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1. Extended simulation study

In this section, we extend the simulation study performed in Section 4 of the main article.

In order to take into account heterogeneity among individuals, we consider a gamma

frailty model where Gi ∼ Γ(a, 1/a), i = 1, . . . , n, is a gamma variable with shape a and

scale 1/a. The process Ñi(·) is simulated in such a way that, conditionally on Gi and Zi,

Ñi(·) is a Poisson process with intensity (θ′0Zi + 5)Gi. This ensures us that, marginally,

Ñi(t)|Zi has a negative binomial distribution with mean equal to (θ′0Zi+5)t and variance

equal to (θ′0Zi + 5)t+ (θ′0Zi + 5)2t2/a. Note also that the process of interest N∗(·) has a

conditional expectation equal to

E[N∗
i (t)|Zi] = (θ′0Zi + 5)

∫ t

0
(1− F (s−))ds, i = 1, . . . , n,

which is the same as in the simulations section of the main paper, but has a larger variance

than its expectation.

We put a = 2. The distributions of the variables Di and Ci, the parameters and the

family of weights are all set to the same values as in the main paper. In Tables 1 and 2

we report the results of our estimators θ̃ and θ̂ŵ,h0
over 1 000 simulations of samples of

size 100 for two rates of censoring (30% and 70%). We also compare these results with

the Cox estimator as previously. The average weights of ŵ were also computed. For 30%

of censoring, we obtain, E[ŵ({0.9})] = 0.711, E[ŵ({1})] = 0.563, E[ŵ({1.1})] = 0.420
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and E[ŵ({1.2})] = 0.337 and for 70% of censoring, E[ŵ({0.9})] = 0.725, E[ŵ({1})] =

0.561, E[ŵ({1.1})] = 0.422 and E[ŵ({1.2})] = 0.329.

When no weights are used in the estimation procedure, the simulation results are very

similar to those obtained in the main paper. However, an increase in the variance esti-

mates can be seen in the negative binomial context compared to the Poisson framework.

As previously, the adaptive measure seems to play an important role in the estimation

performance of θ0. However, the improvement in the quality of estimation in the nega-

tive binomial context is clearly not as remarkable as in the Poisson context. Finally, our

estimators still outperform the Cox estimator. The latter is still biased and has also a

greater variance than in the Poisson situation.

All these results emphasize the fact that the recurrent events, in this simulation design,

have a greater variance than in the Poisson context. This seems to deteriorate the quality

of estimation of all estimators. However, the adaptive choice of the weights can still

improve greatly the simulation results in term of MSE, especially in the case of high

censoring, where the MSE is almost divided by 3 (and divided by 1.5 for 30% of censored

data).

Table 1. Biases, variances and MSE of θ̃, θ̂ŵ,h0
and θ̂cox for 30% of censored data

p = 30% Bias Variance MSE

θ̃







0.0827

0.0606

0.0552













0.1008 −0.0176 −0.0551

−0.0176 0.0794 −0.0433

−0.0551 −0.0433 0.0980






0.2880

θ̂ŵ,h0







0.0634

0.0597

0.0429













0.0559 −0.0202 −0.0242

−0.0202 0.0624 −0.0227

−0.0242 −0.0227 0.0679






0.1956

θ̂cox







−1.4975

−1.1696

−0.6608













0.0626 −0.0002 0.0011

−0.0002 0.0650 0.0056

0.0011 0.0056 0.0607






4.2353

Table 2. Biases, variances and MSE of θ̃, θ̂ŵ,h0
and θ̂cox for 70% of censored data

p = 70% Bias Variance MSE

θ̃







0.0913

0.0748

0.0578













0.1449 −0.0312 0.0287

−0.0412 0.1210 −0.0265

0.0287 −0.0265 0.1927






0.6417

θ̂ŵ,h0







0.0740

0.0624

0.0411













0.0643 −0.0242 −0.0244

−0.0242 0.0682 −0.0242

−0.0244 −0.0242 0.0731






0.2167

θ̂cox







−1.5005

−1.1744

−0.6449













0.0724 −0.0004 0.0002

−0.0004 0.07156 0.0771

0.0002 0.0771 0.0771






4.2676
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2. Uniform convergence of the nonparametric estimators

In this section, we show that the kernel estimator µ̂θ,h defined by (2.10) satisfies the

convergence rates required by Assumption 7, under Assumptions 10 and 11. Introduce

the quantity

µ̃θ,h(t, u) =

n
∑

i=1

∫ t

0

K
(

θ′Zi−u
h

)

dNi(s)
∑n

j=1K
(

θ′Zj−u
h

)

(

1−G(s−)
)

.

We first study the convergence rate of the difference between µ̃θ,h and µθ and their

derivatives. Since no Kaplan-Meier functions are involved in this expression, we can use

classical results on uniform convergence of kernel estimators, mainly from Einmahl and

Mason [2005].

We also introduce a trimming function. Its purpose is to circumvent problems caused by

too small values of the denominator in the definition of µ̂θ,h. Indeed, to ensure uniform

consistency of our estimator, we need to bound this denominator away from zero. We

use the same methodology as in Delecroix et al. [2006]. Let fθ′

0Z denote the density of

θ′0Z and define the “ideal” trimming function Jθ0(θ
′
0Z, c) = I(θ′0Z ∈ B0) where B0 = {u :

fθ′

0Z(u) ≥ c} for some constant c > 0. As in Delecroix et al. [2006] (see also Lopez [2009]),

we first assume that we know some set B on which inf{fθ′Z(θ
′z) : z ∈ B, θ ∈ Θ} > c

where c is a strictly positive constant. In a preliminary step, we can use this set B to

compute the preliminary trimming JB(z) = I(z ∈ B). Using this trimming function and

a deterministic sequence of bandwidth h0 satisfying (4) in Assumption 10 we define a

preliminary estimator θn of θ0 as

θn(w) = argmin
θ∈Θ

Mn,w(θ, µ̂θ)JB(z).

Given this preliminary consistent estimator of θ0, we use the following trimming

Jn(θ
′
nZ, c) = I(f̂θ′

nZ(θ
′
nZ) ≥ c) which appears to be asymptotically equivalent to

Jθ0(θ
′
0Z, c) (see e.g. Lopez [2009]). Then, our final estimator consists of

θ̂(w) = argmin
θ∈Θn

Mn,w(θ, µ̂θ)Jn(θ
′
nz, c),

where Θn is a shrinking neighborhood of θ0 accordingly to our preliminary estimator θn.

As announced, the next proposition gives the rates of convergence of µ̃θ,h and its

derivatives. Since we need a convergence over θ ∈ Θ, the trimming we need to use is

Jθ(θ
′Z, c) := I(f̂θ′Z(θ

′Z) ≥ c). But notice that Jθ0(θ
′
0Z, c) can be replaced by Jθ(θ

′Z, c/2)

on shrinking neighborhoods of θ0.

Proposition 1. Under Assumption 10, for z such that Jθ(θ
′z, c) = 1 almost surely, we

3
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have

sup
t≤T(n),θ,z,h

√

nh

log n

∣

∣

∣

∣

µ̃θ(t, θ
′z)− µθ(t, θ

′z)

µ̄θ0(t, θ
′
0z)

λ1+λ2

∣

∣

∣

∣

= OP (1) , (2.1)

sup
t≤T(n),θ,z,h

√

nh3

log n

∥

∥

∥

∥

∇θµ̃θ(t, z)−∇θµθ(t, z)

µ̄θ0(t, θ
′
0z)

λ1+λ2

∥

∥

∥

∥

= OP (1) , (2.2)

sup
t≤T(n),θ,z,h

√

nh5

log n

∥

∥

∥

∥

∇2
θµ̃θ(t, z) −∇2

θµθ(t, z)

µ̄θ0(t, θ
′
0z)

λ1+λ2

∥

∥

∥

∥

= OP (1) . (2.3)

Proof. The proofs of (2.1)-(2.3) are all similar. The most delicate term to handle, coming

from (2.3), is

Ân,h
θ (t, z) :=

1

nh3

n
∑

i=1

(Zi − z)2

µ̄θ0(t, θ
′
0z)

λ1+λ2
K ′′

(

θ′Zi − θ′z

h

)
∫ t

0

dNi(s)

1−G(s−)
.

Consider the class of functions K introduced in Assumption 10. From Nolan and Pol-

lard [1987], it can easily be seen that, using a kernel K satisfying Assumption 10, for

some c′ > 0 and ν > 0, we have N(ε,K, ‖ · ‖∞) ≤ c′ε−ν , 0 < ε < 1.

Then, concerning the uniformity with respect to θ, Lemma 22 (ii) of Nolan and Po-

lard [1987] shows that the family of functions
{

(Z,N) 7−→ Ân,h
θ (t, z)

}

satisfies the as-

sumptions of Proposition 1 in Einmahl and Mason [2005].

Define

Ãh
θ (t, z) :=

1

h3
E

[

(Z − z)2

µ̄θ0(t, θ
′
0z)

λ1+λ2
K ′′

(

θ′Z − θ′z

h

)∫ t

0

dN(s)

1−G(s−)

]

,

Ah
θ (t, z) :=

∂2

∂u2

{

E

[

(Z − z)2

µ̄θ0(t, θ
′
0z)

λ1+λ2

∫ t

0

dN(s)

1−G(s−)

∣

∣

∣

∣

θ′Z = u

]

fθ′Z(u)

}∣

∣

∣

∣

∣

u=θ′z

and apply Talagrand’s inequality (see Talagrand [1994], see also Einmahl and Ma-

son [2005]) to obtain that

sup
t≤T(n),θ,z,h

|Ân,h(t, z)− Ãn,h(t, z)| = OP

(

n−1/2h−5/2(log n)1/2
)

.

For the bias term, classical kernel arguments (see for instance Bosq and Lecoutre [1997])

show that

sup
t≤T(n),θ,z,h

|Ãn,h(t, z)−An,h(t, z)| = O(h2).

It remains to study µ̂θ,h − µ̃θ,h. The following lemma gives some precision on the

difference between the Kaplan Meier weights of µ̂θ,h and the “ideal” weights involving the

4
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true function G in µ̃θ,h.

Lemma 2. Let Λ̂G(s) = (1− Ĝ(s−))−1, Λ̃G(s) = (1−G(s−))−1 and

CG(t) =

∫ t

0

dG(s)
(

1−G(s−)
)(

1−H(s−)
) .

(1) We have

sup
t≤T(n)

1−G(t)

1− Ĝ(t)
= OP (1).

(2) For all 0 ≤ β ≤ 1 and ε > 0, we have

|Λ̂G(s)− Λ̃G(s)| ≤ Rn(s)Λ̃G(s)CG(s)
β(1/2+ε),

where sups≤T(n)
Rn(s) = OP (n

−β/2).

Proof. (1) This result is a consequence of Lemma 2.6 in Gill [1983].

(2) For 0 ≤ β ≤ 1 and ε > 0, write

Λ̂G(s)− Λ̃G(s) = Λ̃G(s)CG(s)
β(1/2+ε)

(

RG(s)CG(s)
−1/2−ε

)β(
RG(s)

)1−β 1−G(s−)

1− Ĝ(s−)
,

where RG(s) =
(

Ĝ(s−)−G(s−)
)(

1−G(s−)
)−1

. Since
∫ τH
0 CG(s)

−1−2εdCG(s) < ∞,

apply Theorem 1 in Gill [1983] and use the first part of the current lemma to conclude

the proof.

The next proposition gives the convergence rate of µ̂θ,h − µ̃θ,h. Notice that if w is

supported on a compact interval, we only need this result on a compact subset of [0, T(n)]

and in this case Assumption 11 is automatically fulfilled.

Proposition 3. Under Assumptions 10 and 11, for z such that Jθ(θ
′z, c) = 1 almost

surely, we have

sup
t≤T(n),θ,z,h

∣

∣

∣

∣

µ̂θ(t, θ
′z)− µ̃θ(t, θ

′z)

µ̄θ0(t, θ
′
0z)

λ1+λ2

∣

∣

∣

∣

= OP

(

n−7/20
)

, (2.4)

sup
t≤T(n),θ,z,h

h

∥

∥

∥

∥

∇θµ̂θ(t, z)−∇θµ̃θ(t, z)

µ̄θ0(t, θ
′
0z)

λ1+λ2

∥

∥

∥

∥

= OP

(

n−7/20
)

, (2.5)

sup
t≤T(n),θ,z,h

h2
∥

∥

∥

∥

∇2
θµ̂θ(t, z) −∇2

θµ̃θ(t, z)

µ̄θ0(t, θ
′
0z)

λ1+λ2

∥

∥

∥

∥

= OP

(

n−7/20
)

. (2.6)

Proof. We only prove (2.6) since (2.4) and (2.5) can be handled similarly. Let us consider

the following term involving the second derivative of K

1

nh3

n
∑

i=1

(Zi − z)2K ′′

(

θ′Zi − θ′z

h

)

(

µ̄θ0(t, θ
′
0z)

λ1+λ2fθ′Z(θ
′z)
)−1

∫ t

0

(

Λ̂(s)− Λ̃(s)
)

dNi(s).

5
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From Lemma 2, this term can be bounded by

OP (n
−β/2h−2)

∣

∣

∣

∣

∣

1

nh

n
∑

i=1

K ′′

(

θ′Zi − θ′z

h

)

µ̄θ0(t, θ
′
0z)

−(λ1+λ2)

∫ t

0
Λ̃(s)CG(s)

β(1/2+ε)dNi(s)

∣

∣

∣

∣

∣

(2.7)

where the OP− rate does not depend on t, θ, z nor h. Now, consider the family of functions

indexed by t, θ, z and h,

{

(Z,N) 7−→ K ′′

(

θ′Z − θ′z

h

)

µ̄θ0(t, θ
′
0z)

−(λ1+λ2)

∫ t

0
Λ̃(s)CG(s)

β(1/2+ε)dN(s)

}

.

This family is Euclidian (see Nolan and Pollard [1987]) for an envelope

sup
t,z

Λ̃(t)C
β(1/2+ε)
G (t)N(t)

µ̄θ0(t, θ
′
0z)

λ1+λ2

which is, for β = 7/10, square integrable from Assumption 11. Then, using the results of

Sherman [1994], the second part of (2.7) is OP (1) uniformly in t, θ, z and h.

Finally, combination of Propositions 1 and 3 leads to the following result.

Corollary 4. Under Assumptions 10 and 11, for z such that Jθ(θ
′z, c) = 1 almost surely,

sup
t≤T(n),θ,z,h

|µ̂θ(t, θ
′z)− µθ(t, θ

′z)| · ‖∇θµ̂θ(t, z) −∇θµθ(t, z)‖

|µ̄θ0(t, θ
′
0z)|

2(λ1+λ2)
= oP (n

−1/2).

3. Technical lemmas

3.1 Gradient vector in the single-index model

Lemma 5. Let µ′
θ0
(t|u) = ∂

∂uµθ0(t, u) (assuming that µθ0(·, ·) is C1). Then, for every

(t, z), the map θ 7→ µθ(t, θ
′z) is differentiable with respect to θ, with

∇θµθ0(t, Z) = µ′
θ0(t|θ

′
0Z)
(

Z − E(Z|θ′0Z)
)

,

where, as a consequence

E
[

∇θµθ0(t, Z)|θ′0Z
]

= 0. (3.1)

Proof. Observe that µθ(t, θ
′Z) = E[µθ0(t, θ

′
0Z)|θ′Z] and let ζ(Z, θ) = θ′0Z−θ′Z for θ ∈ Θ.

We have

µθ(t, θ
′Z) = E

[

µθ0

(

t, ζ(Z, θ) + θ′Z
)

|θ′Z
]

.

6
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Defining Γ(θ1, θ2) = E[µθ0(t, ζ(Z, θ1) + θ′2Z)|θ′2Z], we have Γ(θ, θ) = µθ(t, θ
′Z), which

leads to

∇θ1Γ(θ1, θ0)|θ1=θ0
= −µ′

θ0(t, θ
′
0Z)E

[

Z|θ′0Z
]

,

∇θ2Γ(θ0, θ2)|θ2=θ0
= Zµ′

θ0(t, θ
′
0Z).

4. Auxiliary lemma for tightness conditions

Lemma 6. Let F be a class of functions. Let Pn(t, f) be a process on [0, τH ]×F . Define,

for any τ ∈ [0, τH ], Rn(τ, f) = Pn(τH , f) − Pn(τ, f). Assume that for any τ such that

τ < τH

Pn(t, f) =⇒W(Vf (t)) ∈ D([0, τ ]), f ∈ F ,

whereW(Vf (t)) is a centered Gaussian process with covariance function Vf and D denotes

the set of càdlàg functions.

Assume that, for a sequence of random variables (Xn) and two functions Γ and Γn, the

following conditions hold

(1) limτ→τH Vf (τ) = Vf (τH) with supf∈F |Vf (τH)| < ∞,

(2) |Rn(τ
′, f)| ≤ Xn × Γn(τ) for all τ < τ ′ < τH ,

(3) Xn = OP (1),

(4) Γn(τ) → Γ(τ) in probability,

(5) limτ→τH Γ(τ) = 0.

Then Pn(τH , f) =⇒ N (0, Vf (τH)).

Proof. From Theorem 13.5 in Billingsley [1999] and condition (1), it suffices to show that,

for all ε > 0

lim
τ→τH

lim sup
n→∞

P

(

sup
τ≤t≤τH ,f∈F

|Rn(t, f)| > ε

)

= 0. (4.1)

Using condition (2) , the probability in equation (4.1) is bounded, for all M > 0, by

P
(

|Γn(τ)− Γ(τ)| > ε/M − Γ(τ)
)

+ P (Xn > M). (4.2)

Moreover, from condition (4), we can state that

lim sup
n→∞

P
(

|Γn(τ)− Γ(τ)| > ε/M − Γ(τ)
)

= I(ε/M − Γ(τ) ≥ 0).

Since Γ(τ) → 0 (condition (5)), we can deduce that

lim
τ→τH

lim sup
n→∞

P
(

|Γn(τ)− Γ(τ)| > ε/M − Γ(τ)
)

= 0.

7
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As a consequence,

lim
τ→τH

lim sup
n→∞

P

(

sup
τ≤t≤τH ,f∈F

|Rn(t, f)| > ε

)

≤ lim
M→∞

lim sup
n→∞

P (Xn > M) = 0,

using condition (3).

5. Covering number results

In this section, we determine the covering numbers of some particular classes of functions.

From these computations, sufficient conditions can be deduced to check Property 2 and

Assumption 9.

Proposition 7. Let F be a class of functions f(t, z) with envelope F̄ defined on R×Rd

with continuous derivative with respect to the first component. Let F̃ be the envelope of

the class of functions ∂f(s, z)/∂s. Let W (t) be a positive bounded decreasing function

and set W = {w : dw(t) = W (t)dw̃(t), w̃ ∈ W̃} where W̃ is a class of monotone positive

functions with envelope function W̃ .

Assume that E[(
∫ τH
0 F̄ (t, z)W (t)dY (t))2] < ∞, E[(

∫ τH
0 F̄ (t, z)Y (t)dW (t))2] < ∞ and

E[(
∫ τH
0 F̃ (t, z)W (t)Y (t)dt)2] < ∞.

Then, the class of functions H = {(z, y) →
∫ τH
0 f(t, z)y(t)dw(t), f ∈ F , w ∈ W} has a

uniform covering number satisfying, for some constant C,

N(ε,H, ‖ · ‖2) ≤ CN(ε,WF , ‖ · ‖2)N(ε, W̃ , ‖ · ‖2).

Proof. Let Q be a probability measure and introduce N1 = supQN(ε‖WF̄‖Q,WF , ‖ ·

‖2,Q) and N2 = supQN(ε‖W̃ ‖Q, W̃, ‖ · ‖2,Q). Let {fW
i }1≤i≤N1

(respectively {w̃j}1≤j≤N2
)

be the center of the ε − ‖ · ‖2,Q balls needed to cover WF (respectively W̃). Writing

dw(t) = W (t)dw̃(t), we have for any 1 ≤ i ≤ N1 and 1 ≤ j ≤ N2

∣

∣

∣

∣

∫ τH

0
Y (t)f(t, z)W (t)dw̃(t)−

∫ τH

0
Y (t)fW

i (t, z)dw̃j(t)

∣

∣

∣

∣

≤

∣

∣

∣

∣

∫ τH

0
Y (t)

(

f(t, z)W (t)− fW
i (t, z)

)

dw̃j(t)

∣

∣

∣

∣

+

∣

∣

∣

∣

∫ τH

0
Y (t)f(t, z)W (t)(dw̃ − dw̃j)(t)

∣

∣

∣

∣

.

For any f ∈ F , there exists some i such that the first term is seen to be less than c1ε

in L2(Q)−norm. For the second term, there also exists some j such that this is smaller

than c2ε, which can be seen using integration by parts. The result follows.
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