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Université de Lyon, Laboratoire ERIC (EA 3083)
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Abstract—Clustering methods usually require to know the
best number of clusters, or another parameter, e.g. a threshold,
which is not ever easy to provide. This paper proposes a new
graph-based clustering method called “GBC” which detects
automatically the best number of clusters, without requiring
any other parameter. In this method based on regions of
influence, a graph is constructed and the edges of the graph
having the higher values are cut according to a hierarchical
divisive procedure. An index is calculated from the size average
of the cut edges which self-detects the more appropriate
number of clusters. The results of GBC for 3 quality indices
(Dunn, Silhouette and Davies-Bouldin) are compared with
those of K-Means, Ward’s hierarchical clustering method and
DBSCAN on 8 benchmarks. The experiments show the good
performance of GBC in the case of well separated clusters,
even if the data are unbalanced, non-convex or with presence
of outliers, whatever the shape of the clusters.
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I. INTRODUCTION

Clustering is an unsupervised machine learning task used
successfully in many fields, including image analysis, bioin-
formatics and marketing. Given a set of n data objects
described by p attributes, clustering procedures aim at group-
ing the objects into clusters such that similar objects are
in the same cluster and dissimilar objects are in separate
clusters. In this paper, we are interested with crisp clustering
methods which consider that each object belongs to exactly
one cluster at the contrary of fuzzy clustering.

Partitioning clustering aims at directly decompose the set
of objects into k? disjoint subsets, where k? has to be pre-
determined. K-Means [1] is a popular iterative reallocation
algorithm due to its simplicity and low complexity. Among
the variants of K-Means, PAM [2] is more robust against
the noise and CLARANS [3] is more efficient and scalable.

Hierarchical algorithms produce a hierarchy of partitions.
According to the direction of the procedure, at each step
these algorithms either merge the most similar clusters
(agglomerative procedure, e.g., using Ward’s criterion [4])
or split the most heterogeneous cluster (divisive procedure).
Among others one can cite BIRCH [5] which concentrates
on densely occupied portions of the space, CURE [6] which
uses multiple representatives for each clusters to “capture”

the shape of each one, and ROCK [7], or its improved
version Q-ROCK [8], that does not employ distances but
links when it merges the clusters.

Density-based clustering algorithms are designed to dis-
cover arbitrary-shaped clusters. Clusters are considered as
dense regions of objects in the data space that are separated
by regions of low density. DBSCAN [9] is a typical density-
based algorithm. The core point in DBSCAN is that for a
fixed radius, the neighborhood of each object in a cluster
has to contain at least a minimum number of other objects.

Grid-based algorithms partition the data space into a finite
number of cells to form a grid structure, and determine
the cells whose density exceed a prefixed threshold. Then
they perform all clustering operations on the obtained grid
structure (e.g., STING [10] or CLIQUE [11]).

Graph-theoretic approaches are able to discover non usual
data structures. The simplest algorithm is founded upon the
minimum spanning tree (MST) [12]. First the minimum
spanning tree is built, where the nodes are the objects and
the edges sizes are the Euclidean distances in the objects
space. The edges having the greatest size are removed to
construct disjoint connected components.

The purpose of our work is to extend Zahn [12] and
Urquhart [13] graph-theoretic approach by showing an easy
way of selecting the “ideal” number of clusters. In section II,
we discuss the different state-of-the-art clustering methods
and investigate how they process to choose the best number
of clusters. We will show that no one can give an appropriate
answer because if they do not ask explicitly the user to give
them this information, they asked him on other parameters
that he can not give a response without having an intuition on
the domain. This problem is fixed in our new method, pre-
sented in section III, which is a divisive data set processing
that tries to find automatically the good number of clusters.
In the section IV we perform an extensive experimental
evaluation with different clustering quality indices obtained
on different clustering methods.

II. HOW TO CHOOSE THE NUMBER OF CLUSTERS?

On Table I, we list the characteristics of main clustering
methods found in the data mining literature.



Algorithm Category Method Parameters / Properties
Hierarchical clustering Ward’s algorithm [4] agglomerative algorithm

MST Divisive based on graph theory
Hierarchical Clustering [12]

Clustering Using each cluster is represented
REpresentatives (CURE) [6] by a set of representatives

RObust Clustering k?: number of clusters
using linKs (ROCK) [7]

Q-ROCK [8] θ: similarity threshold
Hard Clustering k-Means [1], [14] k?: number of clusters

Density-based clustering DBSCAN [9] ε: distance to consider that
2 points are neighbors or not

Sequential clustering Basic Sequential Algorithm Θ: dissimilarity threshold
Scheme (BSAS) [15] k?: max. number of clusters

Table I
MAIN CLUSTERING METHODS

For the hierarchical clustering algorithms, the choice of
the best number of clusters is not a simple task. Of course,
a dendogram obtained with Ward’s agglomerative method
or the MST divisive algorithm can help the user, but in
many cases it is only the knowledge of the domain that
can be used to identify what is the best clustering. When no
information is given to set k?, the number of clusters, the
user have to provide a specific parameter, like a similarity
(or dissimilarity) threshold Θ, or to rely on some heuristic
arguments, like a k? = f(n) function that will provide a
number of clusters depending on n, the size of the data set.

The density-based algorithms, like DBSCAN [9], DB-
CLASD or DENCLUE, consider that clusters are dense
regions of points. These methods can handle arbitrary shaped
clusters, outliers, and their time complexity is lower than
other clustering methods. Unfortunately, the choice of the
parameters required for these methods (e.g., ε for DBSCAN)
may lead to different results and it is not easy to discover
which one is the best without doing several experiments.

The clustering algorithms based on regions of influence
are an extension version of the MST divisive algorithm
[12] aforesaid. These methods, based on the graph theory,
are capable of detecting clusters for various shapes. These
algorithms can provide good results when the clusters are
well separated in the representation space. The key idea of
these algorithms is to construct a graph by connecting with
an edge each pair of points that are alone in a given region
of influence, e.g. the relative neighborhood graph (RNG)
[16] or the Gabriel graph (GG) [13], then removing the
edges that are inconsistent compared with their neighboring
edges. An edge is considered as inconsistent if it is greater
of q standard deviations (typically q = 2) of the mean of a
given number of its neighbors, which makes subjective this
procedure. Nevertheless, an advantage of these algorithms
is that the results do not depend on the order in which the
data are considered and no initial conditions are required.

Finally an ideal method does not exist. In our opinion, a
good clustering method has to be easy to implement and to
use (no specific parameter values have to be asked to the
user), and has to be suitable for various shapes of clusters.

III. GBC METHOD

A. Neighborhood Graphs
The neighborhood graphs, which are special tools of

the computational geometry, can be used in the clustering
algorithms based on regions of influence, but also in many
other data mining tasks, and especially in the supervised
machine learning [17], [18], [19], [20]. Such neighborhood
structure can be for example the k-nearest neighbor, the
Delaunay triangulation, the MST, the relative neighborhood
graph (RNG), the Gabriel graph (GG).

For each graph, a specific condition is required, depending
on a region of influence, to link two points with an edge.
For the MST, the condition is to connect all vertices together
with the minimal size of edges; for the RNG, the region
of influence is a lune, the intersection of two hyperspheres
centred on each pair of points; and for the GG, the region
of influence is an hypersphere with each pair as a diameter.

B. GBC, a New Clustering Algorithm
GBC, the new clustering method proposed in this paper, is

conducted in 2 phases. The first phase (in 10 steps) consists
in doing a list of µ values which will be used in the formula 1
to detect the appropriate number of clusters and is conducted
as written on Table II.

1 construction of a neighborhood graph NG
2 descent sorting (by size) of the edge set E of NG
3 initialization step: k ← 2, Σk ← 0, and ne ← 1
4 cutting the edge emax ∈ E of the (sub-)graph with the higher value
5 adding the size of emax to Σk , the sum of the cut edges at the level k
6 testing if the (sub-)graph with the edges E − {emax} is still connected
7 if the graph is still connected, increasing the number of edges:

ne ← ne + 1
8 if the graph is not connected, modifying:

k ← k + 1 (new level for having k clusters)
ne ← 1 (re-initialization of the number of cut edges)
µk ← Σk/ne (µk is the average of the sizes of the cut edges)
Σk ← 0 (re-initialization of the sum of cut edge sizes)

9 E ← E − {emax} (remove the bigger edge from the set E)
10 back to step 4 by using the next maximal edge emax ∈ E while k < n

Table II
GBC ALGORITHM

After this first phase, we can calculate the δ values for
each level k as follows:

δk =
µk − µk+1

µk + µk+1
,∀k = 2, . . . , n− 1 . (1)

The maximal value of δk is used to select kδ max, the
ideal number of clusters in the data set. The second phase
is similar to the first one, but the loop runs until k = kδ max

in the step 10 (instead of k < n).
Notice that we can equally use the MST, RNG or GG

for the neighborhood graph on the step 1 of the algorithm.
In the experiments, we did not find significant differences
in the results, but following [13], we recommend the RNG
of Toussaint [16] which is a structure that overcome some
problems encountered with the MST.



C. Main Characteristics of δ

The first phase considers all the data as a unique set and
tries to separate this set in subsets as it is done for the
descendant hierarchical clustering method, but in a much
lower time complexity thanks to the graph structure. At each
level k, the size average of the cut edges µk is calculated.

Since the set of edges E is sorted by descending size, µk
is a monotone descending function of k and can not be used
as it is for finding the more relevant number of clusters.

The value µk−µk+1 represents the decreasing of µ while
getting from a partition of k clusters to k + 1 clusters. The
parameter δk allows to normalize this difference by taking
into account µk and µk+1. The splitting procedure continues
while this normalized difference δk is increasing.

D. Properties of the Method

First, GBC is very sensitive to the outliers [21], because
an outlier will be far from the other data in the representation
space, and it will be detected as an independent cluster.

Secondly, GBC is limited to hard clustering: it will fail to
detect different clusters if there is a recovery between them.
If the clusters are not well-separated in the representation
space, there will not be an edge with a big size between the
clusters in the neighborhood graph.

IV. EXPERIMENTATIONS

A. Methodology

For this study, we have compared GBC with 3 other clus-
tering methods: K-Means [1], Ward’s hierarchical clustering
method [4] and DBSCAN [9]. For DBSCAN, we have used
the value of ε given by the mean value of the 4-nearest
neighbors (4-NN) of the edges of the data set [9], and we
have increased this value (indicated ε↗ or ε↗↗) for having
better results (and less clusters).

Three quality indices have been calculated on Table III:
Dunn’s [22], Silhouette [23], and the Davies-Bouldin’s [24]
indices. In addition to these results, Table III indicates for
each data set the numbers of individuals (Indiv.), of attributes
(Attr.), of clusters discovered with GBC (kδ max), of real
classes or clusters for the domain when it exists (kr). The
number of clusters used for the test (ku), and the respective
sizes of the clusters obtained with these 3 different methods
are also shown on this table.

B. Quality Indices in Clustering

1) Dunn’s Index: This index, which tries to obtain well-
separated sets with examples very closely located to each
others, is calculated with the dissimilarity measure between
two clusters and the diameter measure of a cluster. Large
values of Dunn’s index correspond to good cluster partitions.
The Dunn’s index has two major drawbacks: its computation
requires a considerable amount of time, and this index is
very sensitive to the noise and to the outliers.

2) Silhouette Index: The global silhouette partition,
which is the average of all example silhouettes, takes its
value between -1 and 1, and the partition with the maximum
global silhouette is considered as the optimal partition.

3) Davies-Bouldin’s Index (D.-B.): D.-B. reaches to min-
imize the average similarity between the different clusters,
so D.-B. is a function of the ratio of the sum of within-
cluster scatter to between-cluster separation. D.-B. exhibits
no trends with respect to the number of clusters. The smaller
D.-B. is, the better the partition is considered.

C. Data Sets

For these experimentations, we used 5 real benchmarks
from the UCI Repository [25], 3 artificial data sets (test-2c-
2o, test-random, yin-yang), and ruspini [26].

The data sets were chosen to represent a variety within a
specific class of data sets characterized by: (1) small number
of true classes, which may or may not correspond to coherent
clusters; (2) moderate number of observations; (3) moderate
number of features; (4) numerical attributes (continuous
or multivalued values) for calculating the distances. The
observations with missing values have been removed from
the data sets, all values have been transformed with the
Milligan and Cooper method [27] and the Euclidian distance
has been used for all the clustering methods.

D. Global Results

On Table III, the best values of the clustering validity
indices are emphasized in a bold font. The experimental
setup allows to compare the performances of GBC, K-Means
and Ward’s hierarchical clustering 11 times, because we
used the 8 data sets described in the section IV-C, and 3
of them were used with two different numbers of classes
(auto-mpg, e-coli and iris). On Table III, the performance
of each algorithm on each data set is evaluated according to
the 3 quality indices described in the section IV-B.

In the case of the Dunn index, GBC outperforms K-Means
and Ward’s hierarchical clustering. Compared to K-Means,
GBC improves significantly the value of the Dunn index 8
times out of 11 and there are 3 equalities (p-value of the sign
test = 0.008). Compared to Ward’s hierarchical clustering,
GBC improves the value of the Dunn index 7 times out of
11, with 3 equalities and 1 defeat (p-value = 0.070).

According the Davies-Bouldin index, GBC has better
results than K-Means (7 wins, 2 defeats, 2 equalities), but
this superiority is not significant (p-value = 0.180). The
results of GBC and WHC are quite the same (5 wins, 4
defeats, 2 equalities).

The performances of the three algorithms according to the
Silhouette index are very close (GBC wins 3 times, K-Means
4 times, WHC 2 times, and 2 equalities). It is not easy to
compare the performances of the three algorithms with those
of DBSCAN because DBSCAN determines automatically
the number of classes in function of the values chosen for



the two parameters of the algorithm. Only 4 comparisons can
be achieved (iris, ruspini, test-2c-2o, yin-yang). For each of
them, the results of DBSCAN are identical to those of GBC.

E. Detailed Results

Auto MPG is generally used for a regression task: the
continuous class variable is to be predicted in terms of
3 multivalued discrete and 5 continuous attributes. Con-
sequently, there is no “true real” number of classes to
discover. GBC is not able to find an ideal number of clusters
(kδ max = 388 ' 392 = n) but a real number of cluster kr
does not exist for this data set. GBC obtains however the
best result with the Dunn index for k? = 5 clusters.

Breast Cancer Wisconsin (Original) is a data set that
contains 8 attributes and is used in a Boolean classification
task. Here, GBC is not able to find an ideal number of
clusters (336 seems to be irrelevant) but nevertheless, when
it has to detect 2 clusters, it obtains good results with Dunn
and D.-B. indices, just by isolating one outlier.

Ecoli Data Set contains 7 predictive attributes used to
predict the cellular localization sites of proteins. They are 8
possible sites. With this data set, GBC does not detect the
8 classes but find 3 clusters; the 3 quality indices obtained
with this method pass all the others.

Iris Data Set contains 4 predictive attributes with 3 classes
of 50 instances each, where each class refers to a type of
iris plant. One class is linearly separable from the other
two; the latter are not linearly separable from each other.
All the methods are able to discover the 2 clusters, but the
GBC method gives an interesting result when it is forced to
produce 3 clusters (one outlier detected, and best value with
the D.-B. index).

Ruspini [26] is a data set consisting of 75 points in four
groups with 2 variables giving the x and y coordinates. On
this case, the results of the different methods are the same.

Test 2 Clusters with 2 Outliers (or Test-2c-2o) consists of
402 instances on 2 variables (the x and y coordinates) with
2 groups of 200 observations each and 2 outliers between
the groups. Only GBC and DBSCAN are able to detect the
2 clusters and the 2 outliers.

Test with Random values (or Test-Random) is an artificial
data set consisting of 1000 instances on 2 variables (the x
and y coordinates) where the values have been randomly
generated. The value of kδ max = 999 obtained is close to
n = 1000, indicating that the method is not able to find a
structure in the data set (which is an appropriate behavior
with random data).

Yin and Yang is a non-convex artificial data set consisting
of 1000 instances randomly extracted from the black points
of a Yin and Yang picture (the Chinese symbol). The 2
variables correspond to the x and y coordinates. GBC and
DBSCAN are able to find the appropriate clusters. The
Silhouette index is not the best in this case because it
penalizes a partition with unbalanced clusters.

V. CONCLUSION AND FUTURE WORK

The new clustering method that we proposed in this paper
is in the line with the graph-theoretic approaches. GBC has
been tested with 3 quality indices and compared to other
clustering methods on 8 benchmarks. On artificial data sets
where the clusters are well represented, GBC outperforms
the other methods. On real data sets extracted from the UCI
Repository, when clusters can intrinsically be found in the
data, GBC detects automatically the correct cluster number
and identify the relevant clusters. On the other hand, when
the class clusters are not well separable, the method tends
to “peel” the global clusters in isolated points.

Even if GBC is more time consuming than DBSCAN or
K-Means, its computational complexity is equivalent to a hi-
erarchical agglomerative clustering due to the neighborhood
graph construction. We have also to remind that it is limited
to the hard clustering and will fail if there is a recovery
between the different clusters.

Nevertheless, this method has many advantages. First,
we have shown that GBC obtains good results when the
data are well-structured: it detects easily the well-formed
clusters and the outliers, whether the cluster shapes are
convex or not, whether the cluster sizes are homogeneous or
not. Second, the main advantage of GBC is that the method
does not need any parameter to perform on a data set. It is
a considerable improvement compared with other clustering
techniques developed in the data mining literature. Even for
DBSCAN, which can discover the best number of clusters,
the quality of the results is associated to one or more specific
parameters (here, the size of the radius ε and the minimal
number of neighborhood points for considering a core point).

Third, when they are some outliers in a data set, GBC can
automatically find them, without any parameters, as well as
DBSCAN when the ε parameter is well chosen. Fourth, GBC
provides a dendogram –like the other hierarchical cluster
algorithms– but can find automatically the ideal number of
clusters. Fifth, it can be associated to a visualization method
for neatly navigating into the data. This method is useful
to prepare the data and to find the border points between
clusters. Sixth, when there is no a-priori structure in the
data of the set, GBC will indicate it by providing a value
kδ max close to the number of examples in the data set. And
seventh, while processing on a divisive way in a moderate
computer complexity, GBC is better to represent the way of
a human being processes (e.g., Zahn’s approach has been
driven by psychological considerations [12]).

For our future work, we plan to add another quality index
adapted to graph-based clustering, in a similar way of the
indices proposed by [28] which is an adaption of the Davies-
Bouldin’s index to neighborhood graphs. And finally we will
make a more specific study of the outliers that GBC detects
in a more selective way than DBSCAN.



Data set Indiv. Attr. kδ max kr ku Method Dunn Silh. D.-B. Size of the clusters
auto-mpg 392 8 388 — 2 GBC 0.059 0.531 2.141 {245;147}

2 K-Means 0.019 0.634 2.435 {176;216}
2 WHC 0.061 0.559 2.062 {103;289}

auto-mpg 392 8 388 — 5 GBC 0.074 0.412 4.082 {175;69;1;68;79}
5 K-Means 0.001 0.408 3.978 {20;178;73;42;79}
5 WHC 0.007 0.502 3.828 {103;100;73;72;44}

auto-mpg 392 8 — ε = 4-NN 152 DBSCAN 0.003 0.124 10674.887 {13;8;73;46;20;42;45;1×145}
ε↗ 35 DBSCAN 0.005 0.109 5773.051 {100;71;71;53;67;1×30}

breast 683 9 336 2 2 GBC 0.127 0.498 0.982 {1;682}
2 K-Means 0.024 0.754 1.719 {231;452}
2 WHC 0.012 0.708 1.471 {424;259}

breast 683 9 — ε = 4-NN 282 DBSCAN 0.000 0.492 2395.722 {402;1 ×145}
ε↗ 218 DBSCAN 0.000 0.685 2174.749 {435;11;10;6;8;1×213}

e-coli 336 7 3 8 3 GBC 0.494 0.724 1.002 {1;9;326}
3 K-Means 0.001 0.181 20.262 {118;109;109}
3 WHC 0.005 0.569 19.479 {151;83;102}

e-coli 336 7 3 8 8 GBC 0.057 0.306 156.603 {1;3;1;1;4;1;1;324}
8 K-Means 0.001 0.166 13.859 {11;31;16;83;19;51;107;18}
8 WHC 0.004 0.367 12.008 {31;66;54;53;82;20;10;20}

e-coli 336 7 — ε = 4-NN 85 DBSCAN 0.010 -0.221 4150.664 {159;84;11;1×82}
ε↗ 74 DBSCAN 0.007 -0.427 4380.764 {263;1×73}
ε↗↗ 7 DBSCAN 0.017 0.681 2958.936 {1;1;326;5;1;1;1}

iris 150 4 2 3 2 GBC 0.128 0.809 1.301 {50;100}
2 K-Means 0.128 0.809 1.301 {50;100}
2 WHC 0.128 0.809 1.301 {50;100}

iris 150 4 2 3 3 GBC 0.039 0.700 1.172 {49;1;100}
3 K-Means 0.002 0.542 1.543 {25;75;50}
3 WHC 0.013 0.688 11.965 {50;67;33}

iris 150 4 — ε = 4-NN 58 DBSCAN 0.000 0.265 3384.088 {43;21;17;8;8;1×53}
ε↗ 25 DBSCAN 0.003 0.121 2261.534 {49;78;1×23}
ε↗↗ 2 DBSCAN 0.128 0.809 1.301 {50;100}

ruspini 75 2 4 4 4 GBC 0.271 0.910 4.160 {20;15;23;17}
4 K-Means 0.271 0.910 4.160 {20;15;23;17}
4 WHC 0.271 0.910 4.160 {20;15;23;17}

ruspini 75 2 — ε = 4-NN 38 DBSCAN 0.005 0.736 1236.230 {9;6;20;6;1×34}
ε↗ 7 DBSCAN 0.014 0.849 367.630 {20;15;23;14;1;1;1}
ε↗↗ 4 DBSCAN 0.271 0.910 4.160 {20;15;23;17}

test-2c-2o 402 2 4 4 4 GBC 0.107 0.829 1.843 {200;200;1;1}
4 K-Means 0.000 0.634 10.837 {83;68;200;51}
4 WHC 0.001 0.733 20.779 {201;96;53;52}

test-2c-2o 402 2 — ε = 4-NN 200 DBSCAN 0.000 0.455 19763.053 {198;6;1×198}
ε↗ 4 DBSCAN 0.107 0.829 1.843 {1;1;200;200}

test-random 1000 2 999 — 4 GBC 0.001 -0.593 5.250 {1;1;995;3}
4 K-Means 0.000 0.584 7.198 {233;245;236;286}
4 WHC 0.001 0.465 5.188 {345;286;262;107}

test-random 1000 2 — ε = 4-NN 611 DBSCAN 0.000 0.504 15192.390 {11;17;8;...;1×187}
ε↗ 123 DBSCAN 0.000 -0.428 8090.912 {370;14;171;32;81;...;1×103 }

yin-yang 1000 2 2 2 2 GBC 0.023 0.146 1.063 {31;969}
2 K-Means 0.000 0.586 3.449 {527;473}
2 WHC 0.000 0.529 1.583 {319;681}

yin-yang 1000 2 — ε = 4-NN 388 DBSCAN 0.001 0.169 4733.136 {12;21;44;...;1×343}
ε↗ 2 DBSCAN 0.023 0.146 1.063 {969;31}

Table III
EXPERIMENTAL RESULTS OBTAINED ON THE 8 DATA SETS.
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