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ANALYTIC CONTINUATION OF SOME ZETA FUNCTIONS

GAUTAMIBHOWMIK (KANJINAME HERE)

1. Introduction

T he contents of this paper w ere presented as lectures at theM ura W inter School
on Zeta and L-functions held in 2008. Though the analytic continuation of zeta
fiinctions beyond its region of absolute convergence is a fundam ental question, In
general not much is known about the conditions that guarantee a m erom orphic
continuation. It is also Interesting to know how far such a fiinction can be continued,
that is w here the natural boundary of analytic continuation lies.

T he choice of functions that are considered here are ‘arbitrary’, that is a m atter
ofpersonaltaste and expertise. M ost of the w ork reported ison what Thave studied
or actually contributed to together with my co-authors. The word ‘som e’ In the
title is to Indicate that though the paper is expository, it is not exhaustive. O nly
outlines of proofs have som etin es been provided.

In the rstpart we consider Euler products. O ne of the m ost In portant appli-
cations of zeta functions is the asym ptotic estin ation of the sum of its coe cients
via Perron’s form ula, that is, the use of the equation

X 1 L a, x°
an = — — — ds:
2 1 ns s
n x c il n 1

To use this relation, one usually shifts the path of integration to the lft, thereby
reducjngghe contribution ofthe term x°. T hisbecom espossible only if the flinction
D (s) = i—“s is holom orphic on the new path. In Section 3 details of certain
exam ples from height zeta fnctions and zeta fiinctions of groups have been given.

C karly all zeta functions do not have E uler product expansions, one In portant
class of exam ples being m ultiple zeta functions which have been studied often in
recent years. Not m any general m ethods exist and here T treat the case of the
G oldbach generating function associated to G, (n), the num ber of representations

ofn asthe sum ofr prines

* X k)i ko) X G.m)
:1(k1+k2+ Hk ns

n=1

ki=1 kr

where isthe classical von-M angodt fiinction.

In alm ost all exam ples the natural boundary, if it can be obtained, corresponds
to the intuitively expected boundary and thiscan in fact be proved in a probabilistic
sense. H owever one of the di culties in actually obtaining the boundary isthat our
analyses often depend on the distribution of zeros of the R iem ann zeta function,
and thus on yet unproved hypotheses (see, for exam ple, T heorem E or T heorem ﬂ
below ).



2 G.BHOW M IK

Iwould lke to thank Jean-P ierre K ahane for his com m ents on T heorem H and to
Koh7M atsum oto for honouringm e w ith a kanjinam e. Q u‘ils soient ici rem ercies !

2. Euler products

M any D irichlet-series occurring in practice satisfy an Euler product and if this
product is sin ple w e often get som e inform ation on the dom ain of convergence ofthe
D irichlet series. Am ong such cases is the product over allprin esp of a polynom ial
n p °. One of the odest ideas is due to E sterm ann @] who obtained a precise
criterion for the continuation to the whole com plex plane of the Euler product of
an integer polynom ialin p °. He proved the existence of the follow ing dichotom y :

Theorem 1. Let

e

hX)= 1+ a;X + % %= 1 5X)27ZK]
=1
Q

then 72 (h;s) = ph(p ) is absolutely convergent for < (s) > 1 and can be m ero—
m orphically continued to the halfplane < (s) > 0. Ifh X ) is a product of cyclotom ic
polynom ials, ie. if j yj= 1 for every j, then and only then can Z (h;s) ke contin-
ued to the whole com plex plane. In all other cases the in aginary axis is the natural
boundary.

T he strategy of his proofwas to show that every point on the Ine< s= 0 isan
accum ulation point of poles or zeros of Z . E sterm ann’s m ethod was subsequently
generalised by m any authors.

D ahlquist @], for exam ple, extended the above case to h being any analytic
function with isolated singularities w ithin the unit circle. He used the concept
of vertex num bers and showed that except for the case where h (p °) hasa nite
num ber of factors of the form (1 p °) , there is a natural boundary of the
zeta function at < s= 0.

Later, Kurokawa @] continued on the idea of Esterm ann to cases where h
depends on the traces of representations of a topological group and solved Lin—
nik’sproblem for the analytic continuation of scalar products of the H ecke1, series
L (s; i) where ; are Grosssencharakters (not necessarily of nite order) of nite
extensions ofan algebraic num ber eld. H isresul can be stated m ore precisely as :

LetF=Q bea nite extension and K ;=F ber nite extensionsofdegreen; each.

The scalarproductL (s; 1;:::; ) hasthe In aghary axis asthe naturalboundary
except when
Mny;::5ny) = Ay 5;1;2) or
= (1;::::;1;2;2);

in which case L (s; 1;:::; ) can be continued to the whole of C (dbid. Part II,
T heorem 4).

T here is of course, no reason to believe that the naturalboundary would always
be a line. In an exam ple involring the Eulerphi finction @]

the boundary of continuation is an open, sin ply connected, dense set of the halt-
plhne<s> 1.
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T he question of analytic continuation ofE uler products in severalvariablesoccur
naturally in very m any contexts. To cite just one exam ple, In the study of strings
over p adic elds ], products of 5point am plitudes for the open strings are
considered, where the am plitudes are de ned asp adic integrals

Z

A= gxFPoy PRI k5051 vy 5 9x vy O axdy:

03

Q
T he product o AE can be analytically continued to the whole of C, which gives
Interesting relations of such am plitudes w ith realones.
W ewould thus lke a m ultivariable E sterm ann type of theorem . For thiswe need
som e notation EJ. Let us consider n-variable integer polynom ials hy and let
Xd
D(X1j::5%XiXne1)= 1+ e Kq5X )X )5, e
k=0
T he exponents ofthem onom ialoccurring in this expression determ ine a polyhedron
in R™ and enable us to give a description of the dora ain of convergence for the Euler
product in n com plex variablesZ (h;s1;:::;8,) = o prjmeh(p St;::5p ). Thus
wede ne, or 2 R,
\d
Vh; )= fs2 C" J< t ;si) > k+ 8 2Exth)g
k=0

where E xt(hy ) is the set of those points which do not belong to the interior of any
closed segm ent of the N ew ton polyhedron ofhy . W e show that the geom etry ofthe
naturalboundary is that ofa tube over a convex set w ith piecew ise linear boundary
and give a criterion for its existence which is analogous to T heorem EI
A polynom ialh in severalvariables is called cyclotom ic, if there existsa nite set

of non-negative integersm ;;5; and a nite set of integers integers ( )= 1;:::;9 SUch
that:

Y4

hX)= 1 XTl’j:::X;““’j)j:

=1
In EJ we prove that either h is cyclotom ic, or it determ ines a natural boundary of
m erom orphy, ie.

Theorem 2. The Eulr product

converges absolutely in the domain V (h;1) and can ke m erom orphically continued
to the dom ain V (h;0).

M oreover, Z (h;s) can ke continued to the whol com plkex space C” if and only if
h is cycbtom ic. In all other cases V (h;0) is a naturalboundary.

U sing N ew ton polyhedra we can write the above as a product of R iem ann zeta
functions and a holom orphic function n V (h;1=r), for every naturalnum ber r, ie.
Y
Z (hjs) = (tm jsi) ™) Gy, (s)

1 joj N,
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wherem is a n-tuple of positive Integers, £N g an increasing sequence of positive
Integers and G (s) an absolutely convergent Euler product. W e then treat sepa-
rately the caseswhere the set fm : () & 0Og is nite or In nite to show that a
m erom orphic continuation to V (h; ) isnot possbl forany < 0.

A result sin ilar to the above theorem can also be obtained for Euler products
of analytic functions on the unit poly-disc P (1) in C" rather than polynom ials
(opcit. Theorem 4). However T heorem E is in generalnot enough to treat Euler
products of the form o h (p;p °) which occur, for exam ple, in zeta functions of
groups and height zeta functions. In certain cases authors have been abl to nd
naturalboundaries of such Euler products w hile even for an apparently sin ple case

ke f (s) = o 1+p S+ pt 28 @]wemjghtbeunabletoprovjdeacomplete

answer (see the next section).

In fact it does not su ce to prove that each point is a lin it point of poles or
zeros of the single factors, since poles and zeros could cancel. Tn certain situations
it is possible to nd conditions which ensure that too much cancellation am ong
potential singularities is In possible and thereby get inform ation on series like the
one just cited. For instance, In E] we obtain :

Theorem 3.AssumetheRiemann —function hasin  nitely m any zeroso the line

%+ it. Suppose that £ isa fiunction of the form £ (s) - . ( (s )+ 2)" where

the exponents n  are rational integers and the series ;— converges absolutely for

every > 0. Then f is holom orphic in the halfplane <s > 1 and hasm erom orphic

continuation in the half plane <s > % . Denote by P the set of prim e num bers p,

such that n, > 0, and suppose that for all > 0 we have P ((1+ )x) P (x)

P
X7 Jog2 x. Then the line =s = % is the natural boundary of f; m ore precisely,

every point of this line is accum ulation point of zeros of £.

To get this result we need som e com binatorialgeom etry on the lines ofD ahlquist
@J. T he follow Ing is a sketch of the argum ent to get the above naturalboundary.
By assum ption ofthe falsity of the R iem ann hypothesis, forevery > 0 and every t
thereisazero = +iT of ,suchthatP (T=t) P (I=((+ )v) (T =tlog” (T=t),

where = 52 1 | Tnstead of show ing that this particular  cannot be cancelled out

by poles or zeros of other factors,, we show that not all zeros can be cancelled

out. If —=2 + L isnot a zero of £ forany p 2 P and any T; 2 @+ )t], using

o) 2
com binatorial argum ents we reach the contradictory conclusion that < % . So
n every square of the form fs :< s2 %;% + J;=s52 t+ Ig,thereisa zerooff.
Conceming general Euler products of polynom ials in p and p °, there exists a

conecture @].

P
Conjcture 1. Let W (x;vy) = nm @nm X'y" be an integral polynom ial with

W (x;0) = 1. Then D (s) = W (;p ) is m erom orphically continuablk to the

whole com pkx plane ifand ifonly if it isa nite product of Riem ann —functions.
M oreover, in the hatter case if = maxfm1 tanm & 0g, then < s= is the natural
oundary of D .

Though allknown exam ples con m this it is still far from being resolved. In
fact we believe that any re nem ent of E sterm ann s m ethod is not enough to prove
this congcture E].
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W e de ne an obstructing point z to be a complex numberwith < z = , such
that there exists a sequence of com plex numbers z;, < z; > ,z ! z,such thatD
has a pol or a zero In z; for all 1. O bviously, each obstructing point is an essential
singularity for D , the converse not being true In general.

Since D m ay not be convergent on the halfplane < s> , to continue it m ero—
m orphically it is written as a product ofR dem ann  —functions and a function R (s)
holom orphic, zero—free, and bounded on every halfplane < s> + . Thus there
exist Integers ¢, such that

D (s) = s+ m fm R (s):

n;m

W hen approxin ating D (s) by a product of R iem ann -fiinctions, the m ain contri-

bution com es from m onom ialsa, m x"y" with - = . W e collect these m onom ials
together in W that is, we have
X
WoEGY)= Wy E anm XY
P . . . . .
w here m eans sum m ation overallpairsn;m w ih mi < (n E]thetenn nology

‘ghost polynom ial’ is used).
W e can classify such polynom ials into exclusive, non-em pty cases as follow s :

1)y W =W andW iscyclotom ic; in thiscase,D isa niteproduct ofR iem ann
—flinctions;

(2) W is not cyclotom ic; in this case, every point of the line < s = is an
obstruction point;

B)W & W ,W iscyclotom ic, and there are in nitely m any pairs n;m with
anm 6 0Oand & < < 2:1;in thiscase, isan obstruction point;

4) W & W, W iscycltomic, there are only niely many pairs n;m wih

anm € 0and - < < ny;l,buttherearejn nitely m any prim es p such

that the equation W (p;p °) = 0 hasa solution sy wih < 50 > ; In this

case every point of the Iine < s=  is an obstruction point;
(5) Noneoftheabove; n thiscase, nopointon theline< s=  isan obstruction
point.

In the third case we need an understanding of the zeros of the R iem ann-zeta
function to have nform ation about the m erom orphic continuation and as we will
see In the next section that thism ay only give conditionalanswers. H owever in the
last case we m ight be ablk to saanothjng about the analytic continuation aswe
w ill see in the exam ple of D (s) = p(l g *+p 9.

W e would need som e really new ideas to understand E uler products of polyno—

mialsihpandp °.

21.A random series. From a probabilistic point of view, it is usual to study
random D irichlet series and show that alm ost surely they have naturalboundaries.
Such generic conditions com fort us in the belief that for a D irichlet series there
should be m erom orphic continuation up to an expected dom ain.

O ften in thede nition ofa random seriesthe coe cientsarerandom (forexam ple
n K ahane E] or Que elec @]) . In the follow ing H] we use random variables in
the exponent to resam ble the Euler products W (p;p °) discussed before.
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W e calla function reqular in a dom ain if it ism erom orphic up to a discrete set of
branch points in the dom ain, that is, it is holom orphic w ith the exception ofpoles
and branch points. W e can now state the follow ing probabilistic result :

Theorem 4. Let (@ ); (o );(c ) be real sequences, such thata ;b ! 1 , and set

n = lim sup s— . Let e a sequence of independent real random variablks, such
11

that
Iim infmaxP ( = x)= 0;
1 X2 R
and suppose that for > 4 the series
R
a +b

=1
converges aln ost surely. Then with prokability 1 the function

7 (s) = @s+ b )"
=1
is reqular in the halfphne < s > |, and has the line < s = } as its natural
boundary.

To give an dea of the argum entsused In the proofwe et sy = p + itbe a ponnt
on the supposed boundary w ith t& 0 rational, and consider the square S w ith side
lengthf centred In sp. For > 0 given, we show that w ith probability > 1 the
function Z is either not m erom orphic on S, orhasa zero ora pole In S. Then for
a suitably chosen index we consider

7 (s)= @s+b )"
&

such that ifZ ism erom orphicon S, so isZ . LetD ; be the divisor ofthe restriction
ofZ toS,and ktD, bethedivisorof (@ s+ b ) restricted to S. W e show that
D+ (c + )D » is non-trivial w ith probability > 1 . The num ber of zeros of

(@s+b)inSequalsN (T+h) N (T),whereN denotesthe num ber of zeros of
w ith In aginary part T ,and T and h are certain realnum bers satisfying T 1000
and h 6. U sing a classical estim ate mi], we can show that D, is non-trivial.

W e note that in the initial statem ent of the above theorem , the term ‘holom or—
phic’ appeared instead of regular’ (T heorem 3, dbid.). In fact, as pointed out by
J-P.K ahane, the nite product of -finctions dom inating the behaviour ofZ in a
halfplane< s> p+ can yield branch pointsatallpolesand zeros of the involved

—functions.

3. Examples

31. Zeta function of a sym plectic group. The local zeta function associated
to the algebraic group G is de ned asZ
ZpGjs) = jdet(@) 3 °d

+

GP
w here Gg = GQp)\ M, (Zp) , J: 3 denotes the p-adic valuation and is the
nom alised Haarm easure on G (Zy). In E], du Sautoy and G runewald prove that
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the natural boundary of the zeta function Z (G;s) of the sym plectic group G Sps

gjyenby@]
Y
Z (s=3) = () (5 3) (s 5) (s 6) 1+p- 5+p?> 5+p 5+p* 5+p

hasa naturalboundary at< s= % . To show that every point on the boundary isan
accum ulation point of zeros, the authors consider the partialderivatives at (0; 1)
oftheequation 1+ (1+ V + V2 + V3)U + V3U? = OwhereV = p %; U = p? 5.
T he In plicit Function T heorem then guarantees the existence of a solution for the
above equation n U = 1+ V + (V),where for p lJarge enough (V) contains
term s am aller than p 2. Thus for every integer n there is a solution

gl pl+ @© ') @n 1) i
s=4 + :
logp logp
Now fora argeprinep and a xed point A with < s= 4 on the boundary we can

nd a sequence of Integers n, such that QnﬁgT}) ! = @). Further the fact that

gl p'+ @ )
logp

for Jarge enough p m eans that Z (s=3) cannot be continued beyond its assum ed
boundary < s= 4.

N otice that this is an exam p]erf the “ucky’ situation we encountered in the
fourth case of the classi cation of W (p;p °).

32. H eight zeta functions. Several people in the recent past have studied the
analytic properties of height zeta functions associated to counting rational points
on algebraic varieties. O fparticular interest is the case of a variety w ith am ple anti-
canonicalbundle (called a Fano variety) V over a number eld k whose k—rational
points are Zariskidense in V, for a height function H de ned naturally over the
anticanonical sheaf. H ere an Im portant m otivation isM anin’s conjcture that, for
U a suitably de ned open subsst ofV,

fx2U k) :H x) tgj Ctlogt !

ast! 1 . In the above, C is a non zero constant and r the rank of the P icard
group ofV . There is a further conpcture, due to Peyre @], on the constant C
relating it to the Tam agaw a m easure.

W e w ill concentrate on P", the projctive n-gpace over the eld Q w ith the clas—
sicalnom alised height finction H, :P® ' ! R,y de nedby H (x) = max;fk;j,
wheregad (x1;:::;%0+1) = 1. (O therde nitions ofthe height exist but we shallnot
treat them here. T he interested reader could see, for exam ple, @]) .

W e now give details of analytic continuation and boundaries of a few zeta func-
tions in the above context which have Euler products in several variables.

32.1.A cubic surface. For studying the above case, it is possible to rst choose
the anticanonical line bundle and assum e that it be am ple. T his then determ ines
a pro gctive em bedding of the desingularised m odel of the variety using a fan de-
com position nto nitely m any sin plical integralcones (for details see, for exam ple,
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@] or @]) . The zeta function is then de ned, for < s large enough, as

D e la Breteche and Sw Innerton-D yer E] proved that the zeta function associated
to singular cubic surfaces has a natural boundary at < s = 3=4. W e ollow the
treatm ent of E]I] to give a summ ary of their original proof w here they study the
m ultiwvariable function
X 1
Z (s15s2583) = m
X1XpX3= xi

ged (x1 %2 jX3)=
outside the union of three lines In the hypersurface x4 = 0. The Euler product of
this function is given by
Y 1+ P (l ﬁsi )p (2s55+ sk ) P (3s1+ 352+ 383)
o Q@ ps)a pe)ya pe)

where In the sum each of i;j;k take the values 1;2;3. The above is then w ritten
with the help of functions ‘convenient’ for < s > = and F (s) which involves the
Euler product of a polynom ialin two variables

W x;yv)=1+ (1 fy)(xij 24 x5y Ty x*y x2y2+ xy3+ y4) fy?’

with x = p '™%; y= p°™ °. Here again the authors succeed in establishing that
every point on t}be assum ed boundaryQJs the lin it point of a subset of zeros of the

fanction F (s)= = W (o 1=4,0%70 9 - .0 p (+3 1)y Fora xedprinep,
the num ber of zerosw ith < s> %ofw , 1le.
3

Ty p——  +y0 ——
4 4 2p7tIogp p>~% Iogp

islarge. Now for<s> 2+ X, there exist suitably chosen nite num ber of integers

4 N
bk ;k% such that
Y Y
F (s) = k+ ¥ P Wy e T %)
k k0 p
k kO=4+ k0=N > 1

k k0
k k9=4+k0=N > 1

The zeros of Wy  ™%;p°™* %) and W @ %;p°"* °) are the same. Further for
every real one can construct a sub-sequence of its zeros w hich converge to% + 1
and w hich are not poles of

Y

G+ ¥ 1PEFD.
kk©
k kO=4+ k0=N > 1

T hese zeros are again the zeros of F (s) and therefore no continuation is possible
beyond the assum ed boundary.
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For what concerns the asym ptotics, it is known that
§x2U :H x) tij=1t (logt)+ 0 % )
£ 1=p) @+ T=p+

SN

w here the degree 0£Q is 6 and the leading coe cient is
1=p)g.

P

322.An n-ood product. Tn E], we consider instead an in plicit pro fctive em bed—
ding determ Ined by a nite set of equations and do not need a fan decom position.

Let X be a toric variety and Ag;, = A ad n integer m atrix all of whose row
sum s are zero. T he rational points of the toric variety are de ned by

Y Y
X @)= f; o) &P TQ): X = x; 7% 83g
iay;: 0 i=y;:< 0
and the m axim altorus U (A ) com prises of those elem ents of X (A ) the product of
whose coordinates is non—zero. Each point in the m axim al torus corresponds to a
unique n-tuple of coprin e positive integers which we denote by m 1 ; n )M
W ede neamultivariable zeta function, for< s; > 1, com parable to the one used

for toric varieties in @] as

X Famgy; n)im
Zp (s) = s
m 2N ml e
w here
Y a.:
Fa mg; n)yim= 1 if god m1; n)ml; myt =187
i
= 0 otherw ise.

The de ning equations are m ultiplicative and we thus get an Euler product
expansion of an analytic finction In n com plex variables

Now the function hy (X ) is expressed as a rational function
Y
1 x) ““'wmx)

2K

for positive integers c( ), a nite index sest K and an integer n-variable polynom ial
W .W e can prove, using T heorem E, that Z, (s) hasa naturalboundary. In fact, it
is possible to explicitly describe the whole boundary of analytic continuation (see
EJ, Theorem 6). T he description of the analytic continuation of this zeta fiinction
can now be used to deduce the asym ptotic properties of the height density function

on U (&) because of the equation
X
Jx2U0@A):H X)=maxd;x)] tjij=C@) Fa mzq; n);m
* m; t
where C (&) is a com putable constant.

A s a gpecial case, we get asym ptotic results for the num ber of n-fold products of
relatively prim e positive integers that equal the nth power of an integer. B atyrev
and T schinkel E] showed that this problem is equivalent to the asym ptotic de—
scription of the height density function on the m axin al torus of the hyper-surface
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X1 n =3¢, ;. Now that there is only one equation nvolved, ie. d= 1,we use
thematrix A, = (1; ;1; n) and the rationalpoints are
U@y = £ n+3X2 P Q) 1x1 n =Xp, 175 X1 n §30g:

To express hp, (X ) precisely as a rational function on the unit poly-disc P (1) we

notice that if %

ha, X)= X

for 2 Ng”l,to satisfy thede nition of Fp, werequirethatA, ( )= 0. Thusfra
n-tuple r, we use the notation jfor itsweight, ie.the sum of itsn coordinatesand
for all r such that ¥#n is a non-negative integer, we let 1(r) = (@ ;:::5;m ;¥ Fn).
Further we ensure that the condition of coprin ality of the p ! ism et and obtain

¥ 1 X JFn
ha, ®)=( @ X{Xp+1) 7) XitinX X :

n+1
i=1 JFFn2Ng
The sum In the expression above isnot cyclotom ic and this gives the naturalbound-

ary of
Y X 1
Zp, (8)=R ( el )
n (r);si
P r2D, ph

for R a nite product of R iem ann zeta functions, to be
V (0)= fs2 C**! < (l@);si) > 0 8r2D,g:

U sing the above analytic properties and a m ultivariable Tauberian theorem @] we
prove that

Theorem 5. There exists > 0 such that

Fx2U@,):H (x) ti=1t0,0gt)+ 0 )

where Q , (logt) is a non-vanishing pokymnom ial of degree d,, = 2n 1 n 1.

n

A ctually we can describe the last polynom ial rather precisely for alln 3 (|,
Theorem 7).

33.Unlucky cases. In the last two subsections we could give satisfactory de-
scriptions of the analytic behaviour of the Euler products. T his need not alwaysbe
possible. In the follow ing we can only show the existence of a conditional natural
boundary E].

P roposition 1. Suppose that there are in nitely m any zerosof o the ]Jné + it.

T hen the function .

f(s)= 1+ p
p

s 1 2s

has m erom orphic continuation to the half plane <s > %, and the line <s = % is the
naturalloundary of f£.

This is an exam pl of case (3) of our classi cation of the previous section. W e
notice that the real parts of the zeros of f (s) are exactly % and thus we can not
construct a sub-sequence of zeros or poles which would converge on each point of
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the presum ed naturalboundary <s = % . The conditional result above is attained

by expressing f (s) as a product of functions ‘convenient’ for < s > % and

Y (4m + 1)s  2m)
(4m + 3)s 2m 1)

m

which is of the type considered in T heorem E
W e next consider the Euler product D (s) =
w ritten as

p(l B °+ p ®) whith can be

p S
D (s) = 1 s 1+ ———)= (s 2)D (s):
(s) S e ] )= & 206
W e expect a natural boundary at < s = 2, or at least an essential sinqularity at
s= 2, and our only m ethod to prove this is to approach this point from the right.

P P

But for< s= > 2 we estin ate the second product as
X X on  (2n+ 1) X 2X (2 % 2 1
. + .
TS p p" P>
pon 1 p n 1 p

So the product forD  converges absolutely in the halfplane < s> 2, in particular,
D does not have any zeros or poles In this halfplane. This exam ple falls under
case (5) of the classi cation m entioned. It is worse than P roposition ﬂ where we
could not unconditionally prove the existence of zeros or poles clustering on the
assum ed boundary whereas here such zeros or poles do not even exist.

4.No Euler products

T here are num erous contexts In which we com e across zeta fiinctions that do not
have an Euler product. W e cite just two exam ples. The rst, m entioned because
it com es from a context quite di erent from the other exam ples we treated, is that
of D irichlet series generated by nite autom ata.

Roughly speaking, a sequence (u,) wih valles in a nite set is d-autom atic if
we can com pute the n-th term of the sequence by feeding the base d representation
ofn to a nite state m achine. O ne of the best known am ong 2-autom atic cases is
the T hueM orse sequence,

01 10 1001 10010110

generated by the substitution maps 0! 01; 1! 10.TheD richlet seriesP i: 0 f]“s
corresponding to a d-autom atic sequence can be m erom orphically continued to the
whole com plex plane. Am ong consequences it is proved ﬂ] that autom atic sequences
have logarithm ic densities. Tt would be interesting to know how D irichlet series
associated to non autom atic sequences (lke the in nite F dbonacci word generated
by the substitutions 0! 01; 1! 0) behave.

T he second exam ple is in severalvariables. The EulerZagier sum de ned as

® ®
r(s1; £) s m,¥ @i+ my) * 1 Hm o 1
mip=1 m,=1
has been studied w ith m uch enthusiaan . T his function can be analytically contin—
ued to the whole C* gpace. M atsum oto introduced the generalised multiple zeta
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fiunction
Xr XY ‘
r((s17 r)ifsii e)iiw; £)iw (i+tmiwg v %
j=1m4=0i=1
wherew;;m ; are com plex param etersw ith branches of logarithm s suitably de ned.
This too can be continued as a m erom orphic fiinction to the whole C* plane. W e
do not w ish to elaborate on this subjct but the interested reader can nd details
elsew here (see, for exam ple, the expository paper E] for references) .

41.G oldbach zeta function. Here we consider the number G, n); r 2, of
representations of n as the sum ofr prin es. Egam iand M atsum oto @] Introduced
the generating function

x ® ki) k) x Gy ()

(k1+k2+ r)’ﬁi ns
=1 n=1

ki=1 ky

using the von M angoldt finction . T his serdes is absolutely convergent for< s > r,
and has a sinple pol at s = r. It is clear that to study the analytic properties
In this context it is necessary to have inform ation on the zero-free region of , the
Riem ann zeta function, and the presence of even one zero of may prevent us
from having useful inform ation. A 1l resuls that we will tak about w ill therefore
be under the assum ption of the R iem ann H ypothesis RH ).

W e can show that from the analytic point of view, under RH, ., isdetermm ined
by thecaser= 2 ﬂ].

Theorem 6. Suppose that the R iem ann H ypothesis is true. Then for any r 3
there exist polynom ials fy (s);9- (s);hy (), such that
0
r(8)=1f,(8) (s r+1l)+gs)—((6 r+ 1)+ h(s) 2(s r+ 2)+ R(s);

where R (s) is holom orphic in the halfplne <s> r 1 and uniform Iy lounded in
each halfstrip of the form <s> r+ 1, T < =s< T+ 1,with T > 0.

T his is done by com puting the function using the circle m ethod which give the

threem ain termm s. A bound (under RH) for
X X

(n)eZ in eZ in

n x n x

gives an error term of order O (x* *

three temm s.

Tt is thus in portant to consider the situation of r = 2. W e recall that this
case occurs In the consideration of the G oldbach confcture that every even integer
larger than 2 is the sum of two prines. To study this problem often it is natural
to consider the corresponding problm for and try to show thatG , m) > C™ n.

Now , assum ing the RH, the authors in E] described the analytic continuation
of , and for obtaining a natural boundary they used unproved assum ptions on
the distribution of the Im aginary parts of zeros of . In this context we denote the
set of Im aginary parts of non-trivial zeros of by . The belief that the positive
elementsin  are rationally ndependent is fokloric and Fu ju[@] used the follow ing
specialcase :

) for some  positive for all but the above
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Conjecture 2. Suppose that 1+ ,= 3+ 46 Owith ;2 .Then f 1; ,g=
f 37 49.

In @] an e ective version of the above conecture is form ulated, ie.

Conkcture 3. There issome < 5, such that for q;:::; 4 2 we have either
f 17 29=1f 37 49,0r

1+ 2) (3+ 4)] exp (J13+ J23+ J33+ J4I
and it is proven that:

T heorem 7. Suppose the R iem ann hypothesis hods true. Then , (s) can ke m ero—
m orphically continued into the halfplane <s> 1 with an in nihtide of poks on the
line %‘F it. If in addition Conjecmreﬁ holds true, then the line < s= 1 isthe natural
oundary of ;.M ore precisely, the setofpoints 1+ 1 withlm 13 ( + )j=1
isdense on R.

In [bid.] the authors conjctured that under the sam e assum ptions the dom ain
of m erom orphic continuation of , should be the halfplane <s > r 1. Notice
that a direct consequence of T heorem [d con mm s the follow Ing :

Theorem 8. Ifthe RH holds true, then . (s) hasa naturalloundaryat<s=r 1
forallr 2 ifand only if ; (s) has a naturallboundary at <s= 1.

In ﬂ] it isalso shown that iftheRH and C onﬁctureE hold true, then , (s) does
have a naturalboundary at <s= 1 and a singularity can be described precisely as

Theorem 9. If the RH holds true, then , has a singulbrity at2 1, where ; =
%+ 14:1347 :::iisthe rstrootof .M oreover,

Im Djz2@2 1+ )3> 0:

Thislastresulthelpsusobtain an -resultforG , (n). W e consider the oscillating
term

w here the sum m ation runs over allnon—rivial zeros of . T he generating D irichlet
series for

hasa singularity at 2 1 + r 1, which gives the follow ing :

Corollary 1. Suppose that RH holds true. Then we have
X 1
G,Mm)= —'xr +H o x)+ ®T )
. r!

In fact the quality of the error term does not In prove w ith increasing r. W e
mention a few historical facts about the error tem . Fujjj@] obtained under the
RH X

G, ()= x?=2+ 0 (x*7?%)

n x
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which he later In proved @], by explicitly writing the oscillating term , to
X

GoMm)= x*=2+ H, x)+ O ((xlogx)*3):

n x

Further, in E] we used the distribution of prin es in short intervals to estim ate
exponential sum s close to the point 0 and proved that

Theorem 10. Suppose that the RH is true. Then we have
X 1, 5
Gz(n)=5x + H, ®X)+ O xlog” x);

n x

and X

1
G,(n)= Ex2+ H, ®)+ . xlbglgx):

n x

which con m s the conjpctural value of the error term @, Conij.22].

Recently G ranvﬂle@]used the errortem O ((x logx)*~>) to obtai a new charac—
terisation ofthe RH, ie. for the “w in prin e constant’C,, the R iem ann H ypothesis
is equivalent to the estim ate

X Y 1
G,n) nC P~ 2o :

. p 2
n x Pn

Using the GRH one could sim ilarly nd bounds for the exponential sum s In
question which would give

Theorem 11. The G eneralised R iem ann H ypothesis for D irichlet L -functionsL (s; ),
m od g, is equivalent to the estim ate
X 1 X
Gon)= ——
@)

n x;gqn n o x

Gym)+ 0 " °W);

as announced in [bid.T heorem 1C].

5. Consequences

O ne of the am using consequences of the existence of a natural boundary is to
suggest that there isa hatural’ lim it to what can be achieved for asym ptotic resuls
associated to D irichlet series by using com plex analysis. A naturalboundary could
show the non-existence of certain asym ptotic results nvolring error term s and thus
Inply the existence of an inverse result, ie.an -tem . Usually when proving an

—result we rst derive an explicit form ula w ith oscillating term s and then show
that these term s cannot cancel each other out for all choices of the param eters. In
] we show that even ifwe allow for In nite oscillatory sum s to be part ofthem ain
term s, we still get lower bounds for the error term s. T hus a natural boundary at
<s = precludes the existence of an explicit form ula w ith m ain term s over the
zeros of the R iam ann zeta function and an error term O (x ). W e state thism ore
precisely as :

P roposition 2. Leta, be a sequence of com plex num kers such that the generating
D irichlket—series has a naturalboundary at <s = . Then there does not exist an

explicit form ula of the form
X X
A (x) = an = cx +0 X))
n x 2R
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for any sequence cwith £ j (1+ j )and R \ fs:<s> ;¥sj< Tgj T°and
for any < . In particulr, for any sequence ;i; i, 1 i kandany > 0Owe
have e

A (x) = XA+ o x P

Tn practice, the integraltaken over the shifted path need not alw ays converge and
wem ay not be abl to obtain an explicit form ula. T his can happen even when the
series ism erom orphic in the entire plane, for exam ple, the age-old divisor problem
where we have an -estin ate of size x =% though the corresponding D irichlet-series

2 (s) ism erom orphicon C .

However, in certain cases we can actually obtain explicit formulae if we nd
ounds on the grow th ofthe D irichlet—series. W e consider a case ofan E uler product
oW Eip ®) which we have already encountered as the p-adic zeta function of

G Sps . This can be interpreted as a counting function E] by establishing a bifction
between right cosets of 2t 2t sym plectic m atrices and sub m odules of nite index
of 22 which are equalto their duals and called polarised.

Theorem 12. Denote by a, the num ker of polarised subm ocdules of Z° of order n.
Then we have for every > 0
X

X ‘3
1) A®X)= ape "7 = clx7:3 + sz2 + C3X5:3 + x T o+ 0 T );

n 1

where runs over all zeros of , and the coe cients ¢, &, &, and are nu-—
m erically com putablk constants. M oreover, the error term cannot be Im proved to
0 ®*= )fPrany =xed > 0.

T he interpretation above allow s us to use the zeta function Z (G Sps;s) as the
generating function for a, . Applying the M ellin transform we obtain

37 il
l S
AX)= — Z (s) (s)x~ ds:
2 1
3 i1
For and > 0 xed, we have ( + ib) e 7 ' Wenow choose a path

(follow Ing Turan @, Appendix G ]) to shift the integration. T he integral on this
new path is bounded above by x*~3* . Hence, we obtain the form ula
X

A (x) = ()x res— Z (s)+ 0 ™" );

< > 4=3+

where runsoverthepolesofZ (s), and allcom plex num bers 4=3+ =6.W e already
saw that< s= % is the naturalboundary for Z (s) and as in P roposition E, W e now
get an -—resul.

The m oralof the story is not necessarily to get the best possble -—result but to
show that a non-+rivial result is obtainable by thism ethod.
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