Introduction

T he contentsofthi spaperwerepresented asl ecturesatthe M i ura W i nterSchool on Zeta and L-functi ons hel d i n 2008. T hough the anal yti c conti nuati on of zeta functi ons beyond i ts regi on ofabsol ute convergence i s a fundam entalquesti on,i n generalnot m uch i s know n about the condi ti ons that guarantee a m erom orphi c conti nuati on.Iti sal so i nteresti ng to know how farsuch a functi on can beconti nued, that i s w here the naturalboundary ofanal yti c conti nuati on l i es.

T he choi ce offuncti ons thatare consi dered here are ' arbi trary' ,thati sa m atter ofpersonaltasteand experti se.M ostofthe work reported i son w hatIhavestudi ed or actual l y contri buted to together w i th m y co-authors. T he word ' som e'i n the ti tl e i s to i ndi cate that though the paper i s exposi tory,i t i s not exhausti ve. O nl y outl i nes ofproofs have som eti m es been provi ded.

In the rst part we consi der Eul er products. O ne ofthe m ost i m portant appl icati ons ofzeta functi ons i s the asym ptoti c esti m ati on ofthe sum ofi ts coe ci ents vi a Perron' sform ul a,that i s,the use ofthe equati on

X n x a n = 1 2 i c+ i1 Z c i1 X n 1 a n n s
x s s ds:

To use thi s rel ati on,one usual l y shi fts the path ofi ntegrati on to the l eft,thereby reduci ng the contri buti on ofthe term x s .T hi sbecom espossi bl e onl y i fthe functi on D (s) = P an n s i s hol om orphi c on the new path. In Secti on 3 detai l s of certai n exam pl es from hei ghtzeta functi ons and zeta functi ons ofgroups have been gi ven.

C l earl y al lzeta functi ons do not have Eul er product expansi ons,one i m portant cl ass ofexam pl es bei ng m ul ti pl e zeta functi ons w hi ch have been studi ed often i n recent years. N ot m any general m ethods exi st and here I treat the case of the G ol dbach generati ng functi on associ ated to G r (n),the num ber ofrepresentati ons ofn as the sum ofr pri m es

1 X k1 = 1 1 X kr = 1 (k 1 )::: (k r ) (k 1 + k 2 + + k r ) s = 1 X n = 1 G r (n) n s :
w here i s the cl assi calvon-M angol dtfuncti on.

In al m ost al lexam pl es the naturalboundary,i fi t can be obtai ned,corresponds to thei ntui ti vel y expected boundary and thi scan i n factbeproved i n a probabi l i sti c sense.H oweverone ofthe di cul ti esi n actual l y obtai ni ng the boundary i sthatour anal yses often depend on the di stri buti on ofzeros ofthe R i em ann zeta functi on, and thus on yet unproved hypotheses (see,for exam pl e,T heorem 3 or T heorem 7 bel ow ).

1 Iwoul d l i ke to thank Jean-Pi erreK ahaneforhi scom m entson T heorem 4 and to K ohjiM atsum oto forhonouri ng m e w i th a kanjinam e. Q u' i l s soi enti cirem erci es! 2. E uler products M any D i ri chl et-seri es occurri ng i n practi ce sati sfy an Eul er product and i fthi s producti ssi m pl eweoften getsom ei nform ati on on thedom ai n ofconvergenceofthe D i ri chl etseri es.A m ong such casesi sthe productoveral lpri m esp ofa pol ynom i al i n p s . O ne ofthe ol dest i deas i s due to Esterm ann [START_REF] Sterm Ann | O n certain functions represented by D irichletseries[END_REF]w ho obtai ned a preci se cri teri on for the conti nuati on to the w hol e com pl ex pl ane ofthe Eul er product of an i ntegerpol ynom i ali n p s . H e proved the exi stence ofthe fol l ow i ng di chotom y :

T heorem 1. Let h(X )= 1 + a 1 X + + a d X d = d Y j= 1 (1 j X )2 Z[ X ] then Z (h;s) = Q p h(p s
) is absol utel y convergent for < (s) > 1 and can be m erom orphicall y continued to the hal fpl ane < (s)> 0. Ifh(X )isa productofcycl otom ic pol ynom ial s, i.e.ifj j j= 1 for every j,then and onl y then can Z (h;s) be continued to the whol e com pl ex pl ane. In allother cases the im aginary axis is the natural boundary.

T he strategy ofhi s proofwas to show that every poi nt on the l i ne < s = 0 i s an accum ul ati on poi nt ofpol es or zeros ofZ. Esterm ann' s m ethod was subsequentl y general i sed by m any authors.

D ahl qui st [START_REF] Ahlquist | O n the analytic continuation of E ulerian products[END_REF] , for exam pl e, extended the above case to h bei ng any anal yti c functi on w i th i sol ated si ngul ari ti es w i thi n the uni t ci rcl e. H e used the concept ofvertex num bers and showed that except for the case w here h(p s ) has a ni te num ber of factors of the form (1 p s ) , there i s a naturalboundary of the zeta functi on at < s = 0.

Later, K urokawa [START_REF]O n the m erom orphy of E uler products[END_REF] conti nued on the i dea of Esterm ann to cases w here h depends on the traces of representati ons of a topol ogi cal group and sol ved Li nni k' sprobl em forthe anal yti c conti nuati on ofscal arproductsofthe H ecke-L seri es L(s; i ) w here i are G r osssencharakters (not necessari l y of ni te order) of ni te extensi onsofan al gebrai c num ber el d.H i sresul tcan be stated m ore preci sel y as:

LetF =Q be a ni te extensi on and K i =F be r ni te extensi onsofdegree n i each. T he scal arproductL(s; 1 ;:::; r )hasthe i m agi nary axi sasthe naturalboundary except w hen (n 1 ;:::;n r ) = (1;:::::: ;1;?) or = (1;::::;1;2;2); i n w hi ch case L(s; 1 ;:::; r ) can be conti nued to the w hol e ofC (i bi d. Part II, T heorem 4).

T here i s ofcourse,no reason to bel i eve thatthe naturalboundary woul d al ways be a l i ne. In an exam pl e i nvol vi ng the Eul er-phifuncti on [START_REF]Sur la repartition des z eros de certaines fonctions m erom orphes li ees a la fonction zêta de R iem ann ,th ese de doctorat[END_REF] 

Z (s)= 1 X n = 1 1 (n) s = Y p 1 + (p 1) s (1 p s ) 1 ;
the boundary ofconti nuati on i s an open,si m pl y connected,dense set ofthe hal fpl ane < s > 1.

T hequesti on ofanal yti cconti nuati on ofEul erproductsi n severalvari abl esoccur natural l y i n very m any contexts. To ci te just one exam pl e,i n the study ofstri ngs over p adi c el ds [START_REF] Freund | N on-archim edean string dynam ics[END_REF] , products of 5-poi nt am pl i tudes for the open stri ngs are consi dered,w here the am pl i tudes are de ned as p adi c i ntegral s

A p 5 (k i )= Z Q 2 p
jx j k1 k2 jy j k1 k3 j1 x j k2 k4 j1 y j k3 k4 jx y j k2 k3 dxdy:

T he product Q p A p 5 can be anal yti cal l y conti nued to the w hol e ofC ,w hi ch gi ves i nteresti ng rel ati ons ofsuch am pl i tudes w i th realones. W e woul d thusl i ke a m ul ti vari abl e Esterm ann type oftheorem .Forthi swe need som e notati on [START_REF] Ssouabri | M erom orphic C ontinuation of M ultivariable E uler P roducts[END_REF] . Let us consi der n-vari abl e i nteger pol ynom i al s h k and l et h(X 1 ;:::

;X n ;X n + 1 )= 1 + d X k= 0 h k (X 1 ;:::;X n )X k n + 1 :
T heexponentsofthem onom i aloccurri ng i n thi sexpressi on determ i nea pol yhedron i n R n and enabl e usto gi vea descri pti on ofthe dom ai n ofconvergenceforthe Eul er producti n n com pl ex vari abl esZ (h;s 1 ;:::;s n )=

Q

p prim e h(p s1 ;:::;p sn ). T hus we de ne,for 2 R ,

V (h; ): = d \ k= 0 fs 2 C n j< (h ;si)> k + 8 2 E xt(h k )g
w here E xt(h k ) i s the setofthose poi nts w hi ch do notbel ong to the i nteri orofany cl osed segm entofthe N ew ton pol yhedron ofh k . W e show thatthe geom etry ofthe naturalboundary i sthatofa tube overa convex setw i th pi ecew i se l i nearboundary and gi ve a cri teri on for i ts exi stence w hi ch i s anal ogousto T heorem 1. A pol ynom i alh i n severalvari abl esi scal l ed cycl otom i c,i fthere exi stsa ni te set ofnon-negati ve i ntegers m i;j and a ni te set ofi ntegers i ntegers ( j ) j= 1;:::;q such that:

h(X )= q Y j= 1 (1 X m 1;j 1 :::X m n ;j n ) j :
In [START_REF] Ssouabri | M erom orphic C ontinuation of M ultivariable E uler P roducts[END_REF]we prove that ei ther h i s cycl otom i c,or i t determ i nes a naturalboundary of m erom orphy,i . e.

T heorem 2. T he Eul er product

Z (h;s)= Z (h;s 1 ;:::;s n )= Y p h(p s1 ;:::;p sn ) converges absol utel y in the dom ain V (h;1) and can be m erom orphicall y continued to the dom ain V (h;0). M oreover,Z (h;s) can be continued to the whol e com pl ex space C n ifand onl y if h is cycl otom ic. In allother cases V (h;0) is a naturalboundary.

U si ng N ew ton pol yhedra we can w ri te the above as a product ofR i em ann zeta functi ons and a hol om orphi c functi on i n V (h;1=r),forevery naturalnum berr,i . e.

Z (h;s)= Y 1 jm j N r (hm ;si) (m ) G 1=r (s)
w here m i s a n-tupl e ofposi ti ve i ntegers,fN r g an i ncreasi ng sequence ofposi ti ve i ntegers and G (s) an absol utel y convergent Eul er product. W e then treat separatel y the cases w here the set fm : (m ) 6 = 0g i s ni te or i n ni te to show that a m erom orphi c conti nuati on to V (h; ) i s not possi bl e for any < 0.

A resul t si m i l ar to the above theorem can al so be obtai ned for Eul er products of anal yti c functi ons on the uni t pol y-di sc P (1) i n C n rather than pol ynom i al s (op. ci t. T heorem 4). H owever T heorem 2 i s i n generalnot enough to treat Eul er products of the form Q p h(p;p s ) w hi ch occur,for exam pl e,i n zeta functi ons of groups and hei ght zeta functi ons. In certai n cases authors have been abl e to nd naturalboundari esofsuch Eul erproductsw hi l e even foran apparentl y si m pl e case l i ke f(s) = [START_REF] Sautoy | Zeta functions of groups and natural boundaries[END_REF]we m i ght be unabl e to provi de a com pl ete answer (see the next secti on).

Q p 1 + p s + p 1 2s
In fact i t does not su ce to prove that each poi nt i s a l i m i t poi nt ofpol es or zeros ofthe si ngl e factors,si nce pol es and zeros coul d cancel . In certai n si tuati ons i t i s possi bl e to nd condi ti ons w hi ch ensure that too m uch cancel l ati on am ong potenti alsi ngul ari ti es i s i m possi bl e and thereby get i nform ati on on seri es l i ke the one just ci ted. For i nstance,i n [START_REF]J-C Schlage-P uchta,N aturalB oundariesofD irichletSeries[END_REF]we obtai n : T heorem 3. A ssum e the R iem ann -function has in nitel y m any zeros o the l ine

1 2 + it. Suppose thatf isa function ofthe form f(s)= Q 1 ( (s 1 2 )+ 1 2
) n where the exponents n are rationalintegers and the series P n 2 converges absol utel y for every > 0. T hen f is hol om orphic in the hal fpl ane < s > 1 and has m erom orphic continuation in the hal f pl ane < s > 1 2 . D enote by P the set of prim e num bers p, such that n p > 0, and suppose that for all > 0 we have P ((1 + )x) P (x)

x p 5 1 2
l og 2 x. T hen the l ine = s = 1 2 is the naturalboundary of f; m ore precisel y, every pointofthis l ine is accum ul ation pointofzeros off.

To getthi sresul twe need som e com bi natori algeom etry on the l i nesofD ahl qui st [START_REF] Ahlquist | O n the analytic continuation of E ulerian products[END_REF] . T he fol l ow i ng i s a sketch ofthe argum entto getthe above naturalboundary. B y assum pti on ofthe fal si ty ofthe R i em ann hypothesi s,forevery > 0 and every t therei sa zero = + iT of ,such thatP (T=t) P (T=((1+ )t)) (T=t) l og 2 (T=t), w here = p 5 1

2 . Instead ofshow i ng that thi s parti cul ar cannotbe cancel l ed out by pol es or zeros of other factors, , we show that not al l zeros can be cancel l ed out. If 1=2 p + 1 2 i s not a zero off for any p 2 P and any T p 2 [ t;(1 + )t] ,usi ng com bi natori alargum entswe reach the contradi ctory concl usi on that < p 5 1

2 . So i n every square ofthe form fs :< s 2 [ 1 2 ; 1 2 + ] ;= s 2 [ t;t+ ] g,there i sa zero off. C oncerni ng generalEul er products ofpol ynom i al s i n p and p s ,there exi sts a conjecture [START_REF] Sautoy | Zeta functions of groups and rings[END_REF] .

C onjecture 1. Let W (x;y) = P n ;m a n ;m x n y m be an integral pol ynom ial with W (x;0) = 1. T hen D (s) = Q p W (p;p s
) is m erom orphicall y continuabl e to the whol e com pl ex pl ane ifand ifonl y ifitis a nite product ofR iem ann -functions. M oreover,in the l atter case if = m axf n m :a n ;m 6 = 0g,then < s = is the natural boundary ofD .

T hough al lknow n exam pl es con rm thi s i t i s sti l lfar from bei ng resol ved. In fact we bel i eve that any re nem ent ofEsterm ann' s m ethod i s not enough to prove thi s conjecture [START_REF]J-C Schlage-P uchta,E ssentialsingularities ofE uler products[END_REF] .

W e de ne an obstructi ng poi nt z to be a com pl ex num ber w i th < z = ,such that there exi sts a sequence ofcom pl ex num bers z i ,< z i > ,z i ! z,such that D hasa pol e ora zero i n z i for al li. O bvi ousl y,each obstructi ng poi nt i s an essenti al si ngul ari ty for D ,the converse not bei ng true i n general .

Si nce D m ay not be convergenton the hal f-pl ane < s > ,to conti nue i t m erom orphi cal l y i t i s w ri tten as a product ofR i em ann -functi ons and a functi on R (s) hol om orphi c,zero-free,and bounded on every hal f-pl ane < s > + . T hus there exi st i ntegers c n ;m such that

D (s)= Y n ;m (ns+ m ) cn ;m R (s):
W hen approxi m ati ng D (s) by a product ofR i em ann -functi ons,the m ai n contributi on com esfrom m onom i al sa n ;m x n y m w i th n m = . W e col l ectthese m onom i al s together i n W that i s,we have

W (x;y)= W (x;y)+ X n ;m a n ;m x n y m ;
w here P m eanssum m ati on overal lpai rsn;m w i th n m < (i n [START_REF] Sautoy | Zeta functions of groups: zeros and friendly ghosts,A m er[END_REF]theterm i nol ogy ' ghost pol ynom i al 'i s used).

W e can cl assi fy such pol ynom i al s i nto excl usi ve,non-em pty cases as fol l ow s :

(1) W = W and W i scycl otom i c;i n thi scase,D i sa ni te productofR i em ann -functi ons; (2) W i s not cycl otom i c; i n thi s case, every poi nt of the l i ne < s = i s an obstructi on poi nt;

(3) W 6 = W , W i s cycl otom i c,and there are i n ni tel y m any pai rs n;m w i th a n ;m 6 = 0 and n m < < n + 1 m ;i n thi s case, i s an obstructi on poi nt; (4) W 6 = W , W i s cycl otom i c, there are onl y ni tel y m any pai rs n;m w i th a n ;m 6 = 0 and n m < < n + 1 m ,but there are i n ni tel y m any pri m es p such that the equati on W (p;p s ) = 0 has a sol uti on s 0 w i th < s 0 > ;i n thi s case every poi nt ofthe l i ne < s = i s an obstructi on poi nt;

(5) N oneoftheabove;i n thi scase,no poi nton thel i ne< s = i san obstructi on poi nt.

In the thi rd case we need an understandi ng of the zeros of the R i em ann-zeta functi on to have i nform ati on about the m erom orphi c conti nuati on and as we w i l l see i n the nextsecti on thatthi sm ay onl y gi ve condi ti onalanswers.H oweveri n the l ast case we m i ght be abl e to say nothi ng about the anal yti c conti nuati on as we w i l lsee i n the exam pl e ofD (s)= Q p (1 p 2 s + p s ). W e woul d need som e real l y new i deas to understand Eul er products ofpol ynom i al s i n p and p s .

1.

A random series. From a probabi l i sti c poi nt of vi ew , i t i s usualto study random D i ri chl etseri esand show thatal m ostsurel y they have naturalboundari es. Such generi c condi ti ons com fort us i n the bel i ef that for a D i ri chl et seri es there shoul d be m erom orphi c conti nuati on up to an expected dom ai n.

O ften i n thede ni ti on ofa random seri esthecoe ci entsarerandom (forexam pl e i n K ahane [START_REF] Ahane | Som e random series of functions[END_REF]or Q u e el ec [START_REF]P ropri et es presque sûres des s eries de D irichlet et des produits d'E uler[END_REF] ). In the fol l ow i ng [START_REF]J-C Schlage-P uchta,N aturalB oundariesofD irichletSeries[END_REF]we use random vari abl es i n the exponent to resem bl e the Eul er products W (p;p s ) di scussed before.

W e cal la functi on regul ari n a dom ai n i fi ti sm erom orphi cup to a di screte setof branch poi nts i n the dom ai n,that i s,i t i s hol om orphi c w i th the excepti on ofpol es and branch poi nts. W e can now state the fol l ow i ng probabi l i sti c resul t : 

T heorem 4. Let
l i m i nf ! 1 m ax x2 R P ( = x)= 0;
and suppose thatfor > h the series

1 X = 1 j c + j 2 a + b
converges al m ostsurel y. T hen with probabil ity 1 the function

Z (s)= 1 Y = 1 (a s+ b ) c +
is regul ar in the hal f-pl ane < s > h and has the l ine < s = h as its natural boundary.

To gi ve an i dea ofthe argum entsused i n the proofwe l ets 0 = h + itbe a poi nt on the supposed boundary w i th t6 = 0 rati onal ,and consi derthe square S w i th si de l ength 2 n centred i n s 0 . For > 0 gi ven,we show that w i th probabi l i ty > 1 the functi on Z i s ei ther not m erom orphi c on S,or has a zero or a pol e i n S. T hen for a sui tabl y chosen i ndex we consi der

Z (s)= 1 Y 6 = (a s+ b ) c + :
such thati fZ i sm erom orphi con S,so i sZ .LetD 1 be thedi vi soroftherestri cti on ofZ to S,and l et D 2 be the di vi sor of (a s+ b ) restri cted to S. W e show that D 1 + (c + )D 2 i s non-tri vi alw i th probabi l i ty > 1

. T he num ber ofzeros of (a s+ b )i n S equal sN (T + h) N (T ),w here N denotesthe num berofzerosof w i th i m agi nary part T ,and T and h arecertai n realnum berssati sfyi ng T 1000 and h 6. U si ng a cl assi calesti m ate [START_REF] Acklund | U ber die N ullstellen der R iem annschen Zetafunktion[END_REF] ,we can show that D 2 i s non-tri vi al . W e note that i n the i ni ti alstatem ent ofthe above theorem ,the term ' hol om orphi c'appeared i nstead of' regul ar'(T heorem 3,i bi d. ). In fact,as poi nted out by J-P.K ahane,the ni te product of -functi ons dom i nati ng the behavi our ofZ i n a hal f-pl ane< s > h + can yi el d branch poi ntsatal lpol esand zerosofthe i nvol ved -functi ons.

E xam ples

3. 1. Zeta function of a sym plectic group. T he l ocalzeta functi on associ ated to the al gebrai c group G i s de ned as

Z p (G;s)= Z G + p jdet(g)j s p d w here G + p = G(Q p )\ M n (Z p )
, j : j p denotes the p-adi c val uati on and i s the norm al i sed H aar m easure on G(Z p ). In [START_REF] Sautoy | Zeta functions of groups: zeros and friendly ghosts,A m er[END_REF] ,du Sautoy and G runewal d prove that the naturalboundary of the zeta functi on Z (G;s) of the sym pl ecti c group G Sp 6 gi ven by [START_REF] Igusa | U niversalp-adic zeta functions and their functionalequations[END_REF] Z (s=3) = (s) (s 3) (s 5) (s 6)

Y p 1 + p 1 s + p 2 s + p 3 s + p 4 s + p 5 2s
hasa naturalboundary at< s = 4 3 .To show thatevery poi nton the boundary i san accum ul ati on poi nt ofzeros,the authors consi der the parti alderi vati ves at (0; 1) ofthe equati on 1 + (1

+ V + V 2 + V 3 )U + V 3 U 2 = 0 w here V = p 1 ; U = p 4 s .
T he Im pl i ci t Functi on T heorem then guaranteesthe exi stence ofa sol uti on for the above equati on i n U = 1 + V + (V ),w here for p l arge enough (V ) contai ns term s sm al l er than p 2 . T hus for every i nteger n there i s a sol uti on as t ! 1 . In the above,C i s a non zero constant and r the rank ofthe Pi card group of V . T here i s a further conjecture,due to Peyre [START_REF] Peyre | H auteurs etm esuresde Tam agaw a surlesvari et es de Fano D uke M ath[END_REF] ,on the constant C rel ati ng i t to the Tam agawa m easure. W e w i l lconcentrate on P n ,the projecti ve n-space overthe el d Q w i th the cl assi calnorm al i sed hei ght functi on H n :P n 1 ! R > 0 de ned by H (x) = m ax i fj x i j g, w here gcd(x 1 ;:::;x n + 1 )= 1.(O therde ni ti onsofthe hei ghtexi stbutwe shal lnot treat them here. T he i nterested reader coul d see,for exam pl e, [START_REF] Ssouabri | M anin's conjecture on toric varieties w ith di erent heights -preprint arX[END_REF] ).

s = 4 l og(1 p 1 + (p 1 )) l ogp + ( 2n 
W e now gi ve detai l s ofanal yti c conti nuati on and boundari es ofa few zeta functi ons i n the above context w hi ch have Eul er products i n severalvari abl es.

2. 1.

A cubic surface. For studyi ng the above case,i t i s possi bl e to rst choose the anti -canoni call i ne bundl e and assum e that i t be am pl e. T hi s then determ i nes a projecti ve em beddi ng ofthe desi ngul ari sed m odelofthe vari ety usi ng a fan decom posi ti on i nto ni tel y m any si m pl i cali ntegralcones(fordetai l ssee,forexam pl e, [START_REF]C om pter des points d'une vari et e torique[END_REF]or [START_REF] Salberger | Tam agaw a m easures on universal torseurs and points of bounded heights on Fano varieties A st[END_REF] ). T he zeta functi on i s then de ned,for < s l arge enough,as

Z U (s)= X x2 U 1 H (x) s :
D e l a B reteche and Sw i nnerton-D yer [START_REF] Sir | Sw innerton-D yer,Fonction zêta des hauteurs associ ee a une certaine surface cubique[END_REF]proved that the zeta functi on associ ated to si ngul ar cubi c surfaces has a natural boundary at < s = 3=4. W e fol l ow the treatm ent of [START_REF]Fonctions zêta des hauteurs[END_REF]to gi ve a sum m ary ofthei r ori gi nalproofw here they study the m ul ti -vari abl e functi on Z (s 1 ;s 2 ;s 3 )=

X x1 x2 x3 = x 3 4 gcd(x1 ;x2 ;x3 )= 1 1 x s1 1 x s2 2 x s3
3 outsi de the uni on ofthree l i nes i n the hyper-surface x 4 = 0. T he Eul er product of thi s functi on i s gi ven by

Y p 1 + P (1 p 3si )p (2sj + s k ) p (3s1 + 3s2 + 3s3 ) (1 p 3s1 )(1 p 3s2 )(1 p 3s3 )
w here i n the sum each ofi;j;k take the val ues 1;2;3. T he above i s then w ri tten w i th the hel p of functi ons ' conveni ent'for < s > 3 4 and F (s) w hi ch i nvol ves the Eul er product ofa pol ynom i ali n two vari abl es W (x;y)= 1 + (1 x 3 y)(x 6 y 2 + x 5 y 1 + x 4 + x 2 y 2 + xy 3 + y 4 ) x 9 y 3 w i th x = p 1=4 ; y = p 3=4 s . H ere agai n the authors succeed i n establ i shi ng that every poi nt on the assum ed boundary i s the l i m i t poi nt ofa subset ofzeros ofthe functi on

F (s)= Q p W (p 1=4 ;p 3=4 s ) Q 4 j= 2 (1 p (1+ j(s 1)
). Fora xed pri m e p, the num ber ofzeros w i th < s > 3 4 ofW ,i . e. 

F (s)= Y k;k 0 k k 0 =4+ k 0 =N > 1 (k + k 0 (s 1)) b(k;k 0 ) Y p W N (p 1=4 ;p 3=4 s ) w here W N (p 1=4 ;p 3=4 s )= W (p 1=4 ;p 3=4 s ) Y k;k 0 k k 0 =4+ k 0 =N > 1 (1 p (k+ k 0 (s 1)) ) b(k;k 0 ) :
T he zeros of W N (p 1=4 ;p 3=4 s ) and W (p 1=4 ;p 3=4 s ) are the sam e. Further for every real one can constructa sub-sequence ofi ts zerosw hi ch converge to 3 4 + i and w hi ch are not pol es of

Y k;k 0 k k 0 =4+ k 0 =N > 1 (k + k 0 (s 1)) b(k;k 0 ) :
T hese zeros are agai n the zeros ofF (s) and therefore no conti nuati on i s possi bl e beyond the assum ed boundary.

For w hat concerns the asym ptoti cs,i t i s know n that j x 2 U :H (x) t j= tQ (l ogt)+ O (t 7=8+ ) w here the degree ofQ i s 6 and the l eadi ng coe ci enti s 1 6

Q p f(1 1=p) 7 (1+ 7=p+ 1=p)g.

2. 2.

A n n-fol d product. In [START_REF] Ssouabri | M erom orphic C ontinuation of M ultivariable E uler P roducts[END_REF] ,we consi der i nstead an i m pl i ci t projecti ve em beddi ng determ i ned by a ni te set ofequati ons and do not need a fan decom posi ti on.

Let X be a tori c vari ety and A d;n = A a d n i nteger m atri x al lofw hose row sum s are zero.T he rati onalpoi nts ofthe tori c vari ety are de ned by

X (A ): = f(x 1 ; ;x n )2 P n 1 (Q ): Y i:aj;i 0 x aj;i i = Y i:aj;i< 0 x aj;i i 8jg
and the m axi m altorus U (A ) com pri ses ofthose el em ents ofX (A ) the product of w hose coordi nates i s non-zero. Each poi nt i n the m axi m altorus corresponds to a uni que n-tupl e ofco-pri m e posi ti ve i ntegers w hi ch we denote by (m 1 ;

;m n ). W e de ne a m ul ti vari abl e zeta functi on,for< s i > 1,com parabl eto the one used for tori c vari eti es i n [START_REF]C om pter des points d'une vari et e torique[END_REF]as

Z A (s)= X m i2 N F A (m 1 ; ;m n ) m s1 1 :::m sn n ;
w here

F A (m 1 ; ;m n ) = 1 i f gcd (m 1 ; ;m n )= 1; Y i m aj;i i = 1 8j; = 0 otherw i se.
T he de ni ng equati ons are m ul ti pl i cati ve and we thus get an Eul er product expansi on ofan anal yti c functi on i n n com pl ex vari abl es N ow the functi on h A (X ) i s expressed as a rati onalfuncti on Y

Z A (s)=
2 K (1 X ) c( ) W (X )
forposi ti ve i ntegersc( ),a ni te i ndex setK and an i ntegern-vari abl e pol ynom i al W . W e can prove,usi ng T heorem 2,thatZ A (s)hasa naturalboundary.In fact,i t i s possi bl e to expl i ci tl y descri be the w hol e boundary ofanal yti c conti nuati on (see [START_REF] Ssouabri | M erom orphic C ontinuation of M ultivariable E uler P roducts[END_REF] ,T heorem 6). T he descri pti on ofthe anal yti c conti nuati on ofthi s zeta functi on can now be used to deduce the asym ptoti c properti esofthe hei ghtdensi ty functi on on U (A ) because ofthe equati on

j x 2 U (A ):H (x)= m ax i j m i (x)j t j= C (A ) X m i t F A (m 1 ; ;m n ) w here C (A ) i s a com putabl e constant.
A sa speci alcase,we getasym ptoti c resul tsforthe num berofn-fol d productsof rel ati vel y pri m e posi ti ve i ntegers that equalthe nth power ofan i nteger. B atyrev and T schi nkel [START_REF] Schinkel | M anin's conjecture for toric varieties[END_REF] showed that thi s probl em i s equi val ent to the asym ptoti c descri pti on ofthe hei ght densi ty functi on on the m axi m altorus ofthe hyper-surface x 1

x n = x n n + 1 . N ow that there i s onl y one equati on i nvol ved,i . e. d = 1,we use the m atri x A n = (1;

;1; n) and the rati onalpoi nts are

U (A n ): = f(x 1 ; ;x n + 1 )2 P n (Q ):x 1 x n = x n n + 1 ;; x 1 x n 6 = 0g:
To express h A n (X ) preci sel y as a rati onalfuncti on on the uni t pol y-di sc P (1) we noti ce that i f

h A n (X )= X X for 2 N n + 1 0
,to sati sfy the de ni ti on ofF A n we requi rethatA n ( )= 0.T husfora n-tupl e r,we use the notati on j rjfori tswei ght,i . e.the sum ofi tsn coordi natesand for al lr such that j rj =n i s a non-negati ve i nteger,we l et l(r) = (r 1 ;:::;r n ;j rj =n). Further we ensure that the condi ti on ofcopri m al i ty ofthe p i i s m et and obtai n

h A n (X )= ( n Y i= 1 (1 X n i X n + 1 ) 1 ) X jrj=n 2 N 0 X r1 1 :::X rn n X jrj=n n + 1 :
T hesum i n theexpressi on abovei snotcycl otom i cand thi sgi vesthenaturalboundary of

Z A n (s)= R Y p ( X r2 D n 1 p hl(r);si )
for R a ni te product ofR i em ann zeta functi ons,to be

V (0)= fs 2 C n + 1 j< (hl(r);si)> 0 8 r 2 D n g:
U si ng the above anal yti c properti esand a m ul ti vari abl e Tauberi an theorem [START_REF]C om pter des points d'une vari et e torique[END_REF]we prove that T heorem 5. T here exists > 0 such that

j x 2 U (A n ):H (x) t j= tQ n (l ogt)+ O (t 1 )
where Q n (l ogt) is a non-vanishing pol ynom ialofdegree

d n = 2n 1 n n 1.
A ctual l y we can descri be the l ast pol ynom i alrather preci sel y for al ln 3 ([ 4] , T heorem 7).

U nlucky cases.

In the l ast two subsecti ons we coul d gi ve sati sfactory descri pti onsofthe anal yti c behavi ourofthe Eul erproducts. T hi sneed notal waysbe possi bl e. In the fol l ow i ng we can onl y show the exi stence ofa condi ti onalnatural boundary [START_REF]J-C Schlage-P uchta,N aturalB oundariesofD irichletSeries[END_REF] .

P roposition 1. Suppose thatthere are in nitel y m any zeros of o the l ine 1 2 + it. T hen the function

f(s)= Y p 1 + p s + p 1 2s
has m erom orphic continuation to the hal fpl ane < s > 1 2 ,and the l ine < s = 1 2 is the naturalboundary off.

T hi s i s an exam pl e ofcase (3) ofour cl assi cati on ofthe previ ous secti on. W e noti ce that the realparts ofthe zeros off(s) are exactl y 1 2 and thus we can not construct a sub-sequence ofzeros or pol es w hi ch woul d converge on each poi nt of the presum ed naturalboundary < s = 1 2 . T he condi ti onalresul t above i s attai ned by expressi ng f(s) as a product offuncti ons ' conveni ent'for < s > 1 2 and Y m 1 ((4m + 1)s 2m ) ((4m + 3)s 2m 1) ;

w hi ch i s ofthe type consi dered i n T heorem 3. W e next consi der the Eul er product D (s) = Q p (1 p 2 s + p s ) w hi ch can be w ri tten as

D (s)= Y p (1 p 2 s ) Y p (1 + p s 1 p 2 s )= (s 2)D (s):
W e expect a naturalboundary at < s = 2,or at l east an essenti alsi ngul ari ty at s = 2,and our onl y m ethod to prove thi s i s to approach thi s poi nt from the ri ght. B ut for < s = > 2 we esti m ate the second product as

X p X n 1 j p 2n (2n + 1)s j X p p 2 X n 1 p n ( 2) X p p 2 1 1 2 2 :
So the productforD convergesabsol utel y i n the hal f-pl ane < s > 2,i n parti cul ar, D does not have any zeros or pol es i n thi s hal f-pl ane. T hi s exam pl e fal l s under case (5) ofthe cl assi cati on m enti oned. It i s worse than Proposi ti on 1 w here we coul d not uncondi ti onal l y prove the exi stence of zeros or pol es cl usteri ng on the assum ed boundary w hereas here such zeros or pol es do not even exi st.

N o E uler products

T here are num erouscontextsi n w hi ch we com e acrosszeta functi onsthatdo not have an Eul er product. W e ci te just two exam pl es. T he rst,m enti oned because i tcom es from a contextqui te di erentfrom the otherexam pl es we treated,i s that ofD i ri chl et seri es generated by ni te autom ata.

R oughl y speaki ng,a sequence (u n ) w i th val ues i n a ni te set i s d-autom ati c i f we can com pute the n-th term ofthe sequence by feedi ng the base d representati on ofn to a ni te state m achi ne. O ne ofthe best know n am ong 2-autom ati c cases i s the T hue-M orse sequence, 01 10 1001 10010110 generated by the substi tuti on m aps0 ! 01; 1 ! 10.T he D i ri chl etseri es

P 1 n = 0 un n s
correspondi ng to a d-autom ati c sequence can be m erom orphi cal l y conti nued to the w hol ecom pl ex pl ane.A m ong consequencesi ti sproved [START_REF] End Es France | A utom atic D irichlet series[END_REF]thatautom ati csequences have l ogari thm i c densi ti es. It woul d be i nteresti ng to know how D i ri chl et seri es associ ated to non autom ati c sequences (l i ke the i n ni te Fi bonacciword generated by the substi tuti ons 0 ! 01; 1 ! 0) behave. T he second exam pl e i s i n severalvari abl es. T he Eul er-Zagi ersum de ned as

r (s 1 ; ;s r )= 1 X m 1 = 1 1 X m r = 1 m s1 1 (m 1 + m 2 ) s2 (m 1 + + m r ) sr
has been studi ed w i th m uch enthusi asm . T hi s functi on can be anal yti cal l y conti nued to the w hol e C r space. M atsum oto i ntroduced the general i sed m ul ti pl e zeta functi on

r ((s 1 ; ;s r );( 1 ; ; r );(w 1 ; ;w r ))= r X j= 1 1 X m j = 0 r Y i= 1 ( i + m 1 w 1 + m i w i ) si
w here w i ;m i are com pl ex param etersw i th branchesofl ogari thm ssui tabl y de ned. T hi s too can be conti nued as a m erom orphi c functi on to the w hol e C r pl ane. W e do not w i sh to el aborate on thi s subject but the i nterested reader can nd detai l s el sew here (see,for exam pl e,the exposi tory paper [START_REF]A nalytic properties of m ultiple zeta-functions in several variables, N um ber T heory D ev[END_REF]for references).

4. 1. G oldbach zeta function. H ere we consi der the num ber G r (n); r 2, of representati onsofn asthe sum ofr pri m es. Egam iand M atsum oto [START_REF]C onvolutions of von M angoldt functions and related D irichlet series[END_REF]i ntroduced the generati ng functi on

r (s)= 1 X k1 = 1 1 X kr = 1 (k 1 )::: (k r ) (k 1 + k 2 + + k r ) s = 1 X n = 1 G r (n) n s
usi ng the von M angol dtfuncti on .T hi sseri esi sabsol utel y convergentfor< s > r, and has a si m pl e pol e at s = r. It i s cl ear that to study the anal yti c properti es i n thi s context i t i s necessary to have i nform ati on on the zero-free regi on of ,the R i em ann zeta functi on, and the presence of even one zero of m ay prevent us from havi ng usefuli nform ati on. A l lresul ts that we w i l ltal k about w i l ltherefore be under the assum pti on ofthe R i em ann H ypothesi s (R H ). W e can show that from the anal yti c poi nt ofvi ew ,under R H , r i s determ i ned by the case r = 2 [START_REF] Schlage | M erom orphic continuation of the G oldbach generating function[END_REF] .

T heorem 6. Suppose that the R iem ann H ypothesis is true. T hen for any r 3 there existpol ynom ial s f r (s);g r (s);h r (s),such that r (s)= f r (s) (s r+ 1)+ g r (s) 0 (s r+ 1)+ h r (s) 2 (s r+ 2)+ R (s); where R (s) is hol om orphic in the hal f-pl ane < s > r 1 and uniform l y bounded in each hal f-strip ofthe form < s > r+ 1,T < = s < T + 1,with T > 0.

T hi s i s done by com puti ng the functi on usi ng the ci rcl e m ethod w hi ch gi ve the three m ai n term s. A bound (under R H ) for

X n x (n)e 2 i n X n x e 2 i n
gi ves an error term oforder O (x r 1 ) for som e posi ti ve for al lbut the above three term s. It i s thus i m portant to consi der the si tuati on of r = 2. W e recal l that thi s case occursi n the consi derati on ofthe G ol dbach conjecture thatevery even i nteger l arger than 2 i s the sum oftwo pri m es. To study thi s probl em often i t i s natural to consi der the correspondi ng probl em for and try to show that G 2 (n)> C p n. N ow ,assum i ng the R H ,the authors i n [START_REF]C onvolutions of von M angoldt functions and related D irichlet series[END_REF]descri bed the anal yti c conti nuati on of 2 and for obtai ni ng a naturalboundary they used unproved assum pti ons on the di stri buti on ofthe i m agi nary parts ofzerosof . In thi s contextwe denote the set ofi m agi nary parts ofnon-tri vi alzeros of by . T he bel i efthat the posi ti ve el em entsi n are rati onal l y i ndependenti sfol kl ori c and Fuji i [ 21]used the fol l ow i ng speci alcase : C onjecture 2. Suppose that 1 + 2 = 3 + 4 6 = 0 with i 2 . T hen f 1 ; 2 g = f 3 ; 4 g.

In [START_REF]C onvolutions of von M angoldt functions and related D irichlet series[END_REF]an e ecti ve versi on ofthe above conjecture i s form ul ated,i . e. C onjecture 3. T here is som e < 2 ,such that for 1 ;:::; 4 2 we have either f 1 ; 2 g = f 3 ; 4 g,or j ( 1 + 2 ) ( 3 + 4 )j exp (j 1 j+ j 2 j+ j 3 j+ j 4 j ) ;

and i t i s proven that:

T heorem 7. Suppose the R iem ann hypothesis hol ds true. T hen 2 (s)can be m erom orphicall y continued into the hal f-pl ane < s > 1 with an in nitude ofpol es on the l ine 3 2 + it. Ifin addition C onjecture 3 hol dstrue,then the l ine < s = 1 isthe natural boundary of 2 . M ore precisel y,the setofpoints 1+ i with l i m & 1 j ( + )j= 1 is dense on R .

In [ i bi d. ] the authors conjectured that under the sam e assum pti ons the dom ai n ofm erom orphi c conti nuati on of r shoul d be the hal f-pl ane < s > r 1. N oti ce that a di rect consequence ofT heorem 6 con rm s the fol l ow i ng :

T heorem 8. Ifthe R H hol ds true,then r (s)has a naturalboundary at< s = r 1 for allr 2 ifand onl y if 2 (s) has a naturalboundary at< s = 1.

In [START_REF] Schlage | M erom orphic continuation of the G oldbach generating function[END_REF]i ti sal so show n thati fthe R H and C onjecture 2 hol d true,then 2 (s)does have a naturalboundary at < s = 1 and a si ngul ari ty can be descri bed preci sel y as T heorem 9. Ifthe R H hol ds true, then 2 has a singul arity at 2 1 , where 1 = ( 1)j 2 (2 1 + )j> 0:

T hi sl astresul thel psusobtai n an -resul tforG r (n).W econsi dertheosci l l ati ng term H r (x)= r X

x r 1+ (1 + ):::(r 1 + ) w here the sum m ati on runs overal lnon-tri vi alzeros of . T he generati ng D i ri chl et seri es for

X n x G r (n) 1 r! x r H r (x)
has a si ngul ari ty at 2 1 + r 1,w hi ch gi ves the fol l ow i ng :

C orollary 1. Suppose thatR H hol ds true. T hen we have

X n x G r (n)= 1 r! x r + H r (x)+ (x r 1 ):
In fact the qual i ty of the error term does not i m prove w i th i ncreasi ng r. W e m enti on a few hi stori calfacts about the error term . Fuji i [START_REF] Fujii | A n additive problem ofprim e num bers[END_REF]

obtai ned under the R H X n x G 2 (n)= x 2 =2 + O (x 3=2 )
w hi ch he l ater i m proved [START_REF] Fujii | A n additive problem ofprim e num bers,II[END_REF] ,by expl i ci tl y w ri ti ng the osci l l ati ng term ,to

X n x G 2 (n)= x 2 =2 + H 2 (x)+ O ((x l ogx) 4=3 ):
Further,i n [START_REF] Schlage | M ean representation num ber of integers as the sum of prim es[END_REF]we used the di stri buti on ofpri m es i n short i nterval s to esti m ate exponenti alsum s cl ose to the poi nt 0 and proved that T heorem 10. Suppose thatthe R H is true. T hen we have ) ); as announced i n [ i bi d. T heorem 1C ] .

X n x G 2 (n)= 1 2 x 2 + H 2 (x)+ O (x l og 5 x); and X n x G 2 (n)= 1 2 x 2 + H 2 (x)+ + (x l
G 2 (n)= 1 (q) X n x G 2 (n)+ O (x 1+ o( 1 

C onsequences

O ne ofthe am usi ng consequences ofthe exi stence ofa naturalboundary i s to suggestthatthere i sa ' natural 'l i m i tto w hatcan be achi eved forasym ptoti cresul ts associ ated to D i ri chl etseri esby usi ng com pl ex anal ysi s.A naturalboundary coul d show the non-exi stence ofcertai n asym ptoti c resul tsi nvol vi ng errorterm sand thus i m pl y the exi stence ofan i nverse resul t,i . e.an -term . U sual l y w hen provi ng an -resul t we rst deri ve an expl i ci t form ul a w i th osci l l ati ng term s and then show that these term s cannot canceleach other out for al lchoi ces ofthe param eters.In [START_REF]J-C Schlage-P uchta,N aturalB oundariesofD irichletSeries[END_REF]we show thateven i fwe al l ow fori n ni te osci l l atory sum sto be partofthe m ai n term s,we sti l lget l ower bounds for the error term s. T hus a naturalboundary at < s = precl udes the exi stence of an expl i ci t form ul a w i th m ai n term s over the zeros ofthe R i em ann zeta functi on and an error term O (x ). W e state thi s m ore preci sel y as : P roposition 2. Leta n be a sequence ofcom pl ex num bers such thatthe generating D irichl et-series has a naturalboundary at < s = h . T hen there does not exist an expl icitform ul a ofthe form

A (x): = X n x a n = X 2 R c x + O (x )
for any sequence c with j c j (1+ j j ) c and j R \ fs :< s > ;j = sj< T gj T c and for any < h . In particul ar,for any sequence i ; i ,1 i k and any > 0 we have A (x)= X i x i + (x h ):

In practi ce,thei ntegraltaken overtheshi fted path need notal waysconvergeand we m ay not be abl e to obtai n an expl i ci t form ul a. T hi s can happen even w hen the seri esi s m erom orphi c i n the enti re pl ane,for exam pl e,the age-ol d di vi sor probl em w here we have an -esti m ate ofsi ze x 1=4 though the correspondi ng D i ri chl et-seri es 2 (s) i s m erom orphi c on C . H owever, i n certai n cases we can actual l y obtai n expl i ci t form ul ae i f we nd boundson thegrow th oftheD i ri chl et-seri es.W econsi dera caseofan Eul erproduct Q p W (p;p s ) w hi ch we have al ready encountered as the p-adi c zeta functi on of G Sp 6 .T hi scan be i nterpreted asa counti ng functi on [START_REF]C ounting Functions ofC lassicalG roups[END_REF]by establ i shi ng a bi jecti on between ri ghtcosetsof2t 2tsym pl ecti c m atri cesand sub m odul es of ni te i ndex ofZ 2t w hi ch are equalto thei r dual s and cal l ed pol ari sed.

T heorem 12. D enote by a n the num ber ofpol arised sub m odul es ofZ 6 oforder n. T hen we have for every > 0 where runs over all zeros of , and the coe cients c 1 , c 2 , c 3 , and are num ericall y com putabl e constants. M oreover, the error term cannot be im proved to O (x 4=3 ) for any xed > 0.

T he i nterpretati on above al l ow s us to use the zeta functi on Z (G Sp 6 ;s) as the generati ng functi on for a n . A ppl yi ng the M el l i n transform we obtai n

A (x)= 1 2 i 3+ i1 Z 3 i1
Z (s) (s)x s ds:

For and > 0 xed, we have ( + it) e ( 2 )t . W e now choose a path (fol l ow i ng Tur an [ 31,A ppendi x G ] ) to shi ft the i ntegrati on. T he i ntegralon thi s new path i s bounded above by x 4=3+ . H ence,we obtai n the form ul a A (x)= X < > 4=3+ ( )x res s= Z (s)+ O (x 4=3+ ); w here runsoverthe pol esofZ (s),and al lcom pl ex num bers4=3+ =6.W e al ready saw that< s = 4 3 i sthe naturalboundary forZ (s)and asi n Proposi ti on 2,we now get an -resul t.

T he m oralofthe story i s notnecessari l y to getthe bestpossi bl e -resul tbut to show that a non-tri vi alresul t i s obtai nabl e by thi s m ethod.
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 1a (a );(b );(c ) be realsequences, such that a ;b ! 1 , and set h = l i m sup ! Let be a sequence ofindependentrealrandom variabl es,such that

  1) i l ogp : N ow for a l arge pri m e p and a xed poi nt A w i th < s = 4 on the boundary we can nd a sequence ofi ntegers n p such that (2n p 1) log p ! = (A ). Further the fact that l og(1 p 1 + (p 1 )) l ogp > 0 for l arge enough p m eans that Z (s=3) cannot be conti nued beyond i ts assum ed boundary < s = 4. N oti ce that thi s i s an exam pl e of the ' l ucky' si tuati on we encountered i n the fourth case ofthe cl assi cati on of Q W (p;p s ). 3. 2. H eight zeta functions. Severalpeopl e i n the recent past have studi ed the anal yti c properti es ofhei ght zeta functi ons associ ated to counti ng rati onalpoi nts on al gebrai cvari eti es.O fparti cul ari nteresti sthe caseofa vari ety w i th am pl e anticanoni calbundl e (cal l ed a Fano vari ety) V over a num ber el d k w hose k-rati onal poi nts are Zari skidense i n V ,for a hei ght functi on H de ned natural l y over the anti -canoni calsheaf. H ere an i m portantm oti vati on i s M ani n' s conjecture that,for U a sui tabl y de ned open subset ofV , j fx 2 U (k):H (x) tgj C t(l ogt) r 1

  arge.N ow for< s > 3 4 + 1 N ,there exi stsui tabl y chosen ni te num ber ofi ntegers b(k;k 0 ) such that

h

  A (p s1 ;:::;p sn ):

1 2 +

 2 14: 1347:::iis the rstrootof . M oreover, l i m & 0

( 1 ) 1 a 6 +

 116 A (x): = X n n e n =x = c 1 x 7=3 + c 2 x 2 + c 3 x 5=3 + X x + 8 O (x 4=3+ );

  ogl ogx): w hi ch con rm s the conjecturalval ue ofthe error term[ 18,C onj.2. 2] . R ecentl y G ranvi l l e[START_REF] Ranville | R e nem ents ofG oldbach's C onjecture,and the G eneralized R iem ann H ypothesis[END_REF]used theerrorterm O ((x l ogx) 4=3 )to obtai n a new characteri sati on ofthe R H ,i . e.forthe ' tw i n pri m e constant'C 2 ,the R i em ann H ypothesi s i s equi val ent to the esti m ate X U si ng the G R H one coul d si m i l arl y nd bounds for the exponenti al sum s i n questi on w hi ch woul d gi ve T heorem 11. T he G eneral ised R iem ann H ypothesisforD irichl etL-functionsL(s; ), m od q,is equival entto the estim ate X

	n x	G 2 (n) nC 2	Y pjn	p 1 p 2	x 3=2+ o(1) :

n x; qjn