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Abstract

In this paper, we introduce new parametric and semiparametric regression tech-

niques for a recurrent event process subject to random right censoring. We develop

models for the cumulative mean function and provide asymptotically normal esti-

mators. Our semiparametric model which relies on a single-index assumption can

be seen as a reduction dimension technique that, contrary to a fully nonparametric

approach, is not stroke by the curse of dimensionality when the number of covariates

is high. We discuss data-driven techniques to choose the parameters involved in the

estimation procedures and provide a simulation study to support our theoretical

results.
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1 Introduction

The modeling of recurrent events has become a crucial issue in various application fields

of statistical inference such as clinical and epidemiological studies, insurance or actuarial

science. Among many examples, one can mention the modeling of asthma, of epileptic

seizures or of repeated warranty claims. In these settings, regression models are a valuable

tool for predicting or identifying the causes which influence the number of such events

occurring during a given time period. A natural way to measure the impact of covariates

on the recurrent event process consists of estimating the conditional cumulative mean

function. In this paper, our aim consists of developing both parametric and semiparamet-

ric inference for this conditional cumulative mean function. To that aim, we introduce

new estimators and study their asymptotic behavior. We also discuss the data-driven way

of calibrating the parameters involved in the estimation procedures.

In the literature, various authors have studied Cox regression models adapted to the

recurrent event context. For example, in the absence of dependent death, Prentice et

al. (1981) considered Cox-type regression models which allow the intensity of the recur-

rent event process to depend on the individual’s prior failure history through stratifica-

tion. Allowing for independent censoring and time-dependent covariates, Andersen and

Gill (1982) carried out Cox-type regression analysis for the intensity of the recurrent pro-

cess which is assumed to be a time-transformed Poisson process. Andersen et al. (1993)

also adopted modeling techniques based on the intensity process in the presence of censor-

ing under a non-homogeneous Markov assumption. Lin et al. (2000) provided asymptotic

distribution theory for the fitting of Cox-type marginal models without the Poisson as-

sumption. Lawless and Nadeau (1995) proposed a semiparametric regression model where

the conditional cumulative mean function is proportional to an unknown baseline function

through a coefficient that depends parametrically on the covariates. More recently, Ghosh

and Lin (2003) performed semiparametric regression with a scale-change model that for-

mulates the marginal distributions of the recurrent event process and death as two joint

accelerated failure time models while leaving the dependence structure unspecified.

The main advantage of these kinds of models stands in the simplicity of the regres-

sion function. But they unfortunately face the disadvantage (with respect to a purely

nonparametric approach) to rely on strong modeling assumptions that may not hold in

practice.

In this work, we first study a general parametric regression model for the recurrent

event process. We then study a semiparametric generalization which relies on a single-
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index assumption. We propose a new procedure to estimate both the index and the

conditional cumulative mean regression function and provide a detailed asymptotic study

of the proposed estimators. This single-index model can be seen as a compromise be-

tween a parametric approach and a nonparametric one. In particular, while allowing full

flexibility, the nonparametric approach is known to fail when the number of covariates

is high (greater than 3 in practice) which is the so-called “curse-of-dimensionality”. It

turns out that single-index models rely on a dimension reduction assumption which allows

to achieve better convergence rates and still ensures enough flexibility to be adapted to

a large number of practical cases. This model can also be seen as a generalization of

Cox regression model. Compared to uncensored single-index models adapted to mean-

regression, see e.g. Ichimura (1993), in the specific setting of recurrent events, the presence

of censoring usually deteriorates the quality of estimation in the tail of the distribution.

Therefore, in our approach, we introduce a weight function designed to compensate the

lack of information induced by censoring. The main novelty of our procedure stands in

the fact that this weight function may be chosen using data-driven techniques.

The paper is organized as follows. In Section 2, we define the parametric and semi-

parametric models and explain the general methodology. Asymptotic results are presented

in Section 3. Simulation studies are carried out in Section 4 to investigate on the per-

formance of our methods for finite sample size. Technical results are postponed to the

Appendix in Section 6.

2 Model assumptions and methodology

In this section, we present the general setting. Specifically, Section 2.1 introduces the

different regression models. Section 2.2 presents the estimation procedures. They are

based on a least-squares type criterion and on a rescaled process defined in Section 2.2.1

which permits to correct the impact of censoring.

2.1 Regression models for recurrent events

Consider the recurrent event process N∗(t) which denotes the number of recurrent events

occurring in the time interval [0, t]. This process can be seen as a piecewise constant

function with jump only on [0, D] where D can be random. In clinical applications, this

time D may stand for the death time of a patient. For insurance applications, D can

represent the warranty length (which can be random if the client has the possibility of
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breaking the contract) or the lifetime of the insured good. In this paper, we aim to infer

on the cumulative conditional mean function given for t ≥ 0 by

µ(t|z) = E [N∗(t)|Z = z] ,

where Z is a d−dimensional vector of covariates.

We now present the two different models for µ that are studied throughout this paper.

Model 1 : parametric case.

µ(t|z) = µ0(t, z; θ0), (2.1)

where θ0 ∈ Θ ⊂ R
d is unknown and µ0 is a known function.

Model 2 : semiparametric case.

µ(t|z) = µθ0(t, θ
′
0z), (2.2)

where θ0 ∈ Θ ⊂ R
d, µθ(t, u) = E[N∗(t)|θ′Z = u] and the family of functions F = {µθ : θ ∈

Θ} is unknown. We impose that the first component of θ0 is 1 to identify this parameter.

Another equivalent condition could consist of imposing that θ0 is of norm 1 for some given

norm on R
d.

The appealing feature of the first model stands in the simplicity of the regression

function. However, like every parametric procedure, it relies on strong assumptions which

have few chances to hold in practice. On the opposite, a fully nonparametric procedure

requires fewer assumptions but suffers from the so-called “curse of dimensionality” when

the number of covariates is high. Therefore, the second model appears as a good com-

promise between the parametric approach and the nonparametric one. Indeed it is more

flexible than a fully parametric one but is not stroke by the curse of dimensionality since

it relies on a dimension reduction assumption. Moreover, model 2 can be seen as a gener-

alization of widely studied models. For example, the models µ(t|z) = µ0(t) exp(θ
′
0z) and

µ(t|z) = µ0(t exp(θ
′
0z)) where µ0 is an unknown baseline function correspond respectively

to the popular Cox regression model and to the accelerated failure time model and are

covered by model 2 as special cases.

One does not generally observe N∗ on the whole time interval [0, D] because the

random variable D is subject to right-censoring. Let C be a positive random variable

standing for the censoring time. The observation time T is then given by T = D ∧ C.

Hence, instead of observing N∗(t) for t ∈ [0, D], one only observes N(t) = N∗(t ∧ T )

for t ∈ [0, D]. Letting δ = I(D ≤ C), the observations consist of n i.i.d. replications
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(Ti, δi, Zi, Ni(·))1≤i≤n of (T, δ, Z,N(·)). Let us introduce the distribution functions of the

observed variables in the censored data model:


















H(t) = P (T ≤ t),

F (t) = P (D ≤ t),

G(t) = P (C ≤ t).

We also define τH = inf(t : H(t) = 1) the right endpoint of the support of the random

variable T . In the sequel, we use some assumptions needed to identify these distribution

functions.

Assumption 1. Assume that







P
(

dN∗(C) 6= 0
)

= 0,

P (D = C) = 0.

This is a common assumption in the context of recurrent events which prevents us

from ties between the occurrence times of death, censoring and recurrent events.

Assumption 2. Assume that







C⊥⊥(N∗, D),

P (C ≤ t|N∗, Z,D) = P (C ≤ t|N∗, D) for t ∈ [0, τH ].

Assumption 2 holds in the particular case where C is independent of (N∗, D, Z) but is

more general since it does not require the independence between C and Z. Similar kinds

of assumptions are often considered in the literature on the Kaplan-Meier estimator for

the survival distribution function, see e.g. Stute (1993).

2.2 Estimation procedure

2.2.1 The rescaled process

One of the difficulties we face when estimating the conditional expectation of N∗ is that

the process N∗ is not directly observed. Hence, the most natural criteria we may like

to use can not be computed since they rely on N∗. Therefore, we introduce a rescaled

process Y designed to compensate the censoring effects. We define

Y (t) =

∫ t

0

dN(s)

1−G(s−)
. (2.3)
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In the definition (2.3), the denominator is decreasing when s grows to infinity. This means

that we allow more weight to the events we observe when s is large. This compensates

the lack of observations due to censoring for s large. Under Assumptions 1 and 2, we have

E[dN(s)|Z] = E[dN∗(s ∧ C)|Z]

= E[dN∗(s)I(s ≤ C)|Z]

= E[dN∗(s)|Z](1−G(s−))

so that

E[Y (t)|Z] = E[N∗(t)|Z].

However, the rescaled process Y can not be computed in practice since it relies on the

distribution function G which is usually unknown. But the process Y (t) can be estimated

for t ≥ 0 by

Ŷ (t) =

∫ t

0

dN(s)

1− Ĝ(s−)
, (2.4)

where Ĝ denotes the Kaplan-Meier estimator of G given for t ≥ 0 by

Ĝ(t) = 1−
∏

i:Ti≤t

(

1− 1
∑n

j=1 I(Tj ≥ Ti)

)1−δi

.

2.2.2 The parametric case

Going back to the definition of the conditional expectation, it is quite natural to perform

estimation of θ0 in the parametric model using minimization of a least-squares-type crite-

rion. Once again, since N∗ is unavailable, we consider a criterion based on the estimated

rescaled process Y.

Let w denote a measure such that w
(

[0,∞)
)

<∞ and define

Mw(θ, µ0) =

∫ τH

0

E
[

µ0(t, Z; θ)
2
]

dw(t)− 2

∫ τH

0

E
[

Y (t)µ0(t, Z; θ)
]

dw(t).

By definition of the conditional expectation, the true parameter value θ0 satisfies

θ0 = argmin
θ∈Θ

Mw(θ, µ0). (2.5)

To estimate θ0, it is natural to replace the function Mw by an empirical version, that is

Mn,w(θ, µ0) =
1

n

n
∑

i=1

∫ T(n)

0

µ0(t, Zi; θ)
2dw(t)− 2

n

n
∑

i=1

∫ T(n)

0

Ŷi(t)µ0(t, Z; θ)dw(t),
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where T(n) is the greatest order statistics associated to the sample T1, . . . , Tn. Then we

define an estimator of θ0 as

θ̂(w) = argmin
θ∈Θ

Mn,w(θ, µ0). (2.6)

In the above definition, we emphasize the fact that this estimator depends on the choice of

the measure w. This measure w is an important feature of our procedure. First, in some

situations, the statistician may wish to give more weight to some time intervals which

are of higher importance. Moreover, the measure w is also useful to control the rescaled

process. Indeed, in equation (2.4), the denominator goes to zero when s grows large and

w can be precisely designed to avoid the practical problems caused by these too small

denominators. Therefore, the finite sample behavior of our estimation procedure strongly

relies on a wise choice of the measure w.

In Section 3.3, we obtain an asymptotic representation of θ̂(w) as a process indexed by

w which holds uniformly in w ∈ W where W is a set of measures in which the statistician

plans to choose w. We then discuss in Section 3.5 the adaptive choice of w.

2.2.3 The semiparametric case

In the semiparametric case, the family of functions µθ is unknown. However, the criterion

used for the parametric case can be slightly modified to estimate θ0. We can write

θ0 = argmin
θ∈Θ

Mw(θ, µθ),

where

Mw(θ, µθ) =

∫ τH

0

E
[

µθ(t, θ
′Z)2

]

dw(t)− 2

∫ τH

0

E
[

Y (t)µθ(t, θ
′Z)
]

dw(t).

Using a family of nonparametric estimators µ̂θ of µθ, we define the estimator of θ0 as

θ̂(w) = argmin
θ∈Θ

Mn,w(θ, µ̂θ), (2.7)

where

Mn,w(θ, µ̂θ) = n−1

n
∑

i=1

∫ T(n)

0

µ̂θ(t, θ
′Zi)

2dw(t)− 2n−1

n
∑

i=1

∫ T(n)

0

Ŷi(t)µ̂θ(t, θ
′Zi)dw(t).

In Section 3.4, we derive an asymptotic representation of θ̂(w) (see Theorem 3.3) regardless

of the type of nonparametric estimators µ̂θ used in the computation and provided these
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nonparametric estimators satisfy a list of uniform convergence conditions. Nevertheless,

let us give a precise example of µ̂θ using kernel estimators. The convergence properties of

this type of estimator is derived in Section 6.2.

Recall that (see Ghosh and Lin (2000) for instance)

µθ(t, u) =

∫ t

0

[

1− Fθ(s− |u)
]

dRθ(s|u),

where dRθ(t|u) = E[dN∗(t)|D ≥ t, θ′Z = u] and where Fθ(s|u) = P (D ≤ s|θ′Z = u).

Using the identifiability Assumptions 1 and 2, this can be rewritten as

µθ(t, u) =

∫ t

0

E[dN(s)|θ′Z = u]

1−G(s−)
. (2.8)

We estimate the numerator in (2.8) using a kernel estimator and the denominator by the

Kaplan-Meier estimator Ĝ, leading to

µ̂θ,h(t, u) =

∫ t

0

∑n
i=1K

(

θ′Zi−u
h

)

dNi(s)

∑n
j=1K

(

θ′Zj−u

h

)

[1− Ĝ(s−)]
, (2.9)

where K is a kernel function and h a bandwidth sequence tending to zero. In Section

6.2, we list some conditions on K and h. How to choose the bandwidth from the data in

practice is considered at the end of Section 3.7.

3 Asymptotic results

In this section, we provide asymptotic properties for our estimators. In Section 3.1, we

first expose and briefly discuss a list of technical assumptions on the model and on the

different elements needed for the estimation procedures. In Section 3.2, we expose our

main lemma, wich is the keystone of our theoretical results. In the next two sections we

give asymptotic representations of θ̂(w) for the parametric and semiparametric models.

We then discuss the adaptive choice of the measure w in order to improve the performance

of our procedure in Section 3.5. The variance of the limiting process is estimated in Section

3.6 and the choice of the bandwidth h in (2.9) is highlighted in Section 3.7.

3.1 Exposition and discussion of assumptions

In order to obtain our asymptotics results, we first need to impose some conditions on

different classes of functions.
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Let us introduce some notations about the covering number. Let F be a class of

functions with envelope F. Define, for a probability measure Q, the norm ‖ · ‖p,Q as

the norm of Lp(Q). The covering number of the class F for the measure Q denoted by

N(ε,F , ‖ · ‖p,Q) is the smaller number of Lp(Q)−balls of radius ε needed to cover the set

F . The uniform covering number is defined as N(ε,F , ‖·‖p) = supQN(ε‖F‖p,Q,F , ‖·‖p,Q)
where the supremum is taken over all probability measures. In what follows, we say that

a class of functions F is a ‖ · ‖p−V C−class of functions if there exists α and C such that

N(ε,F , ‖ · ‖p) ≤ Cε−α.

A class of functions F is said to satisfy one of the following property if the correspond-

ing condition holds.

Property 1. For a class of functions F = {f : (t, z) ∈ [0, τH ] × Z 7→ f(t, z)} and for

any τ < τH , define

Fτ = {f(t, ·), t ∈ [0, τ ]},

which is a set of functions defined on Z. Then, for any τ < τH , Fτ is a V C-class of

functions.

Property 2. For a class of functions F = {f : (t, z) ∈ [0, τH ] × Z 7→ f(t, z)}, the

family of functions defined by {(z, y) 7→
∫ τH
0

y(t)f(t, z)dw(t), f ∈ F , w ∈ W} is Glivenko

Cantelli.

In Section 6.3.3 in the appendix, we give a general type of sufficient conditions to fulfill

this property. It is easy to check that these technical assumptions are verified when the

following conditions hold altogether:

- F is a class of polynomial functions f(t, z) (with bounded coefficients),

- dE[Y (t)] = g(t)dt for some polynomial function g(t),

- the class of measures is of the form W = {w : dw(t) = W0(t)dw̃(t)} where W0(t) is

a decreasing function (of order t−k for k sufficiently high or exponential) and where

w̃ belongs to a class of monotone positive uniformly bounded functions sufficiently

small (for example, piecewise constant bounded functions with a finite number of

jumps).

Property 3. Let F = {fθ : (t, z) ∈ [0, τH ]×Z 7→ fθ(t, z), θ ∈ Θ} be a family of functions

indexed by θ. For any fθ1, fθ2 ∈ F and z ∈ Z, we have

sup
w∈W

∫ τH

0

‖fθ1(t, z)− fθ2(t, z)‖dw(t) ≤ C‖θ1 − θ2‖,
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where C is a positive constant.

We now introduce the assumptions needed to derive the asymptotic normality of θ̂ in

the parametric and semiparametric models.

Assumptions for the parametric model.

In the estimation procedures, we consider integrated versions of the rescaled process

with respect to a measure w belonging to a class of measures W. Detailed comments on

this family and its role in the statistical procedure are discussed in Section 3.5. We need

the following assumption for this class of measures.

Assumption 3. Assume there exists some probability measure w0 and a positive constant

C0 such that, for any w ∈ W,

∫ τH

t

dw(s) ≤ C0W0(t),

where W0(t) =
∫ τH
t

dw0(s) can be written as

W0(t) = W1(t)W2(t)

where W1 and W2 are two positive and non-increasing functions satisfying

(1)
∫ τH
0

W 2
1 (t)[1− F (t−)]−1[1−G(t−)]−2dG(t) <∞,

(2)
∫ τH
0

W2(t)E[dN
∗(t)] <∞,

(3) limt→τH W2(t) = 0.

In particular, Assumption 3 holds when all the measures w have their support included

in a common compact subspace strictly included in [0, τH ]. On the other hand, since the

function W1 controls 1− Ĝ(s−) in Ŷ (s) for s in the vicinity of the tail of the distribution,

Assumption 3 also allows to consider measures w which are supported in the whole inter-

val [0, τH ]. Taking W1(t) = (1−H(t))1/2(1−G(t))ε for some ε > 0 would be sufficient to

obtain (1). Moreover, in the case where τH = ∞, if we suppose that, for α > 0, we have

E[N∗(t)] ∼ αt when t → ∞, we could take for example W2(t) = t−β for β > 1 to fulfill

(2) and (3).

We also need the following Hölder condition on the process N . This is a technical

assumption used in the proof of our main lemma.
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Assumption 4. Suppose that

E

[

sup
t≤τ,t′≤τ

|N(t)−N(t′)|
|t− t′|α

]

<∞.

Let ∇θµ0(s, z; θ1) (resp. ∇2
θµ0(s, z; θ1)) denote the vector of partial derivatives (resp.

the Hessian matrix) of µ0(s, z; θ) with respect to all the components of θ evaluated at θ1.

The following assumption can be understood as a regularity assumption on the regression

model.

Assumption 5. Assume that, for all w ∈ W, the matrix

Σw,p =
∫ τH
0

E[∇θµ0(t, Z, θ0)∇θµ0(t, Z, θ0)
′]dw(t) is invertible. Moreover, assume that the

classes of functions {µ0(·, ·; θ), θ ∈ Θ}, {∇θµ0(·, ·; θ), θ ∈ Θ} and {∇2
θµ0(·, ·; θ), θ ∈ Θ}

satisfy Properties 1, 2 and 3.

Additional assumptions for the semiparametric model.

The following assumption is similar to Assumption 5. Here, ∇θµθ1(s, z) (resp.

∇2
θµθ1(s, z)) denotes the vector of partial derivatives (resp. the Hessian matrix) of µθ(s, θ

′z)

with respect to all the components of θ evaluated at θ1. Note that the gradient vector

∇θµθ1(s, z) does not only depend on θ′z but also depends on the whole vector z. We give

an explicit expression of this gradient in Lemma 6.5.

Assumption 6. Assume that, for all w ∈ W, the matrix

Σw,sp =
∫ τH
0

E[∇θµθ0(t, Z)∇θµθ0(t, Z)
′]dw(t) is invertible. Moreover, assume that the

classes of functions {µθ(·, ·), θ ∈ Θ}, {∇θµθ(·, ·), θ ∈ Θ} and {∇2
θµθ(·, ·), θ ∈ Θ} satisfy

Properties 1, 2 and 3.

As announced, we need uniform convergence properties for the nonparametric estima-

tors µ̂θ.

Assumption 7. Define µ̄θ(t, u) = sup(µθ(t, u), 1).

(1) Assume that

sup
t≤T(n),θ∈Θ,z∈Z

∣

∣

∣

∣

µ̂θ(t, θ
′z)− µθ(t, θ

′z)

µ̄θ0(t, θ
′
0z)

λ1+λ2

∣

∣

∣

∣

= oP (1),

sup
t≤T(n),θ∈Θ,z∈Z

∥

∥

∥

∥

∇θµ̂θ(t, z)−∇θµθ(t, z)

µ̄θ0(t, θ
′
0z)

λ1+λ2

∥

∥

∥

∥

= oP (1),

sup
t≤T(n),θ∈Θ,z∈Z

∥

∥

∥

∥

∇2
θµ̂θ(t, z)−∇2

θµθ(t, z)

µ̄θ0(t, θ
′
0z)

λ1+λ2

∥

∥

∥

∥

= oP (1),

where λ1, λ2 are such that λ1 + λ2 ≥ 1.
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(2) Assume also that

sup
t≤T(n),z∈Z

|µ̂θ0(t, θ
′
0z)− µθ0(t, θ

′
0z)| = OP (εn),

sup
t≤T(n),z∈Z

‖∇θ0µ̂θ0(t, z)−∇θµθ0(t, z)‖ = OP (ε
′
n),

where εnε
′
n = oP (n

−1/2).

Assumption 8. Assume that

sup
z∈Z

∫ τH

0

(

E[N∗(t)|Z = z]
)2(λ1+λ2)dw(t) <∞

where λ1, λ2 were defined in Assumption 7.

The following assumption is essential to the empirical process theory used in our

proofs. We assume that the nonparametric estimators and µθ0 belong to some Donsker

classes of functions.

Assumption 9. Assume that there exists some Donsker classes of functions G and H
such that for all w ∈ W,

(z, y) 7−→
∫ τH

0

(

µθ0(t, θ
′
0z)− y(t)

)

∇θµθ0(t, z)dw(t) ∈ G,

z 7−→
∫ τH

0

µθ0(t, θ
′
0z)∇θµθ0(t, z)dw(t) ∈ H.

Moreover, assume that, almost surely for n large enough,

(z, y) 7−→
∫ τH

0

(µθ0(t, θ
′
0z)− y(t))∇θµ̂θ0(t, z)dw(t) ∈ G,

z 7−→
∫ τH

0

µ̂θ0(t, θ
′
0z)∇θµθ0(t, z)dw(t) ∈ H.

To give examples of such kind of classes, consider F and W as defined in the discussion

following Property 2 and suppose, in addition, that the functions (t, u) → W0(t)f(t, u)

for f ∈ F (f is defined on R
2 since θ′0z ∈ R) are twice continuously differentiable with

bounded derivatives up to order 2. It follows from the results of Section 6.3.3 and from

the decomposition of the gradient vector ∇θµθ0(t, z) obtained in Lemma 6.5 that we can

consider H = G = F ′ + zF ′ where F ′ = {(u, y) →
∫ τH
0

(f1(t, u) − y(t))f2(t, u)dw(t), w ∈
W, f1, f2 ∈ F}.

12



3.2 The main lemma

From a theoretical viewpoint, the main issue stands in studying the difference between

Y and its estimated version. The following lemma provides an asymptotic representation

for a class of empirical sums in which the process Ŷ is involved.

Lemma 3.1. Let F be a class of functions with bounded envelope Φ satisfying Property

1 and assume that Assumptions 3 and 4 hold. Define, for any function f ∈ F ,

Sn(f, w) =
1

n

n
∑

i=1

∫ τH

0

Yi(t)f(t, Zi)dw(t)

and

Ŝn(f, w) =
1

n

n
∑

i=1

∫ T(n)

0

Ŷi(t)f(t, Zi)dw(t).

(1) Assume that supw∈W E[Sn(Φ, w)] <∞. Then, for all f ∈ F ,

Ŝn(f, w)− Sn(f, w) =
1

n

n
∑

i=1

∫ τH

0

∫ t

0

ηs−(Ti, δi)E[f(t, Z)dµ(s|Z)]dw(t) +Rn(f, w),

where

ηt(T, δ) =
(1− δ)I(T ≤ t)

1−H(T−)
−
∫ t

0

I(T ≥ s)dG(s)

[1−H(s−)][1−G(s−)]

and where

sup
w∈W ,f∈F

|Rn(f, w)| = oP (n
−1/2).

Moreover, if the measures w are all supported in [0, τ ] for some τ < τH , then

sup
w∈W ,f∈F

|Rn(f, w)| = OP (n
−1 log n).

(2) If f̂ denotes a family of nonparametric estimators of functions f ∈ F satisfying

supf∈F ‖f̂ − f‖∞ = oP (1), then

sup
w∈W

|Ŝn(f̂ , w)− Sn(f̂ , w)| = oP (n
−1/2).

Moreover, if the measures w are all supported in [0, τ ] for some τ < τH , then

sup
w∈W

|Ŝn(f̂ , w)− Sn(f̂ , w)| = OP (n
−1 log n).

The proof is postponed to Section 6.1. With the estimated rescaled process Ŷ at hand,

we can now proposeM−estimation procedures to estimate the regression function in both

the parametric and semiparametric cases.

13



3.3 Asymptotic normality of θ̂ in the parametric case

Let =⇒ denote the weak convergence.

Theorem 3.2. Assume that (2.1) holds. Under Assumptions 1 to 5, the estimator in

(2.6) admits the following asymptotic representation

θ̂(w)− θ0 = Σ−1
w,p

{

1

n

n
∑

i=1

(∫ τH

0

[Yi(t)− µ0(t, Zi; θ0)]∇θµ0(t, Zi; θ0)dw(t)

+

∫ τH

0

∫ t

0

ηs−(Ti, δi)E[∇θµ0(t, Z; θ0)dµ0(s, Z; θ0)]dw(t)

)}

+Rn(w),

where supw∈W |Rn(w)| = oP (n
−1/2). As a consequence, for any w ∈ W,

√
n
(

θ̂(w)− θ0
)

=⇒ N (0, Vw,p),

where Vw,p = Σ−1
w,p∆w,pΣ

−1
w,p and ∆w,p is the covariance matrix of each term of the i.i.d.

sum in the asymptotic expansion.

Proof. Write

Mn,w(θ, µ0) = −2Ŝn(µ0(·, ·; θ), w) + n−1

n
∑

i=1

∫ T(n)

0

µ0(t, Zi; θ)
2dw(t).

Then, use the asymptotic representation of Lemma 3.1. Uniform consistency of θ̂(w)

follows from the uniform convergence of Mn,w(θ, µ0) which is obtained from Properties

2 and 3 for the classes of functions {µ0(·, ·; θ), θ ∈ Θ} and {∇θµ0(·, ·; θ), θ ∈ Θ} (see

Assumption 5).

To obtain the uniform CLT property for θ̂(w), use a Taylor expansion of∇θMn,w(θ, µ0)

around θ0:

∇θMn,w(θ̂, µ0) = ∇θMn,w(θ0, µ0) +∇2
θMn,w(θ̃, µ0)(θ̂ − θ0), (3.1)

for some θ̃ between θ̂ and θ0. The left-hand side of (3.1) is zero by definition of θ̂.Moreover,

the matrix ∇2
θMn,w(θ̃, µ0) is almost surely invertible for n large enough under Assumption

5 since θ̂ (and consequently θ̃) tends to θ0 almost surely. This leads to

θ̂ − θ0 = −∇2
θM

−1
n,w(θ̃, µ0)∇θMn,w(θ0, µ0).

Write

∇2
θMn,w(θ̃, µ0) =− 2

[

Ŝn(∇2
θµ0(·, ·; θ̃), w)−

1

n

n
∑

i=1

∫ τH

0

(

∇θµ0(t, Zi; θ̃)∇θµ0(t, Zi; θ̃)
′

+µ0(t, Zi; θ̃)∇2
θµ0(t, Zi; θ̃)

)

dw(t)

]

+Rn(θ, w)

14



where Rn(θ, w) comes from the change in the integration bounds of [0, T(n)] by [0, τH ]

and can be seen to tend uniformly to zero from Lebesgue’s dominated convergence since

the term inside the integral is bounded. From Lemma 3.1, the almost sure convergence

of θ̃ and the fact that {∇2
θµ0(·, ·, θ), θ ∈ Θ} satisfies Property 3 (see Assumption 5), we

get that Ŝn(∇2
θµ0(·, ·; θ̃), w) converges to

∫ τH
0

E[Y (t)∇2
θµ0(t, Z; θ0)]dw(t) uniformly in w.

The second part converges uniformly to its expectation over Θ as a consequence of the

Glivenko-Cantelli property of classes of functions satisfying Property 3. This shows that

sup
w

|∇2
θM

−1
n,w(θ̃, µ0)−∇2

θM
−1
w (θ0, µ0)| = oP (1).

On the other hand, we write

∇θMn,w(θ0, µ0) = −2

[

Ŝn(∇θµ0(·, ·; θ0), w)−
1

n

n
∑

i=1

∫ τH

0

µ0(t, Z; θ0)∇θµ0(t, Z; θ0)dw(t)

]

+
2

n

n
∑

i=1

∫ τH

T(n)

µ0(t, Z; θ0)∇θµ0(t, Z; θ0)dw(t).

Using Lebesgue’s dominated convergence theorem, the last term tends uniformly to zero

at a n−1/2 rate. Finally, the asymptotic representation follows from Lemma 3.1.

3.4 Asymptotic normality of θ̂ in the semiparametric case

Theorem 3.3. Assume that (2.2) holds. Under Assumptions 1 to 4 and 6 to 9, the

estimator in (2.7) admits the following asymptotic representation

θ̂(w)− θ0 = Σ−1
w,sp

{

1

n

n
∑

i=1

(
∫ τH

0

[Yi(t)− µθ0(t, θ
′
0Zi)]∇θµθ0(t, Zi)dw(t)

+

∫ τH

0

∫ t

0

ηs−(Ti, δi)E[∇θµθ0(t, θ
′
0Zdµθ0(s, θ

′
0Z)]dw(t)

)}

+Rn(w),

where supw∈W |Rn(w)| = oP (n
−1/2). As a consequence, for any w ∈ W,

√
n(θ̂(w)− θ0) =⇒ N (0, Vw,sp),

where Vw,sp = Σ−1
w,sp∆w,spΣ

−1
w,sp and ∆w,sp is the covariance matrix of each term of the i.i.d.

sum in the asymptotic expansion.

Proof. The consistency of the preliminary estimator can be proved in the same way as

in the proof of Theorem 3.2, using now the second part of Lemma 3.1 and the uniform

consistency of µ̂θ (Assumption 7). Asymptotic normality comes from the fact that

θ̂ − θ0 = −∇2
θM

−1
n,w(θ̃, µ̂θ̃)∇θMn,w(θ0, µ̂θ0).
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The fact that

sup
w

‖∇2
θM

−1
n,w(θ̃, µ̂θ̃)−∇2

θM
−1
w (θ0, µθ0)‖ = oP (1)

can be shown in the same way as in the proof of Theorem 3.2 using now the second

part of Lemma 3.1. The big issue consists of proving the asymptotic representation of

∇θMn,w(θ0, µ̂θ0). Write

∇θMn,w(θ0, µ̂θ0) = −2

[

Ŝn(∇θµ̂θ0(·, θ′0·), w)−
1

n

n
∑

i=1

∫ T(n)

0

µ̂θ0(t, θ
′
0Zi)∇θµ̂θ0(t, Zi)dw(t)

]

.

Using the second part of Lemma 3.1, this can be rewritten as

∇θMn,w(θ0, µ̂θ0)

= ∇θMn,w(θ0, µθ0)

− 2

n

n
∑

i=1

∫ τH

0

µ̄θ0(t, θ
′
0Zi)

λ1+λ2
(

µθ0(t, θ
′
0Zi)− Yi(t)

)∇θµθ0(t, Zi)−∇θµ̂θ0(t, Zi)

µ̄θ0(t, θ
′
0Zi)λ1+λ2

dw(t)

+
2

n

n
∑

i=1

∫ τH

0

µ̂θ0(t, θ
′
0Zi)− µθ0(t, θ

′
0Zi)

µ̄θ0(t, θ
′
0Zi)λ1+λ2

µ̄θ0(t, θ
′
0Zi)

λ1+λ2∇θµθ0(t, Zi)dw(t)

+
2

n

n
∑

i=1

∫ τH

0

(

µ̂θ0(t, θ
′
0Zi)− µθ0(t, θ

′
0Zi)

)(

∇θµ̂θ0(t, Zi)−∇θµθ0(t, Zi)
)

µ̄θ0(t, θ
′
0Zi)2(λ1+λ2)µ̄θ0(t, θ

′
0Zi)−2(λ1+λ2)

dw(t)

+R4n(w)

= ∇θMn,w(θ0, µθ0) +R1n(w) +R2n(w) +R3n(w) +R4n(w),

where R4n(w) comes from Lemma 3.1 and the change in the integration bound of [0, T(n)]

by [0, τH ]. Using the same arguments as in the proof of Theorem 3.2, we deduce that

supw ‖R4n(w)‖ = oP (n
−1/2). Using the uniform convergence rates of µ̂θ0 and of ∇θµ̂θ0, we

get straightforwardly that supw ‖R3n(w)‖ = oP (n
−1/2). Using the uniform convergence of

∇θµ̂θ0 , we see that the term R1n can be decomposed into

R1n(w) = n−1
n
∑

i=1

[fw(Zi, Yi)− fn,w(Zi, Yi)]

where fw and fn,w both belong (almost surely for n large enough) to the class G defined

in Assumption 9 and with supw ‖fw − fn,w‖∞ → 0 a.s. Therefore, using the asymp-

totic equicontinuity of the Donsker class G (see e.g. Section 2.1.2 in Van der Vaart and

Wellner (1996)), this shows that

sup
w

‖R1n(w)−
∫

[fw(z, y)− fn,w(z, y)]dPZ,Y (z, y)‖ = oP (n
−1/2).
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Moreover, it is clear that
∫

[fw(z, y) − fn,w(z, y)]dPZ,Y (z, y) = 0 using the fact that

[∇θµθ0(t, z)−∇θµ̂θ0(t, z)] is a function of z only and that E[µθ0(t, θ
′
0Zi)− Yi(t)|Zi] = 0.

The term R2n(w) can be handled in the same way using now the Donsker class H
in Assumption 9, observing that (µ̂θ0(t, θ

′
0z) − µθ0(t, θ

′
0z)) is a function of θ′0z only and

getting from Lemma 6.5 that E[∇θµθ0(t, Z)|θ′0Z] = 0.

3.5 Adaptive choice of w

The representations of Theorems 3.2 and 3.3 hold uniformly in w ∈ W. Therefore, the

asymptotic normality of our estimators of the parameter remains valid if we replace w

by a data-driven measure ŵ that converges to a specific optimal measure w0. We give

some indications on a method to obtain such kind of data-driven measure adapted to our

estimation problem.

The empirical measure ŵ will be defined as the minimizer of some criterion. Since it

is generally impossible to perform minimization on the functional space W, we minimize

over a growing subset Wn. The adaptive procedure we propose consists of first estimating

the asymptotic covariance matrix Vw,sp (or Vw,p in the parametric case) for any w ∈ Wn.

From the asymptotic variance estimators, we derive the estimation of the mean squared

error E[‖θ̂(w)−θ0‖2].We then take ŵ as the element of Wn such that the estimated mean

squared error is minimal over Wn. Then, our final estimator is

θ̂ = θ̂(ŵ).

The uniform convergence of the remainder term in the representations of Theorems 3.2

and 3.3 provides the asymptotic normality of θ̂ in the case where Σŵ → Σw0 a.s. for some

w0 ∈ W.

3.6 Estimation of the variance

We show how to estimate the variance in the representation of Theorem 3.3 and we

propose an estimator of the mean squared error of θ0. Denote by Wn,w the term between

brackets in the representation of Theorem 3.3 so that

θ̂(w)− θ0 = Σ−1
w,spWn,w +Rn(w),

where supw∈W |Rn(w)| = oP (n
−1/2). The quantity Wn,w can be estimated in the following

way

Ŵn,w =
1

n

n
∑

i=1

ψ̂(δi, Zi, Ti, Yi;w),
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where

ψ̂(δ, Z, T, Y ;w) =

∫ T(n)

0

(

Y (t)− µ̂θ̂(t, θ̂
′Z)
)

∇θµ̂θ̂(t, Z)dw(t)

+

∫ T(n)

0

∫ t

0

η̂s−(T, δ)n
−1

n
∑

i=1

(

∇θµ̂θ̂(t, θ̂
′Zi)dµ̂θ̂(s, θ̂

′Zi)
)

dw(t),

η̂t(T, δ) =
(1− δ)I(T ≤ t)

1− Ĥ(T−)
−
∫ t

0

I(T ≥ s)dĜ(s)
(

1− Ĥ(s−)
)(

1− Ĝ(s−)
)

and Ĥ is the empirical estimator of H . Therefore, the quantity ∆w,sp can be estimated

by

∆̂w,sp =
1

n

n
∑

i=1

(

ψ̂(δ, Z, T, Y ;w)− 1

n

n
∑

i=1

ψ̂(δ, Z, T, Y ;w)

)⊗2

,

where ⊗2 denotes the product of the matrix with its transpose. To consistently estimate

Σw,sp, we use

Σ̂w,sp =
1

n

n
∑

i=1

∫ T(n)

0

∇θµ̂θ̂(t, Zi)∇θµ̂θ̂(t, Zi)
′.

A consistent estimator of Vw,sp can then be computed from V̂w,sp = Σ̂−1
w,sp∆̂w,spΣ̂

−1
w,sp.

Finally, we take Ê2
τ = Ŵ ′

n,wΣ̂
−1
w,spΣ̂

−1
w,spŴn,w as mean squared error estimate.

3.7 Estimation of the nonparametric part

In the semiparametric model, estimation of the finite dimensional parameter θ0 is only

the first step of the method. With our estimator θ̂ at hand, we wish to estimate the

conditional mean function µ(t|z). Different strategies can be proposed to perform this

estimation. For this final estimator, there is no theoretical need to use the same kind of

nonparametric estimator as in the computation of θ̂. Proposition 3.4 below states that,

under some convergence assumptions for the nonparametric estimator used in this second

step, the asymptotic behavior of the final semiparametric estimator of µ is identical to the

asymptotic behavior of a purely nonparametric estimator in the case where θ0 is exactly

known.

Proposition 3.4. Let Θ∗ be some neighborhood of θ0, and let T be a set on which

supθ∈Θ∗,t∈T ,z∈Z ‖∇θµθ0(t, z)‖ < ∞. Let µ̂θ be a family of nonparametric estimators of

µθ satisfying the assumption

sup
θ∈Θ∗,t∈T ,z∈Z

‖∇θµ̂θ(t, z)−∇θµθ(t, z)‖ = oP (1). (3.2)
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Then, we have

sup
t∈T ,z∈Z

|µ̂θ̂(t, θ̂
′z)− µ̂θ0(t, θ

′
0z)| = OP (n

−1/2).

Proof. This is a direct consequence of a Taylor expansion of µ̂θ̂ around θ0. From Theorem

3.3 we have θ̂ − θ0 = OP (n
−1/2). Then, the boundedness of ∇θµθ0(t, z) and the uniform

convergence in assumption (3.2) give the result.

In the kernel estimator example of equation (2.9), a crucial issue stands in the choice of

the bandwidth which strongly influences the performance of the nonparametric estimation.

A first method to define our final estimator of µθ0 consists of using an arbitrary sequence of

bandwidth h to compute θ̂, then of using cross-validation techniques to select a bandwidth

ĥ. The final estimator is finally set as µ̂θ̂,ĥ(t, θ̂
′z). However, it seems more appealing to

us to define a procedure which can be seen as an extension of the adaptive choice of

bandwidth proposed by Härdle et al. (1993) and Delecroix et al. (2006). An interesting

feature of this technique is that it selects an adaptive bandwidth ĥ and a direction θ̂ at

the same time. Indeed, define

(θ̂, ĥ) = argmin
θ∈Θ,h∈H

Mn,w(θ, µ̂θ,h). (3.3)

The uniform in bandwidth consistency of the kernel estimators we use (see Section 6.2)

ensures us that θ̂ has the same asymptotic properties as in Theorem 3.3. On the other

hand, Proposition 3.5 below shows that the adaptive bandwidth ĥ is asymptotically equiv-

alent to the bandwidth we could obtain using a classical cross-validation technique in the

case where the parameter θ0 is exactly known.

Proposition 3.5. For some positive constants a, c and C, let H = [cn−a, Cn−a] be a set

of bandwidth satisfying Assumption 10 and let

h0 = argmin
h∈H

Mn,w(θ0, µ̂θ0,h).

Under the assumptions of Theorem 3.3 and provided that suph∈H,t∈R+,z∈Z |µ̂θ,h(t, θ
′z) −

µθ,h(t, θ
′z)| = oP (1), we have

ĥ/h0 → 1 a.s.

Proof. Define φ(h/h0) = Mn,w(θ0, µ̂θ0,h) and φn(h/h0) = argminθ∈ΘMn,w(θ, µ̂θ,h). By

definition of h0 and ĥ we have argmins∈[c,C] φ(s) = 1 and ĥ/h0 = argmins∈[c,C] φn(s).
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Now write

φn(s) = φ(s)− 2

n

n
∑

i=1

∫ τH

0

Ŷi(t)
(

µ̂θ,sh0(t, θ
′Zi)− µ̂θ,h0(t, θ

′Zi)
)

dw(t)

+
1

n

n
∑

i=1

∫ τH

0

(

µ̂θ,sh0(t, θ
′Zi)

2 − µ̂θ,h0(t, θ
′Zi)

2
)

dw(t) +Mn,w(θ, µ̂θ,h0).

Using Lemma 3.1 and the uniform in bandwidth consistency of µ̂θ,h, the second and third

terms in the decomposition tend to zero uniformly in s. On the other hand, the last term

does not depend on s. This shows that ĥ/h0 → 1 a.s.

4 Simulations

We present here some empirical evidence of the good behavior of our semiparametric

estimation procedure for finite sample sizes.

In our simulation study, we consider the case where, conditionally on Zi, the process

N∗ is an homogeneous Poisson process with intensity θ′0Zi + α, that is

E[N∗(t)|Zi] = (θ′0Zi + α)t, i = 1, . . . , n.

We take α = 5 and θ0 = (1, 1.6, 1.25, 0.7)′. We consider 4-dimensional covariates Zi ∼
⊗4U [1, 2] for i = 1, ..., n. The variables Yi for i = 1, ..., n are generated according to a

Weibull distribution with parameters (10, 1.09). The censoring distribution is selected to

be Weibull with parameters (4, λ). Taking λ = 1.38 or λ = 1 leads to respectively 30% or

50% of censoring and an average of 20 or 18 recurrents events per sample. In our results,

we emphasize the impact of the two parameters involved in our semiparametric procedure,

namely the bandwidth of the nonparametric kernel estimators and the measure w.

First, we consider the case of a fixed bandwidth and show how the adaptive choice

of ŵ can improve the estimation performance of the parameter θ0. The nonparametric

estimators are kernel estimators computed using a Gaussian kernel and a bandwidth

h0 = 0.2. We consider a set of discrete measures supported on I = {0.1, 0.2, . . . , 1.2}.
Hence, for any function f , the integral with respect to w reduces to a finite sum. Indeed,

we have
∫

f(t)dw(t) =
∑

k∈I

f(k)w({k}).
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Moreover, we consider only a finite number of choices for the weights w({k}), that is






w({k}) = 1 for k = 0.1, . . . , 0.8

w({k}) ∈ {0.25, 0.5, 0.75, 1} for k = 0.9, 1, 1.1, 1.2.

The intuition is that our procedure should allocate smaller weights to large values of Ti

since the behavior of the Kaplan-Meier estimator is known to be less effective in this

part of the distribution (and contributes significantly to the variance). Our estimator

θ̂ = θ̂(ŵ, h0) is then compared to the estimator θ̃ obtained for the measure w0 which puts

mass 1 at every point of I.
In the table below, we report our results over 100 simulations of samples of size 100

for two different rates of censoring (p = 30% and p = 50%). Recalling that the first com-

ponent of θ0 is imposed to be one, we only have to estimate the three other components.

For each estimator, the Mean Squared Error (MSE) E(‖θ̂− θ0‖2) is decomposed into bias

and variance.

p = 30% Bias Variance MSE

θ̃









−0.322

−0.198

−0.02

















0.452 0.111 0.041

0.111 0.42 0.009

0.041 0.009 0.249









1.2645

θ̂









−0.129

−0.162

−0.042

















0.2 0.062 0.047

0.062 0.272 −0.004

0.047 −0.004 0.168









0.6855

p = 50% Bias Variance MSE

θ̃









−0.428

−0.324

−0.05

















0.478 0.129 0.156

0.129 0.386 0.034

0.156 0.034 0.335









1.4903

θ̂









−0.276

−0.287

−0.096

















0.242 0.035 0.033

0.035 0.234 0.023

0.033 0.023 0.199









0.8433

We also compute the average weights of ŵ for the last four points of I. For 30% of

censoring, we have : E[ŵ({0.9})] = 0.7775, E[ŵ({1})] = 0.6525, E[ŵ({1.1})] = 0.6075
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and E[ŵ({1.2})] = 0.535 and for 50% of censoring, E[ŵ({0.9})] = 0.7825, E[ŵ({1})] =
0.6825, E[ŵ({1.1})] = 0.575 and E[ŵ({1.2})] = 0.4875. Clearly, choosing the measure

from the data improves both the bias and the variance of our estimator. Moreover the

weights of ŵ get smaller for large values of k, especially when the proportion of censored

data is high. Consequently, the adaptive measure seems to have a significant impact on

the quality of the estimation of θ0.

Next, we show how the choice of the parameter h influences the quality of estimation.

We consider the fixed measure w0 which puts the same weights 1 at each point. The

bandwidth ĥ is chosen adaptively in a regular grid of length 0.05 in the set [0.05, 0.3]. The

performance of the resulting estimator presented below is compared with the estimator θ̃

of the previous table and shows significant improvement of its MSE.

Bias Variance MSE

θ̂w0,ĥ
, p = 30%









−0.19

−0.155

0.084

















0.216 0.08 −0.08

0.08 0.351 −0.009

−0.08 −0.009 0.174









0.967

θ̂w0,ĥ
, p = 50%









−0.281

−0.309

−0.114

















0.244 −0.056 −0.081

−0.056 0.256 0.027

−0.081 0.027 0.17









1.126

5 Conclusion

We proposed a new procedure to estimate the conditional cumulative mean function of

the recurrent event process. We considered both parametric and semiparametric models

for the conditional cumulative mean function. Our semiparametric single-index model

can be seen as a generalization of both the Cox model and the accelerated failure time

model. Moreover, a new feature of our procedure stands in the measure w involved in our

estimators which is designed to prevent us from problems in the tail of the distribution

due to the presence of censoring. Then, we proposed a data-driven method to choose this

measure adaptively. Our criterion is based on the minimization of the mean squared error

for the estimation of θ0 but our procedure is flexible enough to allow the use of any other

criteria more adapted to the context. For example, we could consider a criterion directly

based on the error of the estimation of µ.
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In this work, we mainly focused on kernel estimators for estimating the nonparametric

part of our model, providing methods to choose the smoothing parameters from the data.

Nevertheless, all our results are still valid for a general class of nonparametric estimators

and do only rely on convergence properties. Hence, other kinds of estimators may be used

provided they satisfy these conditions.

6 Appendix

6.1 Proof of Lemma 3.1

Let

S
T(n)
n (f, w) =

1

n

n
∑

i=1

∫ T(n)

0

Yi(t)f(Zi, t)dw(t).

Write

Ŝn(f, w) = S
T(n)
n (f, w) +

1

n

n
∑

i=1

∫ T(n)

0

f(Zi, t)

∫ t

0

[Ĝ(s−)−G(s−)]dNi(s)

[1−G(s−)][1− Ĝ(s−)]
dw(t)

= S
T(n)
n (f, w) +Rn(f, w).

Decompose f into its positive and negative parts denoted respectively by f+ and f−.

The expectations of the two resulting sums S
T(n)
n (f+, w) and S

T(n)
n (f−, w) go to zero faster

than n−1/2 using Lebesgue’s dominated convergence. This entails that

sup
f∈F ,w∈W

|ST(n)
n (f, w)− Sn(f, w)| = oP (n

−1/2).

Let τ < τH and define wτ(t) = w(t)I(t ≤ τ). On [0, τ ], we use the asymptotic i.i.d.

expansion of the Kaplan-Meier estimator Ĝ proposed by Gijbels and Veraverbeke (1991)

which can also be deduced from Stute (1995):

Ĝ(t)−G(t)

1−G(t)
=

1

n

n
∑

j=1

ηt(Tj , δj) + R̃n(t),

where supt≤τ |R̃n(t)| = Oa.s.(n
−1 log n) and

ηt(T, δ) =
(1− δ)I(T ≤ t)

1−H(T−)
−
∫ t

0

I(T ≥ s)dG(s)

[1−H(s−)][1−G(s−)]
.

Moreover, we recall that supt≤τ |Ĝ(t)−G(t)| = OP (n
−1/2) (see Gill (1983), Theorem 2.1)

and that supt≤τ (1 −G(t))(1 − Ĝ(t))−1 = OP (1) (see Gill (1983), Lemma 2.6). Then, we
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decompose

Rn(f, wτ ) =
1

n2

∑

i,j

∫ T(n)

0

f(Zi, t)

∫ t

0

ηs−(Tj, δj)dNi(s)

1−G(s−)
dwτ (t) +R′

n(f, wτ).

Using the fact that F is an uniformly bounded class, that
∫

dwτ ≤ C0 from Assumption

3 and that E[Ni(τ)] < ∞ for all τ, we deduce that supf,w |R′
n(f, wτ)| = OP (n

−1). The

first term in Rn(f, wτ ) can be rewritten as

1

n

n
∑

j=1

∫ T(n)

0

∫ t

0

ηs−(Tj , δj)E[f(Z, t)dµ(s|Z)]dwτ(t)+

∫

(

1

n2

∑

i,j

ψf,t(Zi, Ni, Tj, δj)

)

dwτ (t),

where

ψf,t(Zi, Ni, Tj , δj) =

∫ t

0

ηs−(Tj , δj)

{

f(Zi, t)dNi(s)

1−G(s−)
−E[f(Z, t)dµ(s|Z)]

}

.

Observe that, with probability tending to one, the upper bound T(n) in the integrals can

be replaced by τ < τH . Let f, f
′ ∈ F and t, t′ ∈ [0, τ ]. We have

|ψf,t(Zi, Ni, Tj , δj)− ψf ′,t′(Zi, Ni, Tj, δj)| ≤ Cτ

(

‖f − f ′‖∞Ni(τ)

+|t− t′|α sup
t,t′≤τ

Ni(t)−Ni(t
′)

|t− t′|α
)

, (6.1)

where Cτ < ∞ and α > 0. Let Hτ denote the set of all functions ψf,t when f ranges F
and t ranges [0, τ ]. It follows from (6.1) and Assumption 4 that Hτ is a ‖ · ‖2−VC-class

of functions. From this, using the Glivenko-Cantelli property of Hτ ,

sup
f,t≤τ

∣

∣

∣

∣

∣

1

n2

n
∑

i=1

ψf,t(Zi, Ni, Ti, δi)

∣

∣

∣

∣

∣

= OP (n
−1)

and

sup
f,t≤τ

∣

∣

∣

∣

∣

1

n2

∑

i 6=j

ψf,t(Zi, Ni, Tj, δj)

∣

∣

∣

∣

∣

= OP (n
−1),

since this can be seen as the supremum of a second order degenerate U−process indexed

by Hτ (see Sherman (1994)). This leads to the i.i.d. representation for Ŝn(f, wτ ) for any

τ < τH .

Similarly, write

Ŝn(f̂ , wτ) = S
T(n)
n (f̂ , wτ ) +Rn(f̂ − f, wτ ) +Rn(f, wτ )
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and using the fact that supf∈F ‖f − f̂‖∞ = oP (1) and that supt≤τ |Ĝ(t) − G(t)| =

OP (n
−1/2), we deduce that supf,w |Rn(f̂ − f, wτ )| = oP (n

−1/2). The representation for

Ŝn(f̂ , wτ) follows.

Now, we make τ tend to τH . Let P̂
τ
n (f, w) = Ŝn(f, w) − S

T(n)
n (f, w) and P τ

n (f, w) =

Ŝn(f, wτ )− S
T(n)
n (f, wτ ). Since the class F is uniformly bounded, we get

|P̂ τ
n (f, w)− P τ

n (f, w)| ≤
M

n

n
∑

i=1

∫ T(n)

τ

∫ t

0

|Ĝ(s−)−G(s−)|
[1−G(s−)][1 − Ĝ(s−)]

dNi(s)dw(t)

≤ M ′

n

n
∑

i=1

∫ T(n)

0

W0(s ∨ τ)|Ĝ(s−)−G(s−)|dNi(s)

[1−G(s−)][1− Ĝ(s−)]
,

where the last inequality is obtained from Fubini’s theorem and Assumption 3. From

Theorem 1.2 in Gill (1983), Assumption 3 and the fact that supt≤T(n)
[1 − G(t−)][1 −

Ĝ(t−)]−1 = OP (1) (see again Gill, 1983), we get that

|P̂ τ
n (f, w)− P τ

n (f, w)| ≤
An

n

n
∑

i=1

∫ T(n)

0

W2(s ∨ τ)dNi(s)

1−G(s−)
,

where An = OP (n
−1/2). The result follows from Lemma 6.6.

6.2 Uniform convergence of the nonparametric estimators

In this section, we show that the kernel estimator µ̂θ,h defined by (2.9) satisfies the con-

vergence rates required by Assumption 7. Introduce the quantity

µ̃θ,h(t, u) =

n
∑

i=1

∫ t

0

K
(

θ′Zi−u
h

)

dNi(s)

∑n
j=1K

(

θ′Zj−u

h

)

[1−G(s−)]
.

We first study the convergence rate of the difference between µ̃θ,h and µθ and their deriva-

tives. Since no Kaplan-Meier functions are involved in this expression, we can use clas-

sical results on uniform convergence of kernel estimators, mainly from Einmahl and Ma-

son (2005).

Assumption 10. Assume that

(1) K has a compact support, say [−1, 1],
∫

R
K(s)ds = 1 and supx |K(x)| <∞,

(2) K is a twice differentiable and two order kernel with derivatives of order 0, 1 and 2

of bounded variation,
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(3) K := {K
(

(x− ·)/h
)

: h > 0, x ∈ R
d} is a pointwise measurable class of functions,

(4) h ∈ Hn ⊂ [an−α, bn−α] with a, b > 0 and α ∈ (1/8, 1/5).

We also introduce a trimming function in order to prevent from denominator close

to zero in the definition of µ̂θ,h. Indeed, to ensure uniform consistency of our estimator,

we need to bound this denominator away from zero. We use the same methodology as

in Delecroix et al. (2006). Let fθ′0Z denote the density of θ′0Z and define the “ideal”

trimming function Jθ0(θ
′
0Z, c) = I(θ′0Z ∈ B0) where B0 = {u : fθ′0Z(u) ≥ c} for some

constant c > 0. As in Delecroix et al. (2006) (see also Lopez (2009)), we first assume

that we know some set B on which inf{fθ′Z(θ′z) : z ∈ B, θ ∈ Θ} > c where c is a strictly

positive constant. In a preliminary step, we can use this set B to compute the preliminary

trimming JB(z) = I(z ∈ B). Using this trimming function and a deterministic sequence

of bandwidth h0 satisfying (4) in Assumption 10, we define a preliminary estimator θn of

θ0 as

θn(w) = argmin
θ∈Θ

Mn,w(θ, µ̂θ)JB(z).

Given this preliminary consistent estimator of θ0, we use the following trimming Jn(θ
′
nZ, c) =

I(f̂θ′nZ(θ
′
nZ) ≥ c) which appears to be asymptotically equivalent to Jθ0(θ

′
0Z, c) (see e.g.

Lopez (2009)). Then, our final estimator consists of

θ̂(w) = argmin
θ∈Θn

Mn,w(θ, µ̂θ)Jn(θ
′
nz, c),

where Θn is a shrinking neighborhood of θ0 accordingly to our preliminary estimator θn.

As announced, the next proposition gives the rates of convergence of µ̃θ,h and its

derivatives. Since we need a convergence over θ ∈ Θ, the trimming we need to use is

Jθ(θ
′Z, c) := I(f̂θ′Z(θ

′Z) ≥ c). But notice that Jθ0(θ
′
0Z, c) can be replaced by Jθ(θ

′Z, c/2)

on shrinking neighborhoods of θ0.

Proposition 6.1. Under Assumption 10, for z such that Jθ(θ
′z, c) > 0, we have

sup
t≤T(n),θ,z,h

√

nh

log n

∣

∣

∣

∣

µ̃θ(t, θ
′z)− µθ(t, θ

′z)

µ̄θ0(t, θ
′
0z)

λ1+λ2

∣

∣

∣

∣

= OP (1) , (6.2)

sup
t≤T(n),θ,z,h

√

nh3

logn

∥

∥

∥

∥

∇θµ̃θ(t, z)−∇θµθ(t, z)

µ̄θ0(t, θ
′
0z)

λ1+λ2

∥

∥

∥

∥

= OP (1) , (6.3)

sup
t≤T(n),θ,z,h

√

nh5

log n

∥

∥

∥

∥

∇2
θµ̃θ(t, z)−∇2

θµθ(t, z)

µ̄θ0(t, θ
′
0z)

λ1+λ2

∥

∥

∥

∥

= OP (1) . (6.4)
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Proof. The proofs of (6.2)-(6.4) are all similar. The most delicate term to handle, coming

from (6.4), is

Ân,h
θ (t, z) :=

1

nh3

n
∑

i=1

(Zi − z)2

µ̄θ0(t, θ
′
0z)

λ1+λ2
K ′′

(

θ′Zi − θ′z

h

)
∫ t

0

dNi(s)

1−G(s−)
.

Consider the class of functions K introduced in Assumption 10. From Nolan and Pol-

lard (1987), it can easily be seen that, using a kernel K satisfying Assumption 10, for

some C > 0 and ν > 0, we have N(ε,K, ‖ · ‖∞) ≤ Cε−ν , 0 < ε < 1.

Then, concerning the uniformity with respect to θ, Lemma 22 (ii) of Nolan and Po-

lard (1987) shows that the family of functions
{

(Z,N) 7−→ Ân,h
θ (t, z)

}

satisfies the as-

sumptions of Proposition 1 in Einmahl and Mason (2005).

Define

Ãh
θ(t, z) :=

1

h3
E

[

(Z − z)2

µ̄θ0(t, θ
′
0z)

λ1+λ2
K ′′

(

θ′Z − θ′z

h

)
∫ t

0

dN(s)

1−G(s−)

]

,

Ah
θ (t, z) :=

∂2

∂u2

{

E

[

(Z − z)2

µ̄θ0(t, θ
′
0z)

λ1+λ2

∫ t

0

dN(s)

1−G(s−)

∣

∣

∣

∣

θ′Z = u

]

fθ′Z(u)

}∣

∣

∣

∣

∣

u=θ′z

and apply Talagrand’s inequality (see Talagrand (1994), see also Einmahl and Mason (2005))

to obtain that

sup
t≤T(n),θ,z,h

|Ân,h(t, z)− Ãn,h(t, z)| = OP

(

n−1/2h−5/2(log n)1/2
)

.

For the bias term, classical kernel arguments (see for instance Bosq and Lecoutre (1997))

show that

sup
t≤T(n),θ,z,h

|Ãn,h(t, z)− An,h(t, z)| = O(h2).

It remains to study µ̂θ,h − µ̃θ,h. The following lemma gives some precision on the

difference between the Kaplan Meier weights of µ̃θ,h and the “ideal” weights involving the

true function G in µ̃θ.

Lemma 6.2. Let Ŵ (s) = (1− Ĝ(s−))−1, W̃ (s) = (1−G(s−))−1 and

CG(t) =

∫ t

0

dG(s)
(

1−G(s−)
)(

1−H(s−)
) .

(1) We have

sup
t≤T(n)

1−G(t)

1− Ĝ(t)
= OP (1).
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(2) For all 0 ≤ α ≤ 1 and ε > 0, we have

|Ŵ (s)− W̃ (s)| ≤ Rn(s)W̃ (s)CG(s)
α(1/2+ε),

where sups≤T(n)
Rn(s) = OP (n

−α/2).

Proof. (1) This result is a consequence of Lemma 2.6 in Gill (1983).

(2) For 0 ≤ α ≤ 1 and ε > 0, write

Ŵ (s)− W̃ (s) = W̃ (s)C(s)α(1/2+ε)
(

ZG(s)C(s)
−1/2−ε

)α(
ZG(s)

)1−α1−G(s−)

1− Ĝ(s−)
,

where ZG(s) =
(

Ĝ(s−) − G(s−)
)(

1 − G(s−)
)−1

. Since
∫ τH
0

CG(s)
−1−2εdCG(s) < ∞,

apply Theorem 1 in Gill (1983) and use the first part of the current lemma to conclude

the proof.

From the definition of our estimator, problems arise when studying µ̂θ,h for t in the tail

of the distribution. This is a common problem when studying Kaplan-Meier estimators

but it can be circumvented by some moment conditions on the response and censoring

distribution. For instance, in the classical censored framework, Stute (1995) used the

function CG to compensate the bad behavior of Kaplan Meier estimator in the tail of the

distribution. The following assumption gives a similar moment condition but adapted to

our recurrent event context.

Assumption 11. Assume that, for some η > 0,

sup
t,z

CG(t)
7/20+η

µ̄θ0(t, θ
′
0z)

λ1
<∞

and

sup
t,z

∫ t

0

(

1−G(s−)
)

E[N∗(s)dN∗(s)]
(

1−G(t−)
)

µ̄θ0(t, θ
′
0z)

2λ2
<∞,

where λ1 and λ2 are defined in Assumption 3.

Proposition 6.3. Under Assumptions 10 and 11, for z such that Jθ(θ
′z, c) > 0, we have

sup
t≤T(n),θ,z,h

∣

∣

∣

∣

µ̂θ(t, θ
′z)− µ̃θ(t, θ

′z)

µ̄θ0(t, θ
′
0z)

λ1+λ2

∣

∣

∣

∣

= OP

(

n−7/20
)

, (6.5)

sup
t≤T(n),θ,z,h

h

∥

∥

∥

∥

∇θµ̂θ(t, z)−∇θµ̃θ(t, z)

µ̄θ0(t, θ
′
0z)

λ1+λ2

∥

∥

∥

∥

= OP

(

n−7/20
)

, (6.6)

sup
t≤T(n),θ,z,h

h2
∥

∥

∥

∥

∇2
θµ̂θ(t, z)−∇2

θµ̃θ(t, z)

µ̄θ0(t, θ
′
0z)

λ1+λ2

∥

∥

∥

∥

= OP

(

n−7/20
)

. (6.7)
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Proof. We only prove (6.7) since (6.5) and (6.6) can be handled similarly. Let us consider

the following term involving the second derivative of K

1

nh3

n
∑

i=1

(Zi − z)2K ′′

(

θ′Zi − θ′z

h

)

(

µ̄θ0(t, θ
′
0z)

λ1+λ2fθ′Z(θ
′z)
)−1
∫ t

0

(

Ŵ (s)− W̃ (s)
)

dNi(s).

From Lemma 6.2, this term can be bounded by

OP (n
−α/2h−2)

∣

∣

∣

∣

∣

1

nh

n
∑

i=1

K ′′

(

θ′Zi − θ′z

h

)

µ̄θ0(t, θ
′
0z)

−(λ1+λ2)

∫ t

0

W̃ (s)CG(s)
α(1/2+ε)dNi(s)

∣

∣

∣

∣

∣

(6.8)

where the OP− rate does not depend on t, θ, z nor h. Now, consider the family of functions

indexed by t, θ, z and h,

{

(Z,N) 7−→ K ′′

(

θ′Z − θ′z

h

)

µ̄θ0(t, θ
′
0z)

−(λ1+λ2)

∫ t

0

W̃ (s)CG(s)
α(1/2+ε)dN(s)

}

.

This family is Euclidian (see Nolan and Pollard (1987)) for an envelope

sup
t,z

W̃ (t)C
α(1/2+ε)
G (t)N(t)

µ̄θ0(t, θ
′
0z)

λ1+λ2

which is, for α = 7/10, square integrable from Assumption 11. Then, using the results of

Sherman (1994), the second part of (6.8) is OP (1) uniformly in t, θ, z and h.

Finally, combination of Propositions 6.1 and 6.3 leads to the following result.

Corollary 6.4. Under Assumptions 10 and 11, for z such that Jθ(θ
′z, c) > 0,

sup
t≤T(n),θ,z,h

|µ̂θ(t, θ
′z)− µθ(t, θ

′z)| · ‖∇θµ̂θ(t, z)−∇θµθ(t, z)‖ = oP (n
−1/2).

6.3 Technical lemmas

6.3.1 Gradient vector in the single-index model

Lemma 6.5. If the function θ 7→ µθ(t|θ′z) is differentiable, we have

∇θµθ0(t|Z) = µ′
θ0(t|θ′0Z)[Z − E(Z|θ′0Z)],

where µ′
θ0
(t|u) = ∂

∂u
µθ0(t|u). As a consequence

E [∇θµθ0(t|Z)|θ′0Z] = 0. (6.9)
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Proof. Observe that µθ(t|θ′Z) = E[µθ0(t|θ′0Z)|θ′Z] and let α(Z, θ) = θ′0Z − θ′Z for θ ∈ Θ.

We have

µθ(t|θ′Z) = E
[

µθ0(t|α(Z, θ) + θ′Z)|θ′Z
]

.

Defining Γ(θ1, θ2) = E
[

µθ0(t|α(Z, θ1) + θ′2Z)|θ′2Z
]

, we have Γ(θ, θ) = µθ(t|θ′Z), which
leads to

∇θ1Γ(θ1, θ0)|θ1=θ0
= −µ′

θ0
(t|θ′0Z)E [Z|θ′0Z] ,

∇θ2Γ(θ0, θ2)|θ2=θ0
= Zµ′

θ0
(t|θ′0Z).

6.3.2 Auxiliary lemma for tightness conditions

Lemma 6.6. Let F be a class of functions. Let Pn(t, f) be a process on [0; τH ] × F .

Define, for any τ ∈ [0; τH ], Rn(τ, f) = Pn(τH , f)− Pn(τ, f). Assume that for any τ such

that τ < τH

Pn(t, f) =⇒ W (Vf(t)) ∈ D([0; τ ]), f ∈ F ,

where W (Vf(t)) is a Gaussian process with covariance function Vf and D denotes the set

of càdlàg functions.

Assume that, for a sequence of random variables (Zn) and two functions Γ and Γn,

the following conditions hold,

(1) limτ→τH Vf (τ) = Vf(τH) with supf∈F |Vf(τH)| <∞,

(2) |Rn(τ
′, f)| ≤ Zn × Γn(τ) for all τ < τ ′ < τH ,

(3) Zn = OP (1),

(4) Γn(τ) → Γ(τ) in probability,

(5) limτ→τH Γ(τ) = 0.

Then Pn(τH , f) =⇒ N (0, Vf(τH)).

Proof. From Theorem 13.5 in Billingsley (1999) and condition (1), it suffices to show that,

for all ε > 0

lim
τ→τH

lim sup
n→∞

P

(

sup
τ≤t≤τH ,f∈F

|Rn(t, f)| > ε

)

= 0. (6.10)
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Using condition (2) , the probability in equation (6.10) is bounded, for all M > 0, by

P (|Γn(τ)− Γ(τ)| > ε/M − Γ(τ)) + P (Zn > M). (6.11)

Moreover, from condition (4), we can state that

lim sup
n→∞

P (|Γn(τ)− Γ(τ)| > ε/M − Γ(τ)) = I(ε/M − Γ(τ) ≥ 0).

Since Γ(τ) → 0 (condition (5)), we can deduce that

lim
τ→τH

lim sup
n→∞

P (|Γn(τ)− Γ(τ)| > ε/M − Γ(τ)) = 0.

As a consequence,

lim
τ→τH

lim sup
n→∞

P

(

sup
τ≤t≤τH ,f∈F

|Rn(t, f)| > ε

)

≤ lim
M→∞

lim sup
n→∞

P (Zn > M) = 0,

using the fact that Zn = OP (1) (condition (3)).

6.3.3 Covering number results

In this section, we determine covering numbers of some particular classes of functions.

From these computations, we can easily deduce sufficient conditions to check Property 2

and Assumption 9.

Proposition 6.7. Let F be a class of functions f(t, z) with envelope F defined on R×R
d

with continuous derivative with respect to the first component. Let F̃ be the enveloppe of

the class of functions ∂f(s, z)/∂s. Let W0(t) be a positive bounded decreasing function

and set W = {w : dw(t) = W0(t)w̃(t), w̃ ∈ W̃} where W̃ is a class of monotone positive

functions uniformly bounded by a same bound M ≥ 0. Let W be an envelope function for

W.

Assume that E[(
∫ τH
0

F (t, z)W0(t)dY (t))2] <∞, E[(
∫ τH
0

F (t, z)Y (t)dW0(t))
2] <∞ and

E[(
∫ τH
0

F̃ (t, z)W0(t)Y (t)dt)2] <∞.

Then, the class of functions H = {(z, y) →
∫ τH
0

f(t, z)y(t)dw(t), f ∈ F , w ∈ W} has

a uniform covering number satisfying, for some constant C,

N(ε,H, ‖ · ‖2) ≤ CN(ε,W0F , ‖ · ‖2)N(ε, W̃, ‖ · ‖2).

Proof. Let Q be a probability measure and introduce N1 = NQ(ε‖W0F‖Q,W0F , ‖ · ‖2,Q)
and N2 = NQ(ε‖W‖Q, W̃, ‖·‖2,Q). Let {fW

i }1≤i≤N1 (respectively {w̃j}1≤j≤N2) be the center
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of the ε− ‖ · ‖2,Q balls needed to cover W0F (respectively W̃). Writing dw = W0dw̃, we

have for any 1 ≤ i ≤ N1 and 1 ≤ j ≤ N2

∣

∣

∣

∣

∫ τH

0

Y (t)f(t, z)W0(t)dw(t)−
∫ τH

0

Y (t)fW
i (t, z)dw̃j(t)

∣

∣

∣

∣

≤
∣

∣

∣

∣

∫ τH

0

Y (t)(f(t, z)W0(t)− fW
i (t, z))dw̃j(t)

∣

∣

∣

∣

+

∣

∣

∣

∣

∫ τH

0

Y (t)f(t, z)W0(t)(dw̃ − dw̃j)(t)

∣

∣

∣

∣

.

For any f ∈ F , there exists some i such that the first term is seen to be less than C1ε

in L2(Q)−norm. For the second term, there also exists some j such that this is smaller

than C2ε, which can be seen using integration by parts. The result follows.

References

Andersen, P., O. Borgan, R. Gill, and N. Keiding (1993). Statistical models based on

counting processes. New-York: Springer-Verlag.

Andersen, P. and R. Gill (1982). Cox’s regression model for counting processes: a large

sample study. Ann. Statist. 10, 1100–1120.
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