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Abstract: This paper presents an inverse problem methodology in timaaoof non-destructive testing,
and more precisely eddy-current testing. Our objectiveviside a precise but expensive-to-evaluate
model of the electromagnetic induction phenomenon in a gotiMk material and to estimate the
characteristics of a flaw by minimization of a regularizeitiecion with theExpected Improvement (EI)
global optimization algorithm. The El algorithm is desigrte estimate a global optimum of a function
with a restricted budget of function evaluations. Thus, wgeet to be able to estimate the characteristics
of a flaw with a relatively low cost despite resorting to anexgive model of the induction phenomenon.
The dficiency of the approach is discussed in the light of prelimimaumerical examples obtained using
synthetic data.

Keywords: eddy current testing; inversion; global optiatian; Gaussian processes; Expected
Improvement algorithm

1. INTRODUCTION The paper is organized as follows. First, we present the-theo
retical formulation of the direct problem and some aspetts o

This paper presents an inverse problem methodology in tlits numerical implementatior§(2). Then the inverse problem
domain of non-destructive testing, and more precisely eddy along with our regularizing assumptions — will be presénte
current testing (ECT). As illustrated by a large number of§ 3). Next the new stochastic approach and the optimization
contributions in the last ten years, the estimation of tharch task will be in the focus { 4). Finally, numerical examples
acteristics of scattering objects remains quite challeggiom  will illustrate the proposed method and the conclusionshef t
a theoretical, computational gfod experimental perspective, experiments will be drawr§(5).
even in the case of the simplest configurations (e.g., a homo-
geneous embedding space). In this paper, our objectiveliseto 2. THE FORWARD PROBLEM
a precise but expensive-to-evaluate model of the elecgema
netic induction phenomenon in a conductive material. Tken, Assume the arrangement shown in Fig. 1 where two infinitesi-
estimate the characteristics of a flaw, a regularized @itéds  mally thin cracks located in the planar surfaGgs@andS; inside
minimized using theexpected Improvement (Eg¢jlobal opti- a non-ferromagnetic plate are searched by a pancake type ECT
mization algorithm. The El algorithm is designed to estinatcoil. The normal vectors of th®; andS, surfaces are;"andri,
a global optimum of a function with a restricted budget ofespectively. In this Subsection the method used for theisol
function evaluations. Thus, we expect to be able to estithate of the forward problem is discussed. In other words, the ogkth
characteristics a flaw with a relatively low cost despit@résg  used for the calculation of the change of the impedance of the
to an expensive model of the induction phenomenon. ECT coil due to the presence of the crack¥) is described

The EI algorithm is well-known in the domain of global Op_whenthe location and the orientation®f andS, are arbitrary.

timization but to the best of our knowled ing the E uring the solution of the inverse problem, however it wil b
ation, but 1o the best of ou owledge, using e ELsqmed that the cracks are outer defects (OD) and they are
algorithm for the ECT problem remains largely unexplore

Preliminary results for the characterization of a singlrixtet- arallel to each other, consequently = hz = X (X is the unit
Y 9 ector of thex co-ordinate axis). Fig. 1 shows the particular

ric defect have been presented by the authors in [Bilicz.et sg : -
2008]. In this paper, a more challenging case is studied. errangement that is actually assumed for the inverse proble

consider two infinitesimally thin material defects closeeaxh The electromagnetic interaction of the exciting coil witbna
other. Our contribution is twofold. First, from the pointdéw  conducting cracks whose thickness are considerably smalle
of ECT, we would like to show that the methodology we prothan their other dimensions might be calculated based on the
pose is promising. More generally, from the point of viewledt  so-called infinitesimally thin crack approximation debed by
inverse problem community, we would like to bring attention Bowler [1994]. This model assumes the cracks in the otherwis
an dficient optimization algorithm that renders practical the ushomogeneous conductor as mathematical surfaces that block
of precise but expensive direct models. the flow of the eddy currents across their surfaces, in other



by first order testing functions and the kernel of the integra
equation is evaluated by the formulae published by Paeb an
Miya [1994]. After solving the linear system of equations ob
tained by the described discretization of the integral &qoa
(1)-(2), the dipole density function can be calculated. Kimy

p1(r) and px(r), the impedance variation of the prokd, due

to the presence of the cracks can be calculated based on the
reciprocity theorem [Bowler, 1994]:

025> [[ Expe, )

wherel is the current of the exciting coil.

Y.

The results of the described solution of the forward problem
are tested against measurements available for singlecitifi
cracks (unfortunately measured results on two parallelksra
are not available in the literature). The comparison vetifies
validity of the results.

<Y

For rectangular shaped cracks being parallel to each otfier a
being perpendicular to the surface of the plate, the integra
. . , . ... equations (1)-(2) can be solved by approximatmgr) and

Fig. flo'ﬁgﬁgrgr?é'?n?,gvsvéngrg;fgﬁgeometry of the mvestlgatepz(r) with the function series introduced in [Pavo and Les-

selier, 2006]. Using this method, the results on severdl tes

words the normal component of the electric field must be zegPnfigurations are very close to those obtained by the method
on the surfaces representing the cracks. In the same time, ff£Scribed above. The good agreement supports the validity o
magnetic field is assumed to be continuous on the two sidesfth solution methods.
these surfaces.

3. THE INVERSE PROBLEM
The above boundary conditions might be satisfied by replac-
ing the S; and S, mathematical surfaces with current dipoleywhen the probe coil scans the zone containing the cracks, the
distributions, p1(r)hy and pz(r)fz, having the samefiect as  yariations of the coil impedance are measured at each point
the presence of the crack (the functipa(r) and px(r) are  of a regular rectangular grid, above the supposedly damaged
non-zero only on the surfac& andS, respectively). Thus, zone of the plate. In other words, a so-calldface scaris
the sum of the electromagnetic field generated by the excititherformed. The scan consists f coil locations where the

coil and the secondary sources in the homogeneous condugifasured impedance variations A&, k= 1,2, ..., N.
will provide the field generated by the crack-probe inteoact

Consequently this field must satisfy the above boundaryicond he problem is to characterize the flaw from this set of mea-
tions. In the case of cracks with planar surfaces, the destri Sured impedance variations, which will be viewed as thetinpu
consideration leads to the following integral equatiororepd ~ data of the inverse problem.
by Pavo [2000]:
0 = Epy(r1) - jopo ff Gaa(ralr )p(r ) dr’~
S

3.1 Regularizing assumptions

It is customary to introduce somegularizing assumptions
. : , N oo to reduce the ill-posedness of the inverse problem. In this
~ Jwpo lim ffs Gua(rIr)pa(r)dr’, 11 €31 (1) \york, two rectangular shaped thin cracks are assumed in the
' plate specimen, under (or near) the surface scan measuremen
i . , o, (see Fig. 1). Both cracks are of OD type. Their orientation is
0= Epp(r2) - jowpo ffs Gua(ralr ) pa(r ) dr’~ supposedly known, together with the “geometrical centdr” o
! the two-cracks-system (i.e. the distances of the crack onnde
— jwuo lim ff g22(rlr)p2(r’)dr’, rpeS,, (2) fromthe origin are the same for both cracks in #@/2) and
=re: JJs, inthey (B/2) directions as well). As a result, only 6 geometrical
wherer. (k = 1,2) denotes the limiting values of the ap-parameters are needed to describe the configuration: thehlen
proaches towards the pointfrom theri, or -y directionswis  of the cracksl(s, L,), their depth D1, D,) and thex-y distances
the angular frequency of the sinusoidal excitation of thebpr of their centers A, B), respectively (see Fig. 1). To simplify

coil and o is the permeability of the vacuurk,, = fix - E'  the notations, the unknown defect parameters are collésted

(k = 1,2), whereE' is the so-called incident field that is the & vectort:

electric field generated by the current of the exciting aoihie t=[A, B, Ly, Ly, D1, D3]

defect-free plategy(r|r’) = Ay - G(r|r’) - B¢ (k,| = 1,2) where The definition domain of will be denoted byT, and will be
G(r|r") is the Green’s dyad transforming the current excitatioreferred to as thparameter space

into the electric field. The forward solver { 2) is used to compute the impedance

The surfaces of the cracks are discretized on a regulacdattivariation due to a fault characterized by its parameterorect
where the unknown dipole density function is approximated simulated surface scaronsists of such computed impedance
by a piecewise linear function. The integral equation iselgs variations, denoted asz(t), k = 1,2,..., N. Obviously, the



simulation is performed at exactly the same coil positistha n function valuesQ; = Q(t1), Q2 = Q(t2), ..., Qn = Q(tn)
real measurement, thus both the real and the simulateccsurfare known. We would like to predict the function value at

scan consists dfl coil locations. unobserved sites. One method to achieve this goal is to use
o kriging, a random process approach developed in the 60s in
3.2 Optimization task geostatistics [Chiles and Delfiner, 1999]. The method is als

. . . _ well-known for modeling computer simulations [Sacks ef al.
The next step for solving the inverse problem is to achieee th 9g9.

strongest resemblance between the impedance signal ethtain ) )
by simulation,{AZ(t), k = 1,...,N}, and the measurement, Let£(t) be a Gaussian random process that models the function

{AZk, k=1,...,N}, by tuning the parameter vector Q(t). Thus, each observatidy is considered as the realization
of the Gaussian random varialdigy) (k= 1, 2,.. ., n). Kriging

The applied inversion method requires a finite parametarespacomputes theest linear unbiased predictor (BLUBJ £(t). Let
T, meaning that one has to set lower and upper bounds for eagfidenote this prediction ki(t). The predictor idinear in the
parameter and, moreover, the parameter axes are needed t@dise that it is a linear combination of the observed random

discretized. Consequently, the spackas to consist of a finite variablest(ty), k = 1, 2, ..., n, which can therefore be written
number of parameter points The bounds and discretization g5

of each parameter are summarized in Table 1. The parameters R n
are independent from each other, thus, the parameter §pace Et) = Z ()& (i) ®)
can be imagined as a 6 dimensional hypercube, spanned by k=1

the 6 parameter axes. The hypercube includes’ = 60025  Unbiasedness relates to the fact thatrtieanof £(t) is equal to

parameter points. the mean ok(t), i.e. the mean prediction error is zero:
Table 1. Discretization of the parameter axes. E[&(t)] = E[&(t) — £(t)] = O. (6)

[ Parameter [ A[B[L[L] Di | D | The term “best” means that the prediction ergft) of the
Minimum value (mm) || 025] 0 | 2 | 2 | 0.1250 | 0.1250 kriging predictor has themallest varianceamong all unbiased
Maximum value (mm)|| 1.25| 4 | 8 | 8 | 0.8750 | 0.8750 predictors. This variance (also callédiging error) may be
Step size (mm) 025| 1| 1 | 1 | 0.0125| 0.0125 written as
No. of points S L A A A F2(t) = varfé(t) - )] = E[(E0) - €)1, ()

. . using the unbiasedness condition (6).
To give a mathematical form to the resemblance between two

surface-scan impedance signals, we definestimdlarity func- The objective is to find the cdigécientsi(t) in (5) that provide

tion the BLUP. The kriging error can be written using the covacén
N 5 function, which describes the dependence between two rando
Z IAZy(t) — AZil variables of the process atfiirent points. Let us denote the
Q) = k=1 (4) covariance function b¥(ta, tp) = covié(ta), &(tp)], wherety
N ' andty, are two points irfTl. Let us denote b¥K, thecovariance
Z|AZk|2 matrix whose entries correspond to the covariances of the
o k=l . _ random process between the observation points, ..., ty:
Our objective is thus to m|n|m|_z@(t), i.e. tofind K(ts, tr) K(teto) ... K(ts t)
t=argminQ(t). | Klta: ) K(t2. t2) .. K(ta,tn) @

4. STOCHASTIC MODELING AND OPTIMIZATION OF : N
THE SIMILARITY FUNCTION K(tn, t1) k(tn,t2) ... k(tn,tn)
If one has some prior knowledge on the function to be modeled
Our objective is to implement the Expected Improvement alt can be reflected by giving a prior mean to the predictorc&in
gorithm to minimizeQ(t). One iteration of such an algorithm in our case no information is available but the observedtfanc
involves mainly two steps: values, a constant (but unknown) méze(t)] = C is assumed.

(1) the construction of an approximation of the similarityTo simplify the notations let us collect the dheientsAx(t)
function from a set of past evaluations of the functioninto a vectorA(t) = [A1(t) A2(t) ... An(t)]", and de-
obtained at previous iterations. To this end, a randomote by k(t) the vector whose elements are the values of
process is chosen as a model of the similarity function artthe covariance betweenand the observation point&{t) =
an interpolation by kriging is performed. [k(t, t1) k(t,t2) ... K(t,tp)]". It can be shown that the determi-

(2) the search of the maximum of the Expected Improvementtion ofA(t) boils down to computing the solution of the linear
over the parameter spa@ethen the computation of the system of equations (see, e.g., Villemonteix et al. [2008])

similarity function at that parameter point. 1
This two-step procedure is repeated iteratively until @siog Koo fpam | _ [k )
criterion is met, i.e. a sequential optimization algorittisn 1
obtained. 1...1]0] ] u(t) 1

whereu(t) is the Lagrange multiplier, which corresponds to the

4.1 Kriging interpolation enforcement of the unbiasedness condition.

Let us assume that we have already observed the multivari@®ace the vectoi(t) has been computed, a predicted value of
scalar functiomQ(t) atn pointst;, to, ..., ty of T. In this way, the similarity functionQ(t) can be written as



. n Table 2. Parameters of the ECT configuration.
QM = > Qe (10)
k=1 Metal plate
It is easy to show that the functidn— Q(t) interpolatesQ(t) Thickness (d) | 1.25 rggb'e S;rducw'ty(m) [ 10 Sm

at qbserved points. An i_nteresting property o_f kriginghiattan Inner radius(r;) | 0.6 mm | Outer radius(rz) | L6 mm
estimate of the uncertainty of the prediction is availatitethie Height (1) 08mm | Lift-of (h) 0.5 mm
kriging error, which can be written as No. of turns 140 Frequency 150 kHz
~2 T Surface scan
t) = k(t, t) — A(t) k(t) — u(t). 11
. 0' ( ) ( ) ( ) ( ) ,u() . ( ) Points in the x dir. | 11 Points in the y dir. | 41
This feature will be essential in the adaptive samplingisgya Stepinthe xdir. | 0.5mm | Stepintheydir. | 0.5mm

of the Expected Improvement algorithm.
Q has been evaluated atpoints Q; = Q(t1), Q2 = Q(t2),

4.2 Covariance model ..., Qn = Q(ty). An iteration of the EI algorithm provides the
location of the next evaluation.

Before focusing on the optimization algorithm, we mentiorFirst, an interpolatiorQ of Q is computed by kriging from
very briefly how the covariance function is chosen in practicthe set of past evaluations, along with the variance of the
(see also Villemonteix et al. [2008]). kriging error?(t). Denote the current minimal value iy, =

First, a simplifying assumption is made — as usually done ifiN-t...n Q. Define themprovemenoverQmin ata point € T

geostatistics (see, e.g., Chiles and Delfiner [1999]) — ham y

that the random process &ationary Then, the covariance 1(t) = max(Q Qmin — Q).

function is a univariate functiof(h) whereh is a distance However,Q(t) is unknown except at the evaluation points.
between two points,, tp, € T. This distanceneeds not to be SinceQ(t) is modeled by the Gaussian random procgsa

the classical Euclidean distance. In our case, the comp®nén Nnatural idea is to express the expected valué(®f which is

t € T are of diferent kinds. Thus, it is reasonable to use som@alled the expected improvement and appears to have a very
anisotropic distance, which may be written as convenient analytical form:

EI(t) = E[1()] = o (t) [u®(u) + ¢(u)], (14)
(12) Where®(:) is the normal cumulative distribution functiop(,)
is the normal density function, ands defined by

wheret, 4 andty, 4 are thed components of the vectots and Qmin — Q(1)

tp, respectively, and the dimension ofl. The parameters = a(t)

pa, d = 1,2,....D, represent theange of the covariance, The next evaluation point is chosen according to the highest
or thetypical correlation distancein the direction of thed™  yajue of the expected improvement. Since (14) is straightfo
component. ward to compute, the maximization of the El ovieiis not a

Second, a parameterized covariance function is chosen g¥@Pleém in practice. A natural stopping criterion is whee Ei
its parameters are estimated using the data withaximum 'S Smaller than a small positive number.

likelihoodmethod (see, e.g, Villemonteix et al. [2008]). We use\ote that the EI algorithm is known to be consistent, i.e. the

the Matérncovariance function, which can be written as algorithm converges to the location of the global minimizer
o2 v (under some assumptions) [Locatelli, 1997, Vazquez and, Bec
k(h) = 2-11() (2 W h) 7(V(2 W h) ’ (13) 2007]. In theory, the convergence rate is unknown but it appe

i,n practice that this type of algorithm converges very rpias

whereX, is the modified Bessel function of the second kind olllustrated in our numerical studies (see next section).

ordery. The parameter controls the regularity of the random
process — the higher the the more regular the process is. The
parametes is thevarianceof the processk(0) = o). The pa-

rametergy in (12) are also estimated by maximum likelihood

(the covariance function has indeBdr 2 parameters). In this section a couple of numerical examples are selected t
illustrate the presented inversion method. The parameters

the ECT configuration are shown in Table 2 (see also Fig. 1).
The surface scan consists of 451 measured impedance values —

Since the similarity functiorQ (to be minimized) requires to observed at the nodes of a rectangular grid characterizéueby

; . arameters given in Table 2. The center of the surface scan is
compute the S(_)Iutlo_n ofa forw_ar_d problem, the compu_tauongt the origin of thex-y coordinate system and the edges of the
cost of evaluating is non-negligible. Moreover, for an inver-

sion method to be useful in practice, the computational éurd grid are paraliel to the related coordinate axes.

of the method must not be too high. Thus, we wish to limit th&ince no experimental measurements are available atnhat ti
number of evaluations d in the inversion procedure, which the so-called “measured impedance variation’Z¢, k =
means that the optimization method used to minin@zmust 1,...,N in (4)) of the defects in the assumed test cases are
be dficient. obtained by numerical simulation.

5. NUMERICAL EXAMPLES

4.3 Expected Improvement

Theexpected improvement (Ell)gorithm is an iterative method The necessary initialization of our iterative process iegthe
to find the global minimizers of an expensive-to-evaluateefu evaluation of the similarity function at some well-choseims
tion [Jones, 2001]. The method is based on interpolation f the parameters space. There is no “best” way to choose such
kriging of the function to be optimized. Let us assume thanitial points without complementarg priori informations,



Table 3. Defect parameters, in case of Initialization
“A". (exacfreconstructed)

Mol o [ o] | F] B [ % [ @ [ %]

#1 [ 0.500.50] 3/3 | 3/3 | 5/5 [ 4040]60/60] 57 | O

#2 | 0.750.75| U1 | 4/4 | 4/3 | 30/40 | 50/50 | 112 21.6

#3 [ 0.790.75| 2/3 | 7/5 | 3/3 [ 50/50 | 3¢/50| 95 | 28.6

#4 | 1.000.75| 0/0 | 6/7 | 6/3 | 60/60 | 4040| 60 | 8.56

Table 4. Defect parameters, in case of Initialization
“B". (exacfreconstructed)

Mo [ ] 5] B2 [ % [ @[]

0 (0 10~
#1 | 0.500.50| 3/3 | 3/3 | 55 | 4040 | 60/60 | 81 0
#2 | 0.750.75| 1/1 | 4/2 | 4/4 | 30/40 | 5050 | 118 | 6.98
#3 | 0.790.75| 2/2 | 7/7 | 3/3 | 50/50 | 30/30| 79 0
#4 1 1.000.75| 0/0 | 6/6 | 6/5 | 60/60 | 4040 | 109 | 4.73

10

y (mm)

. Fig. 2. Magnitude of the measured impedances in case No. #4.
therefore it seems reasonable to spread them more or less Line scan along thex = 0 line. Solid line: real crack
uniformly on the parameter space. Too few points can give  configuration,dashed line:retrieved configuration (case
misleading information on the similarity function wherd¢as Initialization “B"). The measured data is almost the same
many points may be unnecessary (thus “uneconomical” in the in both cases, thus it is extremelyfiitult to make dfer-
sense of computation time). Two types of initialization are  ence between the configurations.

presented in the paper: as well. However, the maxim&| value in iteration No. 60 is

e Initialization “A": all the vertices of the 6D parameter almost 100 times higher than the one in iteration No. 109!
hypercube (2 = 64 points) and the midpoint of the
hypercube (1 point)z65 points;

¢ Initialization “B”: the same points as in Init.A”, and
all the midpoints of the sides of the hypercube @ =
12 points):X77 points.

Note that the two presented performances are related to the
same physical problem, only the initialization of the irsien
procedure dfers. In spite of this, significant fierences can

be found between the behaviour of the algorithm in the two
cases. Thus, one can see that the choice of initial poirsgtr

The parameters of the cracks to be retrieved and the obtainafluences the latter performance. As it was mentioned above
results are reported in Table 3 and Table 4. The def@hd¥,;) thereis no general best choice of initial points, moreaveray

are given in percents of the plate thicknes#\fter the initial- also depend on the problem to be solved.

ization (65 or 77 similarity function evaluations) a fixedniber . . Lo .
of iteration cycles were performed (120 in all the cases). | IS al_so Important to note that t_he s_lmllarlty functlc_)n mb_e
complicated. This is illustrated in Fig. 5: the functiQ{t) is

the column “It.” the number of cycle, in which the final bestprobably quite flat around its global minimizer, or physigal

function value Qmin) was found, is presented; that minimumd.ﬁ t confi . imil bl ¢
value (related to the obtained solution) is also reportethén p:JtesriZﬂacl:on Igurations can cause very similar measurable out-

tables.

The computations were performed on a PC with 16 Gb RAM
nd a 64 bits CPU at 3 GHz. The computation of the Green’s
unction and of the incident field was made in advance, sep-
rately. One average iteration cycle of the optimizatiooplo
ook approximately 106 sec. Almost all of that time is needed

to perform the kriging prediction and EI computation, theneo
utation of the objective function takes just a few seco(iis.

ﬁ{ t sight, one can think that the applied inversion methsd i

Table 3 and Table 4 illustrate thefieiency of El algorithm
with which an “acceptable” solution — in the sense of a lo
similarity function — is obtained i few number of iterations
The performance of the algorithm is illustrated in Fig. 3. O
the bottom diagrams in Fig. 3(a) and Fig. 3(b), the,}ogf
the maximal expected improvement (i.e. over the total discr
parameter space) at the related iteration cycle is pregent
One can see that it is decreasing as the iterations are be . o o
performed. However, the decrease is notmonotonous.Asxsitv\/'a]bre expenﬁvet;to-e\_/alua;g than the Oble%t“ije functiseliit
mentioned, in our experiments a fixed number of iteratiomawea lg ngt;a that by uI'T‘lng this m(;/e(;smr;] met Oh, athmost some
performed. However, it would be better to construct a stogpi undred function calls are needed, whereas t at't e pazamet
criterion which stops the iterations automatically rigfftea spaceT consists of more than 60 thousand points!)

flndln_g the solution — to reduce the number of unnecessary 6. CONCLUSION

function calls at the end. By now, no really good stopping rul
has been developed. One can rely on the maximal El valug,
stating that if it is lower than a small limit, the iterationan
be stopped. But the choice of this limit is not obvious — as b
is illustrated in Fig. 3. In Fig. 3(b), one can see that a sr@all
value (quite close to the “final” solution in iteration No.9)0
was obtained in iteration No. 60. The parameter vectoradlat The kriging interpolation of the similarity function pralés

to the observation in iteration No. 60tis= [1.0,0, 6, 4,60,40] a cheap surrogate model of the electromagnetic “black-box”
(in the same units as in Table 4). This parameter point isecloSince this “black-box” includes electromagnetic field cartgp

to the real solution and to the reconstructed one (see Tabletibn tasks, it is usually expensive-to-evaluate. This is/ e

method for ECT inversion was presented. The stochastic-
ased optimization algorithm was coupled with a surface
tegral-based forward solver — the developed inversiothotke
seems to beflcient in the light of the presented test cases.
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A pitfall of the El algorithm was also highlighted. The cheic
of an adequate stopping criterion is not straightforward am
general solution has been found yet. Further investigatioa
needed concerning this problem.

In this paper, only the brief introduction to the stochastials

and the first results were presented — the research is far from
being finished. In the authors’ opinion, the use of surrogate
models in ECT inversion is a hopeful idea.
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