

Essential singularities of Euler products

Gautami Bhowmik, Jan-Christoph Schlage-Puchta

To cite this version:

Gautami Bhowmik, Jan-Christoph Schlage-Puchta. Essential singularities of Euler products. 2009. hal-00446359

HAL Id: hal-00446359 <https://hal.science/hal-00446359v1>

Preprint submitted on 12 Jan 2010

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

ESSENTIAL SINGULARITIES OF EULER PRODUCTS

GAUTAM IBHOW M IK AND JAN-CHRISTOPH SCHLAGE-PUCHTA

A bstract. We classify singularities of D irichlet series having Euler products which are rational functions of p and p ^s for p a prime number and give exam ples of natural boundaries from zeta functions of groups and height zeta functions.

1. Introduction and results

M any D inichlet-series occurring in practice satisfy an Euler-product, and if they do so, the Euler-product is often the easiest way to access the series. Therefore, it is in portant to deduce inform ation on the series from the Euler-product representation. One of the most important applications of D irichlet-series, going back to R iem ann, is the asymptotic estimation of the sum of its coe cients via Perron's formula, that is, the use of the equation

X
 $a_n = \frac{1}{2} \int_{c}^{cZ \text{ if}} \int_{n}^{x} \frac{a_n}{n^s} \frac{x^s}{s} ds$

To use this relation, one usually shifts the path of integration to the left, thereby reducing the contribution of the term x^s . This becomes possible only if the function $\frac{a_n}{n}$ is holom orphic on the new path and therefore the question of contin- $D (s) =$ uation of D irich let-series beyond their dom ain of absolute convergence is a central issue in this theory. In fact, the importance of the R iem ann hypothesis stem s from the fact that it would allow us to m ove the path of integration for D (s) = $-$ (s) to the line $1=2+\dots$ without meeting any singularity besides the obvious pole at 1.

Estermann[4] appears to be the rst to address this problem. He showed that $\oint \n \text{p}$ an integer valued polynom ial W (x) with W (0) = 1 the D irichlet-series D (s) = p^{W} (p^s) can either be written as a nite product of the form $_{\rm N}$ (s) for certain integers c , and is therefore merom orphically continuable to the whole complex plane, or is continuable to the half-plane $\langle s \rangle$ 0. In the latter case the line $\lt s = 0$ is the natural boundary of the D irichlet-series. The strategy of his proof was to show that every point on the line $\lt s = 0$ is an accumulation point of poles or zeros of D. Note that , the Riem ann-zeta function itself, does not fall am ong the cases under consideration, since W (X) = $(1 X)^{-1}$ is a rational function. Dahlquist^[5] generalized E sterm ann's work allowing W to be a function holom orphic in the unit circle with the exception of isolated singularities and in particular covering the case that W be rational. Thism ethod of proof was extended to much greater generality, interest being sparked by -functions of nilpotent groups introduced by G runewald, Segal and Sm ith [9] as well as height zeta functions[3].

²⁰¹⁰ M athem atics Sub ject C lassi cation 30B 50, 11M 41, 30B 40, 20F 69, 11G 50

K ey words and phrases. D irichlet series, Euler product, singularities, natural boundary, zeta functions of groups.

Functions arising in these contexts are often of the form D (s) = $\frac{Q}{W}$ (p;p s) for an integral polynom $ialW$. Du Sautoy and G runewald [\[7\]](#page-14-0) gave a criterion for such a function to have a natural boundary w hich, in a probabilistic sense, applies to alm ost all polynom ials. A gain, it is shown that every point on the presum ed boundary is an accum ulation point of zeros or poles. The follow ing conjecture, see for example $[8, 1.11][7, 1.4]$ $[8, 1.11][7, 1.4]$ $[8, 1.11][7, 1.4]$, is believed to be true.

C on jecture 1. Let W (x, y) = P $_{\text{n,m}}$ a $_{\text{n,m}}$ x^{n} y m be an integral polynomial with U OII Jecture 1. Let $W(X, Y)$
W $(X, 0) = 1$. Then D $(S) =$ $_{\text{p}}$ W (p;p ^{s}) is merom orphically continuable to the whole com plex plane if and if only if it is a nite product of Riem ann $-$ functions. M oreover, in the latter case if $=$ m $arctfrac{n}{m}$:m $1; a_{n,m}$ \in 0g, then $\lt s$ = is the natural boundary of D.

In this paper we show that any re nem ent of E sterm ann's m ethod is bound to fail to prove this conjecture.

 $_{\text{p}}$ If W (X ; Y) is a rational function, we expand W into a power series W (X ; Y) = $_{n,m=0}$ $a_{n,m}$ X^{n} Y^{m} , and de ne = $\sup f \frac{n+1}{m}$: $m=1$; $a_{n,m}$ \in 0g, = $\sup f \frac{n}{m}$: m $1; a_{n,m}$ \in 0g. It is easy to see that the suprem um is actually attained, and that the function $W = 1 + \frac{1}{2}$ $\lim_{m=1}$ a_{n π} Xⁿ Y^m is again a rational function. We call W⁺ the m ain part of W⁻ , since only W⁺ is responsible for the convergence of the product D (s). For W a polynom ialW was called the ghost of W in [\[7](#page-14-0)]. A rational function W is called cyclotom ic if it can be w ritten as the product of cyclotom ic polynom ialsand their inverses.

We de ne an obstructing point z to be a complex number with \leq z = , such that there exists a sequence of complex numbers $z_i, z_i > 0$, z_i ! z, such that D has a pole or a zero in z_i for all i. O bviously, each obstructing point is an essential singularity for D , the converse not being true in general.

O ur m ain result is the follow ing.

Theorem 1. Let W (X, Y) be a rational function, which can be written as $\frac{P(X, Y)}{Q(X, Y)}$, where P;Q 2 Z X ; Y] satisfy P $(X; 0) = Q(X; 0) = 1$. De ne a_n;; W^{*} and D as above. Then the product representation of D converges in the half-plane $\langle s \rangle$, D can m erom orphically continued into the half-plane $\langle s \rangle$, and precisely one of the following holds true.

- (1) W is cyclotom ic and once its unitary factors are rem oved, $W = W$; in this case D is a nite product of R iem ann -functions;
- (2) W is not cyclotom ic; in this case every point of the line $\langle s =$ is an obstructing point;
- (3) $W \in W$, W is cyclotom ic and there are in nitely m any pairs n;m with $a_{n,m} \notin 0$ and $\frac{n}{m} < a_{m,m} \times \frac{n+1}{m}$; in this case is an obstructing point;
- (4) $W \in W$, W is cyclotom ic, there are only nitely m any pairs n;m with $a_{n,m} \in (0 \text{ and } \frac{n}{m} < \frac{n+1}{m}$, but there are in nitely m any primes p such that the equation W (p; $p \overset{m}{s} = 0$ has a solution s_0 with $\langle s_0 \rangle$; in this case every point of the line $\langle s \rangle = \frac{1}{s}$ is an obstructing point;
- (5) N one of the above; in this case no point on the line \leq s = is an obstructing point.

W e rem ark that each of these cases actually occurs, that is, there are Eulerproducts for w hich E sterm ann's approach cannot work.

Notice that while in the third case we need information on the zeros of the R iem ann-zeta function to know about the m erom orphic continuation, in the last case we can say nothing about their continuation.

W hile the above classi cation looks pretty technical, these cases actually behave quite di erently. To illustrate this point we consider a dom ain C with a function f: ! C, let N () the number of zeros and poles of f in counted w ith positive multiplicity, that is, an n-fold zero or a pole of order n is counted n times. Then we have the following.

Corollary 1. Let W be a rational function, and de ne as above. Then one of the following two statem ents holds true:

- (1) For every > 0 we have N (f $\dot{\tau}$ $\dot{\$
- (2) We have N $(f < z > j \neq z j < T g = 0$ (T $log T$).

If W is a polynom ial and we assume the R iem ann hypothesis as well as the Q -linear independence of the imaginary parts of the non-trivial zeros of, then there exist constants c_1 ; c_2 , such that N $(f < z > j \neq z j < T g) = c_1 T \log T + c_2 T + O(\log T)$.

F inally we rem ark that for -functions of nilpotent groups the generalization to gational functions is irrelevant, since a result of du Sautoy [6] in plies that if $_G$ (s) = _pW (p;p^s) for a rational function W (X; Y) = $\frac{P(X;Y)}{Q(X;Y)}$, then Q is a cyclotom ic

polynomial, that is, G can be written as the product of nitely many Riemann -functions and a D irichlet-series of the form $\frac{1}{p}$ W (p; p ^s) with W a polynomial. H ow ever, for other applications it is indeed in portant to study rational functions, one such example occurs in the recent work of de la Breteche and Swynnerton-Dyer_[3].

2. Proof of case 2

In this section we show that if W is not cyclotom ic, then \leq s = is the natural boundary of the merom orphic continuation of D. For W a polynomial this was shown by du Sautoy and G runewald [7], our proof closely follows their lines of reasoning.

The m ain di erence between the case of a polynom ial and a rational function is that for polynom ials the local zeros created by di erent primes can never cancel, whereas for a rational function the zeros of the num erator belonging to some prime number p m ight coincide with zeros of the denom inator belonging to some other prim e q, and m ay therefore not contribute to the zeros or poles needed to prove that som e point on the presum ed boundary is a cluster point. We could exclude the possibility of cancellations by assuming some unproven hypotheses from transcendence theory, how ever, here we show that we can deal with this case unconditionally by proving that the am ount of cancellation rem ains lim ited. We rst consider the case of cancellations between the numerator and denominator coming from the same prime number.

Lemma 1. Let P; Q 2 Z \upbeta , Y] be ∞ -prime non-constant polynomials. Then there are only nitely many primes p , such that for some complex number s we have P (p;p s) = Q (p;p s) = 0.

Proof. Let V be the variety of hP; Q i over C. A ssum e there are in nitely m any pairs (p;s), for which the equation P (p;p s) = Q (p;p s) = 0 holds true. Then V is in nite, hence, at least one-dimensional. Since P and Q are non-constant, we

have $V \oplus C^2$, hence, V is one-dimensional. Let V^0 be a one-dimensional irreducible component, and let R be a generator of the ideal corresponding to V^0 . Then hP ; Q i hR i, that is, R divides P and Q, which implies that R is constant. But a constant polynom ialcannot de ne a one-dim ensional variety and this contradiction proves our claim.

Next we use the following graph-theoretic result, describing graphs which are rather close to trees. We call a cycle in a graph m in im al if it is of length 3 , and not the union of two cycles of sm aller length.

Lem $m a 2$. Let G be a graph, $k 2$ an integer, such that every vertex has degree $3k$, and that there exists a symmetric relation on the vertices, such that every vertex v is in relation to at m ost k other vertices, and every m in im al cycle passing through v also passes through one of the vertices in relation to v . Then G is in nite.

Proof. Suppose that G were nite, and x some vertex v_0 . We call a geodesic path good if no two vertices of the path stand in relation to each other. We want to construct an in nite good path. Note that p_1 and p_2 are good paths of nite length, they cannot intersect in but one point, for otherw ise their union would contain a cycle, and choosing one of the intersection points we would obtain a contradiction w ith the de nition of a good path. Hence, the union of the good paths starting in v_0 form s a tree. There are 3k vertices connected to v_0 , at m ost k of which are forbidden. Hence, the rst layer of the tree contains at least 2k points. Each of these points is connected to at least 3k other points. It stands in relation to at m ost k of them and hence we can extend every path in at least 2k ways, and of all these paths at m ost k stand in relation with v_0 . Hence, the second layer contains at least 4k k points. Denote by n_i the number of points in the i-th layer of the tree. Then, continuing in this way, we obtain

> $2kn_i$ k(n_{i 1}+ n_{i+1} $+$ $+$ 1):

From this and the assumption that k 2 it follows by induction that n_{i+1} kn_{i} hence, the tree and therefore the graph G, which contains the tree, is in nite.

N ote the importance of symmetry: if the relation is allowed to be non-symmetric, we can get two regular trees, and identify their leaves. Then every m inim al cycle passing through one point either passes through its parent node or the m irror in age of the point. Thus in the absence of symm etry the result becomes wrong for arbitrarily large valency even for $k = 2$.

We can now prove our result on non-cancellation.

Lemma 3. Let P; Q 2 Z \upmu y] be co-prime polynomials with dened as in the introduction. Let $\rightarrow 0$ be given, and suppose that for a prime p_0 su ciently large $P (p_0 ; p_0^s)$ has a zero on the segment $[+ it; + it +],$ where > . Then $\frac{P(p,p)}{Q(p,p)}$ has a zero or a pole on this segment.

Proof. Since the local zeros converge to the line $\langle s = \cdot \rangle$, there are only nitely m any prim es p for w hich the num erator or denom inator has a zero, hence, we m ay assume that P $(p;p s)$; Q $(p;p s) \notin 0$ for $p > p_0$. For each prime p let z_1^p ; :::; z_k^p be the roots of the equation P (p;p ^s) = 0 in the segment < s = ,0 = s $\frac{2}{\log p}$, and let w_1^p , :::; w_1^p be the roots of the equation Q (p; p s) = 0 on this segm ent. Such roots need not exist but if they do then their number is bounded independently of

 Δ

p. The roots of the equations P (p;p s) = 0 and Q (p;p s) = 0 form a pattern w ith period $\frac{2-i}{\log p}$. If p_0 is suciently large, then becomes arbitrary sm all, hence, if p is not large then the equations P (p;p s) = 0 and Q (p;p s) = 0 do not have solutions on the line $\langle s = + \cdot \cdot \cdot \cdot$. Let p_1 be the least prime for which such solutions exist. For p_1 su ciently large and $p > p_1$, either P $(p; p^s) = 0$ has no solution on the segm entunder consideration or it has at least $\frac{\log p}{2}$ such solutions. Note that by xing and choosing p_0 suciently large we can m ake this expression as large as we need. Further note that by choosing p_0 large we can ensure, in view of Lemma [1,](#page-3-0) that P (p;p s) = Q (p;p s) = 0 has no solution on the line $\lt s = +$.

We now de ne a bipartite graph G as follow s: The vertices of the graph are all com plex num bers z_i^p in one set and all com plex num bers w_i^p in the other set, w here p \bar{p}_0 . Two vertices z_i^p , w $\frac{q}{j}$ are joined by an edge if there exists a complex num ber swith $\lt s = +$, $t = s$ $t +$, such that s is congruent to $\frac{p}{4}$ m odulo $\frac{2 i}{\log p}$, and congruent to w_j^q m odulo $\frac{2-i}{\log q}$. In other words, the existence of an edge indicates that one of the zeros of P $(p, p \text{ }^s)$ obtained from z_i^p by periodicity cancels with one zero of Q (q;q \degree) obtained from w_j^q . If $p \frac{P (p p s)}{Q (p p s s)}$ $\frac{{\rm P}\,\left({\rm p},{\rm p}\right)}{{\rm Q}\,\left({\rm p},{\rm p}\right)}$ has neither a zero nor a pole on the segm ent, then every zero of one of the polynom ials cancels w ith a zero of the other polynom ial, that is, every vertex has valency at least $\frac{-\log p_1}{2}$.

N e next bound the num ber of cycles. Suppose that $z_{i_1}^{p_1}$ \leq $w_{i_2}^{p_2}$ $P'_{i}w Z_{i_1}^{p_1}$. Then there is a complex number s in the segm entwhich is congruent to $z_{i_1}^{p_1}$ modulo $\frac{2}{\log p_1}$ and congruent to $w_{i_2}^{p_2}$ m odulo $\frac{2}{\log p_2}$. G oing around the cycle and collecting the dierences we obtain an equation of the form 2 $i \frac{i}{\log p_i} = 0$, i 2 Z, which can only hold ifthe com bined coecientsvanish foreach occurring prim e.H oweverthe coe cients cannot vanish if som e prim e occurs only once. If the cycle is m inim al the sam e vertex cannot occur tw ice, hence, there is some j such that $p_1 = p_j$, but i_1 \in i_j . Hence, every m inim alcycle containing $z_{i_1}^{p_1}$ m ust contain $z_{i_j}^{p_j}$ $\begin{bmatrix} \bar{\mathbf{p}}_j \\ \vdots \\ \bar{\mathbf{p}}_j \end{bmatrix}$ or \mathbf{w} $\begin{bmatrix} \bar{\mathbf{p}}_j \\ \vdots \\ \bar{\mathbf{p}}_j \end{bmatrix}$ i_j for some i θ j. The relation de ned by x_i^p x_j^q , $p = q$, x 2 fz; wg is an equivalence relation w ith equivalence classes bounded by som e constant K . If we choose $p_1 > exp(6 K^{-1})$, the assumptions of Lemma [2](#page-4-0) are satis ed, and we conclude that G is nite.

But we already know that there is no p > p₀ for which P (p;p s) = 0 or Q (p;p s) = 0 has a solution, that is, G is nite. This contradiction completes the proof.

U sing Lem m a [3](#page-4-0) the proofnow proceeds in the sam e fashion as in the polynom ialcase;for the details we refer the reader to the proofgiven by du Sautoy and G runewald[\[7\]](#page-14-0).

3. D evelopm ent in cyclotom ic factors

A rational function W (X, Y) with W $(X, j) = 1$ can be written as an in nite product of polynom ials of the form $(1 \times a \times b)$. Here convergence is meant with respect to the topology of form alpower series, that is, a product $\sum_{i=1}^{n} (1 - X^{a_i} Y^{b_i})$ converges to a power series f if for each N there exists an i_0 , such that for $i_1 > i_0$ the partial product $\sum_{i=1}^{i_1} (1 - X^{a_i} Y^{b_i})$ coincides with f for all coe-cients of monomials X^aY^b with a ; b < N . The existence of such an extension is quite obvious, however, we need som e explicit inform ation on the factors that occur and we shall develop the necessary inform ation here.

For a set A R^2 de ne the convex cone A generated by A to be the sm allest convex subset containing a for all a 2 A and > 1 . A point a of A is extrem al, if it is contained in the boundary of \overline{A} and there exists a tangent to A intersecting A precisely in a, or set theoretically speaking, if \overline{A} n fag $\overline{6}$ \overline{A} . N ote that a convex cone form s an additive sem i-group as a subsem igroup of R^2 .

To a form alpower series $W = \begin{bmatrix} 1 \end{bmatrix}$ $\lim_{n,m} A_{n,m} X^n Y^m 2 Z [X;Y]$ we associate the set $A_W = f(n;m) : a_{n,m} \in 0$ g. Suppose we start w ith a rational function W 2 Z K ; Y], which is of the form $\frac{P(X;Y)}{Q(X;Y)}$ with P $(X;0) = Q(X;0) = 1$. Then

$$
\frac{1}{Q(X;Y)} = \sum_{i=0}^{X^i} Q(X;Y) \quad 1 = \sum_{n,m=1}^{X} b_{n,m} X^n Y^m ;
$$

say, w here the convergence of the geom etric series as a form alpower series follow s from the fact that every m onom ial in Q is divisible by Y. The set f(n;m): $b_{n,m} \in$ 0g R^2 is contained in the sem igroup generated by the points corresponding to m onom ials in Q , but m ay be strictly sm aller, as there could be unforeseen cancellations. M ultiplying the power series by P (X ; Y), we obtain that A_W is contained w ithin nitely m any shifted copies of A_0 1.

Let (n,m) be an extrem alpoint of A_w . Then we have $W = (1 \ X^n Y^m)$ $a_{n,m} W_1(X;Y)$, where $W_1(X;Y) = (1 - XⁿY^m)^{a_n} W(X;Y)$. O by iously, $W_1(X;Y)$ is a form all power series w ith integer coe cients, we claim that $\overline{A_{W_1}}$ is a proper subset of $\overline{A_W}$. In fact, the m onom ials of W₁ are obtained by taking the m onom ials of A_W, multiplying them by some power of X $n \times m$, and possibly adding up the contribution of dierent m onom ials. Hence, A_{W_1} is contained in the sem igroup generated by A_W . But (n;m) is not in A_{W_1} , and since (n;m) was assum ed to be extrem al, we obtain

$$
A_{W_1} \quad hA_W \text{inf}(n,m)g \quad \overline{A_W} \text{inf}(n,m)g \quad \overline{A_W}:
$$

Taking the convex cone is a hull operator, thus $\overline{A_{W_1}}$ is a proper subset of $\overline{A_W}$. Since we begin and end with a subset of N^2 , we can repeat this procedure so that after nitely m any steps the resulting power series W $_k$ contains no non-vanishing coe cients a $_{nm}$ w ith $n < N$; $m < M$. This suces to prove the existence of a product decom position, in fact, if one is not interested in the occurring cyclotom ic factors one could avoid power series and stay w ithin the realm of polynom ials by setting W₁ (X; Y) = $(1 + XⁿY^m)^{a_n, m} W (X; Y)$ whenever a_n, m is negative. How ever, in this way we trade one operation involving power series for in nitely m any involving polynom ials, w hich is better avoided for actual calculations.

W hile we can easily determ ine a super-set of A_{W} , in general we cannot prove that som e coe cient of W $_1$ does not vanish, that is, know ing only A_W and not the coe cients we cannot show that A_{W} , is as large as we suspect it to be. However, it is easy to see that when elim inating one extrem alpoint all other extrem alpoints rem ain untouched. In particular, if we want to expand a polynom ial W into a product of cyclotom ic polynom ials, at som e stage we have to use every extrem al point of A_W , and the coecient attached to this point has not changed before this step, by induction it follow sthat the expansion as a cyclotom ic product is unique.

We now assume that W^- is cyclotom ic, w hile W is not. We further assume that W^- is a polynom ial, and that the num erator of W is not divisible by a cyclotom ic polynom ial. W e can always satisfy these assum ptions by m ultiplying or dividing W with cyclotom ic polynom ials, w hich corresponds to the multiplying or dividing D w ith certain shifted -functions, and does not change our problem . Our aim is to nd some information on the set $f(n,m)$: $c_{n,m}$ \in 0g, where the coe cients $c_{n,m}$ are de ned via the expansion $W(X;Y) = \begin{bmatrix} 2 \\ 1 \\ X \end{bmatrix}^m Y^m$.

In the rst step we rem ove all points on the line $\frac{n}{m}$ = . By assumption we can do so by using nitely m any cyclotom ic polynomials. The resulting power series be W_1 . The inverse of the product of nitely m any cyclotom ic polynom ials is a power series w ith poles at certain roots of unity, hence, we can express the sequence of coe cients as a polynomial in n and R am anutan-sum s c_d (n) for d dividing some integer q. Consider some point (n,m) 2 $\overline{A_W}$, and compute the coe cient attached to this point in W₁. If A_W does not contain a point (n^0,m^0) , such that $(n \ n^0,m \ n^0)$ is collinear to $($; 1), then this coe cient is clearly 0.0 thenw ise we consider all points $(n_1;m_1);...; (n_k;m_k)$ in A_W , which are on the parallel to (t; t) through (n,m) . The coe cients of W $_1$ attached to points on \prime are linear combinations of shifted coe cients of inverse cyclotom ic polynom ials, hence, they can be written as some polynom ialwith periodic coe cients. In particular, either there are only nitely m any non-vanishing coe cients, or there exists a complete arithm etic progression of non-vanishing ∞ e cients. Hence, we nd that A $_{W_1}$ is contained within a locally nite set of lines parallel to (t;t), and every line either contains only nitely m any points, or a com plete arithm etic progression. Suppose that every line contains only nitely m any points. Then there exists some 0 > , such that A_{W_1} is contained $_1$ tg, in particular, W₁ is regular in $f(z_1; z_2) : \dot{z}_1 \dot{y}_1$ $\dot{z}_2 \dot{y}$. But in $f(s;t)$: s $W_1 = \frac{P}{OW}$, and by assumption P is not divisible by W, therefore, there exist points $(z_1; z_2)$, where W vanishes, but P does not, and these points are singularities of \dot{z}_2 j. Hence, there exists some line containing a complete W₁ satisfying \dot{p}_1 j arithm etic progression.

Let $(x,0) + t$ (;1) be the unique line containing in nitely many elements of A_{W_1} , such that for each $y > 0$ the line $(y;0) + t(j)$ contains only nitely many elements $(n_1,m_1);..., (n_k,m_k)$ of A_{W_1} . Set = x, that is, the distance of the right boundary of A_W from the line $(x,0) + t$ (*;*1) m easured horizontaly, and set $n_i = m_i = n_i$, that is, is the distance of (n_i, m_i) from the right boundary, also m easured horizontally, and $=$ m in $_{i} > 0$.

We now elim inate the points a_i to obtain the power series W₂. When doing so we introduce bts of new elements to the left of the line $(x,0) + t$ (; 1), which are of no interest to us, and nitely m any points on this line or to the right of this line, in fact, we can get points at m ost at the points of the form (n_i, m_i) + (n_i, m_i) , ; 2 N, μ > 0. Note that the horizontal distance from the line t(μ 1) is additive, that is, A_w , is contained in the intersection of $\overline{A_w}$ and the half-plane to the left of the line $(x,0) + t$ (;1), together with nitely m any points between the lines $(x,0) + t$ (;1) and t ($,1$), each of which has distance at least 2 from the latter line. Repeating this procedure, we can again double this distance, and after nitely m any steps this m in in aldistance is larger than the width of the strip, which means that we have arrived at a power series W₃ such that A_{W} , is contained in the intersection of $\overline{A_{W}}$ and the half-plane to the left of the line $(x;0) + t(1)$. M oreover, since at each step there are only nitely many points changed on the line $(x;0) + t(j)$, we see that the intersection of A_W , with this line equals the intersection of A_W , with this line up to nitely many inclusions or om issions. Since an in nite arithmetic progression, from which nitely many points are deleted still contains an in nite arithm etic progression, we see that A_W , contains an in nite arithm etic progression.

N ext we elm inate the points on A_W starting at the bottom and working upwards. W hen elim inating a point, we introduce (possibly in nitely many) new points, but all of them are on the left of the line $(x,0) + t($; 1). Hence, after in nitely many steps we arrive at a power series W₄, for which $A_{W_{A}}$ is contained in the intersection of $\overline{A_w}$ and the open half-plane to the left of $(x,0) + t(j,1)$.

Fortunately, from this point on we can be less explicit. Consider the set of dierences of the sets A_W , from the line t(;1). Taking the dierences is a semigroup hom om orphism, hence, at each stage the set of di erences is contained in the sem i-group generated by the dierences we started with. But since W is a polynom ial, this sem i-group is nitely generated, and therefore discrete. Hence, no matter how we elim inate term s, at each stage the set A_{W} , is contained in a set of parallels to t (; 1) intersecting the real axis in a discrete set of non-positive num bers.

Collecting the cyclotom ic factors used during this procedure, we have proven the follow ing.

Lemma 4. Let W (X, Y) be a rational function such that W (X, Y) is a cyclotom ic polynom ial, but W itself is ngt cyclotom ic. De ne as above. Then there is a unique expansion W (X; Y) = $\sum_{n,m}$ (1 Xⁿ Y^m)^{Cn;m}. The set C = f(n;m): C_{n;m} θ Oq contains an in nite arithmetic progression with di erence a multiple of $($;1), only nitely many elements to the right of this line, and all entries are on lines parallel to t ($,1$), such that the lines intersect the real axis in a discrete set of points.

4. Proof of case 3

We prove that is an obstructing point. For integers n;m with $c_{n,m}$ \in 0 the factor ($n + m s$ ^{c_{n ;m} creates a pole or a zero at $\frac{n+1}{m}$, which for $\frac{n+1}{m}$ > is to the} right of the supposed boundary. Hence, if is not an obstructing point, for some > 0 and all rational numbers 2 (; +) we would have $n+1$ = $C_{n,m}$ = 0. We now show that this is in possible by proving that there are pairs (n;m) with $\frac{n+1}{n}$ arbitrarily close to , $C_{n,m}$ \in 0, such that the sum consists of a single term, and is therefore non-zero as well.

Let $\frac{k}{l}$ be the slope of the rays. Let $f(n_1;m_1)$ g be a list of the starting points of the rays described in Lemma 4, where (n_0, m_0) de nes the right-most ray. Take an $\texttt{integer}\ q\texttt{, such that}\ q_{\texttt{km}\ \ +\ \texttt{n}_0\ \texttt{;'}q\ \ +\ \texttt{m}\ \texttt{_0}}\ \ \texttt{6}\ \ 0\ \ \texttt{for all}\ \texttt{but}\ \ \ \texttt{nt} \ \texttt{m} \ \texttt{any}\ \ \texttt{natural}\ \ \texttt{num}\ \ \texttt{bers}$. Let d be the greatest comm on divisor of m_0 and q. The prime number theorem for arithm etic progressions guarantees in nitely m any , such that $\frac{1+m_0}{d} = p$ is prime. Suppose there is a pair n⁰;m⁰ belonging to another ray, such that $c_{n^0m^0}$ \in 0 and $\frac{n^0+1}{m^0} = \frac{k+n_0}{1+n_0}$. The point (n^0,m^0) must lie on one of the nitely many rays, hence, we can write $n^0 = k^0 + n_1$, $m^0 = k^0 + m_1$. Since p is a divisor of the denom inator of the right hand side, it also has to divide the denom inator of the left hand side. We obtain that p divides both ' + m_0 and ' 0 + m_1 . Restricting, if necessary, to an arithm etic progression, we obtain an in nitude of indices such that ' $0 + m_1 = t$ ' + m₀), where t 2 [0;1] is a rational number with denominator dividing d. Hence, we obtain that the equations

$$
1^0 + m_1 = t(1 + m_0); \quad t(k^0 + n_1) = k + n_0
$$

 α

have in nitely m any solutions ; $0, 2, N$. Two linear equations in two variables, none of which is trivial, can only have in nitely m any solutions, if these equations are equivalent, that is, $t^2 = 1$, w hich im plies $t = 1$ since t is positive by de nition. H ence, w riting the equations as vectors, we have

$$
(\qquad {}^{0})\, \, \begin{array}{cc} k \ \ \, & = & \,\, n_{1} \quad \quad \ \, n_{0} \,\, \\ \, \, & \,\, m_{1} \quad \quad \ \, m_{0} \,\, \end{array} \,\, ;
$$

that is, the vector linking $\begin{bmatrix} n_0 \\ m_0 \end{bmatrix}$ with $\begin{bmatrix} n_1 \\ n_1 \end{bmatrix}$ is collinear with $\begin{bmatrix} k \\ k \end{bmatrix}$, contrary to the assum ption that n^0 ;m⁰ was on a ray other than that of n;m. Hence, poles of $$ factors accum ulate at . It rem ains to check that these poles are not cancelled by zeros of other factors. Since zeros of -factors are never positive reals, these factors do not cause problem s. Suppose that a pole of (ns m) cancels with a zero of the local factor W (p;p ^s), that is, W (p;p $^{(m + 1)=n}$) = 0. Since W has coecients in Z, this im plies that $p^{-(m + 1)=n}$ is algebraic of degree at m ost equal to the degree of W, hence, $\frac{m + 1}{n}$ can be reduced to a fraction with denominator at most equal to the degree of W . There are only nitely m any rational numbers in the interval $[i + 1]$ w ith bounded denom inator, hence, only nitely m any of the poles can be cancelled, that is, is in fact an obstructing point.

For the corollary note that in cases (2) {(4) is an obstructing point, that is, in these cases the rst condition of the corollary holds true. In case (1) and (5), we can represent D as the product of nitely m any R iem ann -functions multiplied by som e function which is holom orphic in the half-plane $\langle s \rangle$, and has zeros only where the nitely m any local factors vanish. A local factor belonging to the prime p creates a $\frac{2-i}{\log p}$ periodic pattern of zeros, hence, the num ber of zeros and poles is bounded above by the num ber of zeros of the nitely m any $-\text{functions}$, which is O (T $log T$), and the nitely m any sets of periodic patterns, which create O (T) zeros. Hence, N $(f \le z > j \ne z \le T g)$ is $O(T \log T)$. It m ay happen that there are signi cantly less poles or zeros, if poles of one factor coincide w ith poles of another factor, how ever, we claim that under R H and the assum ption of linear independence of zeros the am ount of cancellation is negligible. First, if the im aginary part of zeros of are Q-linearly independent, then we cannot have $(n_1 s_1 m_1) = (n_2 s_1 m_2) = 0$ for integers $n_1; n_2; m_1; m_2$ with $(n_1; m_1) \in (n_2; m_2)$, that is, zeros and poles of dierent -factors cannot cancel. There is no cancellation am ong local factors, since localfactors can only have zeros and never poles. N ow consider cancellation am ong zeros of local factors and -factors. W e want to show that there are at m ost nitely m any cancellations. Suppose otherw ise. Since there are only nitely m any local factors and nitely m any -factors, an in nitude of cancellation would im ply that there are in nitely m any cancellations am ong one local factor and one

-factor. The zeros of a local factor are of the form $i + \frac{2k-i}{\log p}$, where i is the logarithm of one of the roots of W (p; X) = 0 chosen in such a way that $0 = i <$ $\frac{2 i}{\log p}$. Since an algebraic equation has only nitely many roots, an in nitude of cancellations in plies that for som e com plex num ber and in nitely m any integers k we have $(n (+ \frac{2k-i}{\log p})$ m $) = 0$. Choose 4 dierent such integers k_1 ;:::;k₄, and let 1;:::; 4 be the corresponding roots of . Then we have $1 \t2 = \frac{2(k_1 - k_2)n}{\log n}$ $\frac{K_2 \ln \theta}{\log p}$, 3 $4 = \frac{2(k_3 - k_4)n}{\log n}$ $\frac{1}{\log p}$, that is, $(k_3 - k_4)(1 - 2) = (k_1 - k_2)(3 - 4)$, which gives a linear relation am ong the zeros of , contradicting our assum ption. H ence, if the im aginary pars of the roots of $\arctan 2$ -linear independent, the num ber of zeros and

poles ofD in som e dom ain coincides w ith the sum of the num bers of zeros and poles of all factors, up to som e bounded error, and our claim follow s.

5. E xam ples

In this section we give exam ples to show that our classication is non-trivialin the sense that every case actually occurs.

Example 1. The sum $\begin{bmatrix} P & 1 \\ 1 & 1 \end{bmatrix}$ $\frac{1}{n=1}$ $\frac{2(n)(n)}{n^s}$ = $\frac{(s)(s-1)}{(2s)(2s-2)}$ corresponds to the polynom ial $W(X;Y) = (1+Y)(1+XY), where the sum is 1.$ $\frac{1}{n=1}$ $\frac{(n)}{n^s}$ = (s) (s 1) corresponds to the rational function $W(X;Y) = \frac{1}{(1+Y)(1+X+Y)}$.

E xam ple 2. (a) Let (n) be the num ber of prim e divisors of n counted w ith $\frac{1}{P}$ and $\frac{1}{P}$ and $\frac{1}{P}$ and $\frac{1}{P}$ and $\frac{1}{P}$ $\frac{1}{n} = \frac{2^{(n)}}{n^{s}} = \frac{2^{(n)}}{n^{s}}$ $_{p}$ (1 + $\frac{2}{p^{s}}$ (1 + p^{-s}))) corresponds to the rational function W (X; Y) = $1 + \frac{2Y}{1-Y}$ with m ain part $1 + 2Y$, which is not cyclotom ic.

(b) Let G be the direct product of three copies of the H eisenberg-group, a'_n (G) the num ber of norm alsubgroups of G of index n. Then $\frac{7}{9}$ (s) = \mathbb{P}^y_1 n= 1 $\frac{a'_n(G)}{n^s}$ was com puted by Taylor[\[11\]](#page-14-0) and gan be written as a nite product of -functions and an Euler-product of the form $\frac{1}{p}$ W (p; p $\frac{s}{p}$), where W consists of 14 m onom ials and $W^{(X)}$; Y) = 1 2X ¹³ Y ⁸, which is not cyclotom ic.

E xam ple 3. (a) Let G be the free nilpotent group ofclass two w ith three generators. Then \int_G (s) can be written as a nite product of -functions and the Euler-product $\sum_{p}^{8} W(p;p^{5})$, where

W (X ;Y)= 1 + X 3Y ³ + X 4Y ³ + X 6Y ⁵ + X 7Y ⁵ + X ¹⁰Y 8:

We have W^ (X ;Y) = 1 + X 7 Y 5 , w hich clearly does not divide W , hence, w hile W^ is cyclotom ic, W is not. Hence, W is not case 1 or 2 . Theorem 1 im plies that $7=5$ is an essential singularity of $\frac{7}{6}$. Du Sautoy and W oodward [\[8\]](#page-14-0) showed that in fact the line \langle s = 7=5 is the natural boundary for $\frac{1}{G}$.

(b) N ow consider the product

$$
f(s) = \begin{cases} \n Y & 1 + p^{-s} + p^{1-2s} \\ \np & \n \end{cases}
$$

A gain, the polynom ialW (X; Y) = 1 + Y + X Y² is not cyclotom ic, while W is cy-clotom ic. A gain, T heorem [1](#page-2-0) im plies that $1=2$ is an obstructing point of f. H owever, the question whether there exists another point on the line $\lt s = 1=2$ which is an obstructing point is essentially equivalent to the R iem ann hypothesis. W e have

f (s) =
$$
\frac{(s) (2s) 1}{(2s) (4s) 2}
$$
 R (s)
\n
\n $\frac{Y}{(4m + 3)s} \frac{((4m + 1)s) 2m)}{(8m + 2)s} 4m$

hence, if has only nitely m any zeroso the line $1=2+i$, then the right hand side has only nitely m any zeros in the dom ain $\langle s \rangle$ 1=2, \dot{t} sj>, hence, 1=2 is the unique obstructing point on this line. On the other hand, if (s) has in nitely m any non-real zeros o the line $1=2 + it$, then every point on this line is an obstructing point for f (confer $[1]$).

Hence, while for some polynomials the natural boundary can be determined, we do not expect any general progress in this case.

Exam ple 4. (a) The boal zeta function associated to the algebraic group G is de ned as $7²$

$$
Z_{p}(G; s) = \int_{G_{p}^{+}} j \, det(g) \int_{p}^{s} d
$$

where $G_n^+ = G(Q_p) \setminus M_n(Z_p)$, j: j denotes the p-adic valuation and is the nom alised H aar m easure on G (Z_p) . In particular the zeta function associated to the group $G = G Sp_6 [10]$ is given by

$$
Z (s=3) = (s) (s 3) (s 5) (s 6) 1 + p1 s + p2 s + p3 s + p4 s + p5 2s :
$$

The polynom ial

satis es the relation $W(X;Y) = 1 + X^4Y$, that is, W is cyclotom ic, while W is not. Du Sautoy an Grunewald [7] showed that in the cyclotom ic expansion of W there are only nitely many (n,m) with $C_{n,m}$ θ 0 and $\frac{n+1}{m}$ > 4, and that W $(p;p^{s}) = 0$ has solutions with $\langle s \rangle$ 4 for in nitely m any primes, hence, W is an example of type 4, and Z (s=3) has the natural boundary $<$ s = 4.

(b) Let V be the cubic variety $x_1x_2x_3 = x_4^3$, U be the open subset fx 2 V [Z^4 : $x_4 \notin 0$ g, H the usual height function. De la Breteche and Sir Swynnerton-Dyer [3] showed that Z (s) = $\frac{1}{x^2U}$ H (x) ^s can be written as the product of nitely m any -functions, a function holom orghic in a half-plane strictly larger than $\langle s \rangle$ 3=4, and a function having an Euler-product corresponding to the rational function

 $W (X;Y) = 1 + (1 + X^{3}Y)(X^{6}Y)^2 + X^{5}Y^{1} + X^{4} + X^{2}Y^{2} + XY^{3} + Y^{4}) + X^{9}Y^{3}$

They showed that in the cyclotom ic expansion of this function there occur only nitely m any term s c_{n x}m Xⁿ Y^m with c_{n x}m θ 0 and $\frac{n+1}{m}$ > $\frac{3}{4}$, and all but nitely m any local factors have a zero to the right of $\lt s = 3=4$, hence, $\lt s = 3=4$ is the natural boundary of Z (s).

Example 5. Let $J_2(n)$ be the Jacobsthal-function, i.e. $J_2(n) = #f(x; y) : 1$ x; y n; $(x; y; n) = 1$ g, and de neg(s) = $\frac{F}{n} \frac{(n)J_2(n)}{n^2}$. Since J_2 is multiplicative, g has an Euler-product, which can be computed to give

$$
g(s) = \int_{p}^{1} 1 + p^{s} p^{2} s
$$
:

W e have

$$
g(s) = \begin{cases} \n\text{y} & \text{y} \quad \text{
$$

say. For $=$ < s > 2 + the Euler product for D converges uniform ly, since

$$
\begin{array}{ccccccccc}\nX & & p & s & & X & p & & (2) \\
& & 1 & p^2 & s & & p^2 & & p^2 & & p^2 \\
\end{array}
$$

Hence, D is holomorphic and non-zero in $\langle s \rangle$ 2, that is, no point on the line \langle s = 2 is an obstructing point, that is, E stem ann's m ethod cannot prove the existence of a single singularity of this function.

6. Comparison of our classification with the classification of du Sautoy and W oodward

In $[8]$, du Sautoy and W oodward consider several classes of polynom ials for which they can prove C on jecture 1. Since their classes do not coincide with the classes described in Theorem 1, we now describe how the two classi cations compare. We w ill refer to the classes described in Theorem 1 as 'cases', while we will continue to refer to the polynom ials of du Sautoy and W oodward by their original appellation of 'type'.

Polynomials of type I are polynomials W such that W is not cyclotomic, this class coincides with polynomials in case (2) .

Polynom ials of type II are polynom ials W such that W is cyclotom ic, there are only nitely m any $c_{n,m} > 0$ with $\frac{n+1}{m} > 0$, and for in nitely m any primes we have that W (p;p s) has zeros to the right of . This class contains all polynomials in case (4), and all polynom ials of type II fall under case (3) or (4), but there are polynom ials in case (3) which are not of type II. For polynom ials of type II they prove that the line $\langle s = \rangle$ is the natural boundary of m erom orphic continuation of D, their result for polynom ials therefore clearly supersedes the relevant parts of Theorem 1.

Polynom ials of type III are polynom ials W as in type II, but there are in nitely m any pairs n;m with $c_{n,m} > 0$, $\frac{n+1}{m} > 0$. These polynomials fall under case (3), they show under the R iem ann hypothesis that $\langle s = \rangle$ is a natural boundary. For such polynom ials the results are incomparable, our results are unconditional, yet w eaker

Polynom ials of type IV are polynom ials with in nitely many pairs (n,m) satisfying $c_{n,m}$ \in 0 and $\frac{n+1=2}{m}$ > , and such that with the exception of nitely m any p there are no local zeros to the right of \leq s = . For such polynom ials du Sautoy and W oodward show that $\lt s =$ is the natural boundary, if the imaginary parts of the zeros of are Q-linearly independent. A ll polynom ials of type IV fall under case (3), again, the results are incomparable.

Polynomials of type V are polynomials W such that W is cyclotomic, with the exception of nitely m any p there are no local zeros to the right of , and there are only nitely many pairs n; m with $c_{n,m} \in 0$ and $\frac{n+1}{m}$. This correspond to case (5) .

Polynomials of type VI are polynomials W such that W is cyclotomic, with the exception of nitely many p there are no local zeros to the right of , there are in nitely many pairs (n;m) with $C_{n,m} \in 0$ and $\frac{n+1}{m} > ...$, only nitely many of which satisfy $\frac{n+1=2}{2}$. These fall under case (3).

 Case (1) does not occur in their classi cation as it is justly regarded as trivial.

7. Comparison with the multivariable case

The object of our study has been the D irichlet-series D (s) = $\frac{Q}{W}$ (p; p s). This w ill be called the $1\frac{1}{2}$ -variable problem since the polynom ial has two variables, but the D irichlet-series depends on only one complex variable. If the coe cients of the above series have some arithem etical meaning, and this meaning translates into a statem ent on each m onom ial of W, then the D irichlet-series D $(s_1; s_2)$ = $_{\rm p}$ W (p^{s₁}; p^{s₂)} retains more information, and it could be fruitful to consider this function instead. Of course, the gain in information could be at the risk of the technicaldi culties introduced by considering several variables. However, here we show that the multivariable problem is actually easier then the original question of $1\frac{1}{2}$ -variables.

W here there is no explicit reference to p , the problem of a natural boundary was completely solved by Essouabri, Lichtin and the rst named author [2].

Theorem 2. Let W $2 \mathcal{J} N_1; \cdots; N_k$ be a polynomial satisfying W $(0; \cdots; 0) =$ 1. Set D $(s_1, \ldots, s_k) = \sum_{p=1}^{k} W(p^{-s_1}, \ldots, p^{-s_k}).$ Then D can be meromorphically continued to the whole complex plane if and only if W is cyclotom ic. If it cannot be continued to the whole complex plane, then its m axim aldom ain of m erom orphic continuation is the intersection of a nite number of e ectively computable halfspaces. The bounding hyper-plane of each of these half-spaces passes through the origin.

At rst sight one m ay think that one can pass from the 2-dim ensional by xing s_1 , how ever, this destroys the structure of the problem, as is demonstrated by the follow ing.

Example 6. The D irichlet-series D $(s_1; s_2) = \begin{cases} 0 & p^{s_1} \ p & 1+2p^{s_2} \ p & p^{s_3} \end{cases}$ as a function of two variables can be m erom or
phically continued into the set $f(s_1; s_2)$: < s₂ > $0 \times s_1 + s_2 > 0$ g, and the boundary of this set is the natural boundary of merom orphic continuation. If we x s₁ with < s₁ 0, and view D as a function of s₁, then D can be continued to C if and only if $s_1 = 0$. In every other case the line $S_2 = 0$ is the natural boundary.

Proof. The behaviour of D $(s_1; s_2)$ follows from $[2, 1]$ heorem 2]. If we x s₁, then $1 + (2 p^{s_1})p^{s_2}$ has zeros with relatively large real part, provided that either $\langle s_1 \rangle$ 0, or $\langle s_1 = 0 \text{ and } \langle p \rangle^{s_1} \langle 0 \rangle$. In the rst case we can argue as in the case that W is not cyclotom ic. By the prime number theorem for short intervals we nd that the num ber of prime num bers $p < x$ satisfying $\langle p^{s_1} \rangle$ o is greater than $c \frac{x}{\log x}$, and we see that we can again adapt the proof for the case W non-cyclotom ic.

In other words, the natural boundary for the $1\frac{1}{2}$ -variable problem is the same as for the 2-variable problem, with one exception, in which the $1\frac{1}{2}$ -variable problem collapses to a 1-variable problem, and in which case the Euler-product becomes continuable beyond the 2-variable boundary.

It seem s likely that this behaviour should be the prevalent one, it is less clear what precisely \this behaviour" is. One quite strong possibility is the following:

Suppose that D $(s_1; s_2) = \sum_{p=0}^{\infty} W(p^{s_1}; p^{s_2})$ has a natural boundary at < $s_1 = 0$. Then there are only nitely many values ϵ , for which the specialization D (; ϵ) is m erom orphically continuable beyond $\langle s_1 = 0 \rangle$.

H ow ever, this statem ent is right now supported only by a general lack of exam ples, and the fact that exam ple 6 looks quite natural, so we do not dare a conjecture. H ow ever we believe that some progress in this direction could be easier to obtain than directly handling Conjecture 1. In particular those cases, in which zeros of

pose a serious threat for local zeros would become a lot easier since this type of cancellation can only a ect a countable number of values for s_2 .

References

[1] G. Bhowm ik, J.-C. Schlage-Puchta, Natural Boundaries of D irichlet series, Func. Approx. Comment. Math. X X X V II.1 (2007), 17{29.

- [2] G. Bhowm ik, D. Essouabri, B. Lichtin, Merom orphic Continuation of Multivariable Euler Products, Forum . M ath. 110(2), (2007), 1111{1139.
- [3] R. de la Breteche, P. Swynnerton-Dyer, Fonction zêta des hauteurs associee a une certaine surface cubique, Bull. Soc. M ath. France 135.1 (2007), 65{92.
- [4] T. E stem ann, O n certain functions represented by D irichlet series, P roc. London M ath. Soc. 27 (1928), 435 {448.
- [5] G.Dahlquist, On the analytic continuation of Eulerian products, Ark. M at. 1 (1952), 533{ 554.
- [6] M.P.F.du Sautoy, Zeta functions of groups and rings: uniform ity, Israel J.M ath. 86 (1994), $1{23.}$
- [7] M . du Sautoy, F . G runew ald, Zeta functions of groups: zeros and friendly ghosts, Amer. J. Math. 124 (2002), 1{48.
- [8] M . du Sautoy, L. W oodward, Zeta functions of groups and rings. Lecture Notes in M athem atics, 1925. Springer-Verlag, Berlin, 2008.
- [9] FJ. Grunewald, D. Segal, and G.C. Sm ith, Subgroups of nite index in nilpotent groups, Invent. M ath. 93 (1988), 185(223.
- [10] J.-I. Igusa, Universal p-adic zeta functions and their functional equations, Amer. J. Math. 111 (1989), 671 (716.
- [11] G .Taylor, Zeta Functions of A lgebras and R esolution of Singularities, Ph.D. Thesis, University of C am bridge, 2001.

GautamiBhowmik,

Universite de Lille 1.

Laboratoire Paul Pain leve,

UMR.CNRS 8524,

France

bhowm ik@m ath.univ-lille1.fr

Jan-Christoph Schlage-Puchta, A lbert-Ludw igs-Universitat. M athem atisches Institut. E ckerstr. 1, 59655 V illeneuve d'A scq C edex, 79104 Freiburg, G em any tope m ath uni-freiburg de

 14