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Photo-assisted transport through a mesoscopic conduatarsowhen an oscillatory (AC) voltage is super-
posed to the constant (DC) bias which is imposed on this adoduOf particular interest is the photo assisted
shot noise, which has been investigated theoretically apdramentally for several types of samples. For DC
biased conductors, a detection scheme for finite frequeaisenusing a dissipative resonant circuit, which is
inductively coupled to the mesoscopic device, was develdppcently. We argue that the detection of the finite
frequency photo-assisted shot noise can be achieved weitbatine setup, despite the fact that time translational
invariance is absent here. We show that a measure of the-phsisted shot noise can be obtained through the
charge correlator associated with the resonant circuigrevthe latter is averaged over the AC drive frequency.
We test our predictions for a point contact placed in thetfoaal quantum Hall effect regime, for the case of
weak backscattering. The Keldysh elements of the photistaedsnoise correlator are computed. For simple
Laughlin fractions, the measured photo-assisted shotmiéplays peaks at the frequency corresponding to the
DC bias voltage, as well as satellite peaks separated by@hdri&e frequency.

PACS numbers: 73.23.-b, 72.70.+m, 73.63.-b,

I.  INTRODUCTION

The understanding of the transport properties of nanoscalductors at low temperatures has known tremendous sgsces
via experiments in a wide range of systems performed for tbstpast in the stationary regime. Correspondingly, theamie
modelling has allowed the description of these transpartgeses via scattering theory approaches as well as Harailto
formulations, in a fruitful dialogue with experimental @stigations. Transport is first characterized by the aeeragr
flowing through conductors. But further informatign can bégd via the measurement and analysis of the current i
and more generally via the higher current momerisirly investigations of quantum transport focused almastusively on
the low frequency regime. Few recent experiments have prghantum system on timescales comparable with the electron
correlation time, where new physical effects are expectée. present work deals with the detection of quantum noisectt
high frequencies, when both a DC and a AC bias is imposed legtite source and the drain of the mesoscopic system.

Indeed, high frequency measurements can mean severa tiimgt, if only a DC bias is imposed on the sample, a ﬁmna
current is generated and high frequencies refer to the &ocwimponent of rrent-current correlation functiotie
Second, high frequencies can be injected as a drive on theseomsic circuitifl!Piifor instance when an additional AC drive is
superposed to the DC bias. The later effect is called phsgisted (PA) transport: electrons undergoing transnmidstmn one
lead to another are able to absorb/emit “photons” duringphdcess. PA transport, and in particular PA noise has liedied
theoreti H and experimentally on several pccasiongffiusive metals tunnel junctionﬁnormal metal/ superconductor
junction@ 1#as well as quantum point contaét¥he noise caracteristics then displays some structurdasaf the DC bias
which are multiple of the AC drive frequency.

However, high requency noise detection requires speciat canventional (low) frequency noise detection setupéten
inadequate for such measurements, and one must often tesmmtchip detection schemes, or alternatively/equivfen
schemes where a good connection to the measurement ciragihieved through adapted impedence Ii3&3n chip detectors
have allowed the detection of single electrons travellmguigh quantum dots. Such detectors and the device they @nmab
parts of the same quantum system and must be treated on tleefsatimg. They bear the peculiarity that the noise which is
measured is a non trivial combination of non-symmetrizedanoorrelators. For DC driven systems there are existioggmsals
to detect high frequency noise using either capacitive @uétive coupling with an on-chip circ

In a recent theoretical work, a LC resonant circuit, whichswaupled inductiyely to the mesoscopic device circuitrgsw
employed as a detector of both noise and higher current misnfégrvird moment}d The description of this generic detector
included its electromagnetic environement, describedhketth of harmonic oscillators with the Caldeira Legett mbtePre-
dictions were made on the role of such a dissipative enviemtrand on the relevance of this harmonic detector to capture
high frequency current moments. However, this study canmsitithe case of a mesoscopic device in a stationary regiitte (w
a DC bias only). The hypothesis of a stationary regime gyesathplies the analysis of the detection process becausmef t
translational invariance. The presence of an additional/éitage drive breaks such a property.

Given the interest in the study of time driven mesoscopitesys and in particular PA noise, it seems necessary to azlcoas
detection with an auxiliary circuit can be achieved in suithasions. The purpose of this work is to present a high fezupy
detection scheme for photoassisted noise, and to ill@siratith a calculation of photoassisted noise in a specificasion




where signatures of photoassisted transport are most ticanir devices composed of normal metal junctions as well a
superconducting/normal metal junctions, PA noise exhisiihgularities at integer ratios of the DC voltage with extgo the
AC frequency: the derivative of this noise exibits jumpsatislocatio ﬂe other hand, for a weakly pinched quantu
point contact placed in the fractional quantum Hall effegfime (FQHEEE@’E the PA noise diverges when the DC voltage
— multiplied by the filling factor — is a multiple of the AC fragncy. This much stronger singularity is a motivation fortas
apply our measurement scheme to the FQHE situation. We ldlivghat as in the DC case, the measured noise captures the
response of the mesoscopic circuit at the resonant fregutice LC circuit. It exhibits a central peak at the DC vokagrhich
is surrounded by satellite peaks shifted by the AC frequenlogse predictions have the potential to be tested in exesis.

The paper is organized as follows. In Sec. Il we present theefrfor the LC detector. We review the results for the charge
correlator of the DC cirsuit in Sec. 11l and extend this dssion to the PA situation. Sec. 1V is devoted to the presiemtatf
the QPC in the FQHE regime and its calculation of PA noisetsRibthese quantities and of the measured noise are distusse
in Sec. V. We conclude in Sec. VI.

Il. MODEL

The proposed setup is the same as that presented i@ef. cefptdar the fact that the voltage source on the mesoscopic
device is time dependent. A lead from such device is indalsticoupled to a resonant circuit (capacitanceinductance.,
and dissipative componenrf). The signal which contains information about the noisehefiesoscopic circuit is encoded in
the time correlation function of the charge on the capacitor
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FIG. 1: Mesoscopic circuit is coupled to a resonant dissipatircuit

We start with the description of the detector. The basic Htamian which describes the dissipative oscillator citcaads:
Hose=Ho+ Hic env 1)

where
Ho=Hic + Heny (2)

is the Hamiltonian of the uncoupled systemc* oscillator plus environment”, and | - .., describes the coupling between
the two.

For dissipative quantum systems, it is convenient to usetaipgegral formalism. In the absence of dissipation andhtiag
to the mesoscopic device, the Keldysh action describingliiaege of tha.C circuit reads:

z
Sic [l= % dwdt’g’ ©G,' € t) .q); @)
where
Gyt (& ©)=LIEe)” 1« O; 4)
is the (inverse) Green function of an harmonic oscillatoig(its “mass”), = (L.C) =2 isthe resonant frequency of the circuit,

gt = (" ;q )is atwo component vector which contains the oscillator doate on the forward/backward contour, and
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is a Pauli matrix in Keldysh space. Dissipative effects egated within the Caldeira-Leggett model, where the emvirent is
modeled by a set of harmonic oscillators (bath) with frequrest ! , g; the coordinateyis coupled linearly to the bath oscillators:

X
Hic env = 9 nXn 7 (5)
n
with the coupling constants, . R
The partition function of the.c oscillator plus bathz = D gb xe®® B*1, has an action:
1 X T 1 T X
S = Spc + E Xh Dn zXn q z nXn 7 (6)
n n
whereD ! (t) = M, [(@)? !2]_ () and the symbol stands for convolution in time. The bath degrees of freedambe

mtegrated outina standard mar@erAs a result, the Green functian of the L.C circuit becomes dressed by its electronic
environment,

¢cl=0c,! ; (7)

. P . . . T .
with a self-energy () = , | ZD. (0 .. Intheremainer of this paper, when we mentiontte circuit, it will also imply

the presence of its surrounding electromagnetic envirmme
Next, we introduce the inductive coupling between the masois device and theC circuit,

Hine= gL (8)

where Lis the time derivative current opera%r This interaction is interpreted here as an external piatieatting on the
oscillator circuit. To calculate correlation functionstb&1.C circuit coordinatey, we introduce the generating functional,

Z h, i
7 [ ;1= quxpiEqT G' g d . (¥+ ) ; )
where T = (*; )isatwo-component auxiliary field. Performing integratmrer the LC oscillator variables results in

z [ ;1]1= etz [ with an effective action (restoring integrals):
Lz Z
3 e 1 0 T 0
ere [ 1] = > dt dt'( O+ L) G t)
i
@+ ) (10)
lll. CHARGE CORRELATOR

By taking double derivatives of the Kelysh partition fumetiwith respect to the components of the spinorthe charge
correlator is obtained:

@%z [I]

+ 91 7 ! . ; 11
by (g ()1 L e @ (11)
where ; ° 1 are indices specifying the upper/lower branch of the Keldgsntour. To leading order in the coupling
constant between the mesoscopic circuit and the deteéthis can be expressed in terms of the current derivativeetzdar:
D E
K 2 %(1;2)= TexH1) 'Ho)°® ; (12)

m eso

where the average:::i ___ represents a non equilibrium average containing infommatin the occupation of the reservoirs
connected to the sample and on its scattering propertieschi@rge correlator consists then of a Keldysh matrix:
D , E Z X .
Txq g ) = * did, G 2@ 2),°°K 23 (z;1),°'G* (1 ©); (13)

1 2

where the integrand contains the Green function ’(t) of the LC circuit only. While this Green function is a funatiof a
single time argument because of time translational inmagathe current derivative correlator * 2 ( ;; ,) is nota function of
the difference ; » If the bias voltage is time dependent.



A. DC Voltage only

We recall the results obtained previously for the detectibfinite frequency noise in the presence of time translation
invariance. The initial proposal of ReDZS for a dissipatess LC circuit was to operate repeated time measuremaritseo
chargey. This allows to construct an histogram for zero voltageldyineg the zero bias peak position, its width, skewness thé
presence of bias, this histogram is shifted, and acquiresvanidth, skewness,... Information about all current motmanhigh
frequencies is encoded in such histograms. Here, howeeawnly focus on the detection of noise. In R@ 17, the incisif
dissipation due to the electromagnetic environment wag/sho be essential to obtain a finite result for the measuringgss.
There, expressions for the off diagonal Keldysh componétitecharge correlatatry g )" ()i = g t9)q()iwere
derived with the help of Eq.m3). Note that in this situatitime current derivative correlator of EcE[lZ) is a functadrthe
difference ;  ,, and the charge correlator is a convolution product, whigiians its dependence an t°only.

Going to the rotated Keldysh basis (see Appelﬂiix B) allowstaite the charge fluctuations at equal time-(t°) as:

z

nfi= ° 621—!GR(!>fGK (DK (1) GY () G (K ¥ ()g; (14)
with the three Green function components given by:
GRP ()= L(* ) disgn()I @G It ; (15)
and
GY = N ()+ )G () G*(); (16)
whereN (! )is the Bose occupation number of the oscillator and the hahtsal function is defined as:
J()= i A=ty (0 ) a7

n

This spectral function is at the origin of the broadeningtfa1.C circuit Green function.
The time derivative correlatots **  are related to the Fourier transform of the current currentatation functions as

K* (1)= 128" (Iyandk * (!)= 125 * (1), with
Z
st ()= dthIO)Iwie™t; (18)

ands *‘! )= s* ( !)corresponding to the response function for emission/giisor of radiation from/to the mesoscopic
circuitﬁ . With these definitions, the final result for the measurakéess noise reads:

Z:

mi- 22 Hzpogp
0 2
ST O+ N ()T (1) st () ; (19)

where ©(1)= TG )=L> (12 2)2 4+ 323 Jyisthe susceptibilit%}of Ref. 18, here generalized to aabjtr (5! 9. Eq. (19)
constitutes a mesoscopic analog of the radiation line wadtbulatiort!: a dissipativel.C circuit cannot yield any divergences
in the measurable noise. Dissipation is essential in thesurement process.
Eq. ) indicates that for an infinitesimal line width, tiéeigrand can be computed at the resonant frequenagd the
measured noise takes the form of Hel. 25:
2

¢ =] 8 O+N 6" () 5T (20)
where the prefactor is defined assuming a strict Ohmic or Markovian dampiag!() = L !), which corresponds to a
memoryless bath which is consistent with the adiabaticchivij assumption, as discussed in . 17.

As an alternative to the measurement of the width of the @hdigtribution, one can imagine that the capacitor itself is
coupled tp,a measuring device (a single electron tunnelavicd) which directly detects the Fourier transform of tharge
correlator? Given the fact that the charge correlator matrix of E@ (33 convolution product in this stationary situation, its
Fourier transform take the simple form of a product of mafsic

Z h i o

0

diffx g (g )ie" "= 2 G (1) K (!) .G () ; (21)

whereG (! ) andK" (! ) are respectively the matrix version of the LC Green’s fumtténd of the current derivative correlator.
Naturally this will have substantial contributions wherttba andG overlap significantly. This constitutes a rather compact
way for describing the detection process in the case of a@aonniias voltage.



B. AC drive and temporal invariance

We now turn to the main point of this section, which is to addreow to deal with the presence of an AC voltage superposed
to the DC one. The total bias potentialit) which is applied to the mesoscopic device is thus a periadiction of time with
period = 2 =l .. We start by defining a correlatenT ;t°) from the current derivative correlator of EE(lZ):

0 t+ 0
K Gt)  k(

H to) : (22)

DefiningT = t+ ©)=2, "= t t, the charge correlator of Ed. {13) is rewritten as:

D E z X
o0 _ 2 2 40
Tk g g (&) = dg dty G t )

1 2

KT+ it f) L G () (23)

wherety = (+ t)=2 t*=2. Next, we define the average of the charge correlator ovardatied of the AC drivg as follows:

Z D E Z X Z
1 o 5 o . dT 0
— dTl g (g () = dg dt G 2 (t %) ZZ ‘ —k 21T+ ;0 ) PGt (). (24)

0 0
12

z

Note that the last integral over the varialilés essentially a period average of the correlatar;+°) with the variabler shifted
by ty. In the presence of an AC drive, this period average doesapsntl on the shift,, because as ion of the variable
k (T ;%) contains only harmonics of the drive frequengy. . This has been noticed in earlier wo For our purposes,
it means that we can safely replageby 0. As a result, the period averaged charge correlator taleftm of a convolution
product as was the case for the constant DC bias, and it treréépends only on the time difference >

Z D E
S ‘e © I ar q g ©
z) X
= 2 dnd G (@ ) 0K ' t), G (t); (25)

1 2

where we defined the period averaged correlator:

1
K 2@ - dTk 2 *(T;0) : (26)
0

Finally, the averaged charge correlator can be expresgechis of the Fourier transfrom of both the LC circuit Greduaisction
and the period averaged current correlator:

Q/\ (t(D): 2 _'ei!tG 2(!)22 2K21(!)Z1 IGIO(!)Z (27)

This result is the exact analog of the DC formula EIEEl 21, edeento and AC drive. In addition, af® = 0, this expression
has the same form as the result of . 17. We have therefengifiéd which quantityx ) characterizes the influence of the
mesoscopic circuit on the response of the LC circuit. Thereefthe protocol for measuring photoassisted shot notbeisame

as in the DC case provided one averages the response oveetjuericy of the drive. This averaging procedure restores th
temporal invariance of the charge correlator. In the foitaysections, we will compute the current derivative catals and
their period average for a specific system: a QPC placed indhditions of the FQHE where the elementary transport @m®ce
is the Poissonian transfer of Laughlin quasiparticles.

IV. NON SYMMETRIZED PHOTO-ASSISTED NOISE IN THE FQHE

The calculation of the symmetrized photoassisted noisévees carried out in Ref. B0. Here we use the same basic model
and generalize the calculations of the noise correlatohedull Keldysh matrix elements of this correlator. Next, @sract
from these the noise derivative correlators which are eglefor the measurement process.
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FIG. 2: Quantum point contact

A. Model for quasiparticle backscattering

We use the Tomonaga-Luttinger formalism to describe thd 6gd left moving chiral excitations. In the absence of glimy

between the two edges, the Hamiltonian reads:
z
Ho= (—) ds(@s ) ; (28)

with r = +; for right and left movers. Here, we focus solely on the weatkbeattering regime because it is already known
that the PA shot noise exhibits some strong singularitiée. @ackscattering of quasiparticles is described by theilttarian:
X
He = 2a%@070 ©"; (29)

"

wherea " (t) is a tunneling amplitude which depends on the applied veltsag the Peierls substitution. Here the notation
= leaves an operator unchanged for< +) or specifies its Hermitian conjugate & ). . is the quasiparticle operator
which is expressed in terms of the bosonic chiral field

L= pe—et 0 (30)
2 a
wherea is a short distance cutoff andis the filling factor ( ! is an odd integer to describe Laughlin fractions). Choosing

time dependent voltage in the form(t) = Vo + Vicos(! 4 ¢ t) results in a tunneling amplitude:
(31)

sin(!act);

wheree = eand , is the bare tunneling amplitude. The backscattering ctirsaseduced from the backscattering Hamilto-
nian:
i X "
: (32)

B. Non-symmetrized noise

The general expression for the Keldysh components of treerairrelator in the Heisenberg representation is:
0 0 0 0y . 00,
S (Gt)=hL O )i hls ¢ )ihl € )i: (33)
Since we are interested in Poissonian regime only, the ptarficurrent averages can be dropped out because it cotetsibm
loreover, in this second order calculation in the tunnetingplitude ,, there

higher order in the backscattering Hamilton
is no difference between the Heisenberg and interactidnqgicThe noise then reads:
0 0 n0 . (34)

0 X " w0 "
s w= ) "™aCoaOmerYe) €N ) @ ) q:

" because of quasiparticle conservation. Replacing theipprdisle

This correlator is different from zero only whefi =
correlators by their bosonized expression, the noise ishdten in terms of a product over averages of bosonic fields
(35)

p7 0 '|Yp7 Al 0
)j_hTK el (t ) i (t

P )l o

o o )X ™ wrm (") w0 3
s G =-—— "mTorl" OHge
4 232

"



The final result for the real time noise correlator is then:
e )?
4 2a2

where we introduced the chiral green function of the bosbeids:

s Y = €0 apa )+ ©AE) ; (36)

0 1 1 0
G ) =Mxf . ) @ gl SHIx £ o (0 gl SHIx £ o () )gi 37)
The double Fourier transform of this quantity, which willeaV to relate it to the noise correlator, reads:
Z Z
S (1 a)= atdt%et & 2P g 1,40 (38)

We now specify the periodic voltage modulation, which akkaw write the tunneling amplitude in terms of a series of Bess
functionsJ,,:

. eV
A(t)= 0 el(!o+n!Ac)tJn ' 1 ; (39)
n= 1 T-ac
which gives the Fourier transform of non-symmetrised noise
1 1
o )X X e V) eV,
S ( 1r 2) = 2 2.2 Jn | In )
7 aZ n= 1 m= 1 Al TAC
. ) 0 .0
ddt’et 1t 2Ple? & s )+ lae it mt)): (40)
Next, it is convenient to perform a change of variable + €and °= t+ %
0 (e )2 S Xt Xt e Vp e Vy
S (15 2) = 2 > 2 Jn ; In |
2 “a e 1 ome 1 “AC ‘AC
Z 7 ;
. _5 2 _ n+m n m
d a2 =Ziar 2) =22 6 (g lo + 5 ac + 5 lac ©

Using standard trigonometric identities, one can write thipression as a product of separate integrals owend °. Integrals
over contain the (zero temperature) Green’s function of theatHiields and can be expressed in terms of Gamma function.
The result has the form:

1 1
0 e ) ? X X eV eV
S (17 2) = 2—5 Ja In
2 23 ‘ac Yac
n= 1 m= 1 .
h . . i
L(1+ 29I, (1 2itoil) L1+ 2:0)I, (1 2itoil) (41)

The integralsy, I, D, I, I, " are defined and computed in the Appendix. The final resulti®dtKeldysh matrix elements of
the noise correlator is:

(e)zg X! Xt e Vq eV a
S (17 2)= 2=/ In 3 In —(—)
4%t AcC ac @) r
h
@ s;n( 1+ lo+nlacNji+ lo+nlacy © (1+ 2+ @ m)lac)
i
+ @ sogn( 1 o nlac)ii o D!chz i+ o @ om)lac) (42)
e)? 3 xtox! eV eV a , et
S (1/ 2)= 22 Jn ) m | ( )
4 %at AcC NG 2 ) ¢ cos( )
h 2 1 2 1 +
Ji1+ !lot+tnlac] (1+ 2+ @ m)lac)+ J1 'o nlac] (1+ 2 M m)lac)

(43)
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We recognize that since we are dealing with simple Laughéintfons of the FQHE, is the inverse of an odd integer and all
Keldysh component exhibit power law singularities whendbantity , (L4 + n!ac ) vanishes. As a check, it is possible to
recover from these components the previous result for thersstrized nois

1 . +
Seym ( 17 2) = E(S (15 2)+S 7 (17 2))

_ el s o R S S N
- 4 2a? " lac "olac 2 ) r

n n= 1 m= 1

j1+!o+n!chz i+ o+ @ m)lac)
i
+ 31 lo nlacd T (14 2 @ m)lac) : (44)

Itis also useful to know that the standard property of Ketd@seen’s functions:
ST (1 2)+S  (1i 2)=8" (15 2)+S" (1i 2) (45)

applies as it should for the double Fourier transform exgoes.

C. Current derivative correlators

The relation between the Fourier components of the noiseledor computed in the previous section and the curremiater
tive correlator introduced in SeE.]ill reads:

K 0( 17 2)= 1 2S5 0( 17 2): (46)

Yet, we need to relate the noise correlagor ' ( 1; ») to the correlatok (T ;! ) and ultimately, to its time average 2 * (!).
This is achieved using the relation:
2 4! ! !
0 -1 il LT [ -1
k (T;l)= —e™'TK (=+!;—= 1): 47
(T;!) e = > ) (47)

So the final result for the four averaged noise derivativestators reads:

2 2 X1
K (I):l drk* (T-I)ZM J2 ewa ;(a)zﬂ
! 4 232 o e ) |
0 ne 1 AC F
h i
a sgn (! + Lo+ nlac)d + o+ nlacT + (1 son (! o nlacNi o nlacd *
(48)
z ] .
1 e )2 2 X eV 1 a e *
K ()=2  drk’* @;1)= - )220 3= —— (=) 2
0 4 %at ac @) r cos( )
h i
9+ lg+nlacd "+ 1o nlactd b (49)

To be complete, we can compute all the Keldysh element indtated basis. This is performed in AppenE|x B. While the
advanced and retarded contribution do not bear informaticthe non equilibrium nature of the transport processesdgagiace
in the mesoscopic devices and therefore in the detectoKeltysh component:

Z g h i
0¥ = 2 2— G (MRT (MG (1) + GR (RS (1H)E® (1)y+ & (HR® ()™ (1) (50)

summarizes such an information in a compact way. We recatllad an alternative to the measurement ol‘/éue equal timgehar
correlator, Eqs.@?) anﬂSO) are also likely to be measdiredttly (resolved in frequency) by an SET devige.

This completes the calcwation of the current derivativeredators. In the following section we continue with the gam
analysis as with the DC case That is we use the contour ordered elements of the chargelatr, in particular the +
component evaluated at equal time: in Sec.V we insert theesgns for Eq38) 9) and discuss the results.



V. RESULTS

We now discuss the formulas obtained in Sec. IV. In all of tesuits below, we have checked that when the AC drive
frequency is set to, we recover the DC results for the finite frequency noise at 1 []j] and = 1=3 ]. For the QPC we
focus on the voltage dominated regime where the temperisttatkken to zero in the current correlator, but it nevertbeknters
the detector response.

A. Excess noise in the quantum Hall effect

We start with a discussion of the results for the non symmedriexcess PA noise. We show in Fig. 3 the curves for the
current derivative correlatat * () (see eq.), which is the quantity which enters the exprassithe measured noise (the
charge correlator). This is displayed for two differentues of the filling factor . We choose for our main interest the Laughlin
fraction = 1=3, which is in principle the easiest attainable Laughlin fi@t of the FQHE in experiments, and = 1, the
integer quantum Hall effect case, which here also corredptmthe noise caracteristics of a single channel normaileting
junction.

Here we have chosen the DC voltage so that the central freguen  ev,=~ is larger than the drive frequenady . , and
the amplitude of the AC voltage ( = ev;=~)issuchthat ;=!,. = 1

For = 1=3 we find divergences fok * ( ) located at! , and at sidebands, + n!,.. Sidebands witm = 1; 2
are visible.x * () vanishes at zero frequency. For frequencies larger than! , + 2!, this noise derivative correlator
seems to be negligible. While the formulas for* ( ) show a power law divergence, here one has to add a reguiarizat
procedure because strickly speaking, the calculations haen performed in the weak backscattering regime. Thissbat
the differential conductance associated with the tungelirrent has to be lower than the conductance quantum (ateerone
should examine the case of the crossover to the strong batteiseg regime). The validity condition of our results bdeen
previously derived in Eq. (24) of ReDSO. For our purposgyst implies that the finite frequency PA noise saturates@tions

=!log+nlac.
In the integer quantum Hall case= 1, no divergences are found far* ( ). Instead, singularities in the derivative occur
for 'y + n! ¢, and the current derivative correlator seems again to bigitdg again beyond = ! o + 2!,¢.
o 0.14 ]
=l ] 0.12; ]
—~ 47 V:1/3 ] —~ 01C’ V:l ]
S = i ]
T" 3 ] Tv 0.0¢
N2 ) ¥ 0.0€: ]
0.04; 1
1 ] 0.02; :
Ot: ‘ ‘ ‘ ‘ ] 0.0Ct: ‘ ‘ ‘ ‘ ]
0.0 0.5 1.0 15 2.0 25 0.0 0.5 1.0 15 2.0 25
Q/wo Qwo

FIG. 3: Current derivative correlator for a QPC in the frangl (left) and integer (right) quantum Hall effect(= 3 !ac, !'1 = !ac and
K * ( )isnormalized by I !3)

However it is also interesting to plat * ( )= 2; in this way we have access to an “averaged” current come(abise)
because the term? ink * ( )isin fact due to derivative operators acting on the currentatator. This is depicted in Figﬂ 4.
For = 1=3 we again find divergences (at the same locations ag& for( )). The only noticeable difference with the latter
curves is that the averaged noise does not vanish at zenzeiney. If one ignores the side bands, the central peak resmisd
clearly of the finite frequency non symmetrized noise coraguéecently for a QPC in the FQHH.

For = 1 the finite frequency noise again exhibits jumps in its deneawith respect to frequency, but its behavior is linear
between two successive singularities. Thus, for this mitivequencied ,=!; > 1, the excess noise characteristics resembles
the finite frequency noise in the absence of an AC drive: tter Ia (essentially) linear for < ! , and vanishes beyon this.
Yet the PA noise does not vanish at ! ,, it shows a singularity in its derivative at its locationg&ther with singularities at
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FIG. 4: Averaged current correlator (same parameters ahgirﬂléxcept the factthat * ( )= 2 is normalized by Iy )
= ly+ nlac (n= 1lisvisible). To normalize the curvesin Fig[] (3), Fi. (4) andhe following section, we useﬁle back
scattering current to zero order in the amplitude obf the modulation wich corresponds to the pure stationnegymeX:

-~ 0 T2 oy L
IB > 2a2 (2 )( F) Sgn(.o)j.oj . (51)

B. Measured PA noise

In this section, we display curves for the charge correlat@qual times. We consider excess quantities. By excessieaa
that the charge correlator at zero voltage has been subdriroim the charge correlatorag; v, 6 0.
In Figs.[b[B[ andl8 we plot these quantities:

g o= *2 —G () K 2 (1) G () (52)

Z

with weak and strong dissipation, low and high (detectamgerature for two different values of the ratie=!» -, which
corresponds to the argument of the Bessel functions in theesgion of the charge correlator. In the following curges is
always normalized by ?=( ?e Iz ! ) and dissipation and temperature are in unit f The frequency = ! , corresponds to
the positions of the central peak.

We start with! ; > !, . In order to resolve these peaks, it is necessary that thit widhe resonance level is smaller than
the spacing . c between peaks. We observe that by varying! ¢ , the relative amplitudes of the peaks can be modulated.
In Fig. , the curves correspond to a ratio=! , . = 2: we can clearly identify the central peak a& ! , butit is smaller
than in the case ;=!,. = 1(in Fig. B). In this situation we identify very clearly thedtrand the second satellite peaks, while
the third onef =  3) is visible but with a lesser intensity. The relative ampli¢ of the central peak and its satellite is tied to

the oscillatory behavior of the Bessel function.

When!;=!,. = 1, theoth order Bessel function, which corresponds to the centakhas a large amplitude(0 ). The
1st order Bessel function which corresponds to the firstigatpleak, has a smaller amplitude @ 2). The third Bessel function
which corresponds to the second satellite peak is almost £&@n the other hand for,=!,. = 2, the 0th and the3rd order
Bessel function are small compared tolits and2nd order counterparts, thus the central peak is smallerttieasatellites.

Next, we choose ; < !¢ in Fig. E an(ﬂS. The finite frequency spectrum of charge fluaina does not seem to display
any longer a central peak with equally spaced satellites.

In Fig. D the curves correspond to a ratip=! . = 1 andin Fig.[B the curves correspond to a ratie=! . = 2. In Fig.

IZ, the curves have a central peak at frequengya secondary one at, + !, and athird one at, + 2!, .. However there
appear peaks at frequencies, + !, and !+ 2! : this corresponds to the satellites peaks of the negaguéncy

9. We can explain this phenomena as the overlapping of two spodntered at !,. In Fig. , the curves exhibit the
same phenomena but the peaks have different relative amg]itvhich can again be explained from the argument of thedbes
functions. In these differents plots, we can see on the oné thee effect of dissipation wich reduces the noise and snesdhe
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FIG. 5: (Color online) PA noise for constant temperature- 0:01!, (left) and constant dissipation = 0:01!, (right): !'ac = !¢=3,
l1=lac = 1.Q * isnormalized byL.?=( %e Iz ! ).
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FIG. 6: (Color online) PA noise for constant temperature= 0:01!, (left) and constant dissipation = 0:01!, (right): 'ac = !,=3,

11=!2¢ = 2. The normalization is the same that in Fﬁb 5.

peaks. On the other hand we see_the effect of temperaturaighsured noise become negative at higher temperaturetfes in
case = 1landD C applied voltage) because o, s < Owichis largerthars. and because of the large population of
LC oscillator states.

VI. CONCLUSION

The central point of this paper has been the presentatiomeBsurement scheme for detecting finite frequency phaiisted
noise of a mesoscopic conductor on which both a DC and an AAddimposed. This scheme uses a dissipatiye resonanttcircui
which is inductively compled to the mesoscopic circuit,ie same manner as some of the author’s previousthaskich we
reviewed at the begining of the paper. The major hurdle ifyairay PA shot noise lies in the lack of time translationakiriance
which results from the presence of the AC drive. We have shbanby considering the average of the charge correlatdreof t
LC over the period of the AC drive, time translational inzanrce can be restored, and an extension of our previous idetect
scheme can be envisioned.

We illustrated our detection scheme by applying it it to aarete situation where PA noise features are most visible. We
therefore considered the PA noise generated from a poitacbin the weak-backscattering regime, placed in the regifithe
FQHE. While the symmetrized PA noise at zero frequency wagipusly derived by some of us, no derivation of its full Kgdt
components at finite frequency was available to this date FA& noise contains singularities at frequencies corredipgrto
the bias voltage, with satellite singularities separatethke AC drive frequency. These sharp features in the noséharmain
motivation for the application of our detection scheme eAfieriving in this situation the current derivative coatel, we were
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FIG. 7: (Color online) PA noise for constant temperatare= 0:01!, (left) and constant dissipation = 0:01!, (right): 'ac = 3!o,
!1=!ac = 1. The renormalization is the same that in Fﬂg. 5.

FIG. 8: (Color online) PA noise for constant temperatare= 0:01!, (left) and constant dissipation = 0:01!, (right): 'ac = 3!o,
11=!2¢ = 2. The normalization is the same that in Fﬁb 5.

able to compute explicitly the response of the LC circuit tia charge correlator, and to display the results for a yagé
parameters.

Coupling of the detector to an electromagnetic environimeerte modelled by an ohmic bath of oscillators, smootheas th
anomalies of the detected signal. The damping parametdrt eode smaller than either the DC frequency or the AC drive
frequency in order that the desired effects are observeis. difservation is crucial for experiments, and broadensctbee of
the results since the electromagnetic environment maynatstel other backaction effects on the detector.

The second important and non trivial effect is that the mesbnoise become negative if we increase the temperatuhe of t
detector. Remember that we are considering excess meamuisemegative noise thus means that the noise for non-zéro D
and AC voltages is smaller that the noise for zero voltage.

Given the fact that the AC modulation gives rise to satefiteks at ', + n! ¢, we distinguished two limitsi, > !¢
where the central peak at the DC voltage is surrounded byiédlites, and! ; < !, where the satellites of the negative DC
voltage frequency can lie in the positive frequency doméitne charge correlator. Both situations can be realizedacte.
This brings us to the question about optimizing the detaatitthe location of the central peak and its satellites. Uypenying
the ration between the AC drive amplitude and the AC frequenme have shown that one can modify the respective amplitude
of such peaks. This constitutes an additional knob for dietec

The present results constitute a step in the direction afdumental aspects of mesoscopic physics of detection irirtiee t
domain. This is an area of growing importance in mesoscdpysips when conventional detection machinery has to be-aban
doned, and novel detection schemes for high frequencigaedito the type of experiments on wishes to perform. Granted
from the experimental point of view, the LC circuit setup athive have presented here may appear a bit naive. In the long ru
indeed one should attempt to describe more precisely theembion between the output signal of the mesoscopic ciandtthe
the transmission lines which are connected to it. This vélthe topic of further investigations.
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APPENDIX A: KELDYSH NOISE CORRELATOR CALCULATION

From Eq. ) we use a standard trigonometric identity ireotd factorize the noise into contributions withand

22 Xt xt v v
s (a1 o) - 28l 0 SR
2 a n= 1 m= 1 'AC !AC
h . . i
L1+ 2;)L (1 27t0st) L1+ 2L, (1 27t0it) (A1)
with:
241 . 0 n m
L(1+ 27!) = d %ttt 2) =2eps lae 0
1 2
Z+1 0
+
120(1 2:toil) = d dtr 2 =22 & (g '0+n2m!Ac
1
241 0 n m
L1+ 2;7!) = d %t 1t 2 =g lag ©
1 2
0 241 ; 220G 0 n+m
I, (1 2itoil) = d et 2 % “sin Lo+ > 'ac ; (A2)
1
with the elements of the Keldysh Green'’s function for thealield:
G ()= m 1+ =27 (A3)
a
G ()= W1l i— : (A4)
a
I, and1; are expressed in terms of delta functions:
1
1115( (1+ 2+ @ m)lac)+ (1+ 2 @ m)lac)) : (A5)
1
I3Zz_((1+ 2+ @M m)lac) (1+ 2 @ m)lac)) : (AB)

Integralst, " and I, : depend explicitly on the Keldysh indicesand ° Here, we need two tabulated integrals:

241 gng, ) Fo3 !
_ i sgn(lo)———— (A7)
1 a4 ()
\%3
Z
"1 ocos(ly )d Fod * (A8)
1 a3 ()
\%3
The results forr, OandI4 are
a n+m n+m z !
I _ IR 1 n 1 2 1 ! L 2 ! !
5 > e )( F) g > 0 > AC 5 0 5 acC
#
n+m 1 2 n+m 2t
+ 1 Sgn ¥+!O+ !AC 7""0"’ !AC M (Ag)




I 71(8.)2 e * 1 2 | n+m' 2 1+ 1 2+' +n+m' 21
22 ¢ (2 )oos( ) 2 0 2 A€ 2 "0 2 A€
1 a, 1 n+m 1 2 n+m 1 2
I = —(— 1+ fo + ! Yo+ !
4 2(F) ) sgn (lg > AcC > ) 0 > AcC >
2 1#
1+ n (! +n+m' +— 2) ! +n+m' +— z
gn (o > AC > -0 > AC >
— i(a)2 e * \ +n+m' 1 22 !
‘ 2 ; @ )oos( ) 2 A€ 2
_i(i)Z et \ +1r1+m L2 22 '
2§ @ )oos( ) 2 B¢ 2

APPENDIX B: TIME AVERAGE CURRENT DERIVATIVE CORRELATORS IN
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(A10)

(A11)

(A12)

THE ROTATED KELDYSH BASIS

Here, for completeness we compute the comporehtsk» andk ® in the rotated Kelsysh basis. We recall that if the time

ordered Keldysh components of any correlator (such as th&tgens function) read:

o
€= 5. ¢
then the rotated Kelysh matrix is defined as:
R K
G=1L,6L"'= GO gA
whereL is the unitary transformation:
1 1 1
PSS 11

We obtain from the expressions of the previous section:

Z

2 2 Xt
RE ()= 2 arpt ;)= 5L 0 g2 &0 L 2
: re 242 n |
0 42a* 'ac @) rF
. ;
(dan( ) s+ l+nlac)i + lo+nlacd “+ (dan( ) s;m( o nlachF o
Z 1
1 e )2 2 X eV 1 a
RE ()= 1 arRS @)= &8 g7 - —— (=) 12
4 232 ! @)
0 ne 1 AC F
h i
2+ l+nlacd Y43 1o nlacf !

Turning now to the charge correlator at equal time, its matxpression yields in the time ordered basis:

Z
dal .
—G (!

(B1)

(B2)

(B3)

n! 1
-acJ

(B4)

(BS)

(B6)
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or in the rotated basis:

|
L ToL=¢ o= ? 2—'@(!)1((!)@(!): (B7)
This allow to obtain the Keldysh rotated elements of the gba@orrelator:
v4 an
QR:A _ 2 2_'GR:A 0 )KR:A 0 )GR:A () : (88)
z q! h i
of = 2 En GEMERR M)E® )+ R (HRF (1)e® ()y+ c® (R (1)eP (1) (B9)
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