | Maximal inequalities for degenerate U -processes with applications to optimization estimators[END_REF], the second part of (2.7) is O P (1) uniformly in t, θ, z and h.

Finally, combination of Propositions 1 and 3 leads to the following result.

Corollary 4. Under Assumptions 10 and 11, for z such that J θ (θ ′ z, c) = 1 almost surely,

sup t≤T(n),θ,z,h |μ θ (t, θ ′ z) -µ θ (t, θ ′ z)| • ∇ θ μθ (t, z) -∇ θ µ θ (t, z) |μ θ0 (t, θ ′ 0 z)| 2(λ1+λ2)
= o P (n -1/2 ).

Technical lemmas

3.1 Gradient vector in the single-index model Lemma 5. Let µ ′ θ0 (t|u) = ∂ ∂u µ θ0 (t, u) (assuming that µ θ0 (•, •) is C 1 ). Then, for every (t, z), the map θ → µ θ (t, θ ′ z) is differentiable with respect to θ, with

∇ θ µ θ0 (t, Z) = µ ′ θ0 (t|θ ′ 0 Z) Z -E(Z|θ ′ 0 Z) ,
where, as a consequence

E ∇ θ µ θ0 (t, Z)|θ ′ 0 Z = 0. (3.1) Proof. Observe that µ θ (t, θ ′ Z) = E[µ θ0 (t, θ ′ 0 Z)|θ ′ Z] and let ζ(Z, θ) = θ ′ 0 Z -θ ′ Z for θ ∈ Θ. We have µ θ (t, θ ′ Z) = E µ θ0 t, ζ(Z, θ) + θ ′ Z |θ ′ Z . As a consequence, lim τ →τH lim sup n→∞ P sup τ ≤t≤τH ,f ∈F |R n (t, f )| > ε ≤ lim M →∞ lim sup n→∞ P (X n > M ) = 0,
using condition (3).

Covering number results

In this section, we determine the covering numbers of some particular classes of functions.

From these computations, sufficient conditions can be deduced to check Property 

F (t, z)W (t)Y (t)dt) 2 ] < ∞.
Then, the class of functions H = {(z, y) → τH 0 f (t, z)y(t)dw(t), f ∈ F, w ∈ W} has a uniform covering number satisfying, for some constant C,

N (ε, H, • 2 ) ≤ CN (ε, W F, • 2 )N (ε, W , • 2 ).
Proof. Let Q be a probability measure and introduce For any f ∈ F, there exists some i such that the first term is seen to be less than c 1 ε in L 2 (Q)-norm. For the second term, there also exists some j such that this is smaller than c 2 ε, which can be seen using integration by parts. The result follows.

N 1 = sup Q N (ε W F Q , W F, •

  of censoring, we obtain, E[ ŵ({0.9})] = 0.711, E[ ŵ({1})] = 0.563, E[ ŵ({1.1})] = 0.420 and E[ ŵ({1.2})] = 0.337 and for 70% of censoring, E[ ŵ({0.9})] = 0.725, E[ ŵ({1})] = 0.561, E[ ŵ({1.1})] = 0.422 and E[ ŵ({1.2})] = 0.329.

2 , 0 YY 0 Y 0 Y

 2000 Q ) and N 2 = sup Q N (ε W Q , W, • 2,Q ). Let {f W i } 1≤i≤N1 (respectively { wj } 1≤j≤N2 )be the center of the ε -• 2,Q balls needed to cover W F (respectively W). Writing dw(t) = W (t)d w(t), we have for any1 ≤ i ≤ N 1 and 1 ≤ j ≤ N 2 τH (t)f (t, z)W (t)d w(t) -τH 0 (t)f W i (t, z)d wj (t) ≤ τH (t) f (t, z)W (t)f W i (t,z) d wj (t) + τH (t)f (t, z)W (t)(d wd wj )(t) .

Table 1 .

 1 Biases, variances and MSE of θ, θ ŵ,h 0 and θcox for 30% of censored data

	p = 30%			Bias					Variance	MSE
			0.0827				0.1008 -0.0176 -0.0551	
	θ	 	0.0606	 	 	-0.0176 0.0794 -0.0433	  0.2880
				0.0552				-0.0551 -0.0433 0.0980
			0.0634				0.0559 -0.0202 -0.0242	
	θ ŵ,h0	 	0.0597	 	 	-0.0202 0.0624 -0.0227	  0.1956
				0.0429				-0.0242 -0.0227 0.0679
			-1.4975			0.0626 -0.0002 0.0011	
	θcox	 	-1.1696	 	 	-0.0002 0.0650 0.0056	 	4.2353
			-0.6608				0.0011 0.0056 0.0607

Table 2 .

 2 Biases, variances and MSE of θ, θ ŵ,h 0 and θcox for 70% of censored dataIn this section, we show that the kernel estimator μθ,h defined by (2.10) satisfies the convergence rates required by Assumption 7, under Assumptions 10 and 11. Introduce

	p = 70%			Bias					Variance	MSE
			0.0913				0.1449 -0.0312 0.0287	
	θ	 	0.0748	 	 	-0.0412 0.1210 -0.0265	  0.6417
				0.0578					0.0287 -0.0265 0.1927
			0.0740				0.0643 -0.0242 -0.0244	
	θ ŵ,h0	 	0.0624	 	 	-0.0242 0.0682 -0.0242	  0.2167
				0.0411				-0.0244 -0.0242 0.0731
			-1.5005			0.0724 -0.0004 0.0002	
	θcox	 	-1.1744	 	 	-0.0004 0.07156 0.0771	 	4.2676
			-0.6449				0.0002 0.0771 0.0771

  Proposition 7. Let F be a class of functions f (t, z) with envelope F defined on R × R d with continuous derivative with respect to the first component. Let F be the envelope of the class of functions ∂f (s, z)/∂s. Let W (t) be a positive bounded decreasing function and set W = {w : dw(t) = W (t)d w(t), w ∈ W} where W is a class of monotone positive functions with envelope function W . Assume that E[(

	2 and
	Assumption 9.
	τH
	0

F (t, z)W (t)dY (t)) 2 ] < ∞, E[( τH 0 F (t, z)Y (t)dW (t)) 2 ] < ∞ and E[( τH 0

we have Γ(θ, θ) = µ θ (t, θ ′ Z), which leads to

4. Auxiliary lemma for tightness conditions Lemma 6. Let F be a class of functions. Let P n (t, f ) be a process on

where W(V f (t)) is a centered Gaussian process with covariance function V f and D denotes the set of càdlàg functions. Assume that, for a sequence of random variables (X n ) and two functions Γ and Γ n , the following conditions hold

Γ n (τ ) → Γ(τ ) in probability, (5) lim τ →τH Γ(τ ) = 0.

Proof. From Theorem 13.5 in [START_REF] Billingsley | Convergence of probability measures[END_REF] and condition (1), it suffices to show that, for all ε > 0 lim

Using condition (2) , the probability in equation (4.1) is bounded, for all M > 0, by