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Introducing Hierarchy in Energy Games
S. Lasaulce, Y. Hayel, R. El Azouzi, and M. Debbah

Abstract

In this work we introduce hierarchy in wireless networks that can be modeled by a decentralized multiple

access channel and for which energy-efficiency is the main performance index. In these networks users are free

to choose their power control strategy to selfishly maximize their energy-efficiency. Specifically, we introduce

hierarchy in two different ways: 1. Assuming single-user decoding at the receiver, we investigate a Stackelberg

formulation of the game where one user is the leader whereas the other users are assumed to be able to react

to the leader’s decisions; 2. Assuming neither leader nor followers among the users, we introduce hierarchy

by assuming successive interference cancellation at the receiver. It is shown that introducing a certain degree

of hierarchy in non-cooperative power control games not only improves the individual energy efficiency of all

the users but can also be a way of insuring the existence of a non-saturated equilibrium and reaching a desired

trade-off between the global network performance at the equilibrium and the requested amount of signaling.

In this respect, the way of measuring the global performance of an energy-efficient network is shown to be a

critical issue.

Index Terms

Cognitive radio, energy-efficiency, Nash equilibrium, power control games, Stackelberg equilibrium.

I. INTRODUCTION

In this paper, we consider a decentralized multiple access channel (MAC). By definition [2], the MAC consists

of a network of several transmitters and one receiver. The network is said to be decentralized in the sense that

the receiver does not dictate to the users their transmit power level. Indeed, from the sole knowledge of his

own uplink channel, each user can choose freely his power control policy in order to selfishly maximize a

certain individual performance criterion, called utility (or payoff) in the context of game theoretic studies. The

The material in this paper has been presented in part at the 2nd ACM-ICST International Workshop on Game Theory in Communication

Networks (GAMECOMM), Athens, Greece, 20 Oct. 2008 [1].
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use of game theoretic tools is at the heart of the design of the recently advocated mobile flexible networks

[3], which intend to break the spectral efficiency barrier through the use of intelligence. The selfish behavior

enables to reduce the signaling overhead, especially for highly mobile terminals where topological information

(channel state information -CSI- is one aspect) on the network can not be centralized. In this paper, unlike

many works concerning this problem, the chosen users’ utility is not the transmission rate (e.g., [4], [5], [6])

but the energy-efficiency of their communication. The latter approach, which consists in maximizing the ratio

of the net number of information bits that are transmitted without error per time unit to the transmit power

level, has been introduced in [7] for flat fading channels and recently re-used by [8] for multi-carrier CDMA

(code division multiple access) systems and linear receivers, motivated by the facts that mobile terminals have

a limited battery lifetime and in some applications (e.g., a sensor network measuring a temperature field) the

main concern is not the transmission rate.

As mentioned in [7] the Nash equilibrium (NE) in such games can be energy inefficient. The NE of this

power control game is shown to be Pareto inefficient. This is why [9] proposed, for MACs with flat fading

links and single-user decoding (SUD), a pricing mechanism to obtain improvements in the users’ utilities

with respect to the case with no pricing. To our knowledge, since the release of [9], no alternative way of

tackling this problem in the context of energy-efficient power control games has been proposed. In this paper

we propose an alternative approach to [9] for improving the network efficiency by introducing a certain degree

of hierarchy between the users. We propose two schemes. For the first scheme, we propose a Stackelberg

formulation of the problem when SUD is assumed at the receiver. For the second scheme, we consider an a

priori more efficient (and non-linear) receiver namely successive interference cancellation (SIC). Technically,

our approach not only aims at improving the network equilibrium efficiency but has also two nice features:

1. It allows one to analyze the equilibrium uniqueness issue rigorously. Note that even in the simple case of

linear pricing analyzed in [9], only simulations are provided to justify uniqueness; 2. Implementing pricing in

real wireless networks is still an open issue for many well-used types of utilities (the problem being to know

how to measure the modified utility) whereas energy-efficiency can be physically measured (for this purpose

each terminal can evaluate its frame error rate over a certain period of time from a feedback mechanism and

store the corresponding sequence of power levels); 3. Only individual CSI is needed at each transmitter in the

regime of non-saturated equilibria, which is not case with pricing. More generally, our approach contributes to

designing networks where intelligence is split between the base station (BS) and mobile stations (MSs) in order

to find a desired trade-off between the global network performance reached at the equilibrium and the amount
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of signaling needed to make it work. As we will see, in both hierarchical approaches proposed the receiver

only broadcasts common messages and the corresponding amount of additional signaling is reasonable. Note

that the Stackelberg formulation arises naturally in some contexts of practical interest. For example, hierarchy

is naturally present in contexts where there are primary (licensed) users and secondary (unlicensed) users who

can sense their environment because there are equipped with a cognitive radio [12], [13], [14]. It is also natural

if the users have access to the medium in an asynchronous manner. Note that there have been many works on

Stackelberg games in the context of wireless communications [15], but they do not consider energy-efficiency

for the individual utility as defined in [7], [8], [16]. Rather, they consider transmission rate-type utilities (see

e.g., [5], [17], [18]).

This paper is structured as follows. The general signal model is provided in Sec. II-A. Sec. II-B reviews the

main results of [8] for the non-cooperative game. Then, in Sec. III, we introduce our Stackelberg formulation

by assuming an arbitrary choice for the game leader, when SUD is assumed. In Sec. IV we consider a different

receiver namely a successive interference canceler, for which an arbitrary decoding order is chosen on each

block of data (or packet). The choice of the best leader and decoding order in terms of overall network energy-

efficiency is discussed in Sec. V. In Sec. VI we provide numerical results to illustrate the theoretical results

derived in the previous sections. A short summary and some extensions of this work are provided in Sec. VII.

II. SIGNAL MODEL AND REVIEW OF THE NON-COOPERATIVE GAME

A. Signal model

Here we provide the signal model used in the whole paper except at the end of Sec. II-B where we explain

how the provided results apply to the random CDMA case (RCDMA1). We consider a decentralized MAC

with a finite number of users, which is denoted by K. We assume that the users transmit their data over block

Rayleigh flat fading channels and the receiver knows on each block all the uplink channel gains (coherent

communication assumption) whereas each transmitter has only access to the knowledge of its own channel.

The latter assumption is realistic at least in two common scenarios: (a) the uplink-downlink channel reciprocity is

valid and the BS sends training signals to the MSs; (b) the uplink channel varies slowly and the BS implements

a reliable feedback mechanism to inform the MSs with their channel state. The equivalent baseband signal

1RCDMA: the entries of the spreading sequences correspond to the realizations of i.i.d random variables.
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received by the base station can be written as

Y =
K∑

i=1

hiXi + Z (1)

with ∀i ∈ {1, ..., K}, E|Xi|2 = pi, |hi| is a Rayleigh distributed random variable and Z ∼ CN (0, σ2). Each

channel gain hi varies over time but is assumed to be constant over each block.

B. Review of the non-cooperative game

In the system under investigation, users are selfish in the sense of their energy-efficiency. Here we review a

few key results from [8], [9] concerning the non-cooperative game, which we will use to analytically evaluate

the benefits brought by introducing hierarchy in this game. For any user i ∈ {1, ..., K}, the single-user signal-

to-noise plus interference ratio (SINR) at the receiver writes as

SINRi =
pi|hi|2∑

j 6=i pj |hj |2 + σ2
(2)

where j 6= i. The strategy of user i ∈ {1, ...,K} consists in choosing his transmit power level pi in order to

maximize his utility function which is chosen to be:

ui(p1, ..., pK) =
Ti

pi
=

Rif(SINRi)
pi

(3)

where f is an efficiency function representing the packet success rate, which is assumed to be identical for all

the users and Ri is the transmission rate [7], [8] of user i. By definition of the utility (Eq. (3)) we see that

the frequency at which the power control is updated is chosen to be the reciprocal of the data block duration.

When it exists, the non-saturated NE2 of this game is given by

∀i ∈ {1, ...,K}, pSUD
i =

σ2

|hi|2 β∗µSUD (4)

where β∗ is the positive solution of the equation xf ′(x) = f(x) and µSUD = 1
1−(K−1)β∗ is a penalty term due to

multiple access interference; by using the term “non-saturated NE” we mean that the maximum transmit power

for each user, denoted by Pmax
i , is assumed to be sufficiently high for not being reached at the equilibrium

i.e., each user maximizes his energy-efficiency for a value less than Pmax
i . Several technical comments are

in order. First, note that the equation xf ′(x) = f(x) has a positive solution if the function f is sigmoidal

[19] and verifies ui(0, p−i
) = 0, which is what is assumed in this paper. Second, it has been shown [7] that

2NE: the vector of strategies pSUD = (pSUD
1 , ..., pSUD

K ) is an NE if ∀i ∈ {1, ..., K}, ∀pi ∈ [0, Pmax
i ], ui(p

SUD) ≥ ui(pi, p
SUD

−i
),

with the standard notation p−i
= (p1, ..., pi−1, pi+1, ..., pK).
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there is always a unique NE in the game considered. If µSUD ≥ 0 and none of the users’ power constraints

is saturated, the equilibrium is that given by Eq. (4). If one of the mentioned conditions is not met, that is

if µSUD < 0 or at least one power constraint is saturated, the NE has to be rewritten by taking into account

that some users transmit at their maximum power. What is important here is not to explicit the equilibrium

in this case but to mention that the corresponding regime is less interesting for several reasons. We will only

mention the most critical of them, which is not mentioned in the related works available in the literature ([7],

[9], [8], etc.): for having such a saturated equilibrium the users need to know more than their own channel.

For example in the 2−user case, if user 2 transmits at his maximum power pSUD
2 = Pmax

2 user 1 transmits at

pSUD
1 = β∗ σ2

|h1|2 + β∗
∣∣∣h2
h1

∣∣∣
2
Pmax

2 . Thus the interest in designing a system such that a non-saturated equilibrium

is obtained is obvious. This is one of the reasons why we will assume such an operating regime in the whole

paper. In this regime, even if a user has an infinite transmit power he will not necessarily use all of it. This

is what Eq. (4) shows: each player tunes his transmit power in order for his SINR to be equal to β∗. In the

sequel, we will denote by uSUD
i the energy efficiency obtained by player i at the NE.

Note that the problem formulation presented in this paper can be applied to other types of systems, so our

analysis is not exclusively applicable to the signal model defined by Eq. (1). For example, in flat fading RCDMA

systems [20], the SINR after despreading (denoted by S̃INRi) of the received signal can be written in the same

form as Eq. (2):

S̃INRi =
p̃i|hi|2∑

j 6=i p̃j |hj |2
N + σ2

(5)

where N is the spreading factor (also the processing gain) of the RCDMA system. The strategy of user i

consists in choosing his transmit power level p̃i in order to maximize his utility function which is chosen to

be:

ũi(p̃1, . . . , p̃K) =
Ti

p̃i
=

R̃if̃(S̃INRi)
p̃i

. (6)

The study of the case of RCDMA systems can be directly obtained from the signal model used in this paper

by observing that the two models are merely linked by the following change of variables: t̃ = Nt where

t ∈ {pi, Ri, SINRi} and f(x) = f̃(Nx). This leads to ũi(p1, . . . , pK) = R̃if̃(N.SINRi)
p̃i

= Rif(SINRi)
pi

. This

clearly establishes the link between our signal model and that used by [8] for RCDMA systems and flat fading

channels. Similarly it could also be linked to the case of RCDMA systems with frequency selective channels

as recently shown in [21]. To conclude on RCDMA systems, it could be verified [8], [21] that the denominator

of the transmit power at the NE becomes proportional to 1− (K−1)β∗

N , which is in favor of the existence of a

non-saturated equilibrium in games under investigation.
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C. Information assumptions

To have a clear view of what is assumed to be known at which terminal, we mention here all our assumptions

in terms of information for all the terminals. As the communications are assumed to be coherent, the BS knows

in all the cases treated in this paper all the channel gains h1, ..., hK on each data block. As it will be seen,

for the two hierarchical games introduced in this work, each user (say user i) only needs to know his own

channel (i.e., hi) to implement his optimal selfish power control policy. We are therefore in the same situation

as the non-cooperative game. On the other hand if full CSI h1, ..., hK would be available at each transmitter, it

would be possible to formulate the power control problem as a cooperative game (team game) with a common

utility, which is not considered in this paper. To illustrate this point, in the 2−user case it can be checked

that the best set of SINRs for the team, denoted here by (xi)i, is the solution of the system of equations

∀i ∈ {1, 2}, xif
′(xi) − f(xi) − f ′(x−i)

[∣∣∣h−i

hi

∣∣∣ 1+x−i

1+xi

]2
x2

i = 0. We will also assume a context of games with

complete information that is, each user perfectly knows the game (the number of users, the sets of strategies and

the different utilities) and every user is assumed to be rational [22]. The additional assumption we make w.r.t.

[7], [8] is that: in the Stackelberg formulation with SUD, there exists a mechanism that allows the followers

to know the (receive) power level of the leader, which can be acquired with an appropriate sensing system or

by assuming that the BS sends an appropriate broadcast signal; in the game with SIC all the users know the

decoding order used by the BS.

III. A HIERARCHICAL GAME WITH SINGLE USER DECODING

As mentioned previously, one of our motivations for introducing hierarchy is to improve the network energy-

efficiency. The proposed approaches can be seen as intermediate schemes between the totally centralized power

control policy and the non-cooperative policy of [7], [8]. It is also quite relevant for flexible networks where the

trend is to split the intelligence between the network infrastructure and the (generally mobile) users’ equipments.

These approaches are therefore reasonable ways of finding a desired trade-off between the desired global network

performance and the amount of control signaling sent by the receiver. In this section, we propose a Stackelberg

formulation of the power control game where one of the K users is chosen to be the leader whereas the others

are the followers. The receiver is not a player of the game here. In this respect we will always assume in

this section that SUD is implemented at the receiver. The motivations for using SUD can be precisely that the

receiver has to remain neutral in the game, or/and for limiting the receiver complexity, or/and to minimize the

possible signaling cost induced by a more advanced receiver. In Sec. V however, we will use a more advanced

receiver than SUD namely SIC, which naturally introduces hierarchy between users via the decoding order used
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by the BS. In the case where this order is optimized, the problem can be formulated as a Stackelberg game

where the receiver has his own utility (similarly to [5] where Shannon transmission rates are considered for

the users’ utilities) and is the game leader.

Here, we consider without loss of generality (but possibly with loss of optimality) that user i is the leader of

the game. Even though there is no loss of generality mathematically speaking, this arbitrary choice might seem

to be artificial physically. In fact, there are useful scenarios where some terminals are naturally leaders of the

game, by definition of the context. For instance, in wireless networks with primary and secondary users, most

often only secondary terminals are equipped with a cognitive radio and can be followers; the primary terminals

which have been generally deployed in the first place are therefore leaders of the game by conception of the

network. Back to our system model, each follower j 6= i plays a non-cooperative game with the other followers,

given what the leader plays. Interestingly, it is possible to show that, under realistic conditions, there is a unique

equilibrium in this hierarchical game, which is called a Stackelberg Equilibrium (SE). Before indicating how

the users determine their optimal transmit power, let us define a Stackelberg equilibrium. Let U∗(pi) be the set

of NE for the group of followers when the leader plays strategy pi. In other words, the leader maximizes his

utility function which depends on the NE u∗ ∈ U∗(pi) of the followers.

Definition 1 (Stackelberg equilibrium): A vector pSE = (pSE
i , pSE

−i ) is called a Stackelberg equilibrium (SE)

if pSE
−i
∈ U∗(pi) and the power pSE

i maximizes the utility function of user i, the leader of the game. In other

words pSE
i = arg max

p̃i

ui(p̃i, p
SE
−i

(p̃i)).

By denoting (pSE
i , pSE

−i
) the power profile at the SE, this definition translates mathematically by

pSE
i = arg max

pi

ui

(
pSE
1 (pi), . . . , pSE

i−1(pi), pi, p
SE
i+1(pi), . . . , pSE

K (pi)
)
, (7)

where pSE
j (pi), j 6= i, is the power of the follower j at the NE. Now we look at the problem of the existence and

uniqueness of such a vector of transmit power levels. A solution to these issues is stated through the following

proposition.

Proposition 2: (EXISTENCE AND UNIQUENESS OF AN SE). There is a unique Stackelberg equilibrium pSE

in the proposed hierarchical game where user i is the leader:

pSE
i =

σ2

|hi|2
γ∗(1 + β∗)

1− (K − 1)γ∗β∗ − (K − 2)β∗
(8)

and for each follower j 6= i

pSE
j =

σ2

|hj |2
β∗(1 + γ∗)

1− (K − 1)γ∗β∗ − (K − 2)β∗
, (9)
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if the following (sufficient) conditions hold: f ′′(0)
f ′(0) ≥ 2 (K−1)β∗

1−(K−2)β∗ and φ(x) = x
[
1− (K−1)β∗

1−(K−2)β∗x
]
f ′(x)− f(x)

has a single stationary point in ]0, γ∗[, where where β∗ is the positive solution of the equation xf ′(x)−f(x) = 0

and γ∗ is the positive solution of the equation φ(x) = 0.

This proposition is proven in Appendix A. In order to have an idea to what extent the sufficient conditions

stated in Prop. 2 are realistic, we consider the practical choice of efficiency function proposed by [7] and

also used by [8][16]: f(x) = (1 − e−x)M where M is the block length (this function is a reasonable

model for evaluating the packet success rate of a transmission). Assuming this function, we have φ′(x) =

e−x
{

(K−1)β∗

1−(K−2)β∗x
2 −

[
2 (K−1)β∗

1−(K−2)β∗M + 1
]
x + M − 1

}
and the existence and uniqueness of an SE readily

follows (see Appendix A). Commenting the result of Prop. 2 itself, an interesting feature of the SE can be

noticed. The SE has the same attractive property as the equilibrium of the non-cooperative game of [7] namely

each user only needs to know his own channel to do what is best for him. This result comes from the facts

thats that all users are rational, every user knows that the others are rational and more specifically every user

knows how the others are going to tune their SINR, which is identical for all the followers. At this point, some

important questions arise. From a user point of view, is it better to be chosen to be a leader or a follower?

With respect to the non-cooperative game what is the gain brought by introducing hierarchy? Do all the players

benefit from this? The first question is answered in Prop. 3 whereas the latter questions are the purpose of

Prop. 4.

Proposition 3: (FOLLOWING IS BETTER THAN LEADING) Every user has always a better utility by being

chosen as a follower instead of a leader.

Proof: We denote by uSE
L (resp. uSE

F ) the utility of user i ∈ {1 . . . ,K} (resp. j 6= i) when he is chosen to

be the leader (resp. a follower) of the game. First, we observe that, at the Stackelberg equilibrium, the SINR

for the leader and a follower are: SINRSE
L = γ∗ and SINRSE

F = β∗. From [19], we have that for all x > 0:

x > β∗ ⇔ xf ′(x) < f(x). As for all x > 0, x
[
1− (K−1)β∗

1−(K−2)β∗x
]
f ′(x) < xf ′(x), from a simple geometrical

argument we see that γ∗ < β∗ (the fact that the leader gets a lower SINR than in the non-cooperative game,

and therefore lower than the follower, can also be understood by noticing that SINR1 is a function of p1 only

and grows more slowly with p1). This means that the SINR of the follower (i.e., β∗) is higher than the SINR

of the leader (i.e., γ∗). Therefore, we can write that

uSE
L

uSE
F

= f(γ∗)
|hi|2
σ2

1− (K − 1)β∗γ∗ − (K − 2)β∗

γ∗(1 + β∗)
1

f(β∗)
σ2

|hi|2
β∗(1 + γ∗)

1− β∗(K − 1)γ∗ − (K − 2)β∗
(10)

=
f(γ∗)

γ∗

f(β∗)
β∗

1 + γ∗

1 + β∗
=

g(γ∗)
g(β∗)

1 + γ∗

1 + β∗
≤ 1, (11)
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where the inequality follows from γ∗ ≤ β∗ and the fact that function g : x 7→ f(x)
x reaches its maximum in β∗.

The main issue we need to address now is the comparison between the non-cooperative and hierarchical

games in terms of energy efficiency. Specifically, we want to compare the values of ui(pSE) and ui(pSUD), for

each player i ∈ {1, . . . , K}. This is stated through the following proposition.

Proposition 4: (UNIFORM IMPROVEMENT OF UTILITIES). We always assume that SUD is used at the BS.

Then, both the leader and followers improve their utility with respect to the non-cooperative setting.

Proof:

(a) All the followers improve their utility. By denoting j the index of a given follower we have:

uSE
j

uSUD
j

= f(β∗)
|hj |2
σ2

1− (K − 1)β∗γ∗ − (K − 2)β∗

β∗(1 + γ∗)
1

f(β∗)
σ2

|hj |2
β∗

1− (K − 1)β∗
(12)

=
1− (K − 1)β∗ + β∗ [1− (K − 1)γ∗]

(1 + γ∗) [1− (K − 1)β∗]
=

1 + β∗ − (K − 1)β∗(1 + γ∗)
1 + γ∗ − (K − 1)β∗(1 + γ∗)

. (13)

We see that this ratio is higher than 1 since γ∗ ≤ β∗.

(b) The leader improves his utility. Denoting by i 6= j the index of the leader we have:

uSE
i

uSUD
i

= f(γ∗)
|hi|2
σ2

1− (K − 1)β∗γ∗ − (K − 2)β∗

γ∗(1 + β∗)
1

f(β∗)
σ2

|hi|2
β∗

1− (K − 1)β∗
(14)

=
f(γ∗)

γ∗

f(β∗)
β∗

1− β∗ [K − 2 + (K − 1)γ∗]
1− β∗ [K − 2 + (K − 1)β∗]

=
h(γ∗)
h(β∗)

, (15)

where h(x) = f(x)
x [1− β∗(K − 2 + (K − 1)x)]. It can be checked that

h′(x) =
x

[
1− (K−1)β∗

1−(K−2)β∗x
]
f ′(x)− f(x)

x2
=

φ(x)
x2

, (16)

where φ is defined in Prop. 2. We have φ(γ∗) = 0, φ(β∗) < 0 and as the solution of φ(x) = 0 is unique,

for all x ∈ [γ∗, β∗] we have φ(x) < 0. The function h is therefore non-increasing over [γ∗, β∗] and we have

uSE
i ≥ uSUD

i when user i is the leader, which concludes the proof.

To conclude this section we will make two comments. First, it is very interesting to observe that all the

players benefit from hierarchy when energy-efficiency is chosen to be the users’ utility. This result is not usual

in game-theoretic studies. In economics, for instance, in the case of a duopoly [23], only the leader can benefit

from the introduction of hierarchy. Even more surprisingly, in our context, a user prefers to be a follower than

a leader. In cognitive networks with primary and secondary users, only terminals that are equipped with a

cognitive radio will have this privilege. In a conventional cellular network, the designation of a leader can be
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made by the By broadcasting p1 the base station discloses the user who allows a certain global performance

metric to be maximized (this will be the purpose of Sec. V) and the power level he should play. As the users,

who are designated as followers, are selfish, rational, and can not coordinate each other they are going to

play their best response pi(p1). Knowing this, the user who is designated as a leader has to transmit at p1 to

maximize his utility. As a second comment, we note that all the users not only obtain a better energy-efficiency

in the proposed Stackelberg game but it can also be checked that they transmit with a lower power than in the

non-cooperative game (Sec. II-B), which is in favor of creating a network where interference is self-regulated

by the users.

IV. A HIERARCHICAL GAME WITH SUCCESSIVE INTERFERENCE CANCELLATION

The approach presented in this section is clearly related to that of Sec. III in the sense that it also consists

in using hierarchy to improve the network equilibrium efficiency. This approach, based on the use of SIC at

the BS is even more strongly related to Sec. III in the case where the BS has his own utility, since we have a

Stackelberg in this case. On the other hand, this section and Sec. III corresponds to two different points of view:

Sec. III corresponds more to a game theoretic standpoint for which the receiver is unchanged but hierarchy

is introduced between players (and therefore influencing their transmission strategy) to make the society more

efficient while the second approach (using SIC) typically corresponds to what a wireless engineer could do

in order to improve the network performance that is to say implement a more advanced receiver (SUD →
SIC). From now on, let us assume that the BS implements successive interference cancellation. The principle

of SIC is to rank the users and decode them successively (see e.g., [2]). For the 2-user case the decoding is a

two-stage process. In the first stage, the receiver decodes a user (say user 1) by considering the other (user 2)

as part of the noise. In the second stage, i.e., after the first user has been decoded successfully, the first user

can be subtracted from the received signal and user 2 is decoded without multiuser interference. Compared

to the case of the SUD-based receiver, the SIC-based receiver does not require any additional knowledge and

therefore always only uses the channel state information (h1, ..., hK) on each block of data, just as SUD. From

a practical point of view the two main differences between SIC and SUD is that SIC is more complex to be

implemented and the decoding order has to be known to the users. For the latter point, as mentioned in [6],

it does not necessarily mean that the receiver has to send a signal for indicating the decoding order to the

user. In fact, this information can also be acquired from an external (and therefore free in terms of signaling

cost) source of signal. However, in this case there is generally a loss of optimality for the overall network

performance. Clearly, one of the main advantages for using a SIC at the receiver is to partially remove some
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multiuser interference. Note that, in the context of systems with mutual interaction among users, improving the

decoding scheme does not necessarily imply that each user improves his utility (Braess-like paradoxes [24] can

sometimes occur) . All the issues we have just mentioned are precisely the purpose of this section.

Proposition 5: (EXISTENCE AND UNIQUENESS OF AN NE). Let denote by i the index of the user who is

decoded with rank K − i + 1 in the successive decoding procedure at the receiver. In the non-cooperative

game with a SIC-based receiver where the utility is chosen to be given by Eq. (3) where the SINRs are those

considered at the output of the SIC, there exists a unique (pure) NE (pSIC
1 , ..., pSIC

K ) which is given by:

∀i ∈ {1, ...,K}, pSIC
i =

σ2

|hi|2 β∗µSIC
i (17)

where µSIC
i = (1 + β∗)i−1 is a penalty term due to multiple access interference.

Proof: The existence of an NE is insured by the geometrical and topological properties of the utility

functions and strategy sets of the users, over which the maximization is performed. Indeed, since for every

user i, the utility ui is continuous in p = (p1, ..., pK) and is quasi-concave w.r.t. to pi over the convex and

compact strategy sets [0, Pmax
1 ], ..., [0, Pmax

K ], we can apply Debreu-Fan-Glicksberg theorem (see e.g., [25]). This

guarantees the existence of at least one pure NE. To prove the uniqueness of the NE we apply a result derived

by [26] and more recently re-used by [27]. We know from [26] that if the best response (BR) correspondence

BR(p) =
(
BR1(p), ...,BRK(p)

)
is monotonic and scalable, then the NE is unique. Although we deal here with

a non-linear receiver we see that the SINR of user i is given by

SINRi = β∗ =
pi|hi|2

σ2 +
∑i−1

j=0 |hj |2pj

. (18)

(with the notational convention p0 = 0) and has the same key property as the SINR obtained with linear receivers

[8][16] i.e., pi
∂SINRi

∂pi
= SINRi. Thus, in order to maximize his utility (Eq. (3)) each user has to tune his transmit

power such that his SINR equals to βSIC = β∗ where β∗f ′(β∗) = f(β∗). Knowing this, it is easy to express the

best responses of the users. Here we have that ∀ ∈ {1, ..., K}, BRi(p) = β∗

|hi|2
(
σ2 +

∑i−1
j=0 pj |hj |2

)
. According

to our assumptions, these expressions of the BRs are valid in the non-saturated regime, otherwise they can be

equal to Pmax
i for user i. Clearly we have that: 1. p ≥ p′ ⇒ BR(p) ≥ BR(p′) since

∂BRi(p)

∂pj
= β∗

∣∣∣hj

hi

∣∣∣
2
≥ 0

(monotonicity); 2. ∀α > 1, αBR(p) > BR(αp) (scalability). At last, in our context of games with complete

information, the expressions of the transmit powers at the equilibrium directly follow from the aforementioned

property and expressions of the SINRs.

At least two key points are worth being noticed here. First, we see that, in contrast with the NE and SE with

SUD, the existence of a non-saturated NE is still insured when β∗ > 1
K−1 . Second, it is important to note that

January 26, 2009 DRAFT



12

Prop. 5 indicates that, at the equilibrium, the transmit power of a user grows exponentially with i, which is

related to his decoding rank (say di) by di = K − i + 1. As the penalty term for SUD (see Eq. (4)) is an

hyperbolic function of (K − 1)β∗, this seems to indicate that SIC might be less energy-efficient than SUD. It

turns out that this is not the case in the regime where non-saturated equilibria exist for the non-cooperative

game. This is the purpose of the following proposition.

Proposition 6: (SIC VERSUS SUD).Let always denote by i the index of the user who is decoded with rank

K− i+1 in the successive decoding procedure at the receiver. Then, every user prefers to be in the game with

a receiver implementing SIC instead of the game with a SUD-based receiver.

Proof: First, let us prove that the sequence defined by ρi = uSIC
i

uSUD
i

is non-increasing. The ratio of the utility

of user i at the NE when SUD is assumed (non-cooperative game of Sec. II-B) to that obtained when SIC is

assumed is:

ρi =
Rif(β∗)

pSIC
i

pSUD
i

Rif(β∗)
(19)

=
pSUD

i

pSIC
i

(20)

=
1

[1− (K − 1)β∗](1 + β∗)i−1
. (21)

Clearly we have that ∀i ∈ {1, ..., K− 1}, ρi+1

ρi
= 1+β∗ ≥ 1, which, in particular, mathematically translates the

fact that the user who is the less likely to prefer SIC is user K since he is decoded first.

Now let us prove that user K has a better utility with SIC than with SUD. For this purpose we need to prove

that ρK ≥ 1. By defining the function ρK : x 7→ 1
[1−(K−1)x](1+x)K−1 we have that

∂ρK

∂x
=

K(K − 1)x(1 + x)K−2

{[1− (K − 1)x](1 + x)K−1}2 . (22)

As this derivative is non-negative in the interval of non-saturated equilibria for the non-cooperative game i.e.,

for x ∈
[
0; 1

K−1

[
and ρK(0) = 1, we therefore have that ρK ≥ 1 in the interval of interest.

The proven result translates the fact that in the game with SIC, users are more energy-efficient and more

specifically, transmit with a lower power. Therefore, every user sees less interference than in the game with

SUD. In particular, user K sees K − 1 interferers in both games but the amount of interference he undergoes

is less when SIC is implemented.

V. NETWORK ENERGY-EFFICIENCY ANALYSIS

So far, in the two hierarchical games analyzed, we have assumed an arbitrary choice for the follower

(Stackelberg game with SUD) and decoding order (non-cooperative game with SIC). In this section we want
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to assess the influence of these degrees of freedom on the overall network energy-efficiency. For this purpose,

we consider two measures: the social welfare [28] which is well known in game theoretic studies and the

energy-efficiency of the equivalent virtual multiple input multiple output (MIMO) system, the latter being used

as individual utility to optimize power allocation in multicarrier CDMA systems [8]. This will allow us to have

two complementary points of view on the way of measuring energy-efficiency for a network. As a comment

regarding the terminology used, note that if the non-cooperative game with SIC is optimized in terms of a

certain measure of energy-efficiency of the global network, the game can also be seen as a Stackelberg game

where: (a) the receiver is the game leader; (b) the users (mobile terminals) are the followers; (c) his set of

strategies is the set of all decoding orders; (d) his utility is w (Eq. (23)) or v (Eq. (30)). In the case of the

Stackelberg game with SUD, if the BS has his own utility, we will referred to it as the super-leader to avoid

confusion with the MS that is already called leader.

A. Social welfare

The social welfare of the network is measured by the total utility of the system, which is expressed as follows:

w =
K∑

i=1

ui =
K∑

i=1

Ti

pi
. (23)

For this measure we have the following two results.

Proposition 7: (BEST CHOICE OF THE LEADER). Assume a Stackelberg game with SUD. In order to maximize

the social welfare, the user who has the lowest Ri|hi|2 has to be chosen as the game leader.

Proof: Let w(i) be the social welfare when user i is chosen to be the leader (resp. follower) and pL
i (resp.

pF
i ) be his transmit power at the SE. We have that

w(i) − w(j) = Ri
f(γ∗)
pL

i

+ Rj
f(β∗)
pF

j

−Ri
f(β∗)
pF

i

−Rj
f(γ∗)
pL

j

(24)

=
(Rj |hj |2 −Ri|hi|2)

|hi|2
[
f(β∗)
pF

i

− f(γ∗)
pL

i

]
(25)

=
(Rj |hj |2 −Ri|hi|2)

|hi|2
[
uSE

i,F − uSE
i,L

]
> 0 (26)

where equality (25) follows from |hi|2pL
i = |hj |2pL

j and |hi|2pF
i = |hj |2pF

j . From Prop. 3, any user has always

a better utility by being chosen as a follower instead of a leader, then we see that the difference is non-negative

if and only if Ri|hi|2 ≤ Rj |hj |2, which concludes the proof.
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Proposition 8: (BEST DECODING ORDER). Assume a non-cooperative game with SIC. The best decoding

order in the sense of the social welfare is to decode the users in the increasing order of their energy weighted

by the coding rate Ri|hi|2.

Proof: Let π ∈ P be the permutation operator corresponding to the choice of the decoding order. Since

the users have the same SINR at the equilibrium we have that:

πw = arg max
π∈P

w(π) (27)

= arg max
π∈P

f(β∗)
K∑

i=1

Ri

pi
(28)

= arg max
π∈P

K∑

i=1

Ri|hi|2 × 1
(1 + β∗)i−1

. (29)

As by definition β∗ > 0, the desired result follows.

To have more insights on the two derived results let us consider the 2-user case. From these two propositions

we see that using the social welfare as a global measure of efficiency always gives an advantage to the dominant

user in asymmetric channels i.e., for which |hi|2 >> |hj |2 for i 6= j. Indeed, in the Stackelberg game with

SUD the strongest user is chosen to be the follower and in the non-cooperative game with SIC he is chosen

to be decoded last. In the limit case where |h1|
|h2| → +∞, we have that lim |h1|

|h2|
→+∞w = +∞. Therefore if one

user becomes more and more satisfied the whole society becomes more and more satisfied. Clearly, the social

welfare as defined by Eq. (23) is not that social one could expect in the sense that it ignores fairness. This is

one of the reasons why other measures of efficiency have to be used in certain scenarios. In the next subsection

we propose to consider the efficiency of the equivalent virtual MIMO system.

B. Equivalent virtual MIMO network (EVMN) energy-efficiency

We consider now another performance metric which corresponds to the energy-efficiency of an equivalent

system where the transmitters would be co-located. It is described in [8] as the individual utility in the context

of multi-carrier systems:

v =
∑K

i=1 Ti∑K
i=1 pi

. (30)

It turns out that one can obtain very different conclusions by optimizing this quantity with respect to the degrees

of freedom instead of the social welfare.

Proposition 9: (BEST CHOICE OF THE LEADER). Assume a Stackelberg game with SUD. Without loss of

generality assume that |h1|2 ≤ |h2|2 ≤ ... ≤ |hK |2. In order to maximize the EVMN energy-efficiency, user i
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has to be chosen as the game leader if

v(j) ≥ (Ri −Rj) [f(β∗)− f(γ∗)] [1− (K − 1)β∗γ∗ − (K − 2)β∗]

σ2(β∗ − γ∗)
(

1
|hj |2 − 1

|hi|2
) for j ≤ i, and (31)

v(j) ≤ (Ri −Rj) [f(β∗)− f(γ∗)] [1− (K − 1)β∗γ∗ − (K − 2)β∗]

σ2(β∗ − γ∗)
(

1
|hj |2 − 1

|hi|2
) for j ≥ i. (32)

The proof of this result is provided in Appendix B. To illustrate this proposition, let us consider the 2-user

case. Without loss of generality assume that |hi|2 < |hj |2, i 6= j. In this case one can check that in order

to maximize the EVMN user i (resp. j) has to be chosen as the game leader if aRi ≤ Rj (resp. aRi ≥ Rj)

where a < 1 is defined by a , f(β∗)αj−f(γ∗)αi

f(β∗)αi−f(γ∗)αj
with αi = |hi|2γ∗(1 + β∗) + |hj |2β∗(1 + γ∗) and αj =

|hj |2γ∗(1 + β∗) + |hi|2β∗(1 + γ∗).

Now let us turn our attention to the hierarchical game with SIC where the BS has to rank the different users

to maximize the EVMN.

Proposition 10: (BEST DECODING ORDER). Assume a non-cooperative game with SIC. The best decoding

order in the sense of the EVMN energy-efficiency is to decode the users in the decreasing order of their

signal-to-noise ratio (SNR) |hi|2
σ2 .

Proof: Let π ∈ P be the permutation operator corresponding to the choice of the decoding order. Since

the users have the same SINR at the equilibrium we have that v = f(β∗)×∑K
i=1 Ri∑K

i=1 pSIC
i

. Therefore,

πv = arg max
π∈P

v(π) = arg min
π∈P

K∑

i=1

pSIC
i . (33)

As pSIC
i = σ2

|hi|2 β
∗(1 + β∗)i−1 it is clear that the influence of a user on the sum of powers decreases with his

decoding rank. To minimize the total system power one has to decode the users with a decreasing order of

their SNR.

Here again, in order to have insights on the addressed issue, let us consider the 2-user case. From this

proposition we see that maximizing v over the choice of decoding order amounts to giving more to the poorest

user in terms of |hi|2 whereas maximizing w w.r.t the follower/leader choice amounts to giving more to the

richest user in terms of Ri|hi|2. Also, in the case of asymmetric MACs the conclusions are markedly different

from those obtained with w. We already know that lim
|h1|
|h2|

→+∞
w = +∞. An equivalent of v when |h1|

|h2| → +∞

is v ∼ |h2|2
σ2 β∗(R1 + R2)f(β∗). Now, with the latter measure of energy-efficiency, even if a user gets very rich,

the wealth of the whole society does not increase and is limited by the poorest user.
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VI. NUMERICAL EXAMPLES

First, we want to analyze the performance of a network for which the receiver implements SIC. For this

purpose we assume the following scenario: K = 10, M = 100, N = 1 (no spreading), Ri = 100 kbps for all

i ∈ {1, ..., K} and E|hi|2 = 1 for all i ∈ {1, ...,K}; the efficiency-function chosen is f(x) = (1− e−x)M . Fig.

1 and 2 respectively represent the network energy-efficiency for the social welfare and EVMN, averaged over

105 Rayleigh fading realizations, as a function of SNR[dB] = 10 log10
1
σ2 . The figures show the influence of the

decoding order on the considered metrics for three choices: increasing order of |hi| (updated for each packet);

decreasing order of |hi|; random decoding order. We see that in contexts where the performance metric is clearly

identified (v or w), the optimal decoding order can be found and used by the BS, at a price of a certain amount

of additional signaling. On the other hand, if there is no dominant arguments in favor of one of them, choosing

a random decoding order is relevant. Random decoding order has also two other advantages: 1. The order

does not necessarily need to be generated by the BS. For example, in current cellular networks, almost all the

mobile phones have an FM receiver. The FM signal can be sampled and thus used a common source of random

decoding order. In this case, the additional signaling from the BS is zero; 2. It is in favor of creating fairness. As

a second step, we want to compare SIC and SUD. For this, we assume an RCDMA system with Ri = 100 kbps

for all i ∈ {1, ...,K}. The efficiency-function chosen is f(x) = (1− e−x)M with M ∈ {2, 5, 10, 20, 50, 100}.

The corresponding values for β∗(M) are respectively 1.25, 2.66, 3.61, 4.51, 5.65, 6.47. Note that M = 100 is

a typical value of the number of symbols per packet in a cellular system whereas the choice of small values

for M is more typical in sensor networks measuring a temperature field (low data rates). Fig. 3 represents the

quantity wSIC

wSUD − 1 in percentage as a function of the spectral efficiency α = K
N for SNR[dB] = 6 and random

decoding order. The asymptotes αmax = 1
β∗(M) +

1
N are indicated by (red) dotted lines. The gains are particularly

significant when the system load is relatively high i.e., when there is a significant amount of interference to

be removed after despreading. In fact, when K−1
N β∗ → 1− the non-cooperative game becomes dramatically

inefficient since the transmit powers at the equilibrium diverge; here, once again we recall that we assume

a non-saturated NE at which the users do not exploit all their power. Otherwise, a user who would saturate

his power constraint would maximize his utility by transmitting at Pmax
i . Fig. 4 represents the same type of

comparison for the Stackelberg and non-cooperative games. The corresponding results have been obtained by

assuming the same scenario just described for Fig. 3 and a random choice of the leader. We observe the same

behavior for the relative performance gain, which is in part due to the fact that the non-cooperative game is not

designed to operate at a load close to the maximal admissible system load i.e., αmax = K−1
N β∗. If the load is
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small or/and the packets are long, the gains brought by the Stackelberg approach are smaller but reasonably high

taking into account the additional signaling required. If better gains have to be obtained, the proposed approach

can be extended by choosing a group of leaders and a group of followers. In this respect we have shown in

Sec. III that, in this case, whatever the channel gain, any follower will always perform better than a follower in

terms of energy-efficiency (since any leader of the leading group gets an SINR equal to γ∗ and any follower of

the other group gets an SINR equal to β∗) and have verified by simulations that there exists an optimal fraction

of followers (or leaders) that maximizes social welfare. Note that the gain in terms of individual utilities is easy

to deduce from our simulations as we assume a simple scenario where the users have different fading gains

but same path losses, the relative gain for each user coincides with the relative gain for the network since the

utilities are averaged over the fading gains ∀i ∈ {1, ..., K},E
[

wSIC

wSUD − 1
]

= E
[

uSIC
i

uSUD
i

− 1
]
.

VII. CONCLUSION

We have analyzed the effect of hierarchy in energy-efficient power control games both on the individual user

and overall network performance. The existence and uniqueness of equilibria in the considered games is insured

under reasonable assumptions. In fact, when assuming SIC at the receiver the existence and uniqueness of an

NE is always guaranteed. We have shown that it is also possible to characterize completely and analytically

the efficiency of these equilibria. Compared to most existing analyses conducted in other fields for which game

theory is applied, some unusual results have been obtained. In particular it is shown that: both the leader and

followers benefit from hierarchy; following is more energy-efficient than leading. Another interesting result

is that, when introducing a super-leader (the receiver) in both games considered, the best strategy of the

super-leader is strongly related to the choice of the global network efficiency measure. For example, the best

decoding order for the social welfare corresponds to the worse decoding order for the EVMN. This shows

that implementing a SIC with a random decoding order has two desirable features: if the decoding order is

generated from an external source (e.g., an FM signal) there is no additional signaling; choosing the decoding

order randomly allows the network to obtain performance gains less dependent on the performance index. Also,

after optimization of the social welfare, the super-leader obtains that the users who were “rich” in terms of

link quality are now even “richer”: this shows that social welfare can be an unfair measure of energy-efficiency

of the network. To conclude we would like to mention possible extensions of the presented work: Introduce

the concept of classes of leaders and followers to optimize the fraction of followers in the network (e.g., the

number of cognitive terminals); Analyze the impact of channel uncertainty on the users’ behavior and individual

performance; in particular, it would be useful to refine our analysis by considering a non-perfect SIC.
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APPENDIX A

PROOF OF PROPOSITION 2

Using the utility function defined by Eq. (3), we obtain from Eq. (4) that for all pi, the optimal decision of

a follower j 6= i, given the power of the leader, is to choose the power

pSE
j (pi) =

β∗

1− (K − 2)β∗
σ2 + pi|hi|2

|h2
j |

. (34)

This equation is given by a non-cooperative game among followers where the power of the leader is included

in the noise. Note that the (K−2)β∗ corresponds to the interference generated by the followers k ∈ {1, ..., K}
for which k 6= i and k 6= j. Plugging pSE

j (pi) into the utility expression for user i, we obtain:

ui(pi) =
Rif

[
pi|hi|2(1−(K−2)β∗)

β∗pi|hi|2(K−1)+σ2(1+β∗)

]

pi
, Rif [s(pi)]

pi
(35)

where we use the function s(pi) to refer to the SINR of the leader. We have that pSE
i has to verify pSE

i s′(pSE
i )f ′

[
s(pSE

i )
]

=

f
[
s(pSE

i )
]
. This equation is equivalent to finding pi such that

s(pi)
[
1− (K − 1)β∗

1− (K − 2)β∗
s(pi)

]
f ′ [g(pi)] = f [g(pi)] , (36)

since pig
′(pi) = g(pi)

[
1− (K−1)β∗

1−(K−2)β∗

]
.

Denote for simplicity by x the quantity x , pi|hi|2(1−(K−2)β∗)
β∗pi|hi|2(K−1)+σ2(1+β∗) = s(pi). Studying the existence

and uniqueness issues for pi is equivalent to analyzing those of x0 such that φ(x0) = 0 with φ(x) =

x
[
1− (K−1)β∗

1−(K−2)β∗x
]
f ′(x)− f(x) where f have all the properties mentioned in [19] i.e.,

• f is continuous over [0, +∞) with f(0) = 0 and lim
x→+∞ f(x) = const. Recall that const = 1 in [8];

• ∀x ≥ 0, f ′(x) ≥ 0;

• as f is S-shaped we can define an xc such that ∀x ≤ xc, f ′′(x) ≥ 0 and ∀x ≥ xc, f ′′(x) ≤ 0;

• lim
pi→0

ui(pi) = 0.

Therefore our problem boils down to knowing the sign of φ′(x) for x ≥ 0.

Existence of x0. We know that φ(0) = 0 and ∀x ≥ (K−1)β∗

1−(K−2)β∗ , φ(x) < 0. Therefore if we can prove that φ

is locally strictly positive on the interval ]0, (K−1)β∗

1−(K−2)β∗ [ the existence of x0 will be guaranteed. A sufficient

condition for the existence of x0 is f ′′(0)
f ′(0) ≥ 2 (K−1)β∗

1−(K−2)β∗ . To check this use φ′′(x) = −2 (K−1)β∗

1−(K−2)β∗ f
′(x) +

f ′′(x) + x
[
−4 (K−1)β∗

1−(K−2)β∗ f
′′(x) + (1− (K−1)β∗

1−(K−2)β∗x)f ′′′(x)
]

and call for the Taylor-Lagrange theorem: there

exists c ∈]0, x[ such that φ(x) = φ′′(0)x2

2 + φ′′′(c) c3

6 . The quantity c3

x2 ≤ x can be made arbitrary small in the

neighborhood of zero. The proposed sufficient condition insures the convexity of φ and φ is therefore locally

strictly positive.
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Uniqueness of x0. It follows from the existence and the fact that φ is assumed to have a single stationary

point in the interval ]0; γ∗[.

Determination of the powers at the SE. Knowing x0 = γ∗ we obtain pSE
i by using the reciprocal function of

s, i.e., pSE
i = s−1(x0) which gives

pSE
i =

σ2

|hi|2
γ∗(1 + β∗)

1− (K − 1)γ∗β∗ − (K − 2)β∗
. (37)

From Eq.(34), we obtain the power for follower j 6= i:

pSE
j = pSE

j (pSE
i ) =

β∗

|hj |2
σ2 + σ2 γ∗(1+β∗)

1−(K−1)γ∗β∗−(K−2)β∗

1− (K − 1)γ∗β∗ − (K − 2)β∗
(38)

=
σ2

|hj |2
β∗(1 + γ∗)

1− (K − 1)γ∗β∗ − (K − 2)β∗
. (39)

APPENDIX B

PROOF OF PROPOSITION 9

Let pi
tot be the total power at the equilibrium when user i is leader. Then for all j 6= i,

v(i) − v(j) =
(Rj −Ri) [f(β∗)− f(γ∗)] + v(j)

σ2(β∗−γ∗)

(
1

|hi|2
− 1
|hj |2

)

1−(K−1)β∗γ∗−(K−2)β∗

pi
tot

. (40)

From the definition of v we have v(i) =
Rif(γ∗)+

∑
j 6=i Rjf(β∗)

pi
tot

. Thus

v(i)pi
tot − v(j)pj

tot = (Rj −Ri) [f(β∗)− f(γ∗)] . (41)

On the other hand we have that

pj
tot − pi

tot =
∑

k

pSE
k (j ≡ leader)−

∑

k

pSE
k (i ≡ follower) =

σ2 (γ∗ − β∗)
(

1
|hj |2 − 1

|hi|2
)

1− (K − 1)β∗γ∗ − (K − 2)β∗
, (42)

which can be rewritten as

pj
tot = pi

tot +
σ2(γ∗ − β∗)

(
1

|hj |2 − 1
|hi|2

)

1− (K − 1)β∗γ∗ − (K − 2)β∗
. (43)

Plugging the latter expression of pj
tot in (41), we obtain

pi
tot(v

(i) − v(j)) = (Rj −Ri) [f(β∗)− f(γ∗)] + v(j)
σ2(β∗ − γ∗)( 1

|hj |2 − 1
|hi|2 )

1− (K − 1)β∗γ∗ − (K − 2)β∗
. (44)

Therefore, we finally have that v(i) ≥ v(j) if and only if

v(j)
σ2(β∗ − γ∗)

(
1

|hj |2 − 1
|hi|2

)

1− (K − 1)β∗γ∗ − (K − 2)β∗
≥ (Ri −Rj) [f(β∗)− f(γ∗)] . (45)
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Fig. 1. Influence of the decoding order on the social welfare.
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Fig. 2. Influence of the decoding order on the equivalent virtual MIMO network energy efficiency.
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Fig. 3. Network energy-efficiency vs spectral efficiency. Influence of the decoding scheme (SIC/SUD) for different system loads and

packet lengths (social welfare); random decoding order.
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Fig. 4. Network energy-efficiency vs spectral efficiency. Stackelberg game versus non-cooperative game for different system loads and

packet lengths (social welfare); random choice of the leader.
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