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Introduction and results

M any D i ri chl et-seri esoccurri ng i n practi ce sati sfy an Eul er-product,and i fthey do so,the Eul er-product i s often the easi est way to access the seri es. T herefore, i t i s i m portant to deduce i nform ati on on the seri es from the Eul er-product representati on. O ne ofthe m ost i m portant appl i cati ons ofD i ri chl et-seri es,goi ng back to R i em ann,i sthe asym ptoti c esti m ati on ofthe sum ofi ts coe ci entsvi a Perron' s form ul a,that i s,the use ofthe equati on

X n x a n = 1 2 i c+ i1 Z c i1 X n 1 a n n s
x s s ds:

To use thi s rel ati on,one usual l y shi fts the path ofi ntegrati on to the l eft,thereby reduci ng the contri buti on ofthe term x s .T hi sbecom espossi bl e onl y i fthe functi on D (s)= P an n s i shol om orphi c on the new path and therefore the questi on ofconti nuati on ofD i ri chl et-seri es beyond thei r dom ai n ofabsol ute convergence i s a central i ssue i n thi s theory.In fact,the i m portance ofthe R i em ann hypothesi sstem s from the fact that i t woul d al l ow us to m ove the path ofi ntegrati on for D (s)= 0 (s) to the l i ne 1=2 + w i thout m eeti ng any si ngul ari ty besi des the obvi ous pol e at 1.

Esterm ann [START_REF] Sterm Ann | O n certain functions represented by D irichletseries[END_REF]appears to be the rst to address thi s probl em . H e showed that for an i nteger val ued pol ynom i alW (x) w i th W (0)= 1 the D i ri chl et-seri es D (s)= Q p W (p s ) can ei ther be w ri tten as a ni te product of the form Q N ( s) c for certai n i ntegers c ,and i s therefore m erom orphi cal l y conti nuabl e to the w hol e com pl ex pl ane,or i s conti nuabl e to the hal f-pl ane < s > 0. In the l atter case the l i ne < s = 0 i s the naturalboundary of the D i ri chl et-seri es. T he strategy of hi s proofwas to show that every poi nt on the l i ne < s = 0 i s an accum ul ati on poi nt of pol es or zeros of D . N ote that , the R i em ann-zeta functi on i tsel f, does not fal lam ong the cases under consi derati on,si nce W (X ) = (1 X ) 1 i s a rati onal functi on. D ahl qui st [START_REF] Ahlquist | O n the analytic continuation of E ulerian products[END_REF]general i zed Esterm ann' s work al l ow i ng W to be a functi on hol om orphi c i n the uni t ci rcl e w i th the excepti on of i sol ated si ngul ari ti es and i n parti cul arcoveri ng thecasethatW be rati onal .T hi sm ethod ofproofwasextended to m uch greatergeneral i ty,i nterestbei ng sparked by -functi onsofni l potentgroups i ntroduced by G runewal d,Segaland Sm i th [START_REF] Segal | Subgroups of nite index in nilpotent groups[END_REF]as wel las hei ght zeta functi ons [START_REF]Sw ynnerton-D yer, Fonction zêta des hauteurs associ ee a une certaine surface cubique[END_REF] . Functi ons ari si ng i n these contexts are often of the form D (s) = Q W (p;p s ) for an i ntegralpol ynom i alW . D u Sautoy and G runewal d [START_REF] Sautoy | Zeta functions of groups: zeros and friendly ghosts,A m er[END_REF]gave a cri teri on for such a functi on to have a naturalboundary w hi ch,i n a probabi l i sti c sense,appl i es to al m ost al lpol ynom i al s. A gai n, i t i s show n that every poi nt on the presum ed boundary i s an accum ul ati on poi nt ofzeros or pol es. T he fol l ow i ng conjecture,see for exam pl e [ 8,1.11][ 7,1.4],i s bel i eved to be true.

C onjecture 1. Let W (x;y) =

P

n ;m a n ;m x n y m be an integral pol ynom ial with W (x;0) = 1. T hen D (s) = Q p W (p;p s ) is m erom orphicall y continuabl e to the whol e com pl ex pl ane ifand ifonl y ifitis a nite product ofR iem ann -functions. M oreover,in the l atter case if = m axf n m :m 1;a n ;m 6 = 0g,then < s = is the naturalboundary ofD .

In thi s paper we show that any re nem ent ofEsterm ann' s m ethod i s bound to fai lto prove thi s conjecture.

IfW (X ;Y ) i s a rati onalfuncti on,we expand W i nto a power seri es W (X ;Y )= P n ;m 0 a n ;m X n Y m ,and de ne = supf n + 1 m :m 1;a n ;m 6 = 0g, = supf n m : m 1;a n ;m 6 = 0g. It i s easy to see that the suprem um i s actual l y attai ned,and that the functi on W = 1 + P n m = a n ;m X n Y m i s agai n a rati onalfuncti on. W e cal l W the m ai n part ofW ,si nce onl y W i s responsi bl e for the convergence ofthe productD (s). ForW a pol ynom i al W wascal l ed the ghostofW i n [START_REF] Sautoy | Zeta functions of groups: zeros and friendly ghosts,A m er[END_REF] . A rati onal functi on W i s cal l ed cycl otom i c i fi t can be w ri tten as the product ofcycl otom i c pol ynom i al s and thei r i nverses.

W e de ne an obstructi ng poi nt z to be a com pl ex num ber w i th < z = ,such that there exi sts a sequence ofcom pl ex num bers z i ,< z i > ,z i ! z,such that D hasa pol e ora zero i n z i for al li. O bvi ousl y,each obstructi ng poi nt i s an essenti al si ngul ari ty for D ,the converse not bei ng true i n general .

O ur m ai n resul t i s the fol l ow i ng.

T heorem 1. LetW (X ;Y ) be a rationalfunction,which can be written as P (X ;Y ) Q (X ;Y ) , where P;Q 2 Z[ X ;Y ]satisfy P (X ;0)= Q (X ;0)= 1. D e ne a n ;m ; ; W and D as above. T hen the product representation ofD converges in the hal f-pl ane < s > , D can m erom orphicall y continued into the hal f-pl ane < s > ,and precisel y one of the foll owing hol ds true.

(1) W is cycl otom ic and once its unitary factors are rem oved,W = W ;in this case D is a nite productofR iem ann -functions; (2) W is not cycl otom ic; in this case every point of the l ine < s = is an obstructing point;

(3) W 6 = W , W is cycl otom ic and there are in nitel y m any pairs n;m with a n ;m 6 = 0 and n m < < n + 1 m ;in this case is an obstructing point; (4) W 6 = W , W is cycl otom ic, there are onl y nitel y m any pairs n;m with a n ;m 6 = 0 and n m < < n + 1 m , but there are in nitel y m any prim es p such that the equation W (p;p s ) = 0 has a sol ution s 0 with < s 0 > ; in this case every pointofthe l ine < s = is an obstructing point;

(5) N one ofthe above;in thiscase no pointon the l ine < s = isan obstructing point.

W e rem ark that each of these cases actual l y occurs, that i s, there are Eul erproducts for w hi ch Esterm ann' s approach cannot work. N oti ce that w hi l e i n the thi rd case we need i nform ati on on the zeros of the R i em ann-zeta functi on to know about the m erom orphi c conti nuati on,i n the l ast case we can say nothi ng about thei r conti nuati on.

W hi l e the above cl assi cati on l ookspretty techni cal ,these casesactual l y behave qui te di erentl y. To i l l ustrate thi s poi nt we consi der a dom ai n C w i th a functi on f : ! C ,l et N ( ) the num ber ofzeros and pol es off i n counted w i th posi ti ve m ul ti pl i ci ty,that i s,an n-fol d zero or a pol e oforder n i s counted n ti m es. T hen we have the fol l ow i ng.

C orollary 1. Let W be a rationalfunction, and de ne as above. T hen one of the foll owing two statem ents hol ds true:

(1) For every > 0 we have

N (fj z j< ;< z > 0g)= 1 ; (2) W e have N (f< z > ;j = zj< T g = O (T l ogT ).
If W isa pol ynom ialand we assum e the R iem ann hypothesis aswellasthe Q -l inear independence of the im aginary parts ofthe non-trivialzeros of , then there exist constants c 1 ;c 2 ,such thatN

(f< z > ;j = zj< T g)= c 1 T l ogT + c 2 T + O (l ogT ).
Fi nal l y we rem ark that for -functi ons ofni l potent groups the general i zati on to rati onalfuncti onsi si rrel evant,si nce a resul tofdu Sautoy [START_REF] Du Sautoy | Zeta functions ofgroups and rings: uniform ity[END_REF]

i m pl i esthati f G (s)= Q p W (p;p s ) for a rati onalfuncti on W (X ;Y ) = P (X ;Y ) Q (X ;Y )
,then Q i s a cycl otom i c pol ynom i al ,that i s, G can be w ri tten as the product of ni tel y m any R i em ann -functi ons and a D i ri chl et-seri es ofthe form

Q p W (p;p s ) w i th W a pol ynom i al .
H owever,for other appl i cati ons i t i s i ndeed i m portant to study rati onalfuncti ons, one such exam pl e occurs i n the recent work of de l a B ret eche and Sw ynnerton-D yer [START_REF]Sw ynnerton-D yer, Fonction zêta des hauteurs associ ee a une certaine surface cubique[END_REF] .

P roof of case 2

In thi s secti on we show that i f W i s not cycl otom i c,then < s = i s the naturalboundary of the m erom orphi c conti nuati on of D . For W a pol ynom i althi s was show n by du Sautoy and G runewal d [START_REF] Sautoy | Zeta functions of groups: zeros and friendly ghosts,A m er[END_REF] ,our proofcl osel y fol l ow s thei r l i nes of reasoni ng.

T he m ai n di erence between the case ofa pol ynom i aland a rati onalfuncti on i s that for pol ynom i al s the l ocalzeros created by di erent pri m es can never cancel , w hereasfora rati onalfuncti on the zerosofthe num eratorbel ongi ng to som e pri m e num ber p m i ght coi nci de w i th zeros ofthe denom i nator bel ongi ng to som e other pri m eq,and m ay thereforenotcontri buteto the zerosorpol esneeded to provethat som e poi nton the presum ed boundary i sa cl usterpoi nt.W e coul d excl ude the possi bi l i ty ofcancel l ati onsby assum i ng som e unproven hypothesesfrom transcendence theory,however,here we show that we can dealw i th thi s case uncondi ti onal l y by provi ng thatthe am ountofcancel l ati on rem ai nsl i m i ted. W e rstconsi derthe case of cancel l ati ons between the num erator and denom i nator com i ng from the sam e pri m e num ber.

Lem m a 1. LetP;Q 2 Z[ X ;Y ]be co-prim e non-constantpol ynom ial s. T hen there are onl y nitel y m any prim es p, such that for som e com pl ex num ber s we have P (p;p s )= Q (p;p s )= 0.

Proof. Let V be the vari ety of hP;Q i over C . A ssum e there are i n ni tel y m any pai rs (p;s),for w hi ch the equati on P (p;p s )= Q (p;p s )= 0 hol ds true. T hen V i s i n ni te, hence,at l east one-di m ensi onal . Si nce P and Q are non-constant,we have V 6 = C 2 ,hence,V i sone-di m ensi onal .LetV 0 be a one-di m ensi onali rreduci bl e com ponent, and l et R be a generator of the i deal correspondi ng to V 0 . T hen hP;Q i hR i,that i s,R di vi des P and Q ,w hi ch i m pl i es that R i s constant. B ut a constantpol ynom i alcannotde ne a one-di m ensi onalvari ety and thi scontradi cti on provesour cl ai m .

N ext we use the fol l ow i ng graph-theoreti c resul t, descri bi ng graphs w hi ch are rather cl ose to trees. W e cal la cycl e i n a graph m inim ali fi t i s ofl ength 3,and not the uni on oftwo cycl es ofsm al l er l ength.

Lem m a 2. Let G be a graph, k 2 an integer,such that every vertex has degree 3k,and thatthere exists a sym m etric rel ation on the vertices,such thatevery vertex v is in rel ation to atm ostk other vertices,and every m inim alcycl e passing through v al so passes through one ofthe vertices in rel ation to v. T hen G is in nite.

Proof. Suppose that G were ni te, and x som e vertex v 0 . W e cal l a geodesi c path good i fno two verti cesofthe path stand i n rel ati on to each other.W e wantto constructan i n ni te good path.N ote thatp 1 and p 2 aregood pathsof ni te l ength, they cannot i ntersect i n but one poi nt,for otherw i se thei r uni on woul d contai n a cycl e,and choosi ng one ofthe i ntersecti on poi nts we woul d obtai n a contradi cti on w i th the de ni ti on ofa good path. H ence, the uni on of the good paths starti ng i n v 0 form s a tree. T here are 3k verti ces connected to v 0 ,at m ost k ofw hi ch are forbi dden. H ence,the rst l ayer ofthe tree contai ns at l east 2k poi nts. Each ofthese poi nts i s connected to at l east 3k other poi nts. It stands i n rel ati on to at m ostk ofthem and hence we can extend every path i n at l east2k ways,and ofal l these paths at m ost k stand i n rel ati on w i th v 0 . H ence,the second l ayer contai ns at l east 4k k poi nts. D enote by n i the num ber ofpoi nts i n the i-th l ayer ofthe tree. T hen,conti nui ng i n thi s way,we obtai n

n i+ 1 2kn i k(n i 1 +
+ n 1 + 1): From thi s and the assum pti on that k 2 i t fol l ow s by i nducti on that n i+ 1 kn i , hence,the tree and therefore the graph G,w hi ch contai ns the tree,i s i n ni te.

N otethei m portanceofsym m etry:i ftherel ati on i sal l owed to benon-sym m etri c, we can get two regul ar trees,and i denti fy thei r l eaves. T hen every m i ni m alcycl e passi ng through one poi nt ei ther passes through i ts parent node or the m i rror i m age ofthe poi nt. T husi n the absence ofsym m etry the resul tbecom esw rong for arbi trari l y l arge val ency even for k = 2.

W e can now prove our resul t on non-cancel l ati on.

Lem m a 3. Let P;Q 2 Z[ X ;Y ]be co-prim e pol ynom ial s with de ned as in the introduction. Let > 0 be given,and suppose that for a prim e p 0 su cientl y l arge P (p 0 ;p s 0 ) has a zero on the segm ent [ + it; + it+ ] , where > . T hen

Q p P (p;p s ) Q (p;p s )
has a zero or a pol e on this segm ent. Proof. Si nce the l ocalzeros converge to the l i ne < s = , there are onl y ni tel y m any pri m es p forw hi ch the num eratoror denom i natorhas a zero,hence,we m ay assum e that P (p;p s );Q (p;p s )6 = 0 for p > p 0 . For each pri m e p l et z p 1 ;:::;z p k be the roots ofthe equati on P (p;p s ) = 0 i n the segm ent < s = ,0 = s 2 log p , and l etw p 1 ;:::;w p ' be the rootsofthe equati on Q (p;p s )= 0 on thi ssegm ent.Such roots need not exi st but i fthey do then thei r num ber i s bounded i ndependentl y of p. T he rootsofthe equati onsP (p;p s )= 0 and Q (p;p s )= 0 form a pattern w i th peri od 2 i log p . Ifp 0 i s su ci entl y l arge,then becom esarbi trary sm al l ,hence,i fp i s notl arge then the equati onsP (p;p s )= 0 and Q (p;p s )= 0 do nothave sol uti ons on the l i ne < s = + . Let p 1 be the l east pri m e for w hi ch such sol uti ons exi st. For p 1 su ci entl y l arge and p > p 1 ,ei ther P (p;p s ) = 0 has no sol uti on on the segm entunderconsi derati on ori thasatl east log p 2 such sol uti ons.N ote thatby xi ng and choosi ng p 0 su ci entl y l argewe can m akethi sexpressi on asl argeaswe need. Further note that by choosi ng p 0 l arge we can ensure,i n vi ew ofLem m a 1, that P (p;p s )= Q (p;p s )= 0 has no sol uti on on the l i ne < s = + .

W e now de ne a bi parti te graph G as fol l ow s: T he verti ces ofthe graph are al l com pl ex num bersz p i i n one setand al lcom pl ex num bersw p i i n the otherset,w here p p 0 . T wo verti cesz p i ,w q j are joi ned by an edge i fthere exi stsa com pl ex num ber s w i th < s = + ,t = s t+ ,such thats i scongruentto z p i m odul o 2 i log p ,and congruent to w q j m odul o 2 i log q . In other words,the exi stence ofan edge i ndi cates thatone ofthe zerosofP (p;p s ) obtai ned from z p i by peri odi ci ty cancel sw i th one zero ofQ (q;q s )obtai ned from w q j . If

Q p P (p;p s ) Q (p;p s
) hasnei ther a zero nora pol e on the segm ent,then every zero ofone ofthe pol ynom i al s cancel s w i th a zero ofthe other pol ynom i al ,that i s,every vertex has val ency at l east log p1 for som e i 6 = j. T he rel ati on de ned by x p i x q j , p = q, x 2 fz;w g i s an equi val ence rel ati on w i th equi val ence cl asses bounded by som e constant K . Ifwe choose p 1 > exp(6 K 1 ), the assum pti ons of Lem m a 2 are sati s ed, and we concl ude that G i s ni te.

B ut we al ready know that there i s no p > p 0 for w hi ch P (p;p s ) = 0 or Q (p;p s ) = 0 has a sol uti on, that i s, G i s ni te. T hi s contradi cti on com pl etes the proof. U si ng Lem m a 3 the proofnow proceeds i n the sam e fashi on as i n the pol ynom i alcase;for the detai l s we refer the reader to the proofgi ven by du Sautoy and G runewal d [START_REF] Sautoy | Zeta functions of groups: zeros and friendly ghosts,A m er[END_REF] .

D evelopm ent in cyclotom ic factors

A rati onalfuncti on W (X ;Y ) w i th W (X ;0) = 1 can be w ri tten as an i n ni te product ofpol ynom i al s ofthe form (1 X a Y b ). H ere convergence i s m eant w i th respectto the topol ogy ofform alpowerseri es,thati s,a product

Q 1 i= 1 (1 X ai Y bi ) convergesto a powerseri esf i fforeach N thereexi stsan i 0 ,such thatfori 1 > i 0 the parti alproduct Q i1 i= 1 (1 X ai Y bi
)coi nci desw i th f foral lcoe ci entsofm onom i al s X a Y b w i th a;b < N . T he exi stence ofsuch an extensi on i squi te obvi ous,however, we need som e expl i ci t i nform ati on on the factors that occur and we shal ldevel op the necessary i nform ati on here.

For a set A R 2 de ne the convex cone A generated by A to be the sm al l est convex subset contai ni ng a for al la 2 A and > 1. A poi nt a ofA i s extrem al , i fi t i s contai ned i n the boundary ofA and there exi sts a tangentto A i ntersecti ng A preci sel y i n a,or set theoreti cal l y speaki ng,i fA n fag 6 = A . N ote that a convex cone form s an addi ti ve sem i -group as a subsem i group ofR 2 .

To a form alpowerseri esW =

P n ;m a n ;m X n Y m 2 Z[ [ X ;Y ] ]we associ ate the set A W = f(n;m ):a n ;m 6 = 0g.Suppose westartw i th a rati onalfuncti on W 2 Z[ X ;Y ] , w hi ch i s ofthe form P (X ;Y ) Q (X ;Y ) w i th P (X ;0)= Q (X ;0)= 1. T hen 1 Q (X ;Y ) = 1 X = 0 Q (X ;Y ) 1 = X n ;m b n ;m X n Y m ;
say,w here the convergence ofthe geom etri c seri es as a form alpower seri es fol l ow s from the factthat every m onom i ali n Q i s di vi si bl e by Y . T he setf(n;m ):b n ;m 6 = 0g R 2 i s contai ned i n the sem i group generated by the poi nts correspondi ng to m onom i al s i n Q ,but m ay be stri ctl y sm al l er,as there coul d be unforeseen cancell ati ons. M ul ti pl yi ng the power seri es by P (X ;Y ),we obtai n that A W i s contai ned w i thi n ni tel y m any shi fted copi es ofA Q 1 . Let(n;m )bean extrem alpoi ntofA w .T hen wehaveW = (1

X n Y m ) an ;m W 1 (X ;Y ), w here W 1 (X ;Y ) = (1 X n Y m ) an ;m W (X ;Y ). O bvi ousl y, W 1 (X ;Y ) i s a form al powerseri esw i th i ntegercoe ci ents,we cl ai m that A W 1 i sa propersubsetofA W .
In fact,the m onom i al s ofW 1 are obtai ned by taki ng the m onom i al s ofA W ,m ul tipl yi ng them by som e power ofX n Y m ,and possi bl y addi ng up the contri buti on of di erent m onom i al s. H ence,A W 1 i s contai ned i n the sem i group generated by A W . B ut (n;m ) i s noti n A W 1 ,and si nce (n;m ) was assum ed to be extrem al ,we obtai n

A W 1 hA W in f(n;m )g A W n f(n;m )g A W :
Taki ng the convex cone i s a hul l operator, thus A W 1 i s a proper subset of A W . Si nce we begi n and end w i th a subset ofN 2 ,we can repeat thi s procedure so that after ni tel y m any steps the resul ti ng power seri es W k contai ns no non-vani shi ng coe ci ents a n ;m w i th n < N ;m < M . T hi s su ces to prove the exi stence of a productdecom posi ti on,i n fact,i fone i s not i nterested i n the occurri ng cycl otom i c factors one coul d avoi d power seri es and stay w i thi n the real m ofpol ynom i al s by setti ng W 1 (X ;Y ) = (1 + X n Y m ) an ;m W (X ;Y ) w henever a n ;m i s negati ve. H owever,i n thi s way we trade one operati on i nvol vi ng power seri es for i n ni tel y m any i nvol vi ng pol ynom i al s,w hi ch i s better avoi ded for actualcal cul ati ons.

W hi l e we can easi l y determ i ne a super-set ofA W 1 ,i n generalwe cannot prove thatsom e coe ci entofW 1 does notvani sh,thati s,know i ng onl y A W and notthe coe ci ents we cannot show that A W 1 i s as l arge as we suspect i t to be. H owever, i ti seasy to see thatw hen el i m i nati ng one extrem alpoi ntal lotherextrem alpoi nts rem ai n untouched. In parti cul ar, i f we want to expand a pol ynom i al W i nto a product ofcycl otom i c pol ynom i al s,at som e stage we have to use every extrem al poi ntofA W ,and the coe ci entattached to thi s poi nthasnotchanged before thi s step,by i nducti on i t fol l ow s that the expansi on as a cycl otom i c product i s uni que.

W e now assum e that W i s cycl otom i c,w hi l e W i s not. W e further assum e that W i s a pol ynom i al ,and that the num erator ofW i s not di vi si bl e by a cycl otom i c pol ynom i al . W e can al ways sati sfy these assum pti ons by m ul ti pl yi ng or di vi di ng W w i th cycl otom i c pol ynom i al s,w hi ch corresponds to the m ul ti pl yi ng or di vi di ng D w i th certai n shi fted -functi ons,and does not change our probl em . O ur ai m i s to nd som e i nform ati on on the setf(n;m ):c n ;m 6 = 0g,w here the coe ci entsc n ;m are de ned vi a the expansi on W (X ;Y )=

Q

(1 X n Y m ) cn ;m . In the rststep werem oveal lpoi ntson thel i ne n m = .B y assum pti on wecan do so by usi ng ni tel y m any cycl otom i cpol ynom i al s.T heresul ti ng powerseri esbeW 1 . T he i nverseofthe productof ni tel y m any cycl otom i cpol ynom i al si sa powerseri es w i th pol esatcertai n rootsofuni ty,hence,wecan expressthesequenceofcoe ci ents as a pol ynom i al i n n and R am anujan-sum s c d (n) for d di vi di ng som e i nteger q. C onsi der som e poi nt (n;m ) 2 A W , and com pute the coe ci ent attached to thi s poi nti n W 1 . IfA W does notcontai n a poi nt(n 0 ;m 0 ),such that (n n 0 ;m m 0 ) i s col l i nearto ( ;1),then thi scoe ci enti scl earl y 0.O therw i se we consi deral lpoi nts (n 1 ;m 1 );:::;(n k ;m k ) i n A W ,w hi ch are on the paral l elto ( t;t) through (n;m ). T he coe ci ents of W 1 attached to poi nts on ' are l i near com bi nati ons of shi fted coe ci ents ofi nverse cycl otom i c pol ynom i al s,hence,they can be w ri tten as som e pol ynom i alw i th peri odi c coe ci ents. In parti cul ar,ei ther there are onl y ni tel y m any non-vani shi ng coe ci ents,or there exi sts a com pl ete ari thm eti c progressi on ofnon-vani shi ng coe ci ents. H ence,we nd thatA W 1 i scontai ned w i thi n a l ocal l y ni te setofl i nesparal l elto ( t;t),and every l i ne ei thercontai nsonl y ni tel y m any poi nts,ora com pl ete ari thm eti c progressi on.Suppose thatevery l i ne contai nsonl y ni tel y m any poi nts. T hen there exi sts som e 0 > ,such that A W 1 i s contai ned i n f(s;t) :s 1 tg,i n parti cul ar,W 1 i s regul ar i n f(z 1 ;z 2 ) :j z 1 j j z 2 j g. B ut W 1 = P Q W ,and by assum pti on P i snotdi vi si bl e by W ,therefore,there exi stpoi nts (z 1 ;z 2 ), w here W vani shes,but P does not,and these poi nts are si ngul ari ti es of W 1 sati sfyi ng j z 1 j j z 2 j . H ence, there exi sts som e l i ne contai ni ng a com pl ete ari thm eti c progressi on.

Let (x;0) + t( ;1) be the uni que l i ne contai ni ng i n ni tel y m any el em ents of A W 1 ,such that for each y > 0 the l i ne (y;0)+ t( ;1) contai ns onl y ni tel y m any el em ents (n 1 ;m 1 );:::;(n k ;m k ) of A W 1 . Set = x,that i s,the di stance ofthe ri ght boundary ofA W from the l i ne (x;0)+ t( ;1) m easured hori zontal y,and set i = m i =n i ,that i s, i i s the di stance of(n i ;m i ) from the ri ght boundary,al so m easured hori zontal l y,and = m i n i > 0. W e now el i m i nate the poi ntsa i to obtai n the powerseri esW 2 .W hen doi ng so we i ntroduce l otsofnew el em entsto the l eftofthe l i ne (x;0)+ t( ;1),w hi ch are ofno i nterestto us,and ni tel y m any poi ntson thi sl i neorto theri ghtofthi sl i ne,i n fact, we can getpoi ntsatm ostatthe poi ntsofthe form (n i ;m i )+ (n j ;m j ), ; 2 N , ; > 0.N ote thatthe hori zontaldi stance from the l i ne t( ;1)i saddi ti ve,thati s, A W 2 i scontai ned i n the i ntersecti on ofA W and the hal f-pl ane to the l eftofthe l i ne (x;0)+ t( ;1),together w i th ni tel y m any poi nts between the l i nes (x;0)+ t( ;1) and t( ;1),each ofw hi ch has di stance atl east2 from the l atter l i ne. R epeati ng thi sprocedure,we can agai n doubl e thi sdi stance,and after ni tel y m any stepsthi s m i ni m aldi stance i s l arger than the w i dth ofthe stri p,w hi ch m eans that we have arri ved at a power seri es W 3 such that A W 3 i s contai ned i n the i ntersecti on ofA W and the hal f-pl ane to the l eft ofthe l i ne (x;0)+ t( ;1). M oreover,si nce at each step there are onl y ni tel y m any poi nts changed on the l i ne (x;0)+ t( ;1) , we see that the i ntersecti on ofA W 3 w i th thi s l i ne equal s the i ntersecti on ofA W 1 w i th thi s l i ne up to ni tel y m any i ncl usi ons or om i ssi ons. Si nce an i n ni te ari thm eti c progressi on,from w hi ch ni tel y m any poi nts are del eted sti l lcontai ns an i n ni te ari thm eti c progressi on,we see thatA W 3 contai nsan i n ni te ari thm eti c progressi on.

N extweel i m i natethepoi ntson A W starti ng atthebottom and worki ng upwards. W hen el i m i nati ng a poi nt,we i ntroduce (possi bl y i n ni tel y m any)new poi nts,but al lofthem are on the l eft ofthe l i ne (x;0)+ t( ;1). H ence,after i n ni tel y m any stepswe arri ve ata powerseri esW 4 ,forw hi ch A W 4 i scontai ned i n the i ntersecti on ofA W and the open hal f-pl ane to the l eft of(x;0)+ t( ;1).

Fortunatel y, from thi s poi nt on we can be l ess expl i ci t. C onsi der the set of di erences ofthe sets A W i from the l i ne t( ;1). Taki ng the di erences i s a sem igroup hom om orphi sm , hence, at each stage the set of di erences i s contai ned i n the sem i -group generated by the di erences we started w i th. B ut si nce W i s a pol ynom i al , thi s sem i -group i s ni tel y generated, and therefore di screte. H ence, no m atter how we el i m i nate term s, at each stage the set A W i i s contai ned i n a set ofparal l el s to t( ;1) i ntersecti ng the realaxi s i n a di screte set ofnon-posi ti ve num bers.

C ol l ecti ng the cycl otom i c factorsused duri ng thi sprocedure,we have proven the fol l ow i ng.

Lem m a 4. LetW (X ;Y ) be a rationalfunction such that W (X ;Y ) is a cycl otom ic pol ynom ial , but W itsel f is not cycl otom ic. D e ne as above. T hen there is a unique expansion W (X ;Y )=

Q n ;m (1 X n Y m ) cn ;m .
T he setC = f(n;m ):c n ;m 6 = 0g contains an in nite arithm etic progression with di erence a m ul tipl e of ( ;1), onl y nitel y m any el em ents to the right of this l ine, and all entries are on l ines parall el to t( ;1), such that the l ines intersect the real axis in a discrete set of points.

P roof of case 3

W e prove that i s an obstructi ng poi nt. For i ntegers n;m w i th c n ;m 6 = 0 the factor ( n + m s) cn ;m createsa pol e or a zero at n + 1 m ,w hi ch for n + 1 m > i s to the ri ght ofthe supposed boundary. H ence,i f i s not an obstructi ng poi nt,for som e > 0 and al lrati onalnum bers 2 ( ; + ) we woul d have

P n + 1 m
= c n ;m = 0. W e now show that thi s i s i m possi bl e by provi ng that there are pai rs (n;m ) w i th n + 1 m arbi trari l y cl ose to ,c n ;m 6 = 0,such that the sum consi sts ofa si ngl e term ,and i s therefore non-zero as wel l .

Let k ' be the sl ope ofthe rays. Let f(n i ;m i )g be a l i st ofthe starti ng poi nts of the raysdescri bed i n Lem m a 4,w here (n 0 ;m 0 )de nesthe ri ght-m ostray.Take an i nteger q,such that c km + n0 ;'q + m 0 6 = 0 for al lbut ni tel y m any naturalnum bers . Let d be the greatestcom m on di vi sor ofm 0 and q. T he pri m e num ber theorem for ari thm eti c progressi ons guarantees i n ni tel y m any ,such that ' + m 0 d = p i s pri m e.Suppose there i sa pai rn 0 ;m 0 bel ongi ng to anotherray,such thatc n 0 ;m 0 6 = 0 and n 0 + 1 m 0 = k + n0 ' + m 0 . T he poi nt (n 0 ;m 0 ) m ust l i e on one ofthe ni tel y m any rays, hence, we can w ri te n 0 = k 0 + n 1 , m 0 = ' 0 + m 1 . Si nce p i s a di vi sor of the denom i nator of the ri ght hand si de,i t al so has to di vi de the denom i nator ofthe l eft hand si de. W e obtai n that p di vi des both ' + m 0 and ' 0 + m 1 . R estri cti ng, i fnecessary,to an ari thm eti c progressi on,we obtai n an i n ni tude ofi ndi ces such that' 0 + m 1 = t(' + m 0 ),w here t2 [ 0;1]i s a rati onalnum berw i th denom i nator di vi di ng d. H ence,we obtai n that the equati ons

' 0 + m 1 = t(' + m 0 ); t(k 0 + n 1 )= k + n 0
have i n ni tel y m any sol uti ons ; 0 2 N . T wo l i near equati ons i n two vari abl es, none ofw hi ch i s tri vi al ,can onl y have i n ni tel y m any sol uti ons,i fthese equati ons are equi val ent,that i s,t 2 = 1,w hi ch i m pl i es t= 1 si nce t i s posi ti ve by de ni ti on. H ence,w ri ti ng the equati ons as vectors,we have

( 0 ) k ' = n 1 m 1 n 0 m 0 ;
that i s, the vector l i nki ng n 0 m 0 w i th n 1 m 1 i s col l i near w i th k ' , contrary to the assum pti on that n 0 ;m 0 was on a ray other than that ofn;m . H ence,pol es offactors accum ul ate at . It rem ai ns to check that these pol es are not cancel l ed by zerosofotherfactors.Si nce zerosof -factorsare neverposi ti ve real s,these factors do not cause probl em s. Suppose that a pol e of (ns m ) cancel s w i th a zero of the l ocalfactor W (p;p s ),that i s,W (p;p (m + 1)=n )= 0. Si nce W has coe ci ents i n Z,thi s i m pl i es that p (m + 1)=n i s al gebrai c ofdegree atm ostequalto the degree ofW ,hence, m + 1 n can be reduced to a fracti on w i th denom i nator at m ost equal to the degree ofW . T here are onl y ni tel y m any rati onalnum bers i n the i nterval [ ; + 1]w i th bounded denom i nator,hence,onl y ni tel y m any ofthe pol es can be cancel l ed,that i s, i s i n fact an obstructi ng poi nt.

For the corol l ary note that i n cases (2){( 4) i s an obstructi ng poi nt,that i s,i n these cases the rst condi ti on ofthe corol l ary hol ds true. In case (1) and ( 5),we can representD asthe productof ni tel y m any R i em ann -functi onsm ul ti pl i ed by som e functi on w hi ch i s hol om orphi c i n the hal f-pl ane < s > ,and has zeros onl y w here the ni tel y m any l ocalfactors vani sh. A l ocalfactor bel ongi ng to the pri m e p creates a 2 i log p -peri odi c pattern of zeros, hence, the num ber of zeros and pol es i s bounded above by the num ber ofzeros ofthe ni tel y m any -functi ons,w hi ch i s O (T l ogT ),and the ni tel y m any sets ofperi odi c patterns,w hi ch create O (T ) zeros.H ence,N (f< z > ;j = zj< T g)i sO (T l ogT ).Itm ay happen thatthere are si gni cantl y l esspol esorzeros,i fpol es ofone factorcoi nci de w i th pol esofanother factor,however,wecl ai m thatunderR H and theassum pti on ofl i neari ndependence ofzerosthe am ountofcancel l ati on i snegl i gi bl e.Fi rst,i fthe i m agi nary partofzeros of areQ -l i nearl y i ndependent,then wecannothave (n 1 s m 1 )= (n 2 s m 2 )= 0 for i ntegers n 1 ;n 2 ;m 1 ;m 2 w i th (n 1 ;m 1 ) 6 = (n 2 ;m 2 ), that i s, zeros and pol es of di erent -factors cannot cancel . T here i s no cancel l ati on am ong l ocal factors, si nce l ocalfactors can onl y have zeros and never pol es. N ow consi der cancel l ati on am ong zeros of l ocal factors and -factors. W e want to show that there are at m ost ni tel y m any cancel l ati ons. Suppose otherw i se. Si nce there are onl y ni tel y m any l ocalfactors and ni tel y m any -factors,an i n ni tude ofcancel l ati on woul d i m pl y that there are i n ni tel y m any cancel l ati ons am ong one l ocalfactor and one -factor. T he zeros of a l ocal factor are of the form i + 2k i log p , w here i i s the l ogari thm ofone ofthe roots ofW (p;X )= 0 chosen i n such a way that 0 = i < 2 i log p . Si nce an al gebrai c equati on has onl y ni tel y m any roots, an i n ni tude of cancel l ati onsi m pl i es that for som e com pl ex num ber and i n ni tel y m any i ntegers k we have (n( + 2k i log p ) m )= 0. C hoose 4 di erentsuch i ntegersk 1 ;:::;k 4 ,and l et 1 ;:::; 4 be the correspondi ng roots of . T hen we have

1 2 = 2(k1 k2 )n log p , 3 4 = 2(k3 k4 )n log p ,that i s,(k 3 k 4 )( 1 2 )= (k 1 k 2 )( 3 4 
),w hi ch gi ves a l i near rel ati on am ong the zeros of ,contradi cti ng our assum pti on. H ence,i fthe i m agi nary parsofthe rootsof are Q -l i neari ndependent,the num berofzerosand pol es of D i n som e dom ai n coi nci des w i th the sum of the num bers of zeros and pol es ofal lfactors,up to som e bounded error,and our cl ai m fol l ow s.

E xam ples

In thi s secti on we gi ve exam pl es to show that our cl assi cati on i s non-tri vi ali n the sense that every case actual l y occurs.

E xam ple 1. T hesum P 1 n = 1 2 (n ) (n ) n s = (s) (s 1) (2s) (2s 2) correspondsto thepol ynom i al W (X ;Y )= (1+ Y )(1+ X Y ),w hi l e the sum P 1 n = 1 (n ) n s = (s) (s 1)corresponds to the rati onalfuncti on W (X ;Y )= 1 (1+ Y )(1+ X Y ) .
E xam ple 2. (a) Let (n) be the num ber of pri m e di vi sors of n counted w i th m ul ti pl i ci ty. T hen

P 1 n = 1 2 (n ) n s = Q p (1 + 2 p s (1 p s ))) correspondsto the rati onal functi on W (X ;Y )= 1 + 2Y
1 Y w i th m ai n part 1 + 2Y ,w hi ch i s not cycl otom i c. (b) Let G be the di rect product of three copi es of the H ei senberg-group,a / n (G ) the num ber ofnorm alsubgroups ofG ofi ndex n. T hen / G (s) =

P 1 n = 1 a / n (G ) n s
was com puted by Tayl or [START_REF] Taylor | Zeta FunctionsofA lgebrasand R esolution ofSingularities[END_REF]and can be w ri tten as a ni te product of -functi ons and an Eul er-productofthe form

Q p W (p;p s ),w here W consi stsof14 m onom i al sand W (X ;Y )= 1 2X 13 Y 8 ,w hi ch i s not cycl otom i c. E xam ple 3. (a)
Let G be the free ni l potent group ofcl ass two w i th three generators. T hen / G (s) can be w ri tten as a ni te product of -functi ons and the Eul er-product

Q p W (p;p s ),w here W (X ;Y )= 1 + X 3 Y 3 + X 4 Y 3 + X 6 Y 5 + X 7 Y 5 + X 10 Y 8 :
W e have W (X ;Y )= 1 + X 7 Y 5 ,w hi ch cl earl y does not di vi de W ,hence,w hi l e W i s cycl otom i c,W i s not. H ence,W i s not case 1 or 2. T heorem 1 i m pl i es that 7=5 i s an essenti alsi ngul ari ty of / G . D u Sautoy and W oodward [START_REF] Sautoy | Zeta functions of groups and rings[END_REF]showed that i n fact the l i ne < s = 7=5 i s the naturalboundary for / G . (b) N ow consi der the product

f(s)= Y p 1 + p s + p 1 2s
A gai n,the pol ynom i alW (X ;Y )= 1 + Y + X Y 2 i s not cycl otom i c,w hi l e W i s cycl otom i c.A gai n,T heorem 1 i m pl i esthat1=2 i san obstructi ng poi ntoff.H owever, the questi on w hether there exi sts another poi nt on the l i ne < s = 1=2 w hi ch i s an obstructi ng poi nt i s essenti al l y equi val ent to the R i em ann hypothesi s. W e have

f(s) = (s) (2s 1) (3s 1) (2s) (4s 2) R (s) Y m 1
((4m + 1)s 2m ) ((4m + 3)s 2m 1) ((8m + 2)s 4m ) ;

hence,i f hasonl y ni tel y m any zeroso the l i ne 1=2+ it,then the ri ghthand si de has onl y ni tel y m any zeros i n the dom ai n < s > 1=2,j = sj> ,hence,1=2 i s the uni que obstructi ng poi nton thi sl i ne.O n the otherhand,i f (s)hasi n ni tel y m any non-realzeros o the l i ne 1=2 + it,then every poi nt on thi s l i ne i s an obstructi ng poi nt for f (confer [ 1] ).

H ence,w hi l e forsom e pol ynom i al sthe naturalboundary can be determ i ned,we do not expect any generalprogress i n thi s case. T he pol ynom i al

W (X ;Y )= 1 + (X + X 2 + X 3 + X 4 )Y + X 5 Y 2
sati s esthe rel ati on W (X ;Y )= 1+ X 4 Y ,thati s, W i scycl otom i c,w hi l e W i snot. D u Sautoy an G runewal d [START_REF] Sautoy | Zeta functions of groups: zeros and friendly ghosts,A m er[END_REF]showed that i n the cycl otom i c expansi on ofW there are onl y ni tel y m any (n;m ) w i th c n ;m 6 = 0 and n + 1 m > 4,and that W (p;p s )= 0 has sol uti ons w i th < s > 4 for i n ni tel y m any pri m es,hence,W i s an exam pl e of type 4,and Z (s=3) has the naturalboundary < s = 4. (b) Let V be the cubi c vari ety x 1 x 2 x 3 = x 3 4 ,U be the open subset fx 2 V [ Z 4 : x 4 6 = 0g,H the usualhei ght functi on. D e l a B ret eche and Si r Sw ynnerton-D yer [START_REF]Sw ynnerton-D yer, Fonction zêta des hauteurs associ ee a une certaine surface cubique[END_REF] showed that Z (s)=

P

x2 U H (x) s can be w ri tten as the product of ni tel y m any -functi ons,a functi on hol om orphi c i n a hal f-pl ane stri ctl y l arger than < s > 3=4, and a functi on havi ng an Eul er-product correspondi ng to the rati onalfuncti on

W (X ;Y )= 1+ (1 X 3 Y )(X 6 Y 2 + X 5 Y 1 + X 4 + X 2 Y 2 + X Y 3 + Y 4 ) X 9 Y 3 :
T hey showed that i n the cycl otom i c expansi on of thi s functi on there occur onl y ni tel y m any term s c n ;m X n Y m w i th c n ;m 6 = 0 and n + 1 m > 3 4 ,and al lbut ni tel y m any l ocalfactors have a zero to the ri ght of< s = 3=4,hence,< s = 3=4 i s the naturalboundary ofZ (s).

E xam ple 5. Let J 2 (n) be the Jacobsthal -functi on, i . e. J 2 (n) = # f(x;y) :1 x;y n;(x;y;n)= 1g,and de neg(s)=

P n 1 (n )J2 (n ) n 2
.Si nceJ 2 i sm ul ti pl i cati ve, g has an Eul er-product,w hi ch can be com puted to gi ve

g(s)= Y p 1 + p s p 2 s : W e have g(s)= Y p (1 p 2 s ) Y p (1 + p s 1 p 2 s )= (s 2)D (s);
say.For = < s > 2 + the Eul er product for D convergesuni form l y,si nce

X p p s 1 p 2 s X p p 1 2 2
(2) :

H ence,D i s hol om orphi c and non-zero i n < s > 2,that i s,no poi nt on the l i ne < s = 2 i s an obstructi ng poi nt, that i s, Esterm ann' s m ethod cannot prove the exi stence ofa si ngl e si ngul ari ty ofthi s functi on.

C om parison of our classification w ith the classification of du Sautoy and W oodw ard

In [START_REF] Sautoy | Zeta functions of groups and rings[END_REF] ,du Sautoy and W oodward consi derseveralcl assesofpol ynom i al sforw hi ch they can prove C onjecture 1. Si nce thei r cl asses do not coi nci de w i th the cl asses descri bed i n T heorem 1,we now descri be how the two cl assi cati ons com pare.W e w i l lreferto the cl assesdescri bed i n T heorem 1 as' cases' ,w hi l e we w i l lconti nue to refer to the pol ynom i al s ofdu Sautoy and W oodward by thei r ori gi nalappel l ati on of'type' .

Pol ynom i al s oftype I are pol ynom i al s W such that W i s not cycl otom i c,thi s cl ass coi nci des w i th pol ynom i al s i n case [START_REF] Schlage-Puchta | M erom orphic C ontinuation of M ultivariable E uler P roducts[END_REF].

Pol ynom i al s oftype II are pol ynom i al s W such that W i s cycl otom i c,there are onl y ni tel y m any c n ;m > 0 w i th n + 1 m > ,and for i n ni tel y m any pri m es we have that W (p;p s ) has zeros to the ri ght of . T hi s cl ass contai ns al lpol ynom i al s i n case (4), and al lpol ynom i al s of type II fal l under case (3) or ( 4), but there are pol ynom i al s i n case (3) w hi ch are not oftype II. For pol ynom i al s oftype II they prove that the l i ne < s = i s the naturalboundary ofm erom orphi c conti nuati on ofD ,thei r resul t for pol ynom i al s therefore cl earl y supersedes the rel evantparts of T heorem 1.

Pol ynom i al softype IIIare pol ynom i al sW asi n type II,but there are i n ni tel y m any pai rs n;m w i th c n ;m > 0, n + 1 m > . T hese pol ynom i al s fal lunder case (3), they show under the R i em ann hypothesi s that < s = i s a naturalboundary. For such pol ynom i al s the resul ts are i ncom parabl e,our resul ts are uncondi ti onal ,yet weaker.

Pol ynom i al s oftype IV are pol ynom i al s w i th i n ni tel y m any pai rs (n;m ) sati sfyi ng c n ;m 6 = 0 and n + 1=2 m > ,and such thatw i th the excepti on of ni tel y m any p there are no l ocalzeros to the ri ght of< s = . For such pol ynom i al s du Sautoy and W oodward show that < s = i s the naturalboundary,i fthe i m agi nary parts ofthe zeros of are Q -l i nearl y i ndependent. A l lpol ynom i al s oftype IV fal lunder case (3),agai n,the resul ts are i ncom parabl e.

Pol ynom i al s oftype V are pol ynom i al s W such that W i s cycl otom i c,w i th the excepti on of ni tel y m any p there are no l ocalzerosto the ri ghtof ,and there are onl y ni tel y m any pai rsn;m w i th c n ;m 6 = 0 and n + 1 m . T hi s correspond to case [START_REF] Ahlquist | O n the analytic continuation of E ulerian products[END_REF].

Pol ynom i al softype V Iare pol ynom i al s W such that W i s cycl otom i c,w i th the excepti on of ni tel y m any p there are no l ocalzeros to the ri ght of , there are i n ni tel y m any pai rs (n;m ) w i th c n ;m 6 = 0 and n + 1 m > , onl y ni tel y m any of w hi ch sati sfy n + 1=2 m > . T hese fal lunder case (3). C ase (1) does not occur i n thei r cl assi cati on as i t i s justl y regarded as tri vi al .

C om parison w ith the m ultivariable case

T he objectofourstudy hasbeen the D i ri chl et-seri esD (s)= Q W (p;p s ). T hi s w i l lbe cal l ed the 1 1 2 -vari abl e probl em si nce the pol ynom i alhas two vari abl es,but the D i ri chl et-seri es depends on onl y one com pl ex vari abl e. If the coe ci ents of the above seri es have som e ari them eti cal m eani ng, and thi s m eani ng transl ates i nto a statem ent on each m onom i al of W , then the D i ri chl et-seri es D (s 1 ;s 2 ) = Q p W (p s1 ;p s2 ) retai ns m ore i nform ati on, and i t coul d be frui tful to consi der thi sfuncti on i nstead. O fcourse,the gai n i n i nform ati on coul d be atthe ri sk ofthe techni caldi cul ti es i ntroduced by consi deri ng severalvari abl es. H owever,here we show thatthe m ul ti vari abl e probl em i s actual l y easi erthen the ori gi nalquesti on of 1 1 2 -vari abl es. W here there i sno expl i ci treference to p,the probl em ofa naturalboundary was com pl etel y sol ved by Essouabri ,Li chti n and the rst nam ed author [START_REF] Schlage-Puchta | M erom orphic C ontinuation of M ultivariable E uler P roducts[END_REF] .

T heorem 2. Let W 2 Z[ X 1 ;:::;X k ] be a pol ynom ial satisfying W (0;:::;0) = 1. Set D (s 1 ;:::;s k ) = Q p W (p s1 ;:::;p s k ). T hen D can be m erom orphicall y continued to the whol e com pl ex pl ane if and onl y ifW is cycl otom ic. Ifit cannot be continued to the whol e com pl ex pl ane,then its m axim aldom ain ofm erom orphic continuation is the intersection of a nite num ber of e ectivel y com putabl e hal fspaces. T he bounding hyper-pl ane of each of these hal f-spaces passes through the origin.

A t rst si ght one m ay thi nk that one can pass from the 2-di m ensi onalby xi ng s 1 ,however,thi s destroys the structure ofthe probl em ,as i s dem onstrated by the fol l ow i ng.

E xam ple 6. T he D i ri chl et-seri es D (s 1 ;s 2 )= Q p 1 + (2 p s1 )p s2 as a functi on oftwo vari abl es can be m erom orphi cal l y conti nued i nto the set f(s 1 ;s 2 ) :< s 2 > 0;< s 1 + s 2 > 0g,and the boundary ofthi s set i s the naturalboundary ofm erom orphi c conti nuati on. Ifwe x s 1 w i th < s 1 0,and vi ew D as a functi on ofs 1 , then D can be conti nued to C i fand onl y i fs 1 = 0. In every other case the l i ne < s 2 = 0 i s the naturalboundary.

Proof. T he behavi our ofD (s 1 ;s 2 ) fol l ow s from [ 2,T heorem 2] . Ifwe x s 1 ,then 1 + (2 p s1 )p s2 has zeros w i th rel ati vel y l arge realpart,provi ded that ei ther < s 1 > 0,or < s 1 = 0 and < p s1 < 0. In the rst case we can argue as i n the case that W i snotcycl otom i c.B y the pri m e num bertheorem forshorti nterval swe nd thatthe num berofpri m enum bersp < x sati sfyi ng < p s1 < 0 i sgreaterthan c x log x , and we see that we can agai n adapt the prooffor the case W non-cycl otom i c.

In otherwords,the naturalboundary forthe 1 1 2 -vari abl e probl em i sthe sam e as for the 2-vari abl e probl em ,w i th one excepti on,i n w hi ch the 1 1 2 -vari abl e probl em col l apses to a 1-vari abl e probl em , and i n w hi ch case the Eul er-product becom es conti nuabl e beyond the 2-vari abl e boundary.

It seem s l i kel y that thi s behavi our shoul d be the preval ent one,i t i s l ess cl ear w hat preci sel y \thi s behavi our" i s. O ne qui te strong possi bi l i ty i s the fol l ow i ng: Suppose thatD (s 1 ;s 2 )= Q p W (p s1 ;p s2 ) has a naturalboundary at< s 1 = 0. T hen there are onl y nitel y m any val ues s 2 ,for which the special ization D ( ;s 2 ) is m erom orphicall y continuabl e beyond < s 1 = 0.

H owever,thi s statem ent i s ri ghtnow supported onl y by a generall ack ofexampl es,and thefactthatexam pl e6 l ooksqui tenatural ,so wedo notdarea conjecture. H owever we bel i eve that som e progress i n thi s di recti on coul d be easi er to obtai n than di rectl y handl i ng C onjecture 1. In parti cul ar those cases,i n w hi ch zeros of pose a seri ous threat for l ocalzeros woul d becom e a l ot easi er si nce thi s type of cancel l ati on can onl y a ect a countabl e num ber ofval ues for s 2 .
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 2 i sa com pl ex num bers i n the segm entw hi ch i scongruentto z p1 i1 log p1 and congruentto w p2 i2 m odul o 2 i log p2 .G oi ng around thecycl eand col l ecti ng the di erences we obtai n an equati on ofthe form 2 i P i i log pi = 0, i 2 Z,w hi ch can onl y hol d i fthe com bi ned coe ci entsvani sh foreach occurri ng pri m e.H oweverthe coe ci ents cannot vani sh i fsom e pri m e occurs onl y once. Ifthe cycl e i s m i ni m al the sam e vertex cannot occur tw i ce, hence, there i s som e j such that p 1 = p j , but i 1 6 = i j . H ence, every m i ni m alcycl e contai ni ng z p1 i1 m ust contai n z pj ij or w pj ij

E xam ple 4 .

 4 (a) T he l ocalzeta functi on associ ated to the al gebrai c group G i s de ned asZ p (G;s)= Z G + p jdet(g)j s p d w here G + p = G (Q p )\ M n (Z p ), j : j p denotes the p-adi c val uati on and i s the norm al i sed H aar m easure on G(Z p ). In parti cul ar the zeta functi on associ ated to the group G = G Sp 6[START_REF] Igusa | U niversal p-adic zeta functions and their functional equations[END_REF]i s gi ven by Z (s=3)= (s) (s 3) (s 5) (s 6) Y p 1 + p 1 s + p 2 s + p 3 s + p 4 s + p 5 2s :
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