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THE p-ADIC EISENSTEIN MEASURE AND
SHAHIDI-TYPE p-ADIC INTEGRAL FOR SL(2)

S. GELBART, S. MILLER, A. PANCHISHKIN, AND F. SHAHIDI

Our general goal is two-fold: first, to construct p-adic Eisenstein
measures on classical groups using the method of modular distibutions
and second, to apply Shahidi-type theory to construct certain p-adic
L-functions using Fourier expansions of these series.

In the present paper we confine ourselves with the group SL(2), and
we try to explain our techniques in this case.
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Introduction and Motivation

The theory of complex valued automorphic L-functions is now fairly
well understood, especially the role played by the Langlands Program.
Let us quickly survey (parts of) this theory.

Conjecture 1 (Langlands). To each reductive group G over a
number field K, each automorphic (complex) representation π of G,
and each finite dimensional representation r of the (complex) group
LG, there is defined an automorphic L-function L(s, π, r), which en-
joys an analytic continuation and functional equation generalizing the
Riemann zeta function πs/2Γ(s/2)ζ(s) (or Artin’s L-function L(s, σ),
when G = (1) when K is arbitrary, π = Id, LG = Gal(L/K), and r is
a n-dimensional Artin representation σ, etc.).

1991 Mathematics Subject Classification. 22E50 (Primary); 11F85, 14M17
(Secondary).
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Some Special Cases. Take G = GL(2) over a number field K
and LG = GL(2,C); take r to be the k + 1 dimensional (symmetric
power) representation on homogeneous polynomials of degree k in two
variables and π any automorphic representation ofG. Then when k = 1
we have [JaLa], k = 2 [Ge-Ja], k = 3 [Kim-Sh], k = 4 [Kim], and for
k > 4 the set of poles of L(s, π, r) is unknown.

Conjecture 2 (Functoriality). Suppose we are given two reduc-
tive groups G and G′, an analytic homomorphism ρ : LG → LG′, and
an automorphic representation π = ⊗πv of G. Then there is an auto-
morphic representation π′ = ⊗π′

v of G′ such that for all v 6∈ Sπ′ (i.e.
unramified v), t(π′

v) is the conjugacy class in LG′ which contains t(πv).
In particular

L(s, π′, r′) = L(s, π, r′ ◦ ρ)
for each finite-dimensional representation r′ of LG′.

This Functoriality Conjecture gives us the similar conjectures made
for the L-functions of number theory, and (an infinity) of new ones
too. For example, the functoriality of symmetric power liftings gives us
the Conjectures of Ramanujan, Selberg, and Sato-Tate (including
Maass forms). More importantly, over a great range of subjects this
Conjecture suggests to us the

”Algebraic”

versus

”Analytic”

results of number theory, a good example being Artin’s-Langlands’
Conjecture: L(s, σ) = L(s, πσ).

One small approach towards these two Conjectures has been through
various methods of defining and exploring these L-functions. These
have included the method of (1) Tate, Godement-Jacquet [Go-Ja], (2)
Rankin-Selberg (see, for example [Ja] ) (3) "doubling" à la Piatetski-
Shapiro and Rallis [GRPS], developed also by S.Boecherer [Boe85],
(4) Shimura [Shi75], and (5) Shahidi [Sha88], [GeSha].

Our (long term) goal is to study p-adic L-functions in similar ways
as complex L-functions. In particular, we are interested in those p-adic
L-functions that arise via a p-adic analysis of Shahidi’s method in (5).

Let us again review the complex analysis of (5). We start with the
Eisenstein series

E(s, P, ϕ, g) =
∑

γ∈PrG

ϕs(γg),
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on G attached to a maximal parabolic subgroup P = MUP , an auto-
morphic representation π of M ; this series generalizes

E(z, s) =
1

2

∑ ys

|cz + d|2s , (c, d) = 1,

M is the Levi component of P , and ϕ belongs to the space of the
induced representation IndGP (π), ϕs = ϕ⊗ | detM(·)|sA.

Langlands in [La] (generalizing Selberg) showed that the "constant
term" of E(s) was analytically continuable with a functional equa-
tion and was expressible in terms of L(s, π, rj) (in the numerator and
denominator). Shahidi then computed a non-constant Fourier coeffi-
cient which eventually yielded the analytic continuation and functional
equation of almost all L(s, π, rj). Along the way, the ψ − th Fourier
coefficient of E(s, P, ϕ, e) is determined:

Eψ(e, ϕ, s) =
∏

v∈S

Wv(ev)

m
∏

j=1

1

LS(1 + js, π, r̃j)
,

where rj are certain fundamental representations of the L-group LM ,
r̃j their contragredient. What does this say about the simplest possible
(G,M) pair? With G = SL(2), MN = B, π = I, and ψ a non-trivial
character of N , let

Eψ(s, ϕ, e) =

∫

E(s, ϕ, n)ψ(n)dn,

the integration being over the quotient space of N(A) by N(Q). Then

Eψ(s, ϕ, e) =W∞(s)
1

ζ(1 + s)
.

We shall see in this paper how this result carries over p-adically.

1. Statement of the main result

Theorem 1.1. Assume that p is regular. Then there exists an ex-
plicitely defined p-adic measure µ∗ on Z∗

p such that for all even positive
integers k > 0 one has

∫

Z∗p

ykpµ
∗ = ck(p)ζ(1− k)−1(1− pk−1)−1.

Here ck(p) = Γ(k)4ikp2k−1(p−1), ykp(y) = yk for all y ∈ Z∗
p. Moreover,

the measure µ∗ can be expressed through the first Fourier coefficient
of (1)E∗, the one-variable measure attached to a certain two-variable
measure E∗.

Note that in accordance with p.125 of [Wa82] the factor g(T, θ) of
the p-adic L-function is invertible for all primes, if θ = 1, and if p is
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regular then this statement remains true for all θ. The factorization in
question (p.127) has the form

A(T ) =
∏

g(T, θ), A(T ) = pµP (T )U(T ) ∈ Λ,

where U(T ) is a unit, P (T ) is a polynomial of degree λ (in our case
λ = 0 and µ = 0).

Remarks.

1) The equality of this Theorem expresses a comparison between the
evaluation of the complex L-function (say, in page 81 of [GeSh]) at
s = −k and the value of the p-adic integral on the left.

2) The special values on the right side of of Theorem 1.1 come from
evaluation of certain p-adic integrals of the distribution µ∗ constructed
in the proof. This is the reverse order of interpolation of the special val-
ues: there the p-adic analytic function is constructed from the special
values, as for example in Theorem 5.11 at p.57 of [Wa82], and [Ko77],
Chapter 2, p.46, not the other way around.

3) For a non regular p such a distribution can not exist, because
the p-adic Mellin transform of a bounded distribution must be holo-
morphic. However, one could expect to construct an element of the
fraction algebra of the algebra of bounded distributions having a sim-
ilar interpolation property; its p-adic Mellin transform would define a
meromorphic p-adic analytic function with a finite number of poles.

In order to construct the distribution µ∗, the Eisenstein series of
higher level are used.

2. Fourier expansion of classical Eisenstein series on SL2

In this section we would like to prepare the construction of the Eisen-
stein measure coming from the Fourier expansion of the two types of
classical Eisenstein series of weight k ≥ 3 [Ka76].

Let us recall definitions and some of their properties.

Let k ≥ 3. Put for a, b ∈ Z/NZ,

Ek,N(z; a, b) =
∑

(cz + d)−k ∈ Mk(Γ(N))(2.1)

in the space Mk(Γ(N)) of modular forms of weight k for Γ(N), see
[Miy], p.271, where (c, d) ≡ (a, b)modN and (c, d) 6= (0, 0).

The action of σ =

(

α β
γ δ

)

∈ SL2(Z) is given by

[Ek,N(z; a, b)]|kσ = Ek,N(z; a1, b1)(2.2)
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with (a1, b1) = (a, b)σ using the equality (2.1); the action of the invo-

lution WN =

(

0 −1
N 0

)

is given by

[Ek,N(z; a, b)]|k
(

0 −1
N 0

)

= Nk/2Ek,N(Nz; b,−a).(2.3)

We write the Fourier expansion of the series (2.1) using Proposition
2.2 in [PaTV], §2.

Proposition 2.1. Suppose that k ≥ 3. Then there is the following
Fourier expansion:

Ek,N(z; a, b) = δ
( a

N

)

[ζ(k; b, N) + (−1)kζ(k;−b, N)]

+
(−2πi)k

NkΓ(k)
×

(

∑

dd′>0
d′≡a mod N

sgn(d)dk−1e(
db

N
)e(

dd′z

N
)
)

,

where e(x) = exp(2πix), δ(x) = 1 if x is an integer, δ(x) = 0 other-

wise, and ζ(k; a,N) =
∑

0<n≡a mod N

n−k denotes the value of the partial

Riemann zeta function.

Proof. See [PaTV], §2, with s = 0 and k ≥ 3.

Next we define

E∗
k,N(z; a, b) =

∑

(c,d)≡(a,b) mod N

(c,d)=1

(cz + d)−k(2.4)

where (c, d) ≡ (a, b) modN and (c, d) = 1.
One can express the series (2.4) in terms of the series (2.1) using

Hecke’s method (compare with Hecke’s formula (8) in [He27]):

E∗
k,N(z; a, b) =

∑

(c,d)≡(a,b) mod N

∑

δ|(c,d)

µ(δ)(cz + d)−k(2.5)

=

∞
∑

δ=1

µ(δ)δ−k
∑

(c′,d′)≡(a′,b′) modN ′

(c′z + d′)−k

=
∞
∑

δ=1

µ(δ)δ−kEk,N ′(z; a
′, b′) =

∑

δ′|N

µ(δ′)δ′
−k

∞
∑

δ′′=1

µ(δ′′)δ
′′−k

Ek,N ′(z; a
′, b′)

=
∑

t mod N

(t,N)=1

ctEk,N(z; ta, tb) ∈ Mk(Γ(N)),
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where we write
δ′ = (pm, δ), N ′ = pm/δ′, (a′, b′) = (a/δ′, b/δ′), δ = δ′δ′′, and

ct =











∑

tn≡1 mod N

µ(n)

nk
, if (t, N) = 1

0, if (t, N) > 1

(here µ denotes the Moebius function!).

3. Method of modular distributions

In this section we describe the method of modular distributions as
developed in [PaTV] and apply it to the series E∗ in order to construct
the p-adic analytic families of Fourier expansions from E∗.

We start with the “Igusa tower”.
Let A be an algebraic extension K of Qp or its ring of integers OK .

Let us fix an embedding ip : Q →֒ Cp (where Cp is the Tate field, i.e.
the completion of an algebraic closure of Qp)and let Mk(Γ1(p

m);A),
Mk(Γ0(p

m), ψ;A) be the submodules of A[[q]] generated by the q-
expansions of the form

ip(f) =
∑

n≥0

ip(an(f))q
n ∈ A[[q]],

where f =
∑

n≥0 an(f)q
n ∈ Mk(Γ1(p

m),Q) is a classical modular form

with algebraic Fourier coefficients an(f) ∈ Q in i−1
p (A). One puts

Mk = ∪
m≥0

Mk(p
m),

where Mk(p
m) = Mk(Γ1(p

m);A).
We call Mk the modular Igusa tower (see [Ig] and also section 8.4 of

[Hi04]).
Now consider the commutative profinite group

Z∗
p = lim

←−
m

(Z/pmZ)∗

and its group X = Homcont(Z
∗
p,C

×
p ) of (continuous) p-adic characters

(this is a Cp-analytic Lie group analogous to Homcont(R
×
+,C

×) ∼= C (by
s 7→ (y 7→ ys)). The group X is isomorphic to a finite union of discs
U = {z ∈ Cp | |z|p < 1}: Homcont(Z

∗
p,C

∗
p) =

Homcont(µ
∗
p−1,C

∗
p)×Homcont((1 + pZp),C

∗
p) (1 + p 7→ 1 + z ∈ U),

so it has a natural p-adic analytic structure.

The p-adic L-function L : X → Cp is a meromorphic function on X
coming from a p-adic measure on Z∗

p. A distribution on Z∗
p with values
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in any A-module M (or an "M-valued distribution") is a morphism of
A-modules

Φ : Step(Z∗
p, A) →M, ϕ 7→ Φ(ϕ) =:

∫

Y

ϕ(y)Φ,

where A is a normed topological ring containing Zp. In particular,
an A-valued distribution can be constructed from Φ by applying an
A-linear mapping ℓ :M → A.

In the case M = Mk we call a distribution Φ with vaues in M a
modular distribution.

Examples of distributions with values in Mk. Let Φ : Step(Z∗
p,Cp) →

Mk be a distribution on Z∗
p with values in Mk.

a) Eisenstein distributions. For an arbitrary N , let us consider the
following Eisenstein distributions: put

Ek,N(z, a, b) :=
Nk−1Γ(k)

(−2πi)k

∑

xmodN

e(−ax/N)Ek,N(Nz; x, b)

= δ
( b

N

)

ζ(1− k; a,N) +
∑

0<dd′,d≡a,d′≡bmodN

sgn d· dk−1e(dd′z) ∈ Mk(N
2),

(3.1)

(compare with the q-expansions in (2.14) in [PaTV], §2, and in Proposi-
tion 2.1). These series are holomorphic modular forms and these series
produce distributions on Y × Y with values in Mk:

Φ((a + (pm)× (b+ (pm)) =

Ek((a+ (pm)× (b+ (pm)) := Ek,pm(z, a, b) ∈ Mk(p
2m).

b) Partial modular forms. This example is not directly used in the proof
of our Main theorem, however, it clarifies the nature of the modular
distributions. For any f =

∑

n≥0 an(f)q
n ∈ Mk(SL2(Z)) one puts

Φf (a+ (pm)) :=
∑

n≥0
n≡a( mod pm)

an(f)q
n ∈ Mk(p

2m).

c) Partial theta series (also with a spherical polynomial, see [Hi85] and
§5 of [PaIAS]). Also, this nice example is not directly used in the proof
of our Main theorem, and we reserve it for future applications.

Remarks. i) For any Dirichlet character χ mod pm viewed as a function
on Z∗

p with values in ip(Q
ab), the integral

∫

Y

χ(y) dΦf = Φf (χ) =
∑

n≥0

χ(n)an(f)q
n ∈ Mk(N

2p2m)

coincides then with the twisted modular form fχ. Notice that this
integral is just a finite sum of partial modular forms.
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ii) The distributions a), b), c) are bounded (after a regularisation of
the constant term in a)) with respect to the p-adic norm on Mk =
∪pmMk(Γ1(p

m), A) ⊂ A[[q]] given by |g|p = supn |a(n, g)|p for g =
∑

n≥0 a(n, g)g
n ∈ Mk(Γ1(p

m), A) ).
iii) Starting from distributions a), b), c) one can construct many other
distributions, for example, using the operation of convolution on Z∗

p (as
in [Hi85], where the case of the convolution of a theta distribution with
an Eisenstein distribution was considered).

A new construction. It provides a rather simple method which at-
taches to a distribution Φ on Z∗

p with values in a suitable vector space
Mk of modular forms, a family µα,Φ,f of p-adic measures on Z∗

p parametrized
by non-zero eigenvalues α associated with primitive eigenforms f .

The idea is to use the operator U = Up of Atkin-Lehner which acts on
Mk by g | U =

∑

n≥0 a(pn, g)q
n, where g =

∑

n≥0 a(n, g)q
n ∈ Mk ⊂

A[[q]], a(n, g) ∈ A.

Definition 3.1. a) For an α ∈ A put Mk
(α) = Ker(U − αI) the A-

submodule of Mk of eigenfunctions of the A-linear operator U (of the
eigenvalue α).

b) Put Mk
α = ∪n≥1Ker(U − αI)n the α-primary (characteristic)

A-submodule of Mk. Let us define Uα as the restriction of U to Mk
α.

c) Put Mk
α(pm) = Mk

α∩Mk(p
m), Mk

(α)(pm) = Mk
(α)∩Mk(p

m).

Proposition 3.2. Let A = Qp. If N0 = Np, then Um(Mk(N0p
m)) ⊂

Mk(N0).

Proof follows from a known formula [Se73],

Um = pm(k/2−1)WN0pm TrN0pm

N0
WN0 ,

where g|kWN (z) = (
√
Nz)−kg(−1/Nz) : Mk(N) → Mk(N) the main

involution of level N (over the complex numbers).

Proposition 3.3. Let A = Qp and let α be a non-zero element of A;
then

a) (Uα)m : Mk
α(N0p

m)
∼−→Mk

α(N0p
m) is an invertible Qp-linear

operator.
b) The Qp-vector subspace Mk

α(N0p
m) = Mk

α(N0) is independent
of m (a "control theorem").

c) Let πα,m : Mk(N0p
m) → Mk

α(N0p
m) be the canonical projector

onto the α-primary subspace of U (of the kernel

Ker πα,m =
⋂

n≥1

Im(U − αI)n = ⊕β 6=αMk
β(N0p

m));
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then the following diagram is commutative:

Mk(N0p
m)

πα,m
//

Um

��

Mk
α(N0p

m)

≀(Uα)m

��

Mk(N0) πα,0

// Mk
α(N0)

Proof. Due to the reduction theory of endomorphisms in a finite dimen-
sional subspace over a field K, the projector πα,m onto the α-primary
subspace

⋃

n≥1Ker(U − αI)n has the kernel
⋂

n≥1 Im(U − αI)n and it
can be expressed as a polynomial of U with coefficients in K, hence
πα,m commutes with U . On the other hand, the restriction of πα,m on
Mk(N0) coincides with πα,0 : Mk(N0) → Mk

α(N0) because its image
is

⋃

n≥1

Ker(U − αI)n ∩Mk(N0) =
⋃

n≥1

Ker(U |Mk(N0) −αI)n,

and the kernel is
⋂

n≥1

Im(U − αI)n ∩Mk(N0) =
⋂

n≥1

Im(U |Mk(N0) −αI)n.

Define the α-primary part πα(Φ) = Φα of Φ by the equality

Φα(a + (pm)) = (Uα)−m
′
[

πα,0(Φ(a + (pm)) | Um′)
]

(3.2)

valid for all sufficiently big m′ ≫ 0.

Our next task will be to apply this method to the one dimensional
Eisenstein distribution (1)E∗, and given by a natural summation pro-
cedure (we shall see in (3.5) that this distribution has a geometric
meaning as a certain distribution on the orbit space related to the fol-
lowing action of the group Z∗

p on the product Zp × Zp by the formula

(t, (a, b)) 7→ (at−1, tb)):

(1)E∗(a+ (pm)) = E∗
k,pm(a) := (pm)k−1Γ(k)×

∑

x,bmod pm

e

(

−ax
pm

)

E∗
k,pm(p

mz; x, b) ∈ Mk.(3.3)

Here for a complex number k ≥ 3 and a, bmod pm we use the series

E∗
k,pm(z; a, b) =

∑

(cz + d)−k

((c, d) coprime, (c, d) ≡ (a, b)mod pm) .

Notice that we consider the Eisenstein series of one complex variable;
however, the Eisenstein distribution depends on two p-adic variables,
denoted by a and b, (a, b) ∈ Z2

p.
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Notice that there exists also a two-dimensional distribution

E∗(a+ (pm), b+ (pm)) = E∗
k,pm(a, b) := (pm)k−1Γ(k)×

∑

xmod pm

e

(

−ax
pm

)

E∗
k,pm(p

mz; x, b) ∈ Mk.(3.4)

The use of the Möbius transform shows that one has (compare again
with Hecke’s formula at page 476 in [He27])

E∗
k,pm(z; a, b) =

∑

t mod pm

Ek,pm(z; ta, tb)ct ∈ Mk.

Let us substitute this identity into (3.4) giving

E∗(a+ (pm), b+ (pm)) = E∗
k,pm(a, b) := (pm)k−1Γ(k)×

∑

xmod pm

e

(

−ax
pm

)

∑

t mod pm

ctEk,pm(p
mz; tx, tb)(3.5)

= (pm)k−1Γ(k)×
∑

tmod pm

∑

x′ mod pm

e

(

−at
−1x′

pm

)

ctEk,pm(p
mz; x′, tb)

= (pm)k−1Γ(k)
∑

tmod pm

ctEk,pm(at
−1, tb) ∈ Mk,

where we have used the previously defined Eisenstein distribution (3.1).
It follows from their definition that the numbers

ct =











∑

tn≡1 mod pm

µ(n)

nk
, if (t, pm) = 1

0, if (t, pm) > 1

form themselves a complex-valued distribution (i.e. with values in A =
C) µk such that

∫

Z∗p

χ(y)µk(y) = L(k, χ̄)−1(1− χ̄(p)p−k)−1(1 + χ̄(−1)(−1)k).

Let us explain in more detail: indeed,

µk(t+ (pm)) =











∑

tn≡1 mod pm

µ(n)

nk
, if (t, pm) = 1

0, if (t, pm) > 1
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is a partial Dirichlet series, so that the finite-additivity clearly holds in
the absolutely convergent case (like in [Co-PeRi], §1). Moreover

χ(tn) = 1 ⇒ χ(t) = χ̄(n),
∫

Z∗p

χ(y)µk(y) =
∑

t mod pm

χ(t)µk(t + (pm)) =
∑

(n,p)=1

µ(n)χ̄(n)n−k

= L(k, χ̄)−1(1− χ̄(p)p−k)−1(1 + χ̄(−1)(−1)k),

that is, a Dirichlet series with the Euler p-factor removed from its Euler
product.

Hence the formula (3.5) defines a two-variable Eisenstein distribution
Ek,pm(a, b) and of the one-variable distribution µk. This definition will
be used with k ≥ 3.

A geometric meaning of this construction is related to the action of
the group Z∗

p on the product Zp × Zp by the formula

(t, (a, b)) 7→ (at−1, tb)

and follows from the formula (3.5). This action produces a natural
(two-variable) distribution E∗

k,pm(a, b) on the product Zp × Zp out of
the two distributions Ek,pm(a, b) and µk(t). Then the one variable dis-
tribution

(1)E∗
k,pm(a) =

∑

b mod pm

E∗
k,pm(a, b)

given by (3.3) can be viewed as the direct image (the integration along
the fibers) of the two-variable distribution E∗

k,pm(a, b) with respect to
the projection of Zp × Zp onto the first component.

In order to give another explanation of the distribution property of
the series (3.3) one can also use the following Eisenstein series with a
Dirichlet character χ mod pm:

Ek(χ) =
∑

a,b∈Z/pmZ

χ(a)Ek(a, b; p
m) =

∑

a,b∈Z/pmZ

χ(a)Ek,pm(a, b) = (pm)k−1Γ(k)

×
∑

a,b∈Z/pmZ

χ(a)
∑

xmod pm

e

(

−ax
pm

)

Ek,pm(p
mz; x, b)

= L(1− k, χ)+
∑

a,b∈Z/pmZ

χ(a)
∑

0<dd′,d≡a,d′≡bmod pm

sgn d· dk−1e(dd′z) ∈ Mk(p
m),
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where

L(1− k, χ) =
∑

a,b∈Z/pmZ

χ(a)δ
( b

pm

)

ζ(1− k; a, pm)

Let us substitute this identity into (3.3) giving

(1)E∗(a + (pm)) = E∗
k,pm(a)

:= (pm)k−1Γ(k)×
∑

x,bmod pm

e

(

−ax
pm

)

(3.6)

=
∑

t mod pm

Ek,pm(p
mz; tx, tb)ct

= (pm)k−1Γ(k)×
∑

t mod pm

∑

x′,bmod pm

e

(

−at
−1x′

pm

)

Ek,pm(p
mz; x′, tb)ct

(pm)k−1Γ(k)
∑

tmod pm

ctEk,pm(at
−1, tb) ∈ Mk.

where x′ = tx mod pm (notice that t ∈ (Z/pmZ)∗ is invertible).

We obtain again the geometric meaning of this construction related
to the action of the group Z∗

p on the product Zp × Zp by the formula

(t, (a, b)) 7→ (at−1, tb)

which will also follow from the formula (3.6) (to be disscused below).
This action produces a natural (two-variable) distribution E∗

k,pm(a, b)
on the orbit space out of the two distributions Ek,pm(a, b) and µk(t).
Then the one variable distribution (3.3)

(1)E∗
k,pm(a) =

∑

b mod pm

E∗
k,pm(a, b)

is obtained by "integration along the fibers".
Also we can evaluate the integrals

∫

Z∗p
χE∗

k,pm

=
∑

a mod pm

χ(a)E∗
k,pm(a)

∑

tmod pm

∑

a,b mod pm

ctEk,pm(at
−1, tb)

=
∑

tmod pm

∑

a,b mod pm

χ(t)χ(at−1)ctEk,pm(at
−1, tb)(3.7)

=
∑

tmod pm

χ(t)ct
∑

a′,b′ mod pm

χ(a′)Ek,pm(a
′, b′)

= L(k, χ̄)−1(1− χ̄(p)p−k)−1 · Ek(χ),
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using the complex-valued distribution µk, such that
∫

Z∗p

χ(y)µk(y) = L(k, χ̄)−1(1− χ̄(p)p−k)−1(1 + χ̄(−1)(−1)k).

Let k ≥ 3 be an integer. Then we consider the Eisenstein distribu-
tions Φk =

(1)E∗
k of weight k, and take α = 1.

Definition 3.4. The numerically-valued distributions µ∗
k is given by

the equality

µ∗
k(a+ (pm)) = ℓ(π1(

(1)E∗
k(a+ (pm)))),

where π1 : Mk → Mk
1 ⊂ Mk(Np) is the canonical projection (3.2) to

M1
k with α = 1.

Recall that this Proposition assures that different πα,m can be glued
together using the commutative diagram, so we do not have to worry
about the exact level of this Eisenstein series defining the Eisenstein
distribution. Also, ℓ : Mk

(1) → A is given by ℓ(
∑

n anq
n) = a1.

We shall establish the boundedness of each distribution µ∗
k under the

assumptions of the Theorem 1.1 in Section 1.
In Section 4 we explain how to obtain the inverse of the Kubota-

Leopoldt zeta-function from the distributions µ∗
k of the definition 3.4.

4. p-adic L-Functions and Mellin Transforms

Let us recall with the notation ζ
(c)
(p)(−k) = (1 − pk)(1 − ck+1)ζ(−k)

(for c > 1 coprime to p) the following theorem:

Theorem 4.1 (Kummer). For any polynomial h(x) =
∑n

i=0 αi x
i ∈

Zp[x] over Zp such that x ∈ Zp =⇒ h(x) ∈ pmZp one has

n
∑

i=0

αi ζ
(c)
(p)(−i) ∈ pmZp.

The result of Kubota and Leopoldt has a very natural interpretation
in the framework of the theory of non-Archimedean integration (due
to B. Mazur): there exists a p-adic measure µ(c) on Z×

p with values in

Zp such that
∫

Z×p
xkpµ

(c) = ζ
(c)
(p)(−k).

Indeed, Mazur’s result can be explained as follows: if we integrate
h(x) over Z×

p we exactly get the above congruence (see Theorem 4.1).

On the other hand, in order to define a measure µ(c) satisfying the
above condition it suffices for any continuous function φ : Z×

p → Zp to

define its integral
∫

Z
×
p
φ(x)µ(c). For this purpose we approximate φ(x)

by a polynomial (for which the integral is already defined), and then
pass to the limit.
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A Dirichlet character χ : (Z/pmZ)× → Q
×

is an element of the
torsion subgroup

X tors

p ⊂ Xp = Homcont(Z
×
p ,C

×
p )

and the above equality also holds for the special values L(−k, χ) of the
Dirichlet L-series

L(s, χ) =
∞
∑

n=1

χ(n)n−s =
∏

p

(1− χ(p)p−s)−1,

so that we have

ζp(χx
k
p) = ip

[

(1− χ(p)pk)L(−k, χ)
]

(k ≥ 1, k ∈ Z, χ ∈ X tors

p ).

The construction of Kubota and Leopoldt is equivalent to the existence
of a p-adic analytic function ζp : Xp → Cp with a single pole at the
point x = x−1

p , which becomes a bounded holomorphic function on Xp

after multiplication by the elementary factor (xpx− 1), (x ∈ Xp), and
is uniquely determined by the condition

ζp(x
k
p) = (1− pk)ζ(−k) (k ≥ 1).

This original construction was successesfully used by K. Iwasawa
for the description of the class groups of cyclotomic fields. The Main
conjecture by Iwasawa, relating zeroes of the p-adic zeta-function and
the class groups of cyclotomic fields was proved by Mazur and Wiles
in [MW84], impying that for a regular prime p, the Kubota-Leopoldt
zeta function has no zeroes.

Remark on µc and the pole of ζp. The single simple pole of ζp(x)
at the point x = x−1

p can be removed by the regularizing factor

(ck+1 − 1) = (x(c)c− 1) for x = xkp.

This regularizing factor comes directly from the Kummer theorem.
However such a factor would not be neeeded for a regular prime p
and the measure µ∗ because in this case the function ζ−1

p is holomor-
phic on Xp with a single simple zero. Also, notice that for a non regular
prime the construction of µ∗ would require a certain regularizing factor
with a finite number of zeroes which correspond to zeroes of ζp(x), due
to the theorem of Mazur-Wiles (see [MW84]).

The main result says that there exists a p-adic measure µ∗ which
provides an interpolation of the inverse special values

ζ(1− k)−1(1− pk−1)−1

that is, for all k ≥ 3 χ mod pm one has
∫

Z∗p

xkp(y)µ
∗ = µ∗

k(Z
∗
p).
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In order to clarify the relation between µ∗ and µ∗
k notice that

∫

Z∗p

ϕ(y)xkp(y)µ
∗ =

∫

Z∗p

ϕ(y)µ∗
k,where xkp(y) = yk,

for any continuous function ϕ(y).
In other words, the Mellin transform of the distributions µ∗ coincides

essentially with the inverse Kubota-Leopoldt zeta-function ζ−1
p (x), that

is, up to normalization,
∫

Z∗p

x(y)µ∗(y) = ζ−1
p (x),

where x ∈ Xp. Recall that Xp is the following p-adic analytic Lie group:

Xp = Homcont(Z
×
p ,C

×
p ).

In particular, for any k ≥ 3, and x = xk−1
p one has

ζ−1
p (x) =

∫

Z∗p

xkpµ
∗ = (1− pk−1)−1ζ(1− k)−1 (k ≥ 3 even).

5. Axiomatic characterization of the properties of µ∗

Recall (see Definition 3.4): for any k ≥ 3 we put Φk = E∗
k , α = 1,

and
µ∗
k(a+ (pm)) = ℓ(π1(

(1)E∗
k(a+ (pm)))),

where
(1)E∗

k(a+ (pm)) =
∑

n

an,k(a+ (pm))qn,

π1 : Mk → Mk
1 ⊂ Mk(Np) is defined using Proposition 3.3, which

assures that different πα,m can be glued together using the commutative
diagram, so we do not have to worry about the exact level of this
Eisenstein series defining the Eisenstein distribution; also, ℓ : Mk

1 → A
is given by

ℓ(
∑

n

anq
n) = a1.

Remarks.
1) We establish the boundedness of µ∗ under the assumptions of the

Theorem 1.1 in two steps. First, we give an axiomatic characterization
of this situation, and then we check that this characterization is actually
valid in our case.

By (3.2 ) one has

π1(
(1)E∗

k(a + (pm))) = (U1
p )

−m′(π1,0(
(1)E∗

k(a+ (pm)))|Um′

p )

for any sufficiently large m′. Keeping in mind that π1,0 is fixed and U1
p

is invertible, we see that it suffices to prove that

β(1)E∗
k(a + (pm))|Um′

p = β
∑

n

anpm′ ,k(a+ (pm))qn ∈ Op[[q]]
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for some β ∈ Q∗
p independent of m′ (i.e. the Fourier coefficients in the

RHS are p-bounded).
2) Evaluation of the linear form

µ∗
k(a+ (pm)) = ℓ(π1(

(1)E∗
k(a + (pm))))

makes it possible to compute all the integrals

∑

a mod pm

χ(a)µ∗
k(a + (pm)) = ℓ(π1(

(1)E∗
k(χ)))

in an explicit form.

Proof of 1): we may and will suppose that n = 1, which is only needed
for our purposes, and m′ ≫ 0 (in view of the distribution property for
E∗,

-First step: to substitute formulas of Proposition 2.1 into (2.5) (and
to carry out the summation over d, d′, δ, δ′)

-Second step: to compute the Fourier coefficients of the series (1)E∗

-Third step: to evaluate the particular Fourier coefficient apm′

Recall that we assume k ≥ 3 (that is, assuming the absolute conver-
gence and holomorphy).

Let us use the identity (2.5) and compute the Fourier expansion of
the series (3.3) with k ≥ 3:

(1)E∗
k(a+ (pm)) = (1)E∗

k,pm(a+ (pm)) = E∗
k,pm(a)(5.1)

:= (pm)k−1Γ(k)
∑

x,bmod pm

e(−ax/(pm))E∗
k,pm(p

mz; x, b)

where

E∗
k,pm(p

mz; x, b) =
∑

t mod pm

ctEk,pm(p
mz; tx, tb),(5.2)

and

ct =











∑

tn≡1 mod pm

µ(n)

nk
, if (t, pm) = 1

0, if (t, pm) > 1

(here µ denotes again the Moebius function!).
Then the direct substituion a := at, b := bt, N := pm, z := pmz into

the Fourier expansion of Proposition 2.1 gives:

(1)E∗
k(a + (pm)) = E∗

k,pm(a) = (pm)k−1Γ(k)
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×
∑

x,bmod pm

e(−ax/(pm))
∑

t mod pm

ctEk,pm(p
mz; tx, tb)

= (pm)k−1Γ(k)
∑

x,bmod pm

e(−ax/(pm))
∑

t mod pm

×

δ
( xt

pm

)

[ζ(k; bt, pm) + (−1)kζ(k;−bt, pm)]ct

+ ct
(−2πi)k

(pm)kΓ(k)

∑

dd′>0
d′≡xt mod N

sgn(d)dk−1e(
dbt

pm
)e(dd′z).

Recall that we wish to compute only the Fourier coefficient apm′ ,k,

that is, we put dd′ = pm
′

, giving the formula

apm′ ,k(
(1)E∗

k(a+ (pm))) = (pm)−1(−2πi)k

∑

x,b,tmod pm

e(−ax/(pm))
∑

dd′=pm
′

d′≡xt mod N

ctsgn(d)d
k−1e(

dbt

pm
).(5.3)

In the summation over d, d′ in (5.3) one has d = ±pmd , d′ = ∓pm′−md ,
where md = 0, . . . , m′. Thus,

apm′ ,k(
(1)E∗

k(a + (pm))) = (pm)−1(−2πi)k×
∑

x,b,tmod pm

e(−ax/(pm))
∑

tn≡1 mod pm

µ(n)

nk
(5.4)

(

∑

md=0,...,m′

pm
′−md≡xt mod N

dk−1e(
dbt

pm
)−

∑

md=0,...,m′

pm
′−md≡−xt mod N

dk−1e(
dbt

pm
)
)

.

Let us evaluate next Hecke’s coefficients

ct =











∑

tn≡1 mod pm

µ(n)

nk
, if (t, pm) = 1

0, if (t, pm) > 1.

,

in order to relate them with the value ζ(1 − k)−1 of the Theorem 1.1
(here µ denotes again the Moebius function!).

Notice that for k ≥ 2 one has

∑

n≥1

µ(n)

nk
= ζ(k)−1,

∑

n≥1

χ(n)
µ(n)

nk
= L(k, χ)−1,
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∑

tn≡1 mod pm

µ(n)

nk
=

1

ϕ(pm)

∑

χ mod pm

∑

(tn, mod pm)=1

χ(tn)µ(n)

nk
(5.5)

=
1

ϕ(pm)

∑

χ mod pm

χ(t)L(k, χ̄)−1,

in view of the orthogonality relations. Recall that the numbers

ct =











∑

tn≡1 mod pm

µ(n)

nk
, if (t, pm) = 1

0, if (t, pm) > 1

form themselves a complex-valued distribution (i.e. with values in A =
C) µk such that for N = 1

∫

Z∗p

χ(y)µk(y) = L(k, χ̄)−1(1− χ̄(p)p−k)−1(1 + χ̄(−1)(−1)k).

Let us rewrite (5.4) using (5.5). It follows that

apm′ ,k(
(1)E∗

k(a + (pm))) = (pm)−1(−2πi)k
1

ϕ(pm)
×

∑

x,tmod pm

∑

χ mod pm

e(−ax/(pm))χ(t)L(k, χ̄)−1 (1 + χ̄(−1)(−1)k)

(1− χ̄(p)p−k)
(5.6)

(

∑

md=0,...,m′

pm
′−md≡xt mod pm

dk−1e(
dbt

pm
)−

∑

md=0,...,m′

pm
′−md≡−xt mod pm

dk−1e(
dbt

pm
)
)

.

Let us recall the abstract Kummer congruences giving the following
useful criterion for the existence of a measure with given properties.

Proposition 5.1 (The abstract Kummer congruences (see [Ka78])).
Let Y = Z∗

p, and {fi} be a system of continuous functions fi ∈
C(Y,Op) in the ring C(Y,Op) of all continuous functions on the compact
totally disconnected group Y with values in the ring of integers Op of
Cp such that Cp-linear span of {fi} is dense in C(Y,O). Let also {ai}
be any system of elements ai ∈ Op. Then the existence of an Op-valued
measure ν on Z∗

p with the property
∫

Y

fidν = ai

is equivalent to the following congruences: for an arbitrary choice of
elements bi ∈ Cp, almost all of which vanish,

(5.7)
∑

i

bifi(y) ∈ pmOp for all y ∈ Y implies
∑

i

biai ∈ pmOp.

In order to prove the abstract Kummer congruences under the as-
sumptions of our theorem, we need to show that the algebraic number
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(5.6) has bounded denominator, that is, for a fixed non-zero integer C
independent of χ and k, the number

C ·
∑

x,b,tmod pm

∑

χ mod pm

e(−ax/(pm))χ(t)(−2πi)k

L(k, χ̄)

(1 + χ̄(−1)(−1)k)

(1− χ̄(p)p−k)

(

∑

md=0,...,m′

pm
′−md≡xt mod pm

dk−1e(
dbt

pm
)−

∑

md=0,...,m′

pm
′−md≡−xt mod pm

dk−1e(
dbt

pm
)
)

(5.8)

is divisible by (pm)2.

Note that the role of the dense family fi of Proposition 5.1 here is
played by the family of all Dirichlet’s characters, so that the bounded-
ness condition of this proposition becomes the main congruence

∀y ∈ Z∗
p,
∑

i

biχi(y) ≡ 0 mod pm ⇒ C
∑

i

biµ
∗
k(χi) ≡ 0 mod pm;(5.9)

see also [Bö-Sch], §9, [Co-Sch], p.134 and Theorem 3.14, [KMS], [Schm01],
§9, [CourPa], §4.6.5 "Main congruences for the Fourier expansions of
regularized distributions", [PaMMJ2], §5.2 "Main congruence for the
Fourier expansions", and [PaTV], congruence (4.9).

Note that for a Dirichlet character χ = fi, we specify the coefficient
ai as the right hand side of the linear combination of characters given
by (5.8).

Moreover, each continuous function can be approximated by linear
combinations of delta functions δU(y) of open subsets:

δU(y) =

{

1, if y ∈ U,

0, sinon.
It suffices therefore to treat only the those lin-

ear combinations which produce delta functions δU(y) of open subsets
in terms of Dirichlet characters:

δ(a+ (pm))(y) =
1

ϕ(pm)

∑

χ mod pm

χ̄(a)χ(y).

In order to establish the divisibility in (5.9) for such linear combina-
tions, let us change the order of summation in the multiple sum (5.8)
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as follows:
∑

md=0,...,m′

dk−1 (−2πi)k

L(k, χ̄)

(1 + χ̄(−1)(−1)k)

(1− χ̄(p)p−k)

×
∑

x,b,tmod pm

pm
′−md≡xt mod pm

χ(t)e(
dbt− ax

pm
)

−
∑

md=0,...,m′

dk−1
∑

χ mod pm

(−2πi)k

L(k, χ̄)

(1 + χ̄(−1)(−1)k)

(1− χ̄(p)p−k)
(5.10)

×
∑

x,b,tmod pm

pm
′−md≡−xt mod pm

χ(t)e(
dbt− ax

pm
).

Let us prove that for k ≥ 3 and for any Dirichlet character χ mod pm

of conductor Cχ|pm the term in the sum over χ mod pm in (5.10) is
divisible by C2

χ × (pm/Cχ)
2 = (pm)2, that is, the inner sum is divisible

by (pm/Cχ)
2, and

(−2πi)k

L(k, χ̄)

(1 + χ̄(−1)(−1)k)

(1− χ̄(p)p−k)
is divisible by C2

χ.(5.11)

In order to prove the divisibility by (5.11), let’s use the functional
equation for the Dirichlet L-functions for the primitive characters, see
[Wa82], p.29:

Γ(s) cos

(

π(s− δ)

2

)

L(s, χ̄) =
G(χ)

2iδ

(

2π

Cχ

)s

L(1 − s, χ),(5.12)

where G(χ) =
∑

umodCχ
χ(u)e

(

u
Cχ

)

is the Gauss sum. Substitution

s = k gives

(−2πi)k

L(k, χ̄)
= Γ(k) cos

(

π(k − δ)

2

)

2iδ

G(χ)
Ck
χL(1− k, χ)−1.(5.13)

Let us take into account the fact that for a regular prime p the p-adic
L-function does not vanish (due to the theorem by Mazur-Wiles, see
section 4), so that its inverse values

L(1− k, χ)−1(1− χ(p)pk−1)−1(5.14)

are all p-adically integral after multiplying by a constant c′ independent
of χ and k.

Since
Cχ
G(χ̄)

= χ(−1)G(χ) is always an algebraic integer, and k ≥ 3,

we obtain the divisibility by C2
χ of the value

(−2πi)k

L(k, χ̄)
= Γ(k) cos

(

π(k − δ)

2

)

2iδCχ
G(χ̄)

Ck−1
χ L(1− k, χ)−1.(5.15)
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Thus, our problem is reduced to study of the divisibility of the sum

∑

x,b,tmod pm

pm
′−md≡±xt mod pm

χ(t)e

(

dbt− ax

pm

)

(5.16)

for any fixed d = ±pmd taking into account that χ(t) depends only on
t mod Cχ, that is t ≡ t0 mod Cχ, t = t0 + Cχt

′, where t′ runs through
classes modpm/Cχ.

A direct substitution of t = t0+Cχt
′ into (5.16) transforms this sum

as follows:
∑

x,b,tmod pm

pm
′−md≡±xt mod pm

χ(t)e

(

dbt− ax

pm

)

=

∑

t0 modCχ

χ(t0)
∑

x,bmod pm

pm
′−md≡±xt mod pm

∑

t′mod pm/Cχ

e

(

db(t0 + Cχt
′)− ax

pm

)

(5.17)

∑

t0 modCχ

χ(t0)e

(

dbt0
pm

)

∑

x,bmod pm

pm
′−md≡±xt mod pm

∑

t′mod pm/Cχ

e

(

dbCχt
′ − ax

pm

)

.

A direct computation of the last exponential sum provides its divisibil-
ity by (pm/Cχ)

2 as claimed. This finishes the proof of the boundedness
of µ∗ (as well as that of µ∗

k).
Note that the Kummer congruences are used here in the equivalent

form of the boundedness of a certain distribution.
This, by Proposition (5.1), finishes the proof of boundedness of µ∗

(as well as that of µ∗
k).

For the statement 2), we need to evaluate the Fourier coefficients
(5.6)(and the integrals of the related numerically valued distributions):

apm′ ,k(
(1)E∗

k(a + (pm))) = (pm)−1(−2πi)k
1

ϕ(pm)
×

∑

x,tmod pm

∑

χ mod pm

e(−ax/(pm))χ(t)L(k, χ̄)−1 (1 + χ̄(−1)(−1)k)

(1− χ̄(p)p−k)
×

(5.18)

(

∑

md=0,...,m′

pm
′−md≡xt mod pm

dk−1e(
dbt

pm
)−

∑

md=0,...,m′

pm
′−md≡−xt mod pm

dk−1e(
dbt

pm
)
)

=
1

ϕ(pm)pm

∑

md=0,...,m′

dk−1
∑

χ mod pm

(−2πi)k

L(k, χ̄)

(1 + χ̄(−1)(−1)k)

(1− χ̄(p)p−k)
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×
∑

t0 modCχ

χ(t0)e

(

dbt0
pm

)

∑

x,bmod pm

pm
′−md≡xt mod pm

∑

t′mod pm/Cχ

e

(

dbCχt
′ − ax

pm

)

− 1

ϕ(pm)pm

∑

md=0,...,m′

dk−1
∑

χ mod pm

(−2πi)k

L(k, χ̄)

(1 + χ̄(−1)(−1)k)

(1− χ̄(p)p−k)

×
∑

t0 modCχ

χ(t0)e

(

dbt0
pm

)

∑

x,bmod pm

pm
′−md≡−xt mod pm

∑

t′mod pm/Cχ

e

(

dbCχt
′ − ax

pm

)

.

Finally, let’s compute the integrals µ∗
k(χ) from the expression (5.18)

by carrying out the summations a mod pm. This can be done using the
formula (5.5).

Let’s rewrite our formulae as follows:
∫

Z∗p

µ∗
k =

∑

amod pm

(a,p)=1

apm′ ,k(E
∗
k(a+ (pm))) =(5.19)

1

ϕ(pm)pm

∑

md=0,...,m′

dk−1
∑

χ mod pm

(−2πi)k

L(k, χ̄)

(1 + χ̄(−1)(−1)k)

(1− χ̄(p)p−k)

∑

t0 modCχ

χ(t0)e

(

dbt0
pm

)

×
∑

a,x,bmod pm

(a,p)=1,pm
′−md≡xt mod pm

∑

t′mod pm/Cχ

e

(

dbCχt
′ − ax

pm

)

− 1

ϕ(pm)pm

∑

md=0,...,m′

dk−1
∑

χ mod pm

(−2πi)k

L(k, χ̄)

(1 + χ̄(−1)(−1)k)

(1− χ̄(p)p−k)

∑

t0 modCχ

χ(t0)e

(

dbt0
pm

)

×
∑

a,x,bmod pm

(a,p)=1,pm
′−md≡−xt mod pm

∑

t′mod pm/Cχ

e

(

dbCχt
′ − ax

pm

)

.

Next let’s notice that the main term in the RHS in (5.19) is given by
(5.13):

(−2πi)k

L(k, χ̄)
= Γ(k) cos

(

π(k − δ)

2

)

2iδ

G(χ)
Ck
χL(1 − k, χ)−1.

In order to obtain the RHS of Theorem 1.1 it suffices to substitute the
last expression to (5.19) and to carry out all the summations.

The first summation is

∑

t0 modCχ

χ(t0)e

(

dbt0
pm

)

=

{

(ϕ(pm)/ϕ(Cχ))χ̄(db)G(χ), if (db, Cχ) = 1

0, otherwise

where G(χ) =
∑

umodCχ
χ(u)e

(

u
Cχ

)

is the Gauss sum.
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The second summation is

∑

t′mod pm/Cχ

e

(

dbCχt
′

pm

)

=

{

pm/Cχ, if (pm/Cχ)|db,
0, otherwise .

Hence, the only non-zero terms occur when d = 1, (b, Cχ) = 1. In
this case md = 0, and

∑

a,xmod pm,(a,p)=1,

pm
′−md≡−xt mod pm

e

(

−ax
pm

)

= ϕ(pm) for m′ > 2m.

The expression (5.19) simplifies to the following:

∫

Z∗p

µ∗
k =

∑

amod pm

(a,p)=1

apm′ ,k(E
∗
k(a+ (pm))) =

(pm/Cχ)
2

∑

bmod pm,(b,p)=1

∑

χ mod pm

χ̄(b)
(−2πi)k

L(k, χ̄)

(1 + χ̄(−1)(−1)k)

(1− χ̄(p)p−k)
G(χ) =

(5.20)

Γ(k)
∑

bmod pm,(b,p)=1

∑

χ mod pm

χ̄(b) cos

(

π(k − δ)

2

)

2iδCk
χL(1− k, χ)−1

× (1 + χ̄(−1)(−1)k)

(1− χ̄(p)p−k)
.

Let us use

L(1− k, χ)−1 =
∞
∑

n=1

µ(n)χ(n)

ns

∣

∣

∣

s=1−k

in order to simplify the summation in (5.20) as follows:

Γ(k)
∑

bmod pm,(b,p)=1

∑

χ mod pm

χ̄(b) cos

(

π(k − δ)

2

)

2iδCk
χ

∞
∑

n=1

µ(n)χ(n)

ns

∣

∣

∣

s=1−k

× (1 + χ̄(−1)(−1)k)

(1− χ̄(p)p−k)
= Γ(k)

∞
∑

n=1

∑

bmod pm,(b,p)=1

cos

(

π(k − δ)

2

)

2iδ

×
m
∑

m′=0

pkm
′

∑

χ mod pm

cond(χ)=pm
′

(1 + χ̄(−1)(−1)k)

(1− χ̄(p)p−k)
χ̄(b)χ(n)

µ(n)

ns

∣

∣

∣

s=1−k
.

(5.21)

It suffices to treat the case m = 1. Then (5.21) becomes
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Γ(k)pk
∑

χ mod p

cond(χ)=p

cos

(

π(k − δ)

2

)

2iδ
∞
∑

n=1

µ(n)

ns

∣

∣

∣

s=1−k

∑

bmod p,(b,p)=1

(1 + χ̄(−1)(−1)k)

(1− χ̄(p)p−k)
χ̄(b)χ(n) + (1 + (−1)k+1)

∞
∑

n=1

µ(n)n−s
∣

∣

∣

s=1−k
.

(5.22)

Let us take into account that k is even, and 1 − k is odd. The only
non-zero terms in the first sum correspond to χ(−1) = (−1)k, in which

case δ = 0, cos

(

π(k − δ)

2

)

= (−1)k/2 = ik. Moreover χ(−p) = 0 for

non-trivial χ, and (1 + (−1)k+1) = 0 for even k.
Then (5.22) transforms to

Γ(k)4(ip)k
∞
∑

n=1

∑

bmod p,(b,p)=1

∑

χ mod p

cond(χ)=p

χ̄(b)χ(n)
µ(n)

ns

∣

∣

∣

s=1−k
.(5.23)

Let us take into account that

∑

χ mod p

cond(χ)=p

χ̄(b)χ(n) =

{

p− 2, if b ≡ n mod p

−1, otherwise
= (p− 1)δb mod p(n)− 1.

More precisely, let us substitute (p− 1)δb mod p(n)− 1 in place of
∑

χ mod p

cond(χ)=p

χ̄(b)χ(n)

in (5.23), giving

Γ(k)4(ip)k
∞
∑

n=1

∑

bmod p,(b,p)=1

((p− 1)δb mod p(n)− 1)
µ(n)

ns

∣

∣

∣

s=1−k
(5.24)

= Γ(k)4(ip)k(p− 1)ζ(1− k)−1((1− pk−1)−1 − 1).

Here we took into account that

∑

bmod p,(b,p)=1

∞
∑

n=1

µ(n)

ns

∣

∣

∣

s=1−k
= (p− 1)ζ(1− k)−1 and

∑

bmod p

(b,p)=1

(p− 1)
∞
∑

n=1

δb mod p(n)
µ(n)

ns

∣

∣

∣

s=1−k
= (p− 1)

∑

bmod p

(b,p)=1

∞
∑

n=1
n≡b mod p

µ(n)

ns

∣

∣

∣

s=1−k

= (p− 1)

∞
∑

n=1
(n,p)=1

µ(n)

ns

∣

∣

∣

s=1−k
= (p− 1)ζ(1− k)−1(1− pk−1)−1.
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Then (5.24) transforms to

Γ(k)4(ip)k(p− 1)ζ(1− k)−1pk−1(1− pk−1)−1(5.25)

= Γ(k)4ikp2k−1(p− 1)ζ(1− k)−1(1− pk−1)−1.

This computation finishes the proof of Theorem 1.1.

6. Fourier expansion of Eisenstein series on classical

groups

Different approaches to Eisenstein series, their families and related
distributions will be developed for other classical groups.

The fact that the construction of the above Eisenstein distribution
E∗ has a geometric meaning related to the action of the group Z∗

p on
the product Zp × Zp by the formula

(t, (a, b)) 7→ (at−1, tb)

gives also a hint for the future development.

Note that a similar construction of the Eisenstein distributions is
contained in [DarDas], p.330. It relates Eisenstein distributions on the
space X ⊂ Zp × Zp of all primitive p-adic paires, to the Eisenstein
distributions on the p-adic projective line P1(Qp).

We plan to use the methods of [GeSha], [Sha78], [Sha81], [Sha88],
and the Eisenstein measure in [HLiSk] and [HLiSk-Ra].
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