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Abstract: This paper presents an inverse problem methodology in the domain of non-destructive testing,
and more precisely eddy-current testing. Our objective is to use a precise but expensive-to-evaluate
model of the electromagnetic induction phenomenon in a conductive material and to estimate the
characteristics of a flaw by minimization of a regularized criterion with theExpected Improvement (EI)
global optimization algorithm. The EI algorithm is designed to estimate a global optimum of a function
with a restricted budget of function evaluations. Thus, we expect to be able to estimate the characteristics
of a flaw with a relatively low cost despite resorting to an expensive model of the induction phenomenon.
The efficiency of the approach is discussed in the light of preliminary numerical examples obtained using
synthetic data.

Keywords: eddy current testing; inversion; global optimization; Gaussian processes; Expected
Improvement algorithm

1. INTRODUCTION

This paper presents an inverse problem methodology in the
domain of non-destructive testing, and more precisely eddy-
current testing (ECT). As illustrated by a large number of
contributions in the last ten years, the estimation of the char-
acteristics of scattering objects remains quite challenging from
a theoretical, computational and/or experimental perspective,
even in the case of the simplest configurations (e.g., a homo-
geneous embedding space). In this paper, our objective is touse
a precise but expensive-to-evaluate model of the electromag-
netic induction phenomenon in a conductive material. Then,to
estimate the characteristics of a flaw, a regularized criterion is
minimized using theExpected Improvement (EI)global opti-
mization algorithm. The EI algorithm is designed to estimate
a global optimum of a function with a restricted budget of
function evaluations. Thus, we expect to be able to estimatethe
characteristics a flaw with a relatively low cost despite resorting
to an expensive model of the induction phenomenon.

The EI algorithm is well-known in the domain of global op-
timization, but to the best of our knowledge, using the EI
algorithm for the ECT problem remains largely unexplored.
Preliminary results for the characterization of a single volumet-
ric defect have been presented by the authors in [Bilicz et al.,
2008]. In this paper, a more challenging case is studied. We
consider two infinitesimally thin material defects close toeach
other. Our contribution is twofold. First, from the point ofview
of ECT, we would like to show that the methodology we pro-
pose is promising. More generally, from the point of view of the
inverse problem community, we would like to bring attentionto
an efficient optimization algorithm that renders practical the use
of precise but expensive direct models.

The paper is organized as follows. First, we present the theo-
retical formulation of the direct problem and some aspects of
its numerical implementation (§ 2). Then the inverse problem
– along with our regularizing assumptions – will be presented
(§ 3). Next the new stochastic approach and the optimization
task will be in the focus (§ 4). Finally, numerical examples
will illustrate the proposed method and the conclusions of the
experiments will be drawn (§ 5).

2. THE FORWARD PROBLEM

Assume the arrangement shown in Fig. 1 where two infinitesi-
mally thin cracks located in the planar surfacesS1 andS2 inside
a non-ferromagnetic plate are searched by a pancake type ECT
coil. The normal vectors of theS1 andS2 surfaces are ˆn1 andn̂2,
respectively. In this Subsection the method used for the solution
of the forward problem is discussed. In other words, the method
used for the calculation of the change of the impedance of the
ECT coil due to the presence of the cracks (∆Z) is described
when the location and the orientation ofS1 andS2 are arbitrary.
During the solution of the inverse problem, however it will be
assumed that the cracks are outer defects (OD) and they are
parallel to each other, consequently ˆn1 = n̂2 = x̂ (x̂ is the unit
vector of thex co-ordinate axis). Fig. 1 shows the particular
arrangement that is actually assumed for the inverse problem.

The electromagnetic interaction of the exciting coil with non-
conducting cracks whose thickness are considerably smaller
than their other dimensions might be calculated based on the
so-called infinitesimally thin crack approximation described by
Bowler [1994]. This model assumes the cracks in the otherwise
homogeneous conductor as mathematical surfaces that block
the flow of the eddy currents across their surfaces, in other



x

x

y

z

A

B

D1
D2

L1

L2

σ0, µ0

h
l

d

S1

S2

r1
r2

Fig. 1. Schematic drawing of the geometry of the investigated
forward and inverse problems

words the normal component of the electric field must be zero
on the surfaces representing the cracks. In the same time, the
magnetic field is assumed to be continuous on the two sides of
these surfaces.

The above boundary conditions might be satisfied by replac-
ing the S1 and S2 mathematical surfaces with current dipole
distributions,p1(r)n̂1 and p2(r)n̂2, having the same effect as
the presence of the crack (the functionp1(r) and p2(r) are
non-zero only on the surfacesS1 andS2, respectively). Thus,
the sum of the electromagnetic field generated by the exciting
coil and the secondary sources in the homogeneous conductor
will provide the field generated by the crack-probe interaction.
Consequently this field must satisfy the above boundary condi-
tions. In the case of cracks with planar surfaces, the described
consideration leads to the following integral equation reported
by Pávó [2000]:

0 = Ei
n1(r1) − jωµ0

"
S2

g21(r1|r ′)p2(r ′) dr ′−

− jωµ0 lim
r→r1±

"
S1

g11(r|r ′)p1(r ′) dr ′, r1 ∈ S1, (1)

0 = Ei
n2(r2) − jωµ0

"
S1

g12(r2|r ′)p1(r ′) dr ′−

− jωµ0 lim
r→r2±

"
S2

g22(r|r ′)p2(r ′) dr ′, r2 ∈ S2, (2)

where rk± (k = 1, 2) denotes the limiting values of the ap-
proaches towards the pointrk from then̂k or−n̂k directions,ω is
the angular frequency of the sinusoidal excitation of the probe
coil andµ0 is the permeability of the vacuum.Ei

nk = n̂k · Ei

(k = 1, 2), whereEi is the so-called incident field that is the
electric field generated by the current of the exciting coil in the
defect-free plate.gkl(r|r ′) = n̂l ·G(r|r ′) · n̂k (k, l = 1, 2) where
G(r|r ′) is the Green’s dyad transforming the current excitation
into the electric field.

The surfaces of the cracks are discretized on a regular lattice
where the unknown dipole density function is approximated
by a piecewise linear function. The integral equation is tested

by first order testing functions and the kernel of the integral
equation is evaluated by the formulae published by Pávó and
Miya [1994]. After solving the linear system of equations ob-
tained by the described discretization of the integral equations
(1)-(2), the dipole density function can be calculated. Knowing
p1(r) andp2(r), the impedance variation of the probe,∆Z, due
to the presence of the cracks can be calculated based on the
reciprocity theorem [Bowler, 1994]:

∆Z = − 1
I2

2
∑

k=1

"
Sk

Ei
nk(r)pk(r) dr, (3)

whereI is the current of the exciting coil.

The results of the described solution of the forward problem
are tested against measurements available for single artificial
cracks (unfortunately measured results on two parallel cracks
are not available in the literature). The comparison verified the
validity of the results.

For rectangular shaped cracks being parallel to each other and
being perpendicular to the surface of the plate, the integral
equations (1)-(2) can be solved by approximatingp1(r) and
p2(r) with the function series introduced in [Pávó and Les-
selier, 2006]. Using this method, the results on several test
configurations are very close to those obtained by the method
described above. The good agreement supports the validity of
both solution methods.

3. THE INVERSE PROBLEM

When the probe coil scans the zone containing the cracks, the
variations of the coil impedance are measured at each point
of a regular rectangular grid, above the supposedly damaged
zone of the plate. In other words, a so-calledsurface scanis
performed. The scan consists ofN coil locations where the
measured impedance variations are∆Zk, k = 1, 2, . . . ,N.

The problem is to characterize the flaw from this set of mea-
sured impedance variations, which will be viewed as the input
data of the inverse problem.

3.1 Regularizing assumptions

It is customary to introduce someregularizing assumptions
to reduce the ill-posedness of the inverse problem. In this
work, two rectangular shaped thin cracks are assumed in the
plate specimen, under (or near) the surface scan measurement
(see Fig. 1). Both cracks are of OD type. Their orientation is
supposedly known, together with the “geometrical center” of
the two-cracks-system (i.e. the distances of the crack midpoints
from the origin are the same for both cracks in thex (A/2) and
in they (B/2) directions as well). As a result, only 6 geometrical
parameters are needed to describe the configuration: the length
of the cracks (L1, L2), their depth (D1,D2) and thex-y distances
of their centers (A, B), respectively (see Fig. 1). To simplify
the notations, the unknown defect parameters are collectedin
a vectort:

t = [A, B, L1, L2, D1, D2].
The definition domain oft will be denoted byT, and will be
referred to as theparameter space.

The forward solver (§ 2) is used to compute the impedance
variation due to a fault characterized by its parameter vector t.
A simulated surface scanconsists of such computed impedance
variations, denoted as∆Zk(t), k = 1, 2, . . . ,N. Obviously, the



simulation is performed at exactly the same coil positions as the
real measurement, thus both the real and the simulated surface
scan consists ofN coil locations.

3.2 Optimization task

The next step for solving the inverse problem is to achieve the
strongest resemblance between the impedance signal obtained
by simulation,{∆Zk(t), k = 1, . . . ,N}, and the measurement,
{∆Zk, k = 1, . . . ,N}, by tuning the parameter vectort.

The applied inversion method requires a finite parameter space
T, meaning that one has to set lower and upper bounds for each
parameter and, moreover, the parameter axes are needed to be
discretized. Consequently, the spaceT has to consist of a finite
number of parameter pointst. The bounds and discretization
of each parameter are summarized in Table 1. The parameters
are independent from each other, thus, the parameter spaceT

can be imagined as a 6 dimensional hypercube, spanned by
the 6 parameter axes. The hypercube includes 52 · 74 = 60025
parameter points.

Table 1. Discretization of the parameter axes.

Parameter A B L1 L2 D1 D2

Minimum value (mm) 0.25 0 2 2 0.1250 0.1250
Maximum value (mm) 1.25 4 8 8 0.8750 0.8750
Step size (mm) 0.25 1 1 1 0.0125 0.0125
No. of points 5 5 7 7 7 7

To give a mathematical form to the resemblance between two
surface-scan impedance signals, we define thesimilarity func-
tion

Q(t) =

N
∑

k=1

|∆Zk(t) − ∆Zk|2

N
∑

k=1

|∆Zk|2
. (4)

Our objective is thus to minimizeQ(t), i.e. to find
t̂ = arg min

t∈T
Q(t) .

4. STOCHASTIC MODELING AND OPTIMIZATION OF
THE SIMILARITY FUNCTION

Our objective is to implement the Expected Improvement al-
gorithm to minimizeQ(t). One iteration of such an algorithm
involves mainly two steps:

(1) the construction of an approximation of the similarity
function from a set of past evaluations of the function
obtained at previous iterations. To this end, a random
process is chosen as a model of the similarity function and
an interpolation by kriging is performed.

(2) the search of the maximum of the Expected Improvement
over the parameter spaceT then the computation of the
similarity function at that parameter point.

This two-step procedure is repeated iteratively until a stopping
criterion is met, i.e. a sequential optimization algorithmis
obtained.

4.1 Kriging interpolation

Let us assume that we have already observed the multivariate
scalar functionQ(t) at n pointst1, t2, . . . , tn of T. In this way,

n function valuesQ1 = Q(t1), Q2 = Q(t2), . . . , Qn = Q(tn)
are known. We would like to predict the function value at
unobserved sites. One method to achieve this goal is to use
kriging, a random process approach developed in the 60s in
geostatistics [Chiles and Delfiner, 1999]. The method is also
well-known for modeling computer simulations [Sacks et al.,
1989].

Let ξ(t) be a Gaussian random process that models the function
Q(t). Thus, each observationQk is considered as the realization
of the Gaussian random variableξ(tk) (k = 1, 2, . . . , n). Kriging
computes thebest linear unbiased predictor (BLUP)of ξ(t). Let
us denote this prediction bŷξ(t). The predictor islinear in the
sense that it is a linear combination of the observed random
variablesξ(tk), k = 1, 2, . . . , n, which can therefore be written
as

ξ̂(t) =
n

∑

k=1

λk(t)ξ(tk). (5)

Unbiasedness relates to the fact that themeanof ξ̂(t) is equal to
the mean ofξ(t), i.e. the mean prediction error is zero:

E[ε(t)] = E[ξ̂(t) − ξ(t)] = 0. (6)

The term “best” means that the prediction errorε(t) of the
kriging predictor has thesmallest varianceamong all unbiased
predictors. This variance (also calledkriging error) may be
written as

σ̂2(t) = var[ξ̂(t) − ξ(t)] = E[(ξ̂(t) − ξ(t))2] , (7)

using the unbiasedness condition (6).

The objective is to find the coefficientsλk(t) in (5) that provide
the BLUP. The kriging error can be written using the covariance
function, which describes the dependence between two random
variables of the process at different points. Let us denote the
covariance function byk(ta, tb) = cov[ξ(ta), ξ(tb)], where ta
andtb are two points inT. Let us denote byK , thecovariance
matrix whose entries correspond to the covariances of the
random process between the observation pointst1, t2, . . . , tn:

K =


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(8)

If one has some prior knowledge on the function to be modeled
it can be reflected by giving a prior mean to the predictor. Since
in our case no information is available but the observed function
values, a constant (but unknown) meanE[ξ(t)] = C is assumed.

To simplify the notations let us collect the coefficientsλk(t)
into a vectorλλλ(t) = [λ1(t) λ2(t) . . . λn(t)]T, and de-
note by k(t) the vector whose elements are the values of
the covariance betweent and the observation points:k(t) =
[k(t, t1) k(t, t2) . . . k(t, tn)]T. It can be shown that the determi-
nation ofλλλ(t) boils down to computing the solution of the linear
system of equations (see, e.g., Villemonteix et al. [2008]):
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(9)

whereµ(t) is the Lagrange multiplier, which corresponds to the
enforcement of the unbiasedness condition.

Once the vectorλλλ(t) has been computed, a predicted value of
the similarity functionQ(t) can be written as



Q̂(t) =
n

∑

k=1

λk(t)Qk. (10)

It is easy to show that the functiont 7→ Q̂(t) interpolatesQ(t)
at observed points. An interesting property of kriging, is that an
estimate of the uncertainty of the prediction is available via the
kriging error, which can be written as

σ̂2(t) = k(t, t) − λλλ(t)Tk(t) − µ(t). (11)

This feature will be essential in the adaptive sampling strategy
of the Expected Improvement algorithm.

4.2 Covariance model

Before focusing on the optimization algorithm, we mention
very briefly how the covariance function is chosen in practice
(see also Villemonteix et al. [2008]).

First, a simplifying assumption is made – as usually done in
geostatistics (see, e.g., Chiles and Delfiner [1999]) – namely
that the random process isstationary. Then, the covariance
function is a univariate functionk(h) where h is a distance
between two pointsta, tb ∈ T. This distanceneeds not to be
the classical Euclidean distance. In our case, the components of
t ∈ T are of different kinds. Thus, it is reasonable to use some
anisotropic distance, which may be written as

h =

√

√

√ D
∑

d=1

(

ta,d − tb,d
ρd

)2

. (12)

whereta,d andtb,d are thedth components of the vectorsta and
tb, respectively, andD the dimension ofT. The parameters
ρd, d = 1, 2, . . . ,D, represent therange of the covariance,
or the typical correlation distance, in the direction of thedth

component.

Second, a parameterized covariance function is chosen and
its parameters are estimated using the data with amaximum
likelihoodmethod (see, e.g, Villemonteix et al. [2008]). We use
theMatérncovariance function, which can be written as

k(h) =
σ2

2ν−1Γ(ν)

(

2
√
ν h

)ν
Kν

(

2
√
ν h

)

, (13)

whereKν is the modified Bessel function of the second kind of
orderν. The parameterν controls the regularity of the random
process – the higher theν, the more regular the process is. The
parameterσ2 is thevarianceof the process (k(0) = σ2). The pa-
rametersρd in (12) are also estimated by maximum likelihood
(the covariance function has indeedD + 2 parameters).

4.3 Expected Improvement

Since the similarity functionQ (to be minimized) requires to
compute the solution of a forward problem, the computational
cost of evaluatingQ is non-negligible. Moreover, for an inver-
sion method to be useful in practice, the computational burden
of the method must not be too high. Thus, we wish to limit the
number of evaluations ofQ in the inversion procedure, which
means that the optimization method used to minimizeQ must
be efficient.

Theexpected improvement (EI)algorithm is an iterative method
to find the global minimizers of an expensive-to-evaluate func-
tion [Jones, 2001]. The method is based on interpolation by
kriging of the function to be optimized. Let us assume that

Table 2. Parameters of the ECT configuration.

Metal plate
Thickness (d) 1.25 mm Conductivity(σ0) 106 S/m

Probe coil
Inner radius(r1) 0.6 mm Outer radius(r2) 1.6 mm
Height (l) 0.8 mm Lift-off (h) 0.5 mm
No. of turns 140 Frequency 150 kHz

Surface scan
Points in the x dir. 11 Points in the y dir. 41
Step in the x dir. 0.5 mm Step in the y dir. 0.5 mm

Q has been evaluated atn points Q1 = Q(t1), Q2 = Q(t2),
. . . , Qn = Q(tn). An iteration of the EI algorithm provides the
location of the next evaluation.

First, an interpolationQ̂ of Q is computed by kriging from
the set of past evaluations, along with the variance of the
kriging errorσ̂2(t). Denote the current minimal value byQmin =

mink=1,...,n Qk. Define theimprovementoverQmin at a pointt ∈ T
by

I (t) = max(0,Qmin − Q(t)).
However,Q(t) is unknown except at then evaluation points.
SinceQ(t) is modeled by the Gaussian random processξ, a
natural idea is to express the expected value ofI (t), which is
called the expected improvement and appears to have a very
convenient analytical form:

EI(t) ≡ E[ I (t)] = σ̂(t)
[

uΦ(u) + ϕ(u)
]

, (14)

whereΦ(·) is the normal cumulative distribution function,ϕ(·)
is the normal density function, andu is defined by

u =
Qmin − Q̂(t)
σ̂(t)

.

The next evaluation point is chosen according to the highest
value of the expected improvement. Since (14) is straightfor-
ward to compute, the maximization of the EI overT is not a
problem in practice. A natural stopping criterion is when the EI
is smaller than a small positive number.

Note that the EI algorithm is known to be consistent, i.e. the
algorithm converges to the location of the global minimizer
(under some assumptions) [Locatelli, 1997, Vazquez and Bect,
2007]. In theory, the convergence rate is unknown but it appears
in practice that this type of algorithm converges very rapidly, as
illustrated in our numerical studies (see next section).

5. NUMERICAL EXAMPLES

In this section a couple of numerical examples are selected to
illustrate the presented inversion method. The parametersof
the ECT configuration are shown in Table 2 (see also Fig. 1).
The surface scan consists of 451 measured impedance values –
observed at the nodes of a rectangular grid characterized bythe
parameters given in Table 2. The center of the surface scan is
at the origin of thex-y coordinate system and the edges of the
grid are parallel to the related coordinate axes.

Since no experimental measurements are available at that time,
the so-called “measured impedance variation” (∆Zk, k =
1, . . . ,N in (4)) of the defects in the assumed test cases are
obtained by numerical simulation.

The necessary initialization of our iterative process implies the
evaluation of the similarity function at some well-chosen points
of the parameters space. There is no “best” way to choose such
initial points without complementarya priori informations,



Table 3. Defect parameters, in case of Initialization
“A”. (exact/reconstructed)

No. A
mm

B
mm

L1
mm

L2
mm

D1
%

D2
% It. Qmin

10−3

#1 0.50/0.50 3/3 3/3 5/5 40/40 60/60 57 0
#2 0.75/0.75 1/1 4/4 4/3 30/40 50/50 112 21.6
#3 0.75/0.75 2/3 7/5 3/3 50/50 30/50 95 28.6
#4 1.00/0.75 0/0 6/7 6/3 60/60 40/40 60 8.56

Table 4. Defect parameters, in case of Initialization
“ B”. (exact/reconstructed)

No. A
mm

B
mm

L1
mm

L2
mm

D1
%

D2
% It. Qmin

10−3

#1 0.50/0.50 3/3 3/3 5/5 40/40 60/60 81 0
#2 0.75/0.75 1/1 4/2 4/4 30/40 50/50 118 6.98
#3 0.75/0.75 2/2 7/7 3/3 50/50 30/30 79 0
#4 1.00/0.75 0/0 6/6 6/5 60/60 40/40 109 4.73

therefore it seems reasonable to spread them more or less
uniformly on the parameter space. Too few points can give
misleading information on the similarity function whereastoo
many points may be unnecessary (thus “uneconomical” in the
sense of computation time). Two types of initialization are
presented in the paper:

• Initialization “A”: all the vertices of the 6D parameter
hypercube (26 = 64 points) and the midpoint of the
hypercube (1 point):Σ65 points;
• Initialization “B”: the same points as in Init. “A”, and

all the midpoints of the sides of the hypercube (2· 6 =
12 points):Σ77 points.

The parameters of the cracks to be retrieved and the obtained
results are reported in Table 3 and Table 4. The depths (D1,D2)
are given in percents of the plate thicknessd. After the initial-
ization (65 or 77 similarity function evaluations) a fixed number
of iteration cycles were performed (120 in all the cases). In
the column “It.” the number of cycle, in which the final best
function value (Qmin) was found, is presented; that minimum
value (related to the obtained solution) is also reported inthe
tables.

Table 3 and Table 4 illustrate the efficiency of EI algorithm
with which an “acceptable” solution – in the sense of a low
similarity function – is obtained ina few number of iterations.
The performance of the algorithm is illustrated in Fig. 3. On
the bottom diagrams in Fig. 3(a) and Fig. 3(b), the log10 of
the maximal expected improvement (i.e. over the total discrete
parameter space) at the related iteration cycle is presented.
One can see that it is decreasing as the iterations are being
performed. However, the decrease is not monotonous. As it was
mentioned, in our experiments a fixed number of iterations were
performed. However, it would be better to construct a stopping
criterion which stops the iterations automatically right after
finding the solution – to reduce the number of “unnecessary”
function calls at the end. By now, no really good stopping rule
has been developed. One can rely on the maximal EI value,
stating that if it is lower than a small limit, the iterationscan
be stopped. But the choice of this limit is not obvious – as it
is illustrated in Fig. 3. In Fig. 3(b), one can see that a smallQ
value (quite close to the “final” solution in iteration No. 109)
was obtained in iteration No. 60. The parameter vector related
to the observation in iteration No. 60 ist = [1.0, 0, 6, 4, 60, 40]
(in the same units as in Table 4). This parameter point is close
to the real solution and to the reconstructed one (see Table 4)
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Fig. 2. Magnitude of the measured impedances in case No. #4.
Line scan along thex = 0 line. Solid line: real crack
configuration,dashed line:retrieved configuration (case
Initialization “B”). The measured data is almost the same
in both cases, thus it is extremely difficult to make differ-
ence between the configurations.

as well. However, the maximalEI value in iteration No. 60 is
almost 100 times higher than the one in iteration No. 109!

Note that the two presented performances are related to the
same physical problem, only the initialization of the inversion
procedure differs. In spite of this, significant differences can
be found between the behaviour of the algorithm in the two
cases. Thus, one can see that the choice of initial points strongly
influences the latter performance. As it was mentioned above,
there is no general best choice of initial points, moreover,it may
also depend on the problem to be solved.

It is also important to note that the similarity function must be
complicated. This is illustrated in Fig. 5: the functionQ(t) is
probably quite flat around its global minimizer, or physically,
different configurations can cause very similar measurable out-
put signal.

The computations were performed on a PC with 16 Gb RAM
and a 64 bits CPU at 3 GHz. The computation of the Green’s
function and of the incident field was made in advance, sep-
arately. One average iteration cycle of the optimization loop
took approximately 106 sec. Almost all of that time is needed
to perform the kriging prediction and EI computation, the com-
putation of the objective function takes just a few seconds.(At
first sight, one can think that the applied inversion method is
more expensive-to-evaluate than the objective function itself
– but note that by using this inversion method, at most some
hundred function calls are needed, whereas that the parameter
spaceT consists of more than 60 thousand points!)

6. CONCLUSION

A method for ECT inversion was presented. The stochastic-
based optimization algorithm was coupled with a surface
integral-based forward solver – the developed inversion method
seems to be efficient in the light of the presented test cases.

The kriging interpolation of the similarity function provides
a cheap surrogate model of the electromagnetic “black-box”.
Since this “black-box” includes electromagnetic field computa-
tion tasks, it is usually expensive-to-evaluate. This is why the
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(a) Initialization “A”
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Fig. 3. Typical performance of the algorithm. The curves are
realted to Case No. #4, (see Table 3 and Table 4).Top:
current best objective function value (the minimum of all
the past observations). The found minimum is marked by
a circle.Bottom: log10 of the maximal EI in the current
cycle.

use of such surrogate models seems to be fruitful. This kind
of surrogate modeling of electromagnetic phenomena has been
a popular method for years and now seems to be having its
“second honeymoon” [Sykulski, 2007]. Several methods exist
for the solution of electromagnetic optimization problems. The
main novelty of this paper is the application of such an existing
(and in other domains widely used) optimization method for the
inverse problem of double-crack characterization in ECT.

A couple of numerical examples illustrate the performance of
the developed inversion method. The most important conclu-
sion to be drawn is that quite few number of similarity function
evaluations were enough to find an acceptable solution – even
if the similarity function is “badly behaved” from the pointof
view of optimization. It is also important to emphasize that
the performance of the algorithm is strongly influenced by the
choice of initial observation points – as it was pointed out via
our numerical examples.

A pitfall of the EI algorithm was also highlighted. The choice
of an adequate stopping criterion is not straightforward and no
general solution has been found yet. Further investigations are
needed concerning this problem.

In this paper, only the brief introduction to the stochastictools
and the first results were presented – the research is far from
being finished. In the authors’ opinion, the use of surrogate
models in ECT inversion is a hopeful idea.
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J. Pávó and K. Miya. Reconstruction of crack shape by
optimization using eddy current field measurement.IEEE
Transaction on Magnetics, 30:3407–3410, September 1994.

J. Sacks, W.J. Welch, T.J. Mitchell, and H.P. Wynn. Design
and analysis of computer experiments.Statist. Science, 4:
409–435, 1989.

J. K. Sykulski. New trends in optimization in electromagnet-
ics. Przeglad Elektrotechniczny, 83(6):13–18, 2007. Invited
paper from ISTET’07 Conference.

E. Vazquez and J. Bect. On the convergence of the expected
improvement algorithm.arXiv:0712.3744v1, 2007.

J. Villemonteix, E. Vazquez, and E. Walter. An informational
approach to the global optimization of expensive-to-evaluate
functions. Journal of Global Optimization, 2008. URL
http://dx.doi.org/10.1007/s10898-008-9354-2.


