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Abstract

Gaussian Process (GP) models are often used as mathematical ap-
proximations of time expensive numerical simulators. Provided that its
kernel is suitably chosen and that enough data is available to obtain a
reasonable fit of the simulator, a GP model can be beneficially used for
as many tasks as prediction, optimization, or Monte-Carlo-based quantifi-
cation of uncertainty. However, the former conditions become unrealistic
when using classical GPs as the dimension of input increases. One popular
alternative is then to turn to Generalized Additive Models (GAMs), re-
lying on the assumption that the simulator’s response can approximately
be decomposed as a sum of univariate functions. If such an approach has
been successfully applied in approximation, it is nevertheless not com-
pletely compatible with the GP framework and its versatile applications.
The ambition of the present work is to give an insight into the use of
GPs for GAMs by integrating additivity within the kernel, and proposing
a parsimonious numerical method for data-driven parameter estimation.
The first part of this paper deals with the kernels naturally associated
to additive processes and the properties of the GP models based on such
kernels. The second part is dedicated to a numerical procedure based on
relaxation for additive kernel parameter estimation. Finally, the efficiency
of the proposed method is illustrated and compared to other approaches
on Sobol’s g-function in dimension 4, 8 and 12.

keywords: Kriging, Additive Models, Maximum Likelihood Estimation, Re-
laxed Optimization

∗CROCUS - Ecole Nationale Supérieure des Mines de St-Etienne,
29 rue Ponchardier - 42023 St Etienne, France

†CHYN - University of Neuchâtel,
Rue Emile Argand 11 - 2007 Neuchâtel, Switzerland

‡Corresponding author: durrande@emse.fr

1



1 Introduction

The study of numerical simulator often deals with time expensive computer
codes. This cost implies that the number of evaluations of the numerical sim-
ulator (i.e. the objective function) is limited and thus many methods such as
uncertainty propagation, sensitivity analysis, or global optimization are unaf-
fordable. A well known approach is to replace the numerical simulator by a
mathematical approximation called metamodel. The metamodel (or response
surface or surrogate model) is constructed based on the responses of the sim-
ulator for a limited number of inputs called the Design of Experiments (DoE).
There is a large number of metamodels types and among the most popular
we can cite regression, splines, neural networks. . . In this paper, we focus on a
particular type of metamodel: the Kriging method, more recently referred to
as Gaussian Process modeling. Originally presented in spatial statistics [1] as
an optimal Linear Unbiased Predictor (LUP) of random processes, Kriging has
become a very popular interpolator in machine learning, where its interpreta-
tion is usually restricted to the convenient framework of Gaussian Processes
(GP). Beyond the LUP —which then elegantly coincides with a conditional
expectation—, the latter GP interpretation allows indeed the explicit deriva-
tion of conditional probability distributions for the response values at any point
or set of points in the input space.

In the case of high dimensional input space D ⊂ Rd (d ∈ N\{0}), the classical
Kriging method faces two issues: since this method is based on neighborhoods,
the first one is to require more and more points in the DoE to cover the domain
D. The second one is that the number of anisotropic kernel parameters to be
estimated increases with d so that the estimation becomes particularly difficult
for high dimensional input spaces [2, 3]. On the other hand, one possibility to
get around this issue in state-of-the-art multidimensional statistics is to con-
sider simplified metamodels. A well known type of such metamodels drastically
decreasing complexity in high-dimensional approximation is the family of Gen-
eralized Additive Models (GAMs). The latter assume indeed that the response
can be approximately decomposed as a sum of univariate functions:

m(x) = µ+
d∑
i=1

mi(xi), (1)

where µ ∈ R and the mi’s may be linear or non-linear. Since their introduction
by Stones in 1985 [4], many methods have been proposed for the estimation of
those models. We can cite the method of marginal integration [5] and a very
popular method described by Hastie and Tibshirani in [6]: the GAM backfitting
algorithm. However, those methods do not consider the probabilistic framework
of GP modeling and do not provide additional information such as the predic-
tion variance. Combining the high-dimensional advantages of GAMs with the
versatility of GPs is the main goal pursued in the present work.

The first part of this paper focuses on the case of additive Gaussian Pro-
cesses, their associated kernels and the properties of associated Additive Kriging
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models. The second part deals with a Relaxed Likelihood Maximization (RLM)
procedure for the estimation of kernel parameters for Additive Kriging mod-
els. Finally, the proposed algorithm is compared with existing methods on a
well known test function: the g-function of Sobol [7]. It is shown within the
latter example that Additive Kriging with RLM outperforms both usual Krig-
ing and Additive Kriging with crude MLE, and produce similar performances
as Marrel’s variant of the Welch algorithm [8]. Furthermore, the obtained ap-
proximation results are comparable with GAMs —with fluctuations depending
on the dimension— so that the proposed Additive Kriging model is a serious
and promising alternative to GAMs in the cases where a built-in probabilistic
framework such as a GP model is needed for further applications.

2 Towards Additive Kriging

2.1 Additive random processes

We say that a function f : D −→ R is additive when it can be written as
f(x) = µ+

∑d
i=1 fi(xi) where xi is the i-th component of the d-dimensional input

vector x, µ ∈ R is a constant, and the fi’s are arbitrary univariate functions. In
this section, we show that interesting additivity properties of square integrable
processes can be characterized by some class of kernels. Let us first consider two
such independent real-valued first order stationary processes Z1 and Z2 defined
over the same probability space (Ω,F , P ) and indexed by D = R, so that their
trajectories Zi(.;ω) : x ∈ D −→ Zi(x;ω) are univariate real-valued functions.
Let Ki : R × R −→ R (i ∈ {1, 2}) be their respective covariance kernels and
µ1, µ2 ∈ R their means. Then, the process Z := Z1 + Z2 defined over (Ω,F , P )
and indexed by R2, and so that

∀ω ∈ Ω ∀x ∈ R2 Z(x;ω) = Z1(x1;ω) + Z2(x2;ω), (2)

has mean µ = µ1 + µ2 and kernel K(x, y) = K1(x1, y1) +K2(x2, y2). Following
eq. 2, the latter sum process clearly has additive paths. In this document, we call
additive any kernel of the form K : (x, y) ∈ (Rd)2 −→ K(x, y) =

∑d
i=1Ki(xi, yi)

where the Ki’s are positive semidefinite kernels over R × R. It is well known
[9] that such a combination of low-dimensional semidefinite kernels is also a
semidefinite kernel in the direct sum space. Moreover, we show here that the
paths of any random process possessing such an additive kernel have interesting
properties:

Proposition 1. Any (square integrable) random process Zx possessing an ad-
ditive kernel is additive up to a modification. In essence, it means that there
exists a process Ax which paths are all additive, and such that ∀x ∈ X, P(Zx =
Ax) = 1.

The proof of this property is given in appendix of the paper for d = 2 (same
pattern for d ≥ 2 but more cumbersome notations). Note that the class of actual
additive processes is not limited to processes with additive kernels. For example,
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let us consider Z1 and Z2 two correlated Gaussian processes on (Ω,F , P ) such
that the couple (Z1, Z2) is Gaussian. Then Z1 + Z2 is also a Gaussian process
with additive paths but its kernel is not additive. However, in the next section,
the term additive process will always refer to square integrable processes with
additive kernels.

2.2 Invertibility of covariance matrices

In practice, the covariance matrix K of the observations of an additive process
Z at a design of experiments X = (x(1) . . . x(n))T may not be invertible even
if there is no redundant point in X. Indeed, the additivity of Z may introduce
linear relationships (that holds almost surely) between the observed values of Z
and lead to the non invertibility of K. Figure 1 shows two examples of designs
leading to a linear relationship between the observation. For the left panel, the
additivity of Z implies that Z(x(4)) = Z(x(2)) + Z(x(3)) − Z(x(1)) and thus
the fourth column of the covariance matrix is a linear combination of the three
other columns: K(x(i), x(4)) = K(x(i), x(2)) + K(x(i), x(3)) − K(x(i), x(1)) and
the associated covariance matrix is not invertible.
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Figure 1: 2-dimensional examples of DoE without replication but which cor-
responding covariance matrices are systematically non-invertible in the case of
random processes with additive kernel.

A first approach is to remove some points in order to avoid any linear com-
bination, which is furthermore in accordance with the aim of parsimonious eval-
uations for costly simulators. A second approach is to add observation noise in
order for K to become invertible.

2.3 Additive Kriging

Let z : D 7→ R be the function of interest (a numerical simulator for ex-
ample), where D ⊂ Rd. The responses of z at the DoE X are noted Z =
(z(x(1)) ... z(x(n)))T . Simple kriging relies on the hypothesis that z is one path
of a centered random process Z with kernel K. The expression of the best
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predictor (also called kriging mean) and of the prediction variance are :

m(x) = k(x)TK−1Z (3)
v(x) = K(x, x)− k(x)TK−1k(x) (4)

where k(x) = (K(x, x(1)) . . . K(x, x(n)))T and K is the covariance matrix of
general term Ki,j = K(x(i), x(j)). Note that these equations correspond respec-
tively with the conditional expectation and variance in the case of a GP with
known kernel. In practice however, the structure of k is known (e.g. power-
exponential or Matèrn families) but its parameters are unknown. A common
way to estimate them is to maximize the likelihood of the kernel parameters
given the observations Z [10, 9]. Let ψ∗ denote the parameters maximizing the
likelihood.

Equations 3 and 4 are valid for any positive semidefinite kernel. If the covariance
is invertible, all usual kriging formulas can be applied for additive processes.
Furthermore, the particular structure of their kernel implies some interesting
properties:

Proposition 2. The kriging mean m(x) is an additive function. Indeed,

m(x) = k(x)TK−1Z

= (k1(x1) + k2(x2))T (K1 +K2)−1Z

= k1(x1)T (K1 +K2)−1Z + k2(x2)T (K1 +K2)−1Z

(5)

Another interesting property concerns v: the latter can be null at points that
does not belong to the DoE. Let us consider a two dimensional example: the
DoE is composed of the 3 points represented on figure 1, X = {x(1) x(2) x(3)},
and we are interested in v(x(4)) :

v(x(4)) = K(x(4), x(4))− k(x(4))TK−1k(x(4))
= K(x(4), x(4))− (k(x(2)) + k(x(3))− k(x(1)))TK−1k(x(4))

= K1(x(4)
1 , x

(4)
1 ) +K2(x(4)

2 , x
(4)
2 )−

(−1 1 1)

K1(x(1)
1 , x

(4)
1 ) +K2(x(1)

2 , x
(4)
2 )

K1(x(2)
1 , x

(4)
1 ) +K2(x(2)

2 , x
(4)
2 )

K1(x(4)
1 , x

(4)
1 ) +K2(x(3)

2 , x
(4)
2 )


= K1(x(2)

1 , x
(2)
1 ) +K2(x(3)

2 , x
(3)
2 )−K1(x(2)

1 , x
(2)
1 )−K2(x(3)

2 , x
(3)
2 ) = 0

This particularity follows from the fact that the value of the additive process
can be known almost surely at the point x(4) based on the observations at X . In
the next section, we illustrate the potential of Additive Kriging on an example
and propose an algorithm for parameter estimation.
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3 Parameter estimation

3.1 Maximum likelihood estimation (MLE)

MLE is a standard way to estimate covariance parameters. This procedure has
been covered in detail in the literature [9, 11]. Let Z be a centered additive
Process and ψi = {σ2

i , θi} with i ∈ {1, . . . , d} the parameters of the univari-
ate kernels. According to the MLE methodology, the best values ψ∗i for the
parameters ψi are the values maximizing the likelihood

L(ψ1, . . . , ψd) :=
1

(2π)n/2det(K(ψ))1/2
exp

(
−1

2
YTK(ψ)−1Y

)
(6)

where K(ψ) = K1(ψ1) + · · ·+ Kd(ψd) is the covariance matrix depending on the
parameters ψi. The latter maximization problem is equivalent to the usually
preferred minimization of

l(ψ1, . . . , ψd) := log(det(K(ψ))) + YTK(ψ)−1Y (7)

Obtaining the optimal parameters ψ∗i relies on the succesful use of a non-convex
global optimization routine. This can be severely hindered for large values of d
since the number of kernel parameters increases and so does the search space
become high dimensional. One way to cope with this issue is to separate the
variables and split the optimization into several low-dimensional subproblems,
as we propose in the next subsection.

3.2 The Relaxed Likelihood Maximization algorithm

The aim of the Relaxed Likelihood Maximization (RLM) algorithm is to treat
separately the optimization in each direction. In this way, it can be seen as
a procedure of optimization via cyclic relaxation [12] with an initial value of
the parameters σ2

i set to zero. As we will see, the main originality here is to
consider a kriging model with an observation noise variance τ2 that explains the
variability in the remaining directions during the optimization.

The first step of the algorithm is to estimate the parameters of the kernel K1.
The simplification of the method is to consider that all the variations of Z in
the other directions can be summed up as a white noise. Under this hypothesis,
l depends on ψ1 and τ :

l(ψ1, τ) = log(det(K1(ψ1) + τ2Id)) + YT (K1(ψ1) + τ2Id)−1Y (8)

Then, the couple {ψ∗1 , τ∗} that maximizes L(ψ1, τ) can be obtained by numerical
optimization.
The second step of the algorithm consists in estimating ψ2, with ψ1 fixed to ψ∗1 :

{ψ∗2 , τ∗} =argmax
ψ2,τ

(l(ψ∗1 , ψ2, τ)), with

l(ψ∗1 , ψ2, τ) =log(det(K1(ψ∗1) + K2(ψ2) + τ2Id))+

YT (K1(ψ∗1) + K2(ψ2) + τ2Id)−1Y

(9)
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This operation can be repeated for all the directions until the estimation of
ψd. However, even if all the parameters ψi have been estimated, it is fruitful
to re-estimate them so as the estimation of the parameter ψi can benefit of the
values ψ∗j for j > i. Thus, the algorithm is composed of a cycle of estimations
that treat each direction one after each other:

RLM Algorithm :
1. Initialize the values σ2(0)

i = 0 for i ∈ {1, . . . , d}
2. For k from 1 to number of iteration do
3. For l from 1 to d do
4. {ψ∗(k)l , τ∗(k)} = argmax

ψl,τ
(Lc(ψ∗(k)1 , . . . , ψ

∗(k)
l−1 , ψl, ψ

∗(k−1)
l+1 , . . . , ψ

∗(k−1)
d , τ))

5. End For
6. End For

τ is a parameter tuning the fidelity of the model since for τ = 0 the kriging
mean interpolates the data. In practice, this parameter is decreasing at each
new estimation. Depending on the observations and on the DoE, it converges
either to a constant or to zero (Cf. example and figure 3). When zero is not
reached, τ2 should correspond to the part of variance that cannot be explained
by the additive model. Thus, the comparison between τ2 and the σ∗i allows us
to quantify the degree of additivity of the objective function according to the
model.

This procedure of estimation cannot be applied for kernels that are not addi-
tive. However, the method developed by Welch for usual kernels in [8] is in the
same fashion since it corresponds to a sequential estimation of the parameters.
Moreover, one interesting particularity of Welch’s algorithm is to choose at each
step the best direction in which the parameters should be estimated. The RLM
algorithm can easily be adapted in a similar way to improve the quality of the
results but the adapted version would be much more time consuming.

4 Application to the g-function of Sobol

In order to illustrate the methodology and to compare it to existing algorithms,
an analytical test case is considered. The objective function is the g-function of
Sobol defined on [0, 1]d as

g(x1, . . . , xd) =
d∏
k=1

|4xk − 2|+ ak
1 + ak

with ak > 0 (10)

This function is well known in the literature [7] and it has two main advantages
for our study: first, the dimension of the input space is tunable and second,
the Sobol sensitivity indices associated to the variables xi, i = 1, . . . , d can be
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obtained analytically:

Si =
1

3(1+ai)2[∏d
k=1 1 + 1

3(1+ak)2

]
− 1

(11)

Obviously, this function is not additive but depending on the coefficients ak, it
can be very closed to an additive function. For example the sum of the first
order Sobol indices is 0.99 for ak = 5 and d = 4. As a rule, the g-function is all
the more additive as the ak are large

This section presents 3 tests in dimension 4, 8 and 12. In order to compare
our methodology with the results of [13], we choose ak = k. The DoE are LH
maximin designs [11] composed of 10 × d points. To asses the quality of the
obtained models, the predictivity coefficient Q2 is computed on a test sample
of n = 1000 points uniformly distributed on [0, 1]d. Its expression is:

Q2(y, ŷ) = 1−
∑n
i=1(yi − ŷi)2∑n
i=1(yi − ȳ)2

(12)

where y is the vector of observation, ŷ is the vector of predicted values and ȳ is
the mean of y.

4.1 A 4-dimensional example

In 4 dimension with the coefficients ak = k, the sum of the Sobol indices of the
main effects is equal to 0.95 so the g-function is almost additive. We run on this
example 5 iterations of the RLM algorithm. The univariate functions obtained
are presented on figure 2. On this figure, the represented values are centered to
ensure that the observations and the univariate functions are comparable. This
example highlights one particular advantage of additivity: since the effect of
any variable can be isolated and represented, the model is easily interpretable.

The evolution of the estimated observation noise variance τ2 is represented on
figure 3. On this figure, it appears that the convergence of the algorithm is
reached at the iteration 4 and the final τ2 is 0.01. In this example, the quality
of the constructed model is high since coefficient of prediction Q2 on the test
sample is equal to 0.91. Nevertheless, this depends on the DoE and on the
optimization performances, so that it is likely to fluctuate.

4.2 Comparison with other algorithms

In this section, the proposed RLM algorithm is compared with other methods:
additive kriging model with a “crude” MLE, kriging with usual kernel, the GAM
algorithm, and a method of GP modeling developed by A. Marrel in [13]. The
results for usual kriging are obtained with the DiceKriging R package [14], and
the GAM implementation comes with the R package available on the CRAN
website. Eventually, the results of A. Marrel presented in [13] are cited in order
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Figure 2: 1-dimensional projections of the observations (bullets) on the g-
function example with d = 4. The univariate models (solid lines) obtained
after 5 iterations of RLM are very closed to the analytical main effects (dashed
lines).

to compare our methodology to a specific algorithm for high dimensional kriging
model selection.

As previously, the test function is the g-function and the coefficients are set to
ak = k. With this values, the sum of the first order Sobol indices varies from
0.95 for d = 4 to 0.93 for d = 12. For the methods RLM, MLE and DiceKriging,
the procedure used for the likelihood maximizations is the BFGS algorithm from
the optim R package. The obtained Q2’s are gathered in table 1.

This example deserves many remarks. First, the results are based on the con-
struction of a single model and they are sensitive to many parameters such as
the DoE and the robustness of the optimization. Experience shows that the
results obtained by RLM are less robust than the results from DiceKriging and
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Figure 3: Evolution of the observation noise on the 4-dimensional example

Algorithm kernel 4 8 12
RLM Additive Matern 3/2 0.91 0.79 0.72
RLM Additive Matern 5/2 0.86 0.75 0.85
MLE Additive Matern 3/2 0.86 0.82 0.63
DiceKriging Matern 3/2 0.79 0.66 0.67
Marrel power-exponential 0.86 0.85 0.84
GAM (smoothing splines) 0.89 0.81 0.74

Table 1: Q2 predictivity coefficients at a 1000-points test sample for the various
methodologies for d ∈ {4, 8, 12}.

GAM but more than those from MLE with additive kernel. Our current im-
plementation of RLM and MLE may be at stake and future work will focus
on its improvement. A second remark is that the RLM algorithm with addi-
tive Matern 3/2 kernel gives good results in low dimension whereas the additive
Matern 5/2 kernel performs better in higher dimension. This fact is not surpris-
ing since the g-function with ak = k is all the more smooth in the k-th direction
as k is large. But this choice for the ak implies also that the influence of the
variable xk decreases with k. This assumption of significant and non-significant
variables is advantageously used by Marrel’s algorithm, and probably explains
its robustness regarding dimensionality.

5 Concluding remarks

The proposed methodology seems to be a good challenger for high-dimensional
kriging modeling. On the presented example, it takes advantage of the impor-
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tant additive component of the g-function, so that the best metamodels are
almost systematically found among those based on additive kernels. Further-
more, RLM outperforms crude MLE in most cases. In all, the proposed models
take advantage of additivity, while benefiting from interesting features inherited
from both the kriging and dimension reduction frameworks. The latters include
the versatility of a GP model, but also the flexibility of choosing the univariate
kernels, like for the predictors in GAM.

One advantage of the RLM algorithm compared to the backfitting proposed in
the gam package is that it estimates the covariance structure in each direction.
Since the smoothing parameters are estimated at the beginning of the GAM
algorithm and do not vary afterward, the RLM is most likely to give interesting
results by adapting the kernel at each step. The proposed methodology hence
seems very promising, even if many points still require a particular improvement.
Among them, we can cite the construction of a stopping criteria for the cycle
of estimation, and more ambitiously some proof of convergence for the RLM.
In other respects, experimental works to be conducted in a near future include
improving the robustness of likelihood optimizers used in RLM, and test the
forthcoming enhanced RLM in higher dimensions.
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Appendix: Proof of proposition 1 for d = 2

Let Z be a random process indexed by R2, with kernel K(x, y) = K1(x1, y1) +
K2(x2, y2), and ZT the random process defined by ZT (x1, x2) = Z(x1, 0) +
Z(0, x2)− Z(0, 0). By construction, the paths of ZT are additive functions. In
order to show the additivity of the paths of Z, we will show that ∀x ∈ R2,
P(Z(x) = ZT (x)) = 1. For a sake of simplicity, the three terms of var[Z(x) −
ZT (x)] = var[Z(x)] + var[ZT (x)] + cov[Z(x), ZT (x)] are studied separately:

var[Z(x)] = K(x, x)

var[ZT (x)] = var[Z(x1, 0) + Z(0, x2)− Z(0, 0)]
= var[Z(x1, 0)] + var[Z(0, x2)] + var[Z(0, 0)] + 2cov[Z(x1, 0), Z(0, x2)]
− 2cov[Z(x1, 0), Z(0, 0)]− 2cov[Z(0, x2), Z(0, 0)]

= K1(x1, x1) +K2(0, 0) +K1(0, 0) +K2(x2, x2) +K1(0, 0) +K2(0, 0)
+ 2 (K1(x1, 0) +K2(0, x2)−K1(x1, 0)−K2(0, 0)−K1(0, 0)−K2(x2, 0))

= K1(x1, x1) +K2(x2, x2) = K(x, x)

cov[Z(x), ZT (x)] = cov[Z(x1, x2), Z(x1, 0) + Z(0, x2)− Z(0, 0)]
= K1(x1, x1) +K2(x2, 0) +K1(x1, 0) +K2(x2, x2)
−K1(x1, 0)−K2(x2, 0)

= K1(x1, x1) +K2(x2, x2) = K(x, x)

Those three equations implies that var[Z(x) − ZT (x)] = 0, ∀x ∈ R2. Thus,
P(Z(x) = ZT (x)) = 1 and there exist a modification of x with additive paths.
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