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A Semi-Blind Channel Estimation Technique based on

Second-Order Blind Method for CDMA Systems

Samson LASAULCE*, Philippe LOUBATON | Eric MOULINES

SP EDICS: 3-CEQU, 3-ACCS
Abstract

This paper aims at studying a semi-blind channel estimation scheme based on the subspace method or
a carefully weighted linear prediction approach. The corresponding (composite) semi-blind cost functions
result from a linear combination of the training-based cost function and a blind cost function. For each
blind method, we show how to calculate the asymptotic estimation error. Therefore, by minimizing this
error, we can properly tune the K-dimensional regularizing vector introduced in the composite semi-
blind criterion (for K active users in the uplink). The asymptotic estimation error minimization is a
K-variable minimization problem, which is a complex issue to deal with. We explicitly show under what
conditions this problem boils down to K single-variable minimization problems. Our discussion is not
limited to theoretical analyses. Simulation results performed in a realistic context (UMTS-TDD mode) are
provided. In particular, we conclude about the potential of the proposed approach in real communication

systems.
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I. INTRODUCTION

Traditional equalization techniques are based on training. The transmitter sends a sequence of
known symbols (training sequence) which is used by the receiver to estimate the channel. Most
current mobile telecommunication systems (e.g. GSM, UMTS) use a training sequence, which is
usually designed to allow the receiver to estimate the channel with a desired accuracy. However,
in certain adverse scenarios (low signal-to-noise ratios, high-level of interference), the training
sequence alone does not suffice to obtain reliable estimates of the channel.

A sensible idea to improve accuracy of the channel estimates consists in taking into account the
information that comes not only from the trained part (observations generated by the training
sequence) but also from the blind part (observations generated by the information symbols),
giving rise to the so-called semi-blind estimation technique (see [6] and the references therein).
Semi-blind estimation techniques are usually obtained by combining both training-based and
blind criteria. These methods generally improve channel estimation reliability (with respect to
the purely trained case) and avoid the pitfalls of blind methods (and in particular, the lack of
consistency of certain blind estimators).

The most efficient semi-blind approach is based on Maximum Likelihood estimation, which in
practice can be implemented by the Expectation Maximization algorithm (see [7] for single-user
systems and [17], [22] for multiuser systems). However, for synchronized CDMA communications,
the computational complexity of this algorithm grows exponentially with the number of users
and the size of the channel (in symbol duration) and is quite difficult (except when the number
of users or channel length is very limited). Another kind of approach, based on deterministic
or Gaussian Maximum Likelihood methods, have been proposed by Slock et al. [3], [6]. These

methods lead to the minimization of a composite criterion defined as the sum of the classical
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training-based least-squares criterion and of the criterion associated with the blind deterministic
or Gaussian Maximum Likelihood method. Minimizing such a composite criterion was also
proposed in [9] and [5]. In the latter cases, the blind criterion was derived from the subspace
method originally introduced in [23]. Minimizing a composite criterion can be used not only to
estimate the channel, but also to identify an equalizer. In particular, [14], [30] and [24] propose
to mix a classical Least-Squares criterion with the Constant Modulus Algorithm. Finally, [25]
proposes to adapt the blind algorithm of [28] to the semi-blind context.

Here, we consider the strategy consisting in linearly combining the training-based criterion
with the blind criterion, which is not a new approach. To our knowledge, the two main contribu-
tions to this concept are [9] and [5]. In [9], it is proposed to define the semi-blind cost function
as the weighted sum of the training-based and the (second-order) blind cost functions. However,
no method for tuning the balance between the training-based and the blind criteria is proposed.
Based on an asymptotic analysis, [5] proposes to tune the introduced weight (called the regular-
izing constant) by minimizing the channel estimation error. The expression of the asymptotic
estimation error of the semi-blind subspace is evaluated for SIMO (single input multiple outputs)
systems.

In this paper, we extend the approach of [5] to the context of synchronized CDMA systems for
uplink channel estimation. In this context, we have to simultaneously estimate several channels
corresponding to the different links between the mobile stations and the base station. As there
are several channels to estimate in the uplink, there are also several regularizing constants to
be tuned in the semi-blind cost function. This involves the challenging task of minimizing a
multi-variable function, which is not necessarily convez. Indeed, in the uplink the asymptotic
estimation error associated with the studied semi-blind schemes is a K-variable function when
there are K active users. Additionally, this minimization involves a non-negligible additional
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computational cost. We show how to deal with this problem and provide sufficient conditions
under which the multi-variable minimization problem can be reduced to several single-variable
minimization problems.

Unlike [5] where only the subspace method is considered, we discuss here the choice of the best
second-order blind estimator to be used. In [5] the linear prediction approach is not considered
whereas this approach might be more efficient than the subspace method if channel lengths are
unknown, which is the case in the real life. In particular, we will show the importance of properly
weighting the linear prediction. The corresponding weighting, which has been introduced in [10]
and used in [11] in a pure blind context for a simple downlink CDMA system, will reveal a very
special interest to the semi-blind estimators studied in this paper. Our discussion is not limited
to theoretical analyses. We also provide simulations results performed in a realistic context
(unknown channel lengths, limited number of samples, realistic signal-to-noise ratios, etc). In
particular, robustness of the considered semi-blind schemes and relevancy of the proposed way
of tuning the regularizing constants can be assessed.

This paper is structured as follows. In section II, the classical discrete-time equivalent model of
[27] describing a synchronized uplink CDMA system is reviewed. Section III briefly summarizes
the main results pertaining to the blind subspace and linear prediction methods. More details on
the weighted linear prediction are provided. Section IV aims at deriving the generic semi-blind
cost function. In section V, we derive the closed-form expressions of the asymptotic channel
estimation error in order to be able to tune the balance between the training-based cost function
and the blind cost functions considered in this paper. Finally, section VI is devoted to simulations,
which have been performed in the context of the UMTS-TDD! mode.

General Notations

'UMTS-TDD stands for Universal Mobile Telecommunication System - Time Division Duplex.
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The notations s, v and M stand for scalar, vector and matrix respectively. The notations (.)*,
()T, () and ()# stand for conjugate operator, transpose operator, Hermitian operator and
Moore-Penrose pseudo-inverse. For a given matrix M, M 2 1 x ¢ denotes the dimensions of
this matrix (r is the number of rows, ¢ is the number of columns). For a given matrix M, M

denotes the estimated version of M. At last, the Kronecker product of two matrices M and N

is denoted by M ® N.

II. SicNAL MODEL

@ o1 (2) ()

h1 (Z)

@ ek (2) gx (2)

AWGN
hi(2)

We consider a synchronized? CDMA system in the uplink with K active users. Let N be the
spreading factor. Figure IT represents the corresponding classical multirate (chip rate) discrete-
time equivalent model (see [27] for more details). The following notations and assumptions are
used:

(A1) for each k € {1,--- , K}, {zk(t)}+tez is a sequence of independent and identically dis-
tributed QPSK symbols. Zp(n) is the corresponding up-sampled sequence. For 1 < k < K,

1 < k' < K, the sequences {z(t)}tcz and {zy (t) }icz are independent.
*User synchronization is not an easy task but there are certain systems such as the UMTS TDD system for

which this assumption is well verified. See for instance references [1] and [2].
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(A2) For each k € {1,---, K}, denote by (ck(n)))=) the spreading code of user k, and by
ck(z) = Ziv:—[} ck(n)z~™ the corresponding degree (N — 1) polynomial vector .

(A3) The polynomials {gx(2)}r=1,. K are the z-transforms associated with the discrete-time
equivalent of unknown channels sampled at the chip-rate. These channels are assumed to be
causal. Since the users are synchronized, for k € {1,..., K}, limy,|_,o gx(2) # 0. The degree of
{gr(#)} is assumed to be unknown: only an upper bound is available. For sake of simplicity, the
assumed degrees of the polynomials {gy(2) }r=1,.. k are supposed to be equal and multiple of the
spreading factor. We denote by LN this degree.

We denote by hi(z) the transfer function defined by hi(z) = ci(2)gx(z). Then, the received
signal y(n) (sampled at the chip rate) may be expressed as

K
y(n) =Y [he(2)]Er(n) +v(n) (1)

k=1

where v(n) is an additive white complex circular Gaussian noise. It is often more convenient to
represent the received signal by the stationary N-dimensional signal y(t) = (y(tN)...y(tN + N —

1))T. Tt is easily seen [27] that

<
—~
~
SN—
Il
&
[}
Pt
|8
—~
~
SN—
+
>
—~
~
SN—
—~
)
SN—

where z(n) = (z1(n)...zx(n))T andv(n) = (v(nN)...v(nN+N—-1))T. H(2) = [h(2) ... hx(2)]
. . . : (0 (N=1)/_\\T

is a N x K polynomial matrix of degree L, with hy(z) = (h; ' (2) ... h,, (2))* where

hgco)(z) e hch_l)(z) are the polyphase components of hi(z) = ijé"rN_l hi ()27t

It is useful to note that the relation hi(z) = ci(2)gr(z) may be expressed in matrix/vector

form as

hy, = Cgg, (4)
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¢ (0) 0
Ck(o) d
C, = =N(L+1)x (NL+1). (5)
k(N —1)
0 Ck(N— 1)

At last, it is assumed that data are transmitted by time-slots during which the channel can be
assumed to be constant. Each time-slot comprises a training sequence located in the middle of
the slot, referred to as the midamble. In this paper, we address the problem of estimating the
vectors (gk)kzl,m, g from the midambles transmitted by each user in the current time-slot and

from the observations of the current time-slot corresponding to the unknown symbols.

ITII. SECOND-ORDER BLIND CHANNEL ESTIMATION

The ultimate goal of this section is obtain the blind cost functions for the subspace method,
the conventional and weighted linear prediction approaches. After giving the observation model
adapted to second-order blind estimation, we summarily present the subspace and linear predic-
tion methods. Next, we study in more details a weighted version of the linear prediction because
the proposed weighting not only allows the estimation performance of the semi-blind estimator

to be improved (section III.C) but also makes easier its implementation (section V).

A. Observation model

Under certain assumptions ([29], [21]), each vector g, may be estimated up to a scalar constant
from the sole knowledge of the observations generated by the T' unknown symbols of the slot. Let
M be an integer, which is usually called smoothing factor or regression order. Fori € {M —1, M},
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we define the N (i + 1)-dimensional regression vector as:

T

Yi(t) & [yr@)...y"(t—19)

= T(H)X(t) +V(t) (7)

where T;(H) is the filtering matrix associated with the matrix H(z), defined by

LN(G+1) x K(L+i+1)

and we defined X (¢) £ [2T(¢)...2T(t — L — z)]T and V() = [vT(¢)... 0T (¢t - z)]T

B. Subspace method and conventional linear prediction in a nutshell

In this subsection, we briefly review the main steps of the subspace and linear prediction
algorithms. These steps are described in the table III-B. Readers who are not very familiar with
the usual notations are invited to look at the Appendix of this paper. The subspace method
description corresponds to the adaptation of the original algorithm of [23] to the context of
CDMA systems (see e.g. [4], [20], [26] and [29]). As for the linear prediction, it corresponds to
the blind algorithm described in [10] and extended to downlink CDMA systems in [11].

The most important thing to note in this table is that for both algorithms, the vector impulse
response g, of user k belongs to the null-space of the matrix Ay, where Ay = Ay gup = Ag()
and Ay = Ay iin = Ag(A, D) in the subspace case and the linear prediction case respectively.

In practice, the second-order statistics of the observations (Rp;—1, Ry, {R(7),7 € [0, M]})
cannot be perfectly recovered since the number of observations is finite (7" samples per time-slot).
This means that the matrices Ag(m) and Ai(A,D) have to be replaced with their consistent

estimates A (7) and Ak(A,f)) respectively. Therefore, the corresponding blind cost functions

June 14, 2002 REVISED AND RESUBMITTED VERSION



IEEE TRANSACTIONS ON SIGNAL PROCESSING 9

write:
ghsub = arg rrinkni]? A,?(fr)Ak(fr)ik and gk,lin = arg Hilini]?‘AkH(A’ ﬁ?rAk(A, ]A))/L~c (8)
Qr sub Q. in
Subspace method Linear prediction
e Used second-order statistics e Used second-order statistics
Rar 2 E [V (HY35(8)] Rar 1 2 E Yo (Y5 (1]
Vr €[0,M],R(7) £ E [g(t + T)QH(t)]
e Noise subspace equation e Yule-Walker equations
Ty(H) =0 [A(1)...A(M)] = —[R(1)...R(M)] (Rpr—1 — o’ I)#
with Tp (H)THL(H) = Ry — 021 D =R(0) + XM A(r)RH(7)

e Code-structured subspace equations | e Innovation covariance matrix

7Ty (H) =0 D = H(0)H" (0) and 7. defined by wp. D =0
& VEk e [l,K],D(m)h, =0 e Irreductibility of H(z) and Bezout identity
& Vk € [1,K],D(m)Crg, =0 Vz # 0,Rank (H(z)) = K
N—_——
Ay ()

= 3 A(z) such that A(z)H(z) = H(0)
e Code-structured linear prediction equations

Vk € [1, K], Diag(mps,I,... . I)S(A)Cy g, =0

Ak‘(AaD)

C. Weighted linear prediction approach

For single-user systems, the linear prediction approach is known to have poor statistical per-
formance. Unlike the subspace method, the asymptotic estimation error of the linear prediction

estimate is non-zero in absence of noise (02 = 0). Motivated by this observation, [10] proposed to
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use a weighted linear prediction estimate and addressed the blind identification of unstructured
MIMO FIR transfer function. The idea of [10] was recently adapted to the context of blind
channel identification of downlink CDMA channel [11], where it was shown that the use of a
simple weighted matrix can produce significant performance improvements. More specifically,
the corresponding asymptotic estimation error decreases toward 0 when o2 — 0 if the assumed
channel length does not exceed the true one by more than one symbol duration. In this case,
the blind subspace and weighted linear prediction methods have nearly the same performance.
However, if the assumed degree of H(z) (say L) is greater than the true degree of H(z) by more
than one (L + 1), the subspace method is no longer consistent whereas the weighted linear pre-
diction scheme still provides satisfying performance. The results of [11] can be easily adapted to
our context (uplink CDMA) by estimating each vector impulse response as the solution of the

following minimization problem:

gk:,wlin

= argmin [ A(A, D)W (D,0%)A(A,D) f, (9)
dfe g

Qk,wiin

where the admissible weighting matrix W (D, 0?) is defined by
VE=1, ...,K, Wi(D,0%) =Iyi111 ® (mpL + 0?D¥). (10)
More insights on the construction of the weighting matrix will be given in section V.

IV. SEMI-BLIND CHANNEL ESTIMATION

The main purpose of this section is to derive a generic expression of the composite semi-blind
cost function, which is obtained by linearly combining the training-based cost function and the
blind cost functions (corresponding to the different channels). In this section, we first introduce
the classical training sequence based estimates of the channels (gk) k=1,..,k and next make use of
the results of section IIT to form a generic semi-blind cost function.
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A. Training Sequence Based Estimation
In the sequel, we denote by "m + (NL + 1)” the number of chips of each user’s midamble, and

Y, the m—dimensional vector obtained by stacking the m useful observation samples generated

by the midambles. It is easily seen that
Xtr = SQ + Ktr (11)

where g = [QT‘“Q%]T and where S is a m x K(NL + 1) matrix straightforwardly constructed
from the midambles. The Maximum Likelihood estimate of g based on the observation Y, is
given by

g, = argmin 1Yy, —Sf I (12)
i.e.

Qtr = RE;’ESYa (13)

where we introduced the matrix Rgs = m~!S¥S and the vector Rgy = m~1S7Y, .

B. Semi-Blind Estimation

In order to introduce our results, we first remark that the previous blind estimates are ob-
tained by minimizing for each £ = 1,..., K a generic quadratic form ikHQkik The matrix Qk
respectively equals Qk,sub, Qk,lin or Qk,wlm in the context of the subspace method, the linear
prediction approach or the weighted linear prediction approach. For the sake of clarity, a few

definitions are in order. We define the matrix Q by

A A A

and for each K—dimensional vector o the matrix Q(a) by

Q(a) = Diag (alQla - aCVKQK) . (15)
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Moreover, W (D, ¢?) is defined by
W (D, 0?) = Diag (W1 (D,0?),..., Wk(D,0?)) = Igiri1) ® (mpL + 0’ D¥). (16)

Finally, we define in the same way the block diagonal matrix A(a) = Diag(a1Aq,...,agAk),
A; each Ay equals Aj(m) in the subspace method or Ag(A,D) in the linear prediction ap-
proaches.

For every matrix Qk, we study the semi-blind estimates of 995 obtained by minimizing

the composite cost function

K
o(f,a) =Y, —SfIP+T (Z apf]! Qkik> =Yy, — SfI> + Tf7Q(a)f (17)
k=1

where f = (i1T .. iﬁ)T and the components of the vector a = (av,...,ax)"

are positive con-
stants weighting the contribution of each cost function in the global cost function (17). The

corresponding estimate is given by

g = argmin || Y, — S/ 12 +T7Q(a)f (18)

that is

9= [RSS+PQ(Q) - Rsy, (19)

where p is defined by p = T'/m, which is the ratio of the time-slot size to the midamble size. One
of the crucial point here is to derive the "best” value of a. In the single-user context of [5] (there
a single parameter « to adjust), it has been noticed that the choice of a dramatically influenced
the performance of the estimate.

It is therefore of great practical importance to adjust in a relevant way the vector . In the
same spirit as in [5], we propose choosing the value of the vector « in order to minimize the

asymptotic estimation error of the semi-blind estimate. By asymptotic, we mean that both the
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midamble size (m) and the time-slot size (T") converge toward the infinity, but in such a way that
p = T/m remains constant. To this end, we calculate in section V the closed-form expressions

of the estimation error for each semi-blind approach under consideration in this paper.

V. AsymMpPTOTIC ESTIMATION ERROR

In this section we generalize the calculations of [5] (single-user system, subspace method)
to the context under consideration (uplink CDMA, subspace and linear prediction methods).
Proposition 1, which is given below, provides the general expression of the asymptotic estimation
error for the semi-blind schemes studied in this paper.

Proposition 1: The asymptotic covariance matriz of the estimation error (0g = g — g) is given

by:

Cov(dg) = Tim  {TE(gsg™)} =M (@) |po’RT + p* A (@) WEWA ()| M ()
(20)
where = £ Cov(§A g), A £ A — A and M(a) 2 R(So;) +pQ(a).

W = I in the subspace and the non-weighted linear prediction cases, and W = W (D, o?)
(see equation (16)) in the context of the weighted linear prediction approach. The matriz R(Sog)
represents lim,, s ;.o m~'Rgg. This result can be proved along the lines of [5]. The proof is
therefore omitted.

In the sequel, I'(«) denotes the asymptotic covariance matrix of dg defined in (20). Our
approach consists in selecting the value of o minimizing v(«) £ Trace (I'(a)). However, this
minimization is not easy for at least four reasons.

o The optimum value of « cannot be explicitly found from equation (20).

o The multi-variable function v(a) = y(ay, ..., @x) is not necessarily convex.

o The exhaustive search for the best value of « is in general not implementable. Indeed, if we
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want to test n, values for each regularizing constant {ay,k € [1, K]}, there are N, = K"

vectors to be tested for the vector a.

o It can be shown that the matrix 3 defined in (20) depends on the true channels (g =
T

[21 g K} ) and is thus difficult to estimate consistently.

It turns out that it is possible to overcome this problem by making reasonable assumptions.
For this purpose, we provide in the following two theorems sufficient conditions under which
the tough multi-dimensional minimization problem emphasized above can be reduced to several
one-dimensional minimization problems.

Theorem 1: Assume that Rgog) = limy, 400 m~'Rgg is block diagonal and Tv(H) has full
column rank. Then, the estimation error covariance matrixz for the semi-blind subspace case is
given by:

T'us(@) = *Diag (T1),(a1), .., T, (k) ) + O(0") (21)

where Yk € [1, K] the matriz I‘S,lub(o‘k) depends only on ay, and .
A sketchy proof of this theorem is provided in the Appendix and a more detailed proof can be
found in [16]. From this theorem, we see that, under three additional assumptions, the estimation
error covariance matrix is block diagonal and the function v(«) writes v(a) = ZkK:1 vk (), which
is easy to minimize with respect to the different regularizing constants ay, ..., ax.

In the linear prediction case, we can get the same kind of result if the weighting matrix W is
properly chosen as the following theorem shows.

Theorem 2: Assume that Rgog) = limy, 400 m~'Rygg is block diagonal and Ty (H) has full
column rank. Then, the estimation error covariance matriz for the semi-blind linear prediction

case verifies the following properties:
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1. if W =1 then

(@) #0 and Tyn(a) =T\ () + 0’T\}) (a,9) + O(cY)  (22)

. _ (0
;1_r>% Tjin(a) =T lin lin

- ~lin
2. if W=1® (rpL + o’D¥) then
lim Cyiin(@) =0 and  Tyin(a) = 0”Diag (rﬁ}ﬂlm(al), . ,rggwlm(a,()) +0(")  (23)

where Vk € [1, K] the matriz I‘S,q)uzm(ak) depends only on oy, A and D.
A sketchy proof of this theorem is provided in the Appendix and a more detailed proof can
be found in [16]. From Theorem 2, we first see that the estimation error of the non-weighted
semi-blind linear prediction does not decrease toward 0 when o2 — 0. We also see that the
term in o2 directly depends on the true channels (via h). But the most critical issue is that
the covariance matrix for the semi-blind linear prediction is not block diagonal. On other hand,
the proposed weighted semi-blind linear prediction estimator has exactly the same behavior as
the semi-blind subspace estimator, which means that the three drawbacks of its non-weighted
counterpart are eliminated. As a consequence, the proposed weighting not only improves the
statistical performance of the semi-blind linear prediction but also considerably facilitates the
implementation of the underlying algorithm. Because of these very attractive features, only the
weighted version of the linear prediction will be considered in the simulation section. Before
tackling the simulation part it is convenient to review the main steps to follow in order to
implement the proposed semi-blind scheme.

Final algorithm implementation: main steps
We consider the semi-blind subspace example, the adaptation to the semi-blind linear prediction
is straightforward.
« Estimate the matrices associated with the blind algorithm (R, SVD on Ry, #)

o Choose a finite set of values (say a ny-element set) to tune the regularizing constants
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« For each user k
— Compute for each value of the chosen set, i (ay) = UZTrace(f‘giub) by using Theorem 1 (21)
— Keep only the value of oy that minimizes (o)

o Put the optimum regularizing constant in one vector &

o Plug the latter in the semi-blind channel estimate given by (19).

VI. SIMULATIONS
A. Goals

Essentially, the objective of this section is threefold.

1. As the proposed way of tuning the regularizing vector is based on an asymptotic analysis,
we want to know to what extent this assumption is realistic. We also evaluate the influence of
tuning accuracy of the regularizing vector on the receiver performance.

2. Our second aim is to evaluate the potential of the proposed semi-blind approach in terms of
performance for different midamble sizes and especially for training sequences shorter than those
used in the TDD mode.

3. Eventually, we want to complete the (theoretical) discussion of section V on the best blind
scheme to be selected for semi-blind estimation. To this end, we make a comparison between
the semi-blind subspace and (weighted) linear prediction estimators in the realistic context con-
sidered here; in particular we want to study robustness of the proposed algorithms to channel
overmodeling. This comparison is of great interest because the pure blind linear prediction is

known to be more robust to flawed channel knowledge than its subspace counterpart.
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B. Simulation setup

The chosen simulation context is the TDD mode of the UMTS system. In the uplink, the
various users are synchronized, and the spreading factor is N = 16. The number of active users
is, on each time slot, less than K,,,,, = 8. The transmission is divided in slots of 2560 chips ended
by a guard interval of 96 chips. In the uplink, each slot conveys two blocks of T'/2 = 61 QPSK
symbols separated by a 512-chip midamble (recall that m = 512— (LN +1)). The shaping filter is
a root raised-cosine filter which roll-off factor equals 0.22 and it is truncated at 7 chip durations.
The most classical uplink receivers consist in estimating the discrete-time version (sampled at
the chip rate) of each channel by using the midamble. Then, a joint detection algorithm [13],
based on the trained estimate, allows for the recovery of the emitted symbols. In the following,
we evaluate the performance of our estimation schemes by means of the bit error rate (BER)
provided by the MMSE block linear joint detection (MMSE-BL-JD) algorithm of [13] based on
our semi-blind estimates. The parameters of our simulation chain are the followings:

— uplink case (single antenna) and K = 4 active users per time-slot;

— fixed spreading factor: N = 16;

no channel coding;

— propagation channel: the chosen propagation environment is the Vehicular A specified by the
ITU (6 paths having each one a specified time delay and an average power). The propagation
channel length is about 10 chips;

— physical channel: it is the convolution of the propagation channel by the shaping filter. The
time duration of the physical channels is about 16 chips;

— the channel coeflicients are drawn for each time slot according to the Jakes fading model

revisited by Dent et al. [8]; the Doppler velocity is fixed at 120 km/h;
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— the noise standard deviation is: o = \/g 10*%; it is assumed to be known, which
is not restrictive since it can be shown that accurate noise variance estimation is possible. For
instance, based on the (very realistic) continuous time-slot transmission assumption, [18] proposes
to exploit the fact that channel lengths are generally overestimated. The idea is simply to
estimate the energy of the weakest channel coefficients by making use of several channel estimates
(provided by different slots), given the fact that these coefficients are pure noise;

— bit error rates are averaged over 2000 time-slots and over the 4 users;

— the matrix Rgg is assumed to be block diagonal. It can checked that for UMTS-TDD
midambles and channel lengths considered here, the diagonal blocks contain 95% of the energy
of this matrix;

~ according to the results of section V on the error covariance matrices, the terms in o* will
be neglected;

— for each regularizing constant, n, = 20 test values are used over the interval [0,4] by means
of an hyperbolic tangent scale.

Note: the "gain on Eb/No” (say G4p) is defined for a given symbol detection strategy (namely
an MMSE Block Linear Joint Detector) and a given bit error rate (BER target). For the MMSE-
BL Joint Detector using the training-based channel estimate, denote by prg the Eb/No (in dB)
needed to achieve the BER target. In the same way, for the MMSE-BL Joint Detector using the
semi-blind channel estimate under consideration, denote by pgp the Eb/No (in dB) needed to

achieve the BER target. The gain on Eb/No is simply defined by Gyp = prs — psB-

C. Simulation results

Accuracy of the estimation of the parameters (o)i=1,. i

For each time-slot, the values of the regularizing constants are chosen in order to minimize

June 14, 2002 REVISED AND RESUBMITTED VERSION



IEEE TRANSACTIONS ON SIGNAL PROCESSING 19
the trace of the estimated asymptotic covariance matrix of the channel estimation error. In
the following experiments, we compare our semi-blind estimates when the values of parameters
(ag)k=1,. Kk are given by our procedure, and when the values of (ay)r=1,.. x are given by an
oracle minimizing the true channel estimation error on each time slot (Vk = 1,..., K, &, =
argmin, |lg, — gk(ak)HQ) The various parameters of the simulation all correspond to the spec-
ifications of the TDD mode of the UMTS. In particular, 7" = 122 unknown symbols and the
midamble length is 512. The assumed channel length is two symbol durations (fj =2, LN =32
chip durations).

The following table provides some statistics on the regularizing constant associated with a
given user. Notation ” < . > 7 stands for averaging over all the generated slots. ”SS” and "LP”
mean subspace and (weighted) linear prediction respectively. As mentioned above, the oracle

under consideration is based on the knowledge of the true channel estimation error for every

time-slot.

ﬁ_z 5 dB 7.5 dB 10 dB 12.5 dB

<a> (SS/{SS,oracle}) | 0.793 / 0.629 | 0.783 / 0.599 | 0.772 / 0.610 | 0.763 / 0.659

<a> (LP/{LP,oracle}) | 0.623 / 0.241 | 0.638 / 0.219 | 0.630 / 0.222 | 0.660 / 0.2594

It turns out that the regularizing constant is quite well tuned in the regularized semi-blind
subspace case, even for low signal-to-noise ratios. This means that the assumption made on the
ot-terms is justified. This does not seem to be the case in the regularized semi-blind weighted
linear prediction case. This might be due to the limited number of samples. The linear prediction

seems to need more samples to reach the ”asymptotic regime”.
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Now, we study the impact of tuning accuracy of the regularizing constants on the receiver
performance. Figure I represents the gain on FEj/N, provided by semi-blind schemes under
consideration as a function of the targeted BER. We compare the regularized semi-blind sub-
space method with the regularized semi-blind subspace method equipped with the oracle; the
corresponding curves are very close. In the weighted linear prediction case, for a BER target
ranging from 1% to 10%, the loss due to the non-optimality of the tuning is more important
(about 0.2 dB). Equally, note that for the specified parameters of the TDD mode and for a 1%
BER target, our semi-blind methods provides gains of 0.4 dB and 1 dB in the weighted linear

prediction and the subspace cases respectively.

Quality of the proposed regularizing constant tuning

1 — T T T T T T T T
N — — Subspace based Semi-Blind Estimation equipped with an oracle
X~ Subspace based Semi-Blind Estimation
0.9 X _| ~O- Linear Prediction based Semi-Blind Estimation equipped with an oracle H
—©— Linear Prediction based Semi—Blind Estimation
0.8 S .
0.7 .
} - - -
50.6~ \‘~\\\\\ .
2 [ it o
o5t S
c
o
i=
]
o 0.4¢ =
0.3
0.2 -
true channel length: 1 symbol duration (16 chip durations)
assumed channel length: 2 symbol durations (32 chip durations)
0.1 -
0 | | | | | | | |
0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

Targeted BER

Fig. 1. Influence of the tuning accuracy of the regularizing constant on the gain on Eb/No

Influence of the midamble size

In this experiment, parameters are always the same as those used in the TDD mode, except for
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the training sequence length. FEj/N, is fixed to 12.5 dB (the results are similar for lower SNRs).
The assumed channel length is taken to be equal to 32 chip durations.

Figure 2 represents the BER provided by semi-blind approaches versus m (recall that the size of
the midamble equals m + LN ). For m = 480 chips, the BER associated with the trained channel
estimator equals 1%. The BER is about 0.85% for the weighted linear prediction method and
0.65% for the subspace method. But for shortest training sequences, BERs are no longer that
close. Indeed, for m = 152, the achieved BER equals 10% in the trained case and 1% in the
regularized semi-blind subspace case. We also note that in order to achieve a BER of 1%, the
trained estimate needs m = 480 chips while the semi-blind subspace estimate only requires
m = 152. The use of this semi-blind estimate thus allows us to reduce the midamble size by 3.

This roughly corresponds to a gain of 15% in terms of data rate.

In order to confirm the results presented in figure 2, we compare in figure & the performance of
the proposed semi-blind estimates with the trained one versus Ej/Nj in the case where m = 152.
The duration of the channel is always 32 chip durations and T' = 122. It is seen that the semi-
blind approaches outperform quite significantly the performance provided by the classical trained
estimate.

Influence of the assumed channel length
Robustness of channel estimator to channel overmodeling is of course an important issue. The
impact of channel overmodeling on receiver performance is evaluated in figure 4. For a 1% BER
target, it depicts the gains provided by the semi-blind approaches on Ej/N, versus the assumed
channel length in symbol duration. In dashdot line, we have represented the gain that could
be achieved if channels were known from the symbol detector. We notice that the semi-blind
approaches provide gains on Ej/N, between 0.8 dB (weighted linear prediction approach) and
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Influence of the midamble size on MMSE-BL-JD performance
T T

I I I
—©- Training Sequence based Estimation
—*— Linear Prediction based Semi-Blind Estimation
—— Subspace based Semi—Blind Estimation

10"

true channel length: 1 symbol duration (16 chip durations)
assumed channel length: 2 symbol durations (32 chip durations)
Eb/No = 12.5.dB

<BER>

150 200 250 300 350 400 450 500

Fig. 2. Influence of the midamble size on performance

1.2 dB (subspace method) for an assumed channel length of 48 chip durations, which roughly

corresponds to the maximum channel length in the context of UMTS (see [12]).

VII. CONCLUSIONS

Semi-blind channel estimation methods for synchronized uplink CDMA systems have been
considered in this paper. The central idea of this approach was to minimize composite criteria
and to tune the underlying regularizing constants by evaluating the corresponding asymptotic
covariances of the estimation error. We provided these covariance matrices for the subspace and
a weighted linear prediction based semi-blind schemes.

We have identified sufficient conditions under which the considered multi-variable minimiza-
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Semi-Blind schemes —-vs-- TS based scheme for short midambles
T T

I I I I

—©— Training Sequence based Estimation
—*— Linear Prediction based Semi—Blind Estimation |{
—— Subspace based Semi-Blind Estimation

<BER>

true channellength: 1:symbol duration (16 chip durations)
assumed channel length: 2 symbol durations (32 chip durations) ‘r
m =152
10'3 I I I I I I I
8 9 10 11 12 13 14 15
Eb/No [dB]

Fig. 3. MMSE-BL-JD performance with trained channel estimate versus MMSE-BL-JD with semi-blind
channel estimates when training sequence is short

tions can be split into several one-variable minimizations, which considerably facilitates the
research of the optimum values of the regularizing constants. Moreover, it has been seen how
beneficial it can be to weight the linear prediction criterion: the proposed weighting both im-
proves the statistical performance of the semi-blind estimation and makes easier the estimation
of the covariance matrix of the error, which is required to tune the regularizing constants.

The potential of the presented approaches has been evaluated in a realistic context. In this
respect, at least two points are worth being highlighted:
« Semi-blind approaches perform quite well but they are especially useful when training sequences
are short (5% to 10% of the time-slot duration typically). In this case, they work dramatically

better than the pure trained approach. In the context of the UMTS-TDD mode, significant
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Influence of the assumed channel length
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Assumed channel length (symbol duration)

Fig. 4. Robustness of the semi-blind estimators to channel overmodeling

improvements have been stated in terms of data rate, quality of service or power consumption.
For instance, semi-blind approaches allow us to achieve the same performance as the classical
trained estimate but with a training sequence which is three times shorter. This corresponds to
increase the data throughput by 15%.
o As for the comparison of the semi-blind schemes between themselves, it has been seen that the
semi-blind subspace approach generally outperforms the weighted linear prediction one in the
cases of interest. This fact was not obvious since it was shown recently [11] that the blind linear
prediction approach dominates the blind subspace method in the cases where channel lengths
are overestimated.

Regarding the complexity issue, it has been found that the additional computational cost due

to the semi-blind estimation is reasonable [15]. The complexity depends on many factors: the
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number of active users per time-slot (K), the assumed channel length (say / chips per user), the
smoothing factor (M), the midamble length (m) and the number of regularizing constants to be
tested (no). In the typical scenario presented in this paper (K = 4,0=32,M =1,m =512,n, =
20), the complexity of the channel estimator is increased by 5.8 with respect to the training-based
channel estimator. By way of comparison, the joint minimization of the regularizing constants

(with 80 test vectors) leads to a complexity increased by 25.5 w.r.t the training-based estimator.

APPENDIX

Comments on table ITI-B
o Second-order statistics estimation: we use the empirical observation covariance matrix defined
by Rar = T~ 3215 Yar (DY 1 (8).
o Noise subspace estimation: «# = UU! where U is the singular vectors matrix associated with
the N(M + 1) — K(L + M + 1) smallest singular values of Ry;.

e Definition of D(m):

™o 0
o
D(m) = L N(L+M+1)(M+1) x N(L + 1),
™M
0 TN

where 7 = [my ... m].
o Pseudo-inverse definition (#): the matrix Rp/_; — 021 is in general numerically invertible

whereas Rys_1 — 01 is rank deficient for large enough M. Therefore, (SAQM_l —o?I)# is obtained

June 14, 2002 REVISED AND RESUBMITTED VERSION



IEEE TRANSACTIONS ON SIGNAL PROCESSING 26

by truncating the eigenvalue decomposition of Ryr-1— oI to its significant eigenvalues. Denote

(j\k) k=1,vMm the eigenvalues of R v—1 — oI arranged in decreasing order. The truncation index

Mo is maximum (see [19]).
kg+1

ko is defined as the index such that
o Estimation of H(0): this matrix is simply a N x K square root of D. Of course, it is estimated
up to a constant unitary matrix. This missing factor is identified by exploiting the specific
algebraic structure of H(z), which is given by the CDMA codes.

e Definition of S(A): the Sylvester matrix associated with the prediction filter A(z) is given by

A() 0 0
0
A(0)
S(A)=| Aw) (24)
0
0 ... 0 A(M)

A sketchy proof of Theorem 1 (semi-blind subspace estimation)

We want to show how the general expression of the estimation error covariance matrix (20) can
be reduced to (21). Assume that the matrix Rgo;) is block diagonal. Then M(«) is also block
diagonal since A(a) and Q(«) are block diagonal (by definition). As W = I, we just need to
evaluate the matrix 3 = Cov(JA g) and show that it is also block diagonal. To that end, define

by V(k,1) € [1,K]?,2(k,1) the K? blocks of the matrix . It can be shown [16] that
=022 4545 (25)

where for each (k,1) € [1, K]?,
« 3V (k,1) = 6 R
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o (k1) = [T [IET () TH(e)J)]* @ m(e™)m(e™)dw

with

eu,=(0...010...0)7 LK x 1, the one is on the position k"
. T(e) = SP L T(p)e
« TE_(H)2[T(0) ... T(M —1)].
From this, it is easily seen that ¥ = Ix ® Rx + O(o*), which proves that X is block diagonal
up to the o*-terms.

A sketchy proof of Theorem 2 (semi-blind linear prediction)
We want to show how the general expression of the estimation error covariance matrix (20) can
be reduced to (23). As mentioned in the proof of Theorem 1, the only problem is to derive the
expression of & = Cov(6A g). The goal is to show that WXX is block diagonal up to the

o*-terms. Let partition each block Z(k,) of ¥ as:

Sukl) Skl |

(k1) = NM+L+1)x N(M+L+1)

Yo1(k,1) Xoo(k,l)
where the blocks X1 (k,1), X12(k,[) and Xoo(k,[) are N x NN x N(M + L) and N(M + L) x
N (M + L) respectively. Using straightforward but tedious perturbation theory calculations it is
possible to show that [16]

» =30 45250 4 545@) (26)

where the matrices Z‘(U), 1 and @ are defined as follows:
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V(k,1) € {1,...,K},
S(k, 1) 2 2Ok, 1) + 022D (k, 1) + 0*2P (K, 1),

and the matrices 2 (k,1) and (M (k, 1) are given by

=5 (k. 1) = Okt X (In4r ® D)
= (k1) = b x ([T mpr Al AT () o)
B0 6, 0) = S5 (k1) = G x ([T e DY 1 (w) © mpu Al AT () dw)
= (k, 1) = [T [3LT(e*) T (€+)3;]" ® Ddw
+ [QM+L71(W)Q]\H/[+L—1(W)]* ® A(e™)AH (™) b dw.
The matrix ®(k,1) depends on 7wp1, A, H#(0) and on the true channel itself via the matrix
T.

Apart from the many details given here, what is essentially to note is the effect of the weighting
matrices Vk = 1, ..., K, Wi(D,0?) = Insy 1 11®(mpL +02D#) on the matrix . As 7. D = 0,
it can be checked that the constant term associated with (%) is cancelled. The other major effect
of the proposed weighting is to cancel the first term of 2%12) (k,1), which makes this matrix both
block diagonal and independent of the true channels. Therefore, up to the o*-terms (represented

by the matrix 2(2)), the matrix WXW is block diagonal, which concludes the proof.
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