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ESSENTIAL SINGULARITIES OF EULER PRODUCTS

GAUTAMIBHOWMIK AND JAN-CHRISTOPH SCHLAGE-PUCHTA

Abstract. W e classify singularities of D irichlet series having E uler products
which are rational functions of p and p ° for p a prin e num ber and give
exam ples of natural boundaries from zeta functions of groups and height zeta
functions.

1. Introduction and results

M any D irich let—series occurring in practice satisfy an Eulerproduct, and if they
do so, the Eulerproduct is often the easiest way to access the series. T herefore,
it is in portant to deduce Inform ation on the series from the Eulerproduct repre-
sentation. O ne of the m ost in portant applications of D irich let—series, going back
to R iem ann, is the asym ptotic estim ation of the sum of its coe cients via Perron’s
form ula, that is, the use of the equation

X 1 X xS
an = —; — — ds:
21 ns s
c il n

To use this relation, one usually shifts the path of integration to the lft, thereby
reducjn%,the contribution ofthe term x°. Thisbecom espossible only if the function
D (s) = i—“s is holom orphic on the new path and therefore the question of contin-—
uation of D irich let—series beyond their dom ain of absolute convergence is a central
issue in this theory. In fact, the in portance of the R iem ann hypothesis stem s from
the fact that £ would allow us to m ove the path of integration forD (s) = Z (s) to
the line 1=2+ w ithout m eeting any singularity besides the obviouspol at 1.

E sterm ann E] appears to be the rst to address this problem . He showed that
Sjr an integer valued polynom ialW (x) with W (0) = 1 the D jrichlet@em’es D (s) =

oW (e °) can either be written as a nite product of the form )
for certain integers c , and is therefore m erom orphically continuable to the whole
com plex plane, or is continuable to the halfplane < s > 0. In the latter case the
line < s = 0 is the natural boundary of the D irichlet—series. The strategy of his
proof was to show that every point on the line < s = 0 is an accum ulation point
of poles or zeros of D . Note that , the Riem ann-—zeta function itself, does not
fall am ong the cases under consideration, shceW X )= (1 X)) 1 is a rational
function. D ah]qujstﬂ] generalized E sterm ann’s work allow ng W to be a function
holom orphic in the unit circle with the exception of isolated singularities and in
particular covering the case that W be rational. T hism ethod ofproofw as extended
to m uch greater generality, interest being sparked by —functionsofnilpotent groups
Introduced by G runewald, Segaland Sm ith E] as well as height zeta ﬁmctjonsﬁ].

n x
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Functions arising In these contexts are often of the form D (s) = © W (E;p °)
for an integral polynom ialW . Du Sautoy and G runewald ﬂ] gave a criterion for
such a function to have a naturalboundary which, In a probabilistic sense, applies
to alm ost all polynom ials. Again, it is shown that every point on the presum ed
boundary is an accum ulation point of zeros or poles. T he follow ing con fcture, see
for exam ple [, 1.111f}, 1 .41, is believed to be true.

P
Conjecture 1. Let W (xX;y) = o anm X'y" ke an integral polynom ial with

W (x;0) = 1. Then D (s) = W (p;p S) is m erom orphically continuablk to the
whol com pkx phkne ifand ifonly if it isa nite product of Riem ann -fiinctions.
M oreover, in the hatter case if = maxfm1 :m l;anm 6 Og, then < s= isthe

naturalloundary of D .

In this paper we show that any re nem ent of E sterm ann’s m ethod is bound to
fail to prove this con fcture.
p IfW (X ;Y) isa rational function, we expand W into a power seriesW (X ;Y ) =
o panm XY™, and de ne = supf%1 :m l;anm 6 0g, = supfmi :

m l;anm & 0g. It is easyPto e that the suprem um is actually attained, and
that the function W = 1+ n_ 8mX"Y"™ is again a rational function. W e

callW themal part of W , shce only W is responsible for the convergence of the
productD (s). ForW a polynom ialW was called the ghost of W in ﬂ]. A rational
function W is called cyclotom ic if it can be written as the product of cyclotom ic
polynom ials and their inverses.

W e de ne an obstructing point z to be a complex number with < z = , such
that there exists a sequence of com plex numbers z;, < z; > ,2z; ! z,such thatD
has a pol or a zero In z; for all 1. O bviously, each obstructing point is an essential
singularity for D , the converse not being true In general.

Ourm ain resul is the follow ing.

Theorem 1. LetW (X ;Y ) e a rational function, which can ke written as g gé i ; ,

whereP;Q 2 ZK ;Y ]satisfy P X ;0) = Q X ;0) = 1. De neam; ;W andD as
above. Then the product representation of D converges in the halfplhne < s>
D can m erom orphically continued into the halfplane < s> , and precisely one of
the follow ing holds true.
(1) W iscyclotom ic and once its unitary factorsare removed, W = W ; in this
case D isa nite product of Riem ann -functions;

(2) W is not cyclbtom ic; in this case every point of the line < s = is an
obstructing point;
B)W & W, W iscycbtomic and there are iIn nitely many pairs n;m with

n+1

anm €& 0and - < < —=;in thiscase 1isan obstructing point;

4) W & W, W iscycbtomic, there are only nitely many pairs n;m with
anm & 0and - < < nrzl,buttherearejn nitely m any prin es p such
that the equation W (p;p °) = 0 has a solution sy with < 59 > ; in this
case every point of the line < s=  is an obstructing point;

(5) None ofthe alove; in this case no pointon the line < s=  is an obstructing
point.

W e ram ark that each of these cases actually occurs, that is, there are Euler—
products for which E sterm ann’s approach cannot work.
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Notice that whilk in the third case we need inform ation on the zeros of the
R dem ann-—zeta function to know about the m erom orphic continuation, In the last
case we can say nothing about their continuation.

W hile the above classi cation looks pretty technical, these cases actually behave
quite di erently. To illustrate this point we consider a dom ain C wih a
function £ : ! C, Bt N () the number of zeros and polesof £ In  counted
w ith positive m ultiplicity, that is, an n-fold zero or a pole of order n is counted n
tin es. Then we have the follow ing.

Corollary 1. LetW ke a rational function, and de ne as alove. Then one of
the follow ing two statem ents holds true:

(1) Forevery > OwehaveN (f j< ;<z> 0g)=1;

(2) Wehave N (f<z> ;¥ 2zj< Tg= 0 (T bgT).
If W isapolnom jaland we assum e the R iem ann hypothesis as wellas the Q —linear
independence of the In aginary parts of the non-rivial zeros of , then there exist
constants ¢ ;&, such that N (f<z> ;F+2zj< Tg)= T IogT + T + O (ogT).

Finally we rem ark that for -functions of nilpotent groups the generalization to
rational finctions is rrelevant, since a result ofdu Sautoy E] Inpliesthat if ¢ (s) =
pW (p;p °) for a rational function W (X ;Y ) = g gé ;;, then Q is a cyclotom ic
polynom ial, that is, ¢ can be written as the product of nitely m any R iem ann
—functions and a D irichlet—series of the form oW (Eip S)with W a polynom ial.
H ow ever, for other applications it is indeed im portant to study rational fiinctions,

one such exam ple occurs In the recent work of de la Breteche and Sw ynnerton-—
D yerB].

2.Proof of case 2

In this section we show that if W is not cyclotom ic, then < s = is the nat—
ural boundary of the m erom orphic continuation of D . For W a polynom ial this
was shown by du Sautoy and G runewald ﬁ], our proof closely follow s their lines of
reasoning.

Them ain di erence between the case of a polynom ialand a rational function is
that for polynom ials the local zeros created by di erent prin es can never cancel,
w hereas for a rational finction the zeros of the num erator belonging to som e prin e
num ber p m ight coincide w ith zeros of the denom inator belonging to som e other
prin e g, and m ay therefore not contribute to the zeros or poles needed to prove that
som e point on the presum ed boundary is a cluster point. W e could exclude the pos-
sibility of cancellationsby assum Ing som e unproven hypotheses from transcendence
theory, however, here we show that we can dealw ith this case unconditionally by
proving that the am ount of cancellation rem ains lim ited. W e rst consider the case
of cancellations between the num erator and denom inator com ing from the same
prin e num ber.

Lemma l.LetP;Q 2 Z K ;Y ]lke coprin e non-constant polynom ials. Then there
are only nitely many primes p, such that for som e com plkex numlker s we have
P (;p °)=Q ;p °)= 0.

Proof. Let V be the variety of lP ;0 i over C. A ssum e there are In nitely m any

pairs (p;s), for which the equation P (p;p °) = Q (;p °) = 0 hods true. Then V

is in nite, hence, at least one-dim ensional. Since P and Q are non-constant, we
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haveV & C?,hence,V isonedin ensional. Let V ° be a one-din ensional rreducible
com ponent, and ket R be a generator of the ieal corresponding to V°. Then
P;01i MRi, thatis, R dividesP and Q , which in plies that R is constant. But a
constant polynom ialcannot de ne a one-dim ensionalvariety and this contradiction
proves our clain .

Next we use the follow ing graph-theoretic result, describing graphs which are
rather close to trees. W e calla cycle in a graph m inim al if it is of length 3, and
not the union of two cycles of sm aller length.

Lemma 2. Let G ke a graph, kX 2 an integer, such that every vertex has degree

3k, and that there exists a sym m etric relation on the vertices, such that every
vertex v is in relation to atm ost k other vertices, and every m inIn al cyck passing
through v also passes through one of the vertices in relation to v. Then G isin nite.

Proof. Suppose that G were nite, and x some vertex vg. W e call a geodesic
path good ifno two vertices of the path stand in relation to each other. W e want to
construct an In nite good path. N ote that p; and p, are good pathsof nite length,
they cannot Intersect in but one point, for otherw ise their union would contain a
cycle, and choosing one of the intersection points we would obtain a contradiction
w ith the de nition of a good path. Hence, the union of the good paths starting
in vg form s a tree. There are 3k vertices connected to vy, at m ost k of which
are forbidden. Hence, the rst layer of the tree contains at least 2k points. Each
of these points is connected to at least 3k other points. It stands in relation to at
most k of them and hence we can extend every path in at least 2k ways, and ofall
these paths at m ost k stand in relation w ith vy . Hence, the second layer contains
at least 4k k points. D enote by n; the num ber of points in the i-th layer of the
tree. T hen, continuing in this way, we obtan

Ni; 1 2kn; k@i 1+ +hl):

From this and the assum ption that k 2 it follow s by induction that ni, 1 knj,
hence, the tree and therefore the graph G, which contains the tree, is in nite.

N ote the In portance of sym m etry : if the relation is allow ed to be non-sym m etric,
we can get two reqular trees, and dentify their leaves. Then every m inin al cycle
passing through one point either passes through its parent node or the m irror
n age of the point. T hus in the absence of sym m etry the resul becom es w rong for
arbitrarily large valency even fork = 2.

W e can now prove our result on non-cancellation.

Lemma 3. LetP;Q0 2 ZK ;Y ]ke coprime poynom ials with de ned as in the
Introduction. Let > 0 ke given, and suppose that for a prine p su ciently large

P (po;pos) has a zero on the segment [ + it; + it+ ], where > . Then
P pip °) .
P 0o ) has a zero or a pok on this segm ent.
Proof. Since the local zeros converge to the line < s = , there are only nitely

m any prin es p for which the num erator or denom inator has a zero, hence, wem ay

assum e that P (p;p °);Q (pjp °)6 0 orp> py. Foreach prinep ket z}';:::;2) be
2

roots need not exist but if they do then their num ber is bounded independently of
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p. T he roots of the equationsP (p;p °)= 0and Q (p;p °) = 0 form a pattermn w ith
period lig; Ifpp is su ciently large, then becom es arbitrary sm all, hence, ifp is
not Jarge then the equationsP (;p °)= 0and Q (p;p °) = 0 do not have solutions
on the Iine< s= + . Letp be the least prin e for which such solutions exist.
For p; su cintly Jarge and p > p 1, either P (p;p °) = 0 has no solution on the
segm ent under consideration or it has at least %’ such solutions. N ote that by
xing and choosing su clently large we can m ake this expression as largeaswe

need. Further note that by choosing py large we can ensure, In view of Lemm a ﬂ,
thatP ;p °)= Q (E;p °)= 0 hasno solution on the Ine< s= +

W e now de ne a bjpart:te graph G as ollows: T he vert'_loes of the graph are all
com plex num bers zi in one set and all com plex num bers w? ; iIn the other set, where
P Ppo.Two verticesz],w are pined by an edge if there exists a com plex num ber
swith<s= + ,t =s t+

2

2 i
logp,and

1ogiq . In other words, the existence of an edge indicates

that one of the zeros of P (p;p °) obtained from zp by periodicity cancelsw ith one

congruent to w;{ m odulo

zero of Q (g;g °) obtained from w?. If o gipiz has neither a zero nor a pole on

the segm ent, then every zero of one of the polynom ials cancels w ith a zero of the

other polynom ial, that is, every vertex has valency at least %

W e nextbound the num ber of cycles. Suppose that zil wh? Pw zpl .

1L
Then there is a com plex num ber s in the segm ent w hich is congruent to zpl m odulo
2
bgp bgp . Gong argund the cycle and co]Jechg the

di erences we obtain an equa‘uon of the form 2 1 lbgp =0, 12 Z,which can

only hold if the com bined coe cients vanish for each occurring prin e. H ow ever the
coe cients cannot vanish if som e prin e occurs only once. If the cycle ism inin al
the sam e vertex cannot occur tw ice, hence, there is some j such that p1 = pj,

Pj5 Py

but i} & i;. Hence, every m inim al cycle containing zi m ust contain zi| Orwy

and congruenttow; pz m odulo

for some i 6 j. The relation de ned by x§ x5 , pfq,x2fzngsan
equivalence relation w ith equivalence classes bounded by som e constant K . Iffwe
choose p1 > exp(6 K 1), the assum ptions of Lemm a E are satis ed, and we
conclude that G is nite.

But we already know that there isno p > pg for which P (p;p °) = 0 or
Q (E;p °) = 0 has a solution, that is, G is nite. This contradiction com pletes
the proof.

Using Lemm aE the proof now proceeds in the sam e fashion as In the polyno—
m ial case; for the details we refer the reader to the proof given by du Sautoy and
G runewald ﬂ].

3. Development in cyclotomic factors

A rational function W X ;Y ) with W (X ;0) = 1 can be written as an In nite
product of polynom ials of the orm (I X 2Y ®). Here convergence is m eant w ith
respect to the topology of form alpow er serdes, that is, a product i L1 Xy biy
converges to apawerserjesf ifforeach N thereexistsan iy, such that fori; > ig the
partial product ll ;1 X aiy b1) coincidesw ith £ for allcoe cients ofm onom ials
X 3YPwith a;b< N . The existence of such an extension is quite obvious, how ever,
we need som e explicit inform ation on the factors that occur and we shall develop
the necessary inform ation here.
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Fora st A R? de ne the convex cone A generated by A to be the an allest
convex subset containing a foralla 2 A and > 1. A pointa ofA isextremal,
if it is contained In the boundary of A and there exists a tangent to A intersecting
A precisely In a, or set theoretically speaking, if A nfag & A . Note that a convex
cone form s an additive sem igmuﬁ as a subsem igroup of R?.

To a form alpow er seriesW nm @nm X nym™ 2 7 [K ;Y llwe associate the set
Ay = f(;m) tanm & 0g9. Supposewe startw ith a rationalfunction W 2 Z X ;Y ],

which is of the form 44~ with P (X ;0)= Q (X ;0) = 1. Then
1 R X
— = QK;Y) 1 = bnx"v";
0 XiY) —0 am

say, w here the convergence of the geom etric series as a form alpow er series follow s
from the fact that every monom ialin Q isdivisbbleby Y .Thesetfn;m) :bhy;m €

0g R? is contained in the sem igroup generated by the points corresponding to
m onom ials in Q , but m ay be strictly an aller, as there could be unforeseen cancel-
lations. M ultiplying the power seriesby P (X ;Y ), we obtain that Ay is contained
w ithin nitely m any shifted copiesofA, 1.

Let (n;m ) bean extrem alpointofA, . ThenwehaveW = (1 X°"Y™) ®m W X ;Y),

where W, X ;Y)= (1 X"Yy™)»nm W X;Y). Obviously, W, X ;Y) is a formal
power series w ith Integer coe clients, we claim that A y , isa proper subsest ofAy .
In fact, them onom ials of W ; are obtained by taking the m onom ials of Ay , multi-
plying them by some power of X "Y™ , and possibly adding up the contribution of
di erent m onom ials. Hence, Ay , is contained in the sem igroup generated by Ay .
But (n;m ) isnotin Ay ,, and since (n;m ) was assum ed to be extrem al, we obtain

Ay, My inf;m)g Ay nfym)g Ay :

Taking the convex cone is a hull operator, thus m is a proper subset of Ay .
Since we begin and end w ith a subset 0of N?, we can repeat this procedure so that
after nitely m any steps the resulting power series W y contains no non-vanishing
coe clentsanp, withn < N;m < M . This su ces to prove the existence of a
product decom position, in fact, if one is not Interested in the occurring cyclotom ic
factors one could avoid power series and stay w ithin the realm of polynom ials by
setting W 1 X ;Y )= @+ X"Y™) %o W (X ;Y) whenever a, , is negative. How —
ever, In this way we trade one operation involving pow er series for in nitely m any
nvolving polynom ials, which is better avoided for actual calculations.

W hile we can easily determm ine a super-set of Ay ,, In generalwe cannot prove
that som e coe cient of W ; does not vanish, that is, know ing only Ay  and not the
coe clents we cannot show that A i, is as large as we suspect it to be. However,
it iseasy to see that when elim inating one extrem alpoint all other extrem alpoints
rem ain untouched. In particular, if we want to expand a polynom alW Into a
product of cyclotom ic polynom ials, at som e stage we have to use every extrem al
point of Ay , and the coe cient attached to this point has not changed before this
step, by induction it follow s that the expansion as a cyclotom ic product is unique.

W e now assum e that W is cyclotom ic, while W isnot. W e further assum e that
W is a polynom ial, and that the num erator of W is not divisble by a cyclotom ic
polynom ial. W e can always satisfy these assum ptions by m ultiplying or dividing
W with cyclotom ic polynom ials, which corresponds to the m ultiplying or dividing
D with certain shiffted -functions, and does not change our problm . Our ain is
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to nd som e inform ation on the set £ (n;m (b:cn,Tn & Og, where the coe cientsc
are de ned via the expansion W (X ;Y ) = 1 Xn°"y™)Cam |

In the rststep werem oveallpointson the line mi = .By assum ption we can do
so by using nitely m any cyclotom icpolynom ials. T he resulting power seriesbeW ;.
T he inverse of the product of nitely m any cyclotom icpolynom ials is a pow er series
w ith poles at certain rootsofunity, hence, we can expressthe sequence ofcoe cients
as a polynom ial n n and Ram anujpn-sum s ¢y (n) for d dividing som e integer q.
Consider som e point (n;m ) 2 Ay , and com pute the coe cient attached to this
point n W 1. IfAy doesnot contain a point M%m %), suchthat @ n%m m? is
collinearto ( ;1), then this coe cient is clearly 0. O therw ise we consider allpoints

The coe cients of W ; attached to points on ‘ are linear com binations of shifted
coe clents of inverse cyclotom ic polynom ials, hence, they can be written as som e
polynom ialw ith periodic coe cients. In particular, either there are only nitely
m any non-vanishing coe cients, or there exists a com plete arithm etic progression
ofnon-vanishing coe cients. Hence,we nd thatA y, iscontained within a locally
nite set of Iinesparallelto ( t;t), and every line either containsonly nitely m any
points, or a com plete arithm etic progression . Suppose that every line contains only
nitely m any points. Then there exists some °> , such that Ay, is contained
in f(s;t) :s 119, In particular, W 1 isreqular n £(z1;22) : 717 7, §. But
Wq= QP—W , and by assum ption P isnotdivisble by W , therefore, there exist points

(z1;22), where W wvanishes, but P does not, and these points are singularities of
W 1 satisfying J1j 7,3. Hence, there exists som e line containing a com plete
arithm etic progression.

Let (x;0) + t( ;1) be the unique line containing In nitely m any elem ents of
Ay ., such that foreach y > 0 the Ine (y;0) + t( ;1) containsonly nitely m any
elements (n1;mq);:::; (ksmy) ofAy, . Set =  x, that is, the distance of the
right boundary of Ay from the line (x;0) + t( ;1) measured horizontaly, and set

;= m; =nji, thatis, ; is the distance of (ni;m ;) from the right boundary, also
m easured horizontally, and =min ;> 0.

W enow elim Inate the pointsa; to obtain the power seriesW , . W hen doingsowe
Introduce lots of new elem ents to the left of the line (x;0)+ t( ;1), which are ofno
Interest to us, and nitely m any pointson this line or to the right of this line, in fact,
we can get points at m ost at the pointsof the orm  (n;;m ;)+ @®5;m4), ; 2N,

; > 0.Note that the horizontaldistance from the line t( ;1) is additive, that is,
Ay , iscontained in the Intersection ofm and the halfplane to the left of the line
(x;0)+ t( ;1), together with nitely m any points between the lines (x;0) + t( ;1)
and t( ;1), each ofwhich hasdistance at lrast 2  from the latter line. R epeating
this procedure, we can again double this distance, and after nitely m any steps this
m Inin al distance is Jarger than the w idth of the strip, which m eans that we have
arrived at a power series W 3 such that Ay , is contained in the intersection ofm
and the halfplane to the left of the line (x;0) + t( ;1). M oreover, since at each
step there are only nitely m any points changed on the line (x;0) + t( ;1) , we
see that the intersection of Ay , with this line equals the intersection of Ay , with
this line up to niely m any inclusions or om issions. Since an in nite arithm etic
progression, from which nitely m any points are deleted still contains an in nite
arithm etic progression, we see that Ay , containsan in nite arithm etic progression.
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Nextweelin nate thepointson Ay starting at the bottom and w orking upw ards.
W hen elim nating a point, we Introduce (possibly in nitely m any) new points, but
all of them are on the lft of the line (x;0) + t( ;1). Hence, after in nitely m any
stepswe arrive at a power serdesW 4, forwhich Ay , is contained in the intersection
Ofm and the open halfplane to the left of (x;0) + t( ;1).

Fortunately, from this point on we can be less explicit. Consider the set of
di erences of the sets Ay, from the line t( ;1). Taking the di erences is a sem -
group hom om orphisn , hence, at each stage the set of di erences is contained in
the sem igroup generated by the di erences we started wih. But shce W is a
polynom ial, this sem igroup is nitely generated, and therefore discrete. Hence,
no matter how we elim inate term s, at each stage the set Ay, is contained in a
set of parallels to t( ;1) intersecting the real axis In a discrete set of non-positive
num bers.

C ollecting the cyclotom ic factors used during this procedure, w e have proven the
follow ing.

Lemma 4. LetW (X ;Y ) ke a rational function such thatW X';Y ) is a cycltom ic
polynom ial, but W itself is ngt cyclotom ic. De ne  as alove. Then there is a
unique expansion W (X ;Y ) = am X fy®™)%m  ThesetC = f(;m) :Gim 6
O0g contains an in nite arithm etic progression with di erence a multplk of ( ;1),
only nitely many elments to the right of this line, and all entries are on lines
parallel to t( ;1), such that the lines intersect the real axis in a discrete set of
points.

4. Proof of case 3

W e prove that  is an obstructing point. For integers n;m with ¢,;n €& 0 the

factor ( n+ msfm createsapoleorazeroatnnﬁl,whidlﬁ)r%l> is to the
right of the supposed boundary. Hence, if is not an obstlgctjng point, for som e
> 0 and allrationalnumbers 2 ( ; + )wewouldhave n:1_ Gpm = 0.We

now show that this is in possble by proving that there are pairs (n;m ) with %1
arbitrarily closeto , c,m & 0, such that the sum consists of a single term , and is
therefore non—zero as well.

Let £ be the slope of the rays. Let £ (n;;m ;)g be a list of the starting points of
the raysdescrbed in Lemm a E, where (ng;m o) de nes the right-m ost ray. Take an
nteger g, such that Gn +ne;'q +m, & 0 forallbut nitely m any natural num bers

. Let d be the greatest comm on divisor ofm( and g. T he prin e num ber theorem
for arithm etic progressions guarantees in niely many , such that lt% = pis
prim e. Suppose there is a pair n%m ° belonging to another ray, such that Gen 06 0
}f:—m“f; . The point M%m % must lie on one of the nitely m any rays,
hence, we can write n®= k °+ n;, m%= * %+ m,. Since p is a divisor of the
denom nator of the right hand side, it also has to divide the denom nnator of the
kft hand side. W e obtain that p dividesboth * + mg and “ %+ my. R estricting,
if necessary, to an arithm etic progression, we obtain an in niude of indices such
that * %+ m; = t(* +my), wheret2 D;1]isa rationalnum ber w ith dencm iator
dividing d. Hence, we obtain that the equations

0
and 21 =
m

‘0 M=t +mg); tk %+ ny)=%k + no
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have in nitely m any solutions ; °2 N. Two linear equations in two variables,
none of which is trivial, can only have in nitely m any solutions, if these equations
are equivalent, that is, ¥ = 1, which Inpliess t= 1 since t is positive by de nition.
Hence, w riting the equations as vectors, we have

0 k ni nNo
( ) = ;
m m o
that is, the vector linking I:‘; w ith I:ll is collinear with % , contrary to the
assum ption that n%m ° was on a ray other than that of n;m . Hence, poles of -
factors accum ulate at . It rem ains to check that these poles are not cancelled by
zeros of other factors. Since zerosof —factors are never positive reals, these factors
do not cause problem s. Suppose that a pole of (ns m ) cancels wih a zero of
the ocalfactor W (p;p °), thatis, W (p;p ™ "1™ )= 0. Sihce W has coe cients
in 7, this inpliesthatp ®* 1" is algebraic of degree at m ost equalto the degree
of W , hence, m; L can be reduced to a fraction with denom inator at m ost equal
to the degree of W . There are only nitely m any rational num bers in the interval
[ ; + 1l]wih bounded denom inator, hence, only nitely m any of the poles can be
cancelled, that is, is in fact an obstructing point.

For the corollary note that in cases (2){ (4) is an obstructing point, that is, in
these cases the rst condition of the corollary holds true. In case (1) and (5), we
can represent D as the product of nitely m any R iem ann  -functionsm ultiplied by
som e function which is holom orphic In the halfplane < s> , and has zeros only
where the nitely m any local factors vanish. A local factor belonging to the prim e
P creates a 1ig;—pe]:jodic pattem of zeros, hence, the num ber of zeros and poles
is bounded above by the num ber of zeros of the nitely many -functions, which
isO (T IogT), and the niely m any sets of periodic pattems, which create O (T )
zeros. Hence, N (f<z> ;3 2zj< Tqg)isO (T IogT). Itm ay happen that there are
signi cantly less poles or zeros, if poles of one factor coincide w ith poles of another
factor, however, we clain thatunderRH and the assum ption of linear independence
of zeros the am ount of cancellation isnegligible. F irst, if the In aginary part of zeros
of are(Q -linearly independent, then we cannothave [ms mi)= (s mjy)= 0
for integers ni;ny;mai;m, with (ni;mi) 6 (@gy;m2), that is, zeros and poles of
di erent -factors cannot cancel. There is no cancellation am ong local factors,
since local factors can only have zeros and never poles. Now consider cancellation
am ong zeros of local factors and —factors. W e want to show that there are at
most nitely m any cancellations. Suppose otherw ise. Since there are only nitely
m any localfactorsand nitely many -factors, an in nitude of cancellation would
In ply that there are In nitely m any cancellations am ong one local factor and one

“actor. The zeros of a local factor are of the form 3 + &%, where ; is the

logp
logarithm of one of the rootsof W (p;X )= 0 chosen in such away that 0 = ;<
lig; . Since an algebraic equation has only nitely m any roots, an in nitude of
cancellations In plies that for som e com plex num ber and In nitely m any integers
k wehave n( + ?ok—g;) m )= 0.Choose 4 di erent such integersk;;:::;kq, and
kt 1;:::; 4 be the corresponding rootsof . Then we have ; o = %,
3 g= 2R phatis, ks ka) (o 2)= k1 k2)(3 4), which gives

bgp
a linear relation am ong the zeros of , contradicting our assum ption. Hence, if the

In aginary pars of the rootsof are Q -linear independent, the num ber of zeros and
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poles of D In som e dom ain coincides w ith the sum of the num bers of zeros and
poles of all factors, up to som e bounded error, and our clain follow s.

5. Examples

In this section we give exam ples to show that our classi cation is non-trivial in
the sense that every case actually occurs.

P
Exam ple 1. Thesum rl]: . (r;)s ) - (2(5) gs l)z)correspondsto the polynom ial
W X;Y)= 1+Y)0+ XY),whil the sum rj;:l n(r;) = (s) (s 1) corresponds
to the rational finction W (X ;Y ) = m .

Exam ple 2. (a) Let (n) be the number of prin e divisors of n counted w ith

m ultiplicity. T hen i:lzn—:ﬂ: p(1+ p%(l p ®))) corresponds to the rational
function W X ;Y )= 1+ 12YY with m ain part 1 + 2Y , which is not cyclotom ic.

(b) Let G be the direct product of three copies of the H eisenberg-group, ar/] G)
/

the num ber of nom al subgroups of G of index n. Then é (s) = i: 1 a“n(SG ) was

com puted by Tay]orEI] and gan be written as a nite product of -functions and

an Eulerproduct of the form pW (P;p °),whereW consistsofl4m onom ialsand
W X;Y)=1 2X Y8, which is not cyclotom ic.

Exam ple 3. (a) Let G be the free nilbotent group of class two w ith three gen—
erators. ThenQ G/ (s) can be written as a nite product of -functions and the
E ulerproduct oW ;e °), where

W ®X;¥)=1+xY3+x%3+x°%% %+ x7v>+ x10¢8;

WehaveW (X ;Y)= 1+ X 'Y?, which clearly does not divide W , hence, whil W
is cyclotom ic, W isnot. Hence, W isnot case 1l or 2. T heorem ﬂ In plies that 7=5
is an essential sihqularity of é . Du Sautoy and W oodw ard E] showed that n fact
the line < s= 7=5 is the naturalboundary for / .
(b) Now consider the product
Y
f(s)= 1+p °+p
P

1 2s

Again, the polynom ialW (X ;Y )= 1+ Y + X Y ? isnot cyclotom ic, while W is cy—
clotom ic. A gain, T heorem ﬂ In plies that 1=2 is an obstructing point of £ . H ow ever,
the question whether there exists another point on the line < s= 1=2 which is an
obstructing point is essentially equivalent to the R iem ann hypothesis. W e have

(s) 2s 1) (3s l% ©)

(2s) (4s 2)
Y ((4m + 1)s  2m)
((4m + 3)s 2m 1) (Bm + 2)s 4m)

f(s) =

7

m
hence, if hasonly nitely m any zeroso the line 1=2+ it, then the right hand side
hasonly nitely m any zeros In the domain < s> 1=2, 3+ sj> , hence, 1=2 is the
unique obstructing point on this line. O n the other hand, if (s) hasin nitely m any
non-real zeros o the line 1=2 + it, then every point on this line is an obstructing
point for £ (confer ).
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Hence, while for som e polynom ials the naturalboundary can be determ ined, we
do not expect any general progress in this case.

Exam ple 4. (a) The local zeta function associated to the algebraic group G is
de ned as 7
Zp Gjs) = jdet(g) 4,°d
Gp
w here Gg = GQp)\ M, (Zp) , J: P denotes the padic valuation and  is the
nom alised Haar m easure on G (Z,). In particular the zeta function associated to
the group G = G Spg E] is given by

Z(=3)= (8) (5 3) (5 5) (5 6) 1+p *+p *+p *+p ‘+p *°
I
T he polynom ial
W X;Y)=1+ X +X2+xX%+x*YYy + x5y?

satis esthe relation W (X ;Y )= 1+ X Y, that is, W iscyclotom ic, whileW isnot.
Du Sautoy an G runewald ﬂ] showed that in the cyclotom ic expansion of W there
areonly nitely many (h;m ) with ¢, 6 0 and “I;l > 4,and that W (p;p °)= 0
has solutions with < s> 4 for in nitely m any prim es, hence, W is an exam ple of

type 4, and Z (s=3) has the naturalboundary < s= 4.

(b) Let V be the cubic variety x1x;x3 = x3, U be the open subset fx 2 V [ 24 :

x4 & 0g,H the usua%hejght function. D e la Breteche and Sir Sw ynnerton-D yerE]

showed that Z (s) = woy B &) S can be written as the product of nitely m any
—finctions, a function holom orphic in a halfplane strictly larger than < s > 3=4,

and a function having an Eulerfproduct corresponding to the rational fiinction

W X;¥)=1+ 1 X3Y)®°Y 2+x°% '+x%+x%v?+xyv3+v?% x°¢3:
They showed that In the cyclotom ic expansion of this finction there occur only
nitely many term s ¢ X "Y™ with gom 6 Oand%:L > %,and allbut nitely
m any local factors have a zero to the right of < s = 3=4, hence, < s = 3=4 is the
naturalboundary of Z (s).

Exam ple 5. Let J; (n) be the Jacobsthalfunction, ie. J, () = # f(x;v) : 1

X;y  n;X;y;n)= lg,andde neg(s) = A 1%.5:&10er ism ultiplicative,

g has an Eulerproduct, which can be com puted to give

Y
g(s) _ 1+ P s p2 s
P
W e have
Y 5 Y p s
g(s) = @ p° ) 1+ ﬁ)_ (s 2)D (s);
P P P
say.For = < s> 2+ theEulrproduct forD converges uniform ly, since
X p* X p 2)
2 s 2
. 1 p . 1 2

Hence, D is holom orphic and non—zero n < s > 2, that is, no point on the line
< s = 2 is an obstructing point, that is, E sterm ann’s m ethod cannot prove the
existence of a single singularity of this function.
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6. Comparison of our classification w ith the classification of du
Sautoy and W ocodward

n ], du Sautoy and W oodw ard consider severalclasses of polynom ials for which
they can prove Conjcture 1. Since their classes do not coincide w ith the classes
described in T heorem EI, we now describe how the two classi cations com pare. W e
w il refer to the classes described in T heorem EI as ‘cases’, whilke we w ill continue to
refer to the polynom ials of du Sautoy and W oodw ard by their original appellation
of ‘ type’.

Polynom ials of type I are polynom ials W such that W is not cyclotom ic, this
class coincides w ith polynom ials in case (2).

Polynom ials of type IT are polynom ialsW such that W is cyclotom ic, there are
only nitelymany chm > 0 with % > ,and for in niely m any prin es we have
that W (p;p °) has zeros to the right of . This class contains all polynom ials in
case (4), and all polynom ials of type II fall under case (3) or (4), but there are
polynom ials In case (3) which are not of type II. For polynom ials of type II they
prove that the line < s=  is the natural boundary of m erom orphic continuation
of D , their result for polynom ials therefore clearly supersedes the relevant parts of
T heorem

Polynom ials of type IIT are polynom ialsW as in type II, but there are n nitely
many pairsn;m wih ¢, > 0, %l > . These polynom ials fall under case (3),
they show under the R iem ann hypothesis that < s=  is a naturalboundary. For
such polynom ials the results are incom parable, our results are unconditional, yet
weaker.

Polynom ials of type IV are polynom ials w ith in nitely m any pairs (n;m ) satis-
yhgcom & 0and %1:2 > ,and such that w ith the exception of nitely m any p
there are no local zeros to the right of < s = . For such polynom ials du Sautoy
and W oodward show that < s=  is the naturalboundary, if the Im aginary parts
of the zeros of are Q -linearly independent. A llpolynom ials of type IV fallunder
case (3), again, the resuls are incom parable.

Polynom ials of type V are polynom ialsW such that W is cyclotom ic, w ith the
excegption of nitely m any p there are no local zeros to the right of , and there are
only nitely many pafrsn;m with ¢y, 6 0 and %l . This correspond to case
5).

Polynom ials of type VI are polynom ialsW such that W is cyclotom ic, w ith the
exception of nitely many p there are no local zeros to the right of , there are
In nitely many pairs (n;m ) with ¢,y & 0 and %1 > ,only niely many of
which satisfy 1+12 5 These fallunder case (3).

m

Case (1) does not occur In their classi cation as it is justly regarded as trivial.

7. Comparison w ith the multivariable case

T he ob Fct of our study has been the D irichlet—seriesD (s) = 0 W (E;p °). This
w ill be called the l%—varjable problem since the polynom ialhas two variables, but
the D irichlet—series depends on only one com plex variable. If the coe cients of
the above series have som e arithem etical m eaning, and this m eaning translates
51to a statem ent on each monom ial of W , then the D irichlet-series D (s1;S2) =

oW (e °;p °?) retains more inform ation, and it could be fruitful to consider
this function instead. O £ course, the gain In inform ation could be at the risk ofthe
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technicaldi culties Introduced by considering severalvariables. H owever, here we
show that the m ultivariable problem is actually easier then the originalquestion of
l% -variables.

W here there is no explicit reference to p, the problem of a naturalboundary was
com pletely solved by E ssouabri, Lichtin and the rst nam ed author @].

Theorem 2. LetW 2 Kq1;:::5;Xk] ke a polynom ial satisfying W (0;:::;0) =
1. SetD (s15:::;8¢) = oW e %t;::5p %). Then D can be m erom orphically
continued to the whole com plex plne if and only if W is cycltom ic. If it cannot
ke continued to the whole com pkex plhane, then itsm axim aldom ain of m erom orphic
continuation is the intersection of a nite numker of e ectively com putabke half-
spaces. The bounding hyper-plne of each of these halfspaces passes through the
origin.

At rst sight onem ay think that one can pass from the 2-din ensionalby xing
s1, how ever, this destroys the structure of the problem , as is dem onstrated by the
follow ing.

Exam ple 6. The D irichletseriesD (s1;s;) = © pl+ 2 p %)p % asa function
of two variables can be m erom orphically continued into the set f(s1;5;) 1< s2 >
0;< s1 + s > 0g, and the boundary of this set is the natural boundary of m ero—
m orphic continuation. ffwe x s; with < s 0, and view D as a function of s,
then D can be continued to C if and only if s; = 0. In every other case the line
< s, = 0 is the natural boundary.

Proof. T he behaviour of D (s1;s;) follow s from E, Theorem 2]. Ifwe x s, then
1+ 2 p %)p % has zeros with relatively large real part, provided that either
<s1 > 0,or<s; = 0and <p ° < 0. In the rst casewe can argue as in the case
that W isnot cyclotom ic. By the prin e num ber theorem for short ntervalswe nd

that the num ber of prin e num bersp < x satisfying<p ' < 0 isgreater than clogx ,

and we see that we can again adapt the proof for the case W non-cyclotom ic.

In other words, the naturalboundary for the lé—varjable problem isthe sam e as
for the 2-wvariable problem , with one exception, In which the léwarjable problem
collapses to a l-variabl problem , and in which case the Eulerproduct becom es
continuable beyond the 2-variable boundary.

Tt seem s lkely that this behaviour should be the prevalent one, it is less clear
what precisely \this behaviogur" is. O ne quite strong possibility is the follow ing:

Suppose that D (s1;s;) = oW (e °';p °?) has a naturallboundary at< s; = 0.
Then there are only nitely m any values s, for which the specialization D ( ;g) is
m erom orphically continuable keyond < s; = 0.

H ow ever, this statem ent is right now supported only by a general lack of exam —
ples, and the fact that exam p]eE looks quite natural, so we do not dare a con gcture.
H ow ever we believe that som e progress in this direction could be easier to obtain
than directly handling C onpgcture ﬂ In particular those cases, In which zeros of

pose a serious threat for local zeros would becom e a lot easier since this type of
cancellation can only a ect a countable num ber of values for s; .
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