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Abstract

We describe an efficient algorithm for the computation of isogenies between abelian
varieties represented in the coordinate system provided by algebraic theta functions.
We explain how to compute all the isogenies from an abelian variety whose kernel is
isomorphic to a given abstract group. We also describe an analog of Vélu’s formulas
to compute an isogenis with prescribed kernels. All our algorithms rely in an essential
manner on a generalization of the Riemann formulas.

In order to improve the efficiency of our algorithms, we introduce a point compression
algorithm that represents a point of level 4` of a g dimensional abelian variety using only
g (g + 1)/2 · 4g coordinates. We also give formulas to compute the Weil and commutator
pairing given input points in theta coordinates. All the algorithms presented in this paper
work in general for any abelian variety defined over a field of odd characteristic.
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1 Introduction

1 Introduction
In this paper, we are interested in some algorithmic aspects of isogeny computations between
abelian varieties. Computing isogenies between abelian varieties may be seen as different kind
of computational problems depending on the expected input and output of the algorithm.
These problems are:

• Given an abelian variety Ak and an abstract finite abelian group K compute all the
abelian varieties Bk such that there exists an isogeny Ak → Bk whose kernel is isomor-
phic to K , and compute these isogenies.

• Given an abelian variety Ak and a finite subgroup K of Ak , recover the quotient abelian
variety Bk =Ak/K as well as the isogeny Ak → Bk .

• Given two isogenous abelian varieties, Ak and Bk , compute explicit equations for an
isogeny map Ak → Bk .

Here, we are concerned with the first two problems. In the case that the abelian variety is
an elliptic curve, efficient algorithms have been described that solve all the aforementioned
problems [Ler]. For higher-dimensional abelian varieties much less is known. Richelot’s
formulas [Mes01, Mes02] can be used to compute (2,2)-isogenies between abelian varieties of
dimension 2. The paper [Smi09] also introduced a method to compute certain isogenies of
degree 8 between Jacobian of curves of genus three. In this paper, we present an algorithm
to compute (`, . . . ,`)-isogenies between abelian varieties of dimension g for any `¾ 2 and
g ¾ 1. Possible applications of our algorithm includes:

• The transfer the discrete logarithm from an abelian variety to another abelian variety
where the discrete logarithm is easy to solve [Smi08]

• The computation of isogeny graph to obtain a description the endomorphism ring of
an Abelian variety.

By Torelli’s theorem there is a one on one correspondence between principally polarized
abelian varieties of dimension 2 and Jacobians of genus 2 hyperelliptic curves. Thus the
modular space of principally polarized abelian varieties of dimension 2 is parametrized by
the three Igusa invariants, and one can define modular polynomials between these invariants
much in the same way as in the genus-one case [BL09]. However the height of these modular
polynomials explodes with the order, making their computations impractical: only those
are known [Plo29]. In order to circumvent this problem, in the article [FLR09], we have
defined a modular correspondence between abelian varieties in the moduli of marked abelian
varieties. This moduli space is well-suited for computating modular correspondences since the
associated modular polynomials have their coefficients in {1,−1}, and there is no explosion
as before.

In this paper, we explain how, given a solution to this modular correspondence (provided
for instance by the algorithm described in [FLR09]), one can compute the associated isogeny.
Once such a modular point is obtained, the isogeny can be computed using only simple addi-
tion formulas of algebraic theta functions, so in practice, the computation of the isogeny takes
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2 Computing Isogenies

much less time than the computation of a point provided by the modular correspondence.
Note that this is similar to the genus-one case. For elliptic curves, the computation of a root
of the modular polynomial is not mandatory if the points in the kernel of the isogeny are
given, since this is the input taken by Vélu’s formulas. Here, we explain how to recover the
equations of an isogeny given the points of its kernel, yielding a generalization of Vélu’s
formulas.

Our generalization introduces however a difference compared to the usual genus-1 case.
For elliptic curves, the modular polynomial of order ` give the moduli space of `-isogenous
elliptic curves. In our generalized setting, the modular correspondence in the coordinate
system of theta null points gives `g -isogenous abelian varieties with a theta structure of
different level. As a consequence, a point in this modular space corresponds to an `g -isogeny,
together with a symplectic structure of level `. Another method would be to describe a
modular correspondence between abelian varieties with theta structures of the same level,
see [BGL09] for an example with `= 3 and g = 2.

The paper is organized as follow. In Section 2 we recall Vélu’s formulas and outline our
algorithms. In Section 3, we recall the definition of the modular correspondence given in
[FLR09], and we study the relationship between isogenies and the action of the theta group.
We recall the addition relations, which play a central role in this paper in Section 4. We
then explain how to compute the isogeny associated to a modular point in Section 5. If
the isogeny is given by theta functions of level 4`, it requires (4`)g coordinates. We give
a point compression algorithm in Section 5.1, showing how to express such an isogeny
with only g (g + 1)/2 · 4g coordinates. In Section 6 we give a full generalization of Vélu’s
formulas that constructs an isogenous modular point with prescribed kernel. This algorithm
is more efficient than the special Gröbner basis algorithm from [FLR09]. There is a strong
connection between isogenies and pairings, and we use the above work to explain how one
can compute the commutator pairing and how it relates to the usual Weil pairing in Section 7.

2 Computing Isogenies
In this section, we recall how one can compute isogenies between elliptic curves. We then
outline our algorithm to compute isogenies between abelian varieties.

2.1 Elliptic curves and Vélu’s formulas
Let (Ek ,e0Ek

) be an elliptic curve given by a Weierstrass equation y2 = f (x) with f a degree-3
monic polynomial. Vélu’s formulas rely on the intrinsic characterization of the coordinate
system (x, y) giving the Weierstrass model of Ek as:

v
e0Ek

(x) =−3 vP (x)¾ 0 if P 6=e0Ek

v
e0Ek

(y) =−2 vP (y)¾ 0 if P 6=e0Ek

y2/x3(e0Ek
) = 1,

(1)

where vQ denotes the valuation of the local ring of Ek in the closed point Q.
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2 Computing Isogenies

Theorem 2.1 (Vélu):
Let G ⊂ Ek (k) be a finite subgroup. Then Ek/G is given by Y 2 = g (X ) with g a degree 3 monic
polynomial where

X (P ) = x(P )+
∑

Q∈G\
n

e0Ek

o

x(P +Q)− x(Q)

Y (P ) = y(P )+
∑

Q∈G\
n

e0Ek

o

y(P +Q)− y(Q)

Proof: Indeed, X and Y are in k(Ek )
G , and it is easily seen that they satisfy the relations (1).�

A consequence of the that theorem is that, given a finite subgroup G of cardinality ` of an
elliptic curve Ek an equation y2 = f (x) with f a degre 3 polynomial, it is possible to compute
the Weierstrass equation of the quotient Ek/G at the cost of O(`) additions in Ek .

The modular curve X0(`) parametrizes the set of isomorphism classes of elliptic curves
together with a `-torsion subgroup. For instance X0(1) is just the line of j -invariants. Let
Φ`(x, y) ∈ Z[x, y] be the order ` modular polynomial. It is well known that the roots of
Φ`( j (Ek ), ·) give the j -invariants of the elliptic curves `-isogenous to Ek . Since an `-isogeny is
given by a finite subgroup of Ek of order `, we see that Φ`(x, y) cuts out a curve isomorphic
to X0(`) in X0(1)×X0(1).

Given an elliptic curve Ek with j -invariant jEk
, the computation of isogenies can be done

in two steps:

• First, find the solutions ofΦ`( jEk
,X )whereΦ`(X ,Y ) is the order `modular polynomial;

then recover from a root jE ′k the equation of the corresponding curve E ′k which is `-
isogenous to Ek .

• Next, using Vélu’s formulas, compute the isogeny Ek → E ′k .

For some applications such as isogeny-graph computation, only the first step is required,
while for other applications it is necessary to obtain the explicit equations describing the
isogeny. Note that the first step is unnecessary if one already know the points in the kernel
of the isogeny.

2.2 Isogenies on abelian varieties
Let Ak be an abelian variety of dimension g over a field k and denote by K(Ak ) its function
field. An isogeny is a finite surjective map of abelian varieties. In the following we only
consider separable isogenies i.e. isogenies π : Ak → Bk such that the function field K(Ak )
is a finite separable extension of K(Bk ). A separable isogeny is uniquely determined by its
kernel, which is a finite subgroup of Ak (k). In that case, the cardinality of the kernel is the
degree of the isogeny. In the rest of this paper, by `-isogeny for ` > 0, we always mean a
(`, · · · ,`)-isogeny where (`, · · · ,`) ∈Zg .
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2 Computing Isogenies

We have seen that it is possible to define a modular correspondence between the Igusa
invariants, parameterizing the set of dimension 2 principally polarized abelian varieties, but
the coefficients explosion of the related modular polynomials makes it computationally
inefficient. In order to mitigate this problem and obtain formulas suitable for general g -
dimensional abelian varieties, we use the moduli space of marked abelian varieties.

Let g ∈N∗ and let n ∈N be such that 2|n. Let n = (n, n, . . . , n) ∈Zg , and Z(n) =Zg/nZg .
We denoteMn the modular space of marked abelian varieties (Ak ,L ,ΘAk

) where L is a
polarization and ΘAk

is symmetric theta structure ΘAk
of type Z(n) (see [Mum66]). The

forgetting map (Ak ,L ,ΘAk
) 7→ (Ak ,L ) is a finite map from Mn to the moduli space of

abelian varieties with a polarization of type Z(n).
We recall [Mum67a] that if 4|n, thenMn is open in the projective variety described by

the following equations in P(k(Z(n))):
�

∑

t∈Z(2)

χ (t )ax+t ax+t
�

.
�

∑

t∈Z(2)

χ (t )au+t au+t
�

=

�

∑

t∈Z(2)

χ (t )az−x+t az−y+t
�

.
�

∑

t∈Z(2)

χ (t )az−u+t az−v+t
�

ax = a−x

(2)

for all x, y, u, v ∈ Z(n), such that x + y + u + v = 2z and all χ ∈ Ẑ(2).
In [FLR09], we have described a modular correspondence ϕ :M

`n →Mn×Mn for ` ∈N∗,
which can be seen as a generalization of the modular correspondence X0(`)→X0(1)×X0(1)
for elliptic curves. Let p1 and p2 be the corresponding projectionsMn ×Mn →Mn , and let
ϕ1 = p1 ◦ϕ, ϕ2 = p2 ◦ϕ. The map ϕ1 :M

`n →Mn is such that (x,ϕ1(x)) are modular points

corresponding to `-isogenous varieties We recall that ϕ1 is defined by ϕ1

�

(ai )i∈Z(`n)

�

=

(ai )i∈Z(n) where Z(n) is identified as a subgroup of Z(`n) by the map x 7→ `x.
Suppose that we are given a modular point (bi )i∈Z(n) corresponding to the marked abelian

variety (Bk ,L0,ΘBk
). If Bk is the Jacobian variety of an hyperelliptic curve, one may recover

the associated modular point for n = 4 via Thomae formulas [Mum84].
Suppose for now that 4|n and that ` is prime to n. Our algorithm works in two steps:

1. Modular computation Compute a modular point (ai )i∈Z(`n) ∈ ϕ
−1
1

�

(bi )i∈Z(n)

�

. This
can be done via the specialized Gröbner basis algorithm described in [FLR09], but see
also Section 6 for a more efficient method.

2. Vélu’s like formulas Use the addition formula in Bk to compute the isogeny π̂ : Bk →
Ak associated to the modular point solution. Here (Ak ,L ,ΘAk

) is the marked abelian
variety corresponding to (ai )i∈Z(`n). This step is described in Section 5.

We can also compute an isogeny given by its kernel K by using the results of Section 6.1
to construct the corresponding modular point (ai )i∈Z(`n) from K . We thus have a complete
generalization of Vélu’s formulas for higher dimensional abelian varieties since the reconstruc-
tion of the modular point (ai )i∈Z(`n) from the kernel K only requires the addition formulas
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2 Computing Isogenies

in Bk (together with the extraction of `t h -roots). In Section 6.3 we explain how to use this to
speed up Step 1 of our algorithm (we call this Step 1’).

If the kernel of the isogeny is unknown, the most time-consuming part of our algorithm
is the computation of a maximal subgroup of rank g of the `-torsion, which means that
currently, with g = 2 we can go up to `= 31 relying on the current state-of-the-art implemen-
tation [GS08]. In order to speed up Step 2, which requires O(`g ) additions to be performed
in Bk , and compute with a compact representation, it is important to consider the smallest
possible n. If n = 2, we cannot prove that the modular system to be solved in Step 1 is of
dimension 0. However Step 1’, which is faster, does not require a modular solution but only
the kernel of the isogeny, so our algorithm works with n = 2 too. Note, however, that some
care must be taken when computing additions on Bk , since the algebraic theta functions only
give an embedding of the Kummer variety of Bk for n = 2.

For an actual implementation the case n = 2 is critical (it allows for a more compact
representation of the points than n = 4: we gain a factor 2g , it allows for a faster addition
chain, see Section 5.1.1, but most importantly it reduces the most consuming part of our
algorithm, the computation of the points of `-torsion, since there are half as much such points
on the Kummer variety). For each algorithm that we use, we give an explanation on how to
adapt it for the level 2 case: see Section 4.2.1 and the end of Sections 5.2, 6.1, 6.3 and 7.2.

The assumption that n is prime to ` is not necessary either but there is one important
difference in this case. Suppose that we are given Bk[`]. Since Bk is given by a theta structure
of level n, we also have Bk[n]. If ` is prime to n, this gives us Bk[`n], and we can use Step 1’
to reconstitute a modular point of level `n. If ` is not prime to n, we have to compute Bk[`n]
directly.

It is also possible to compute more general types of isogenies via our algorithm. With
the notations of Section 3, let δ0 = (δ1, . . . ,δg ) be a sequence of integers such that δi |δi+1,
and let (bi )i∈Z(δ0)

∈Mδ0
be a modular point corresponding to an abelian variety Bk . Let

δ ′ = (`1, . . . ,`g ) (where `i |`i+1) and define δ = (δ1`1, . . . ,δg`g ). Let (ai )i∈Z(δ) ∈Mδ be

such that ϕ
�

(ai )i∈Z(δ)

�

= (bi )i∈Z(δ0)
. The theta null point (ai )i∈Z(δ) corresponds to an abelian

variety Ak , such that there is a (`1, · · · ,`g )-isogeny π : Ak → Bk , which can be computed by
the isogeny theorem [Mum66] (see Section 3.2). The isogeny we compute in Step 2 is the
contragredient isogeny π̂ : Bk → Ak of type (`g/`1,`g/`2, · · · , 1,`g ,`g , · · · ,`g ). Using the
modular correspondence ϕ to go back to a modular point of level δ0 (see Section 3.3) gives an
isogeny of type (`g/`1,`g/`2, · · · , 1,`1`g ,`2`g , · · · ,`g`g ). For the clarity of the exposition,

we will stick to the case δ0 = n and δ = `n and we leave to the reader the easy generalization.
Let us make some remarks on our algorithm. First note that to compute `-isogenies, we

start from a theta null point of level n to get a theta null point of level `n. We can then go
back to a point of level n (see Section 3.3), but in this case we are computing `2-isogenies. A
second remark is that all our computations are geometric, not arithmetic, since the projective
embedding given by theta functions of level `n is not rational. A last remark is that since
we use different moduli spaces, our method is not a straight-up generalization of the genus-1
case. In particular, computing a modular point solution (ai )i∈Z(`n) is the same as choosing an
`-isogeny and a theta structure of level `, so there are many more modular solutions than
there is `-isogenies. Hence, as noted in the introduction, the most efficient method in our
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3 Modular correspondences and theta null points

cases is to compute the points of `-torsion to reconstitute the modular point.

3 Modular correspondences and theta null points
In this section, we recall some results of [FLR09] and notations that we will use in the rest of
the paper. In Section 3.1 we recall the definition of a theta structure and the associated theta
functions [Mum66]. In Section 3.2 we recall the isogeny theorem, which give a relations
between the theta functions of two isogenous abelian varieties. In Section 3.3 we explain
the modular correspondence defined in [FLR09]. In Section 3.4 we study the connection
between isogenies and the action of the theta group.

3.1 Theta structures
Let Ak be a g dimensional abelian variety over a field k. LetL be a degree-d ample symmetric
line bundle on Ak . We suppose that d is prime to the characteristic of k or that Ak is ordinary.
Denote by K(L ) the kernel of the isogeny ϕL : Ak → Âk , defined on geometric points by
x 7→ τ∗xL ⊗L

−1 where τx is the translation by x. Let δ = (δ1, . . . ,δg ) be the sequence of
integers satisfying δi |δi+1 such that, as group schemes K(L )'

⊕g
i=1(Z/δiZ)2k . We say that

δ is the type ofL . In the following we let Z(δ) =
⊕g

i=1(Z/δiZ)k , Ẑ(δ) be the Cartier dual

of Z(δ), and K(δ) = Z(δ)× Ẑ(δ).
Let G(L ) and H (δ) be respectively the theta group of (Ak ,L ) and the Heisenberg

group of type δ [Mum66]. In this article, elements of G(L ) will be written as (x,ψx ) with
x ∈K(L ) andψx :L → τ∗xL is an isomorphism. We know that G(L ) andH (δ) are central
extensions of K(L ) and K(δ) byGm . By definition, a theta structure ΘAk

on (Ak ,L ) is an
isomorphism of central extensions fromH (δ) to G(L ). We denote by eL the commutator
pairing [Mum66] on K(L ) and by ec ,δ the canonical pairing on Z(δ)× Ẑ(δ) (We often
drop the indice δ in eδ when there is no risk of confusion). We remark that a theta structure
ΘAk

induces a symplectic isomorphism ΘAk
from (K(δ), ec ,δ) to (K(L ), eL ). We denote

by K(L ) =K1(L )×K2(L ) the decomposition into maximal isotropic subspaces induced
by ΘAk

. The sections Z(δ)→H (δ) and Ẑ(δ)→H (δ) defined on geometric points by
x 7→ (1, x, 0) and y 7→ (1,0, y) can be transported by the theta structure to obtain natural
sections sK1(L ) : K1(L )→ G(L ) and sK2(L ) : K2(L )→ G(L ) of the canonical projection

κ : G(L )→K(L ). Recall [Mum66, pp. 291] that a level subgroup eK of G(L ) is a subgroup
such that eK is isomorphic to its image by κ. We define the maximal level subgroups eK1

over K1(L ) and eK2 over K2(L ) as the image by ΘAk
of the subgroups (1, x, 0)x∈Z(δ) and

(1,0, y)y∈Ẑ(δ) ofH (δ).
Let V = Γ(Ak ,L ). The theta group G(L ) acts on V by v 7→ ψ−1

x τ
∗
x (v) for v ∈ V and

(x,ψx ) ∈G(L ). This action can be transported via ΘAk
to an action ofH (δ) on V . It can be

shown that there is a unique (up to a scalar factors) basis (ϑi )i∈Z(δ) of V such that this action
is given by:

(α, i , j ).ϑ
ΘAk

h
= α.ec ,δ (−i − h, j ).ϑ

ΘAk

h+i
. (3)

10



3 Modular correspondences and theta null points

(see [Mum67b, BL04] for a connection between algebraic theta functions and the classical,
analytic theta functions.) If there is no ambiguity, in this paper, we will sometimes drop the

superscript ΘAk
in the notation ϑ

ΘAk

k
. We briefly recall the construction of this basis: let A0

k
be the quotient of Ak by K2(L ) and π : Ak →A0

k
be the natural projection. By Grothendieck

descent theory, the data of eK2 is equivalent to the data of a couple (L0,λ) where L0 is a
degree-one ample line bundle on A0

k
and λ is an isomorphism λ : π∗(L0)→L . Let s0 be

the unique global section ofL0 up to a constant factor and let s = λ(π∗(s0)). We have the
following proposition (see [Mum66])

Proposition 3.1:
For all i ∈ Z(δ), let (xi ,ψi ) = ΘAk

((1, i , 0)). We setϑ
ΘAk
i = (ψ−1

x τ
∗
x (s )). The elements (ϑ

ΘAk
i )i∈Z(δ)

form a basis of the global sections ofL ; it is uniquely determined (up to a multiplicative factor
independent of i ) by ΘAk

.

This basis gives a projective embedding ϕΘAk
: Ak → Pd−1

k
which is uniquely defined by the

theta structure ΘAk
. The point (ai )i∈Z(δ) := ϕΘAk

(0Ak
) is called the theta null point associated

to the theta structure. Mumford proves [Mum66] that if 4|δ,ϕΘAk
(Ak ) is the closed subvariety

of Pd−1
k

defined by the homogeneous ideal generated by the Riemann equations:

Theorem 3.2 (Riemann equations):
For all x, y, u, v ∈ Z(2δ) that are congruent modulo Z(2), and all χ ∈ Ẑ(2), we have

�

∑

t∈Z(2)

χ (t )ϑx+y+tϑx−y+t
�

.
�

∑

t∈Z(2)

χ (t )au+v+t au−v+t
�

=

=
�

∑

t∈Z(2)

χ (t )ϑx+u+tϑx−u+t
�

.
�

∑

t∈Z(2)

χ (t )ay+v+t ay−v+t
�

. (4)

Let pAk (V )
:Ak (V )→ Pk (V ) be the canonical projection. Let eAk = p−1

Ak (V )
(Ak ) be the affine

cone of Ak and denote by pAk
: eAk →Ak , the application induced by pAk (V )

. Since this affine
cone will play a central role in this paper, we take the following convention: if (ϑi )i∈Z(δ)

is a homogeneous coordinate system on P(V ) then we denote by ( eϑi )i∈Z(δ) the associated

affine coordinate system of A(V ). For instance, pAk
is given by ( eϑi (x))i∈Z(δ) 7→ (ϑi (x))i∈Z(δ).

It should be remarked that, for i ∈ Z(δ), eϑi is a well defined function on eAk and for any
geometric point x ∈ eAk , we denote by eϑi (x) its values in x.

Since the action of G(L ) on V is affine, the action (3) gives an action eρ∗L on eAk . This
action descends to a projective action ρ∗L of K(L ) on Ak which is simply the action by
translation. We will use the same notations for the action ofH (δ) (resp. of K(δ)) induced
by ΘAk

.
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3 Modular correspondences and theta null points

3.2 Isogenies compatible with a theta structure
Let δ ′ ∈Zg be such that 2|δ ′|δ, and write δ = δ ′ ·δ ′′. In the following we consider Z(δ ′) as
a subgroup of Z(δ) via the map ϕ : (xi )i∈[1..g] ∈ Z(δ ′) 7→ (δ ′′i xi )i∈[1..g] ∈ Z(δ). From now on,

when we write Z(δ ′)⊂ Z(δ), we always refer to this map. Let K be the subgroupΘAk
(Ẑ(δ ′′))

of K2(L ) and let πK be the isogeny Ak → Bk =Ak/K . By Grothendieck descent theory, the
level subgroup eK := sK2(L )(K) induces a polarizationL0 on Bk , such thatL 'π∗K (L0). The

theta group G(L0) is isomorphic toZ ( eK)/ eK whereZ ( eK) is the centralizer of eK in G(L )
[Mum66]. Let ΘBk

be the unique theta structure on Bk compatible with the theta structure
on Ak [FLR09, Sec. 3]. We have [FLR09, Prop. 4]:

Proposition 3.3 (Isogeny theorem for compatible theta structures):
Let ϕ : Z(δ ′)→ Z(δ) be the canonical embedding. Let (ϑ

ΘAk
i )i∈Z(δ) (resp. (ϑ

ΘBk
i )i∈Z(δ ′)) be the

canonical basis ofL (resp.L0) associated to ΘAk
(resp. ΘBk

). There exists some ω ∈ k
∗

such that
for all i ∈ Z(δ ′)

π∗K (ϑ
ΘAk
i ) =ωϑ

ΘBk

ϕ(i) . (5)

In particular, the theta null point of Bk is given by

(bi )i∈Z(δ ′) = (aϕ(i))i∈Z(δ ′) (6)

The above proposition is a particular case of the more general isogeny theorem [Mum66, Th.
4].

On the affine cones this proposition shows that, given the theta null point (ai )i∈Z(δ), the
morphism

eπK : eAk → eBk

( eϑ)i∈Z(δ) 7→ ( eϑ)i∈ϕ(Z(δ ′))

makes the following diagram commutative:

eAk Ak

eBk Bk

pAk

pBk

eπ π

For the sake of simplicity, we set from now on δ0 = n, and δ ′ = ` so that δ = `n (we
stated Proposition (3.3) in a more general form because we can use it to compute the `-torsion
on Bk , see Section 6.3). Let (bi )i∈Z(n) be a theta null point associated to a triple (Bk ,L0,ΘBk

);
we want to compute an `-isogeny Bk → Ak . Since n is fixed, we cannot apply the isogeny
theorem directly since it requires `|n. However, if (ai )i∈Z(`n) ∈M`n is a theta null point

12



3 Modular correspondences and theta null points

corresponding to a triple (Ak ,L ,ΘAk
) where the theta structure ΘAk

is compatible with ΘBk

(this is equivalent to (ai )i∈Z(`n) satisfying (6)), then Proposition 3.3 gives an (explicit) isogeny
π : Ak → Bk . So to the modular point (ai )i∈Z(`n) we may associate the isogeny π̂ : Bk →Ak

and this is the isogeny we compute in Step 2 of our algorithm (Section 2.2).
We have the following diagram

y ∈ Bk

z ∈Akx ∈Ak

π̂π

[`]

This diagram shows that it is possible to obtain an explicit description of the rational map
z = π̂(y) by eliminating the variables x in the ideal generated by (y =π(x), z = ` · x). This
can be done using a Gröbner basis algorithm. In Section 5 gives a much faster algorithm
which uses the addition formulas in Bk to find the equations of π̂ directly.

3.3 Modular correspondences
In the previous section, we have shown how to compute an isogeny with a prescribed kernel
K ⊂ K2(L )[`] that is isotropic for the commutator pairing. Now let K ⊂ Ak[`] be any
isotropic subgroup such that we can write K = K1×K2 with Ki ⊂ Ki (L ). Let Bk =Ak/K and
π be the associated isogeny. Let ΘBk

and ΘAk
be π-compatible theta structures in the sense of

Mumford [Mum66]. We briefly explain this notion: if two abelian varieties (Ak ,L ,ΘAk
) and

(Bk ,L0,ΘBk
) have π-compatible marked theta structures, it means that we have π∗(L0) =L .

By Grothendieck descent theory, this define a level subgroup eK ⊂G(L ) of the kernel of π.
We have seen in Section 3.2 that we have G(L0) =Z ( eK)/ eK where Z ( eK) is the centralizer of
eK . The structures ΘAk

and ΘBk
are said to be compatible if they respect this isomorphism.

The isogeny theorem ([Mum66, Theorem 4]) then gives a way to compute (π∗(ϑ
ΘBk
i ))i∈Z(n)

given (ϑ
ΘAk
i )i∈Z(`n).

We recall briefly how this works: if K1 = 0, we say that π is an isogeny of type 1, and
if K2 = 0 that π is an isogeny of type 2. In the paper [FLR09] we have studied the case
of isogenies of type 1 and 2; in fact, the notion of compatible isogenies we had defined in
these cases is nothing but a particular case of the notion of compatible isogenies described
above. Obviously, by composing isogenies, we only need to study the case of compatible
theta structures between isogenies of type 1 or 2. We have already seen the case of isogenies
of type 1 in the previous Section. Now let I0 be the automorphism of the Heisenberg group
H (`n) that permutes Z(`n) and Ẑ(`n): I0(α, x, y) = (α, y, x). We define IAk

=ΘAk
◦I0◦Θ−1

Ak
,

where IAk
is the automorphism of the Theta group of Ak that permutes K1(L ) and K2(L ).

(There is a similar automorphism IBk
of the theta group of Bk ; we will usually note these

13



3 Modular correspondences and theta null points

automorphisms I since the theta group is clear from the context.) If π2 is a compatible
isogeny of type 2 between (Ak ,L ,ΘAk

) and (Bk ,L0,ΘBk
), then π2 is a compatible isogeny of

type 1 between (Ak ,L ,IAk
◦ΘAk

) and (Bk ,L ,IB ◦ΘBk
).

Since the action of I is given by [FLR09, Section 5]

ϑ
IAk
◦ΘAk

i =
∑

j∈Ẑ(`n)

e(i , j )ϑ
ΘAk
j , (7)

we see that we have for all i ∈ Z(n)

π∗(ϑ
ΘBk
i ) =

∑

j∈Z(`)

ϑ
ΘAk
i+n j .

In the following, we focus on isogenies of type 1 but it is easy to adapt the following
to isogenies of type 2 (and hence more generally to compatible isogenies between theta
structures) using the action of I. Considering both types of isogenies can be useful, see
Section 4.3 or Section 6.3. The modular correspondence described in Section 2.2 is given by

ϕ :M
`n→Mn ×Mn , (ai )i∈Z(`n) 7→ ((ai )i∈Z(n), (

∑

j∈Z(`)

ai+n j )i∈Z(n)).

Letϕ1 (resp. ϕ2) be the composition ofϕ with the first (resp. second) projection. Let (ai )i∈Z(`n)

be the theta null point of (A,L ,ΘAk
), and put (bi )i∈Z(`) = ϕ1

�

(ai )i∈Z(`)

�

, and (ci )i∈Z(`) =

ϕ2

�

(ai )i∈Z(`)

�

. Then (bi )i∈Z(`) is the theta null point corresponding to the variety Bk =
Ak/K2(L )[`], and (ci )i∈Z(`) corresponds to Ck =Ak/K1(L )[`].

The following diagram shows that the composition π2 ◦ π̂ : Bk →Ck is an `2-isogeny:

Bk

Ak

Bk Ck

[`]

π̂

π π2

3.4 The action of the theta group on the affine cone and isogenies
For the rest of the article, we suppose given an abelian variety with a theta structure
(Bk ,L0,ΘBk

) with associated theta null point (bi )i∈Z(n), and a valid theta null point (ai )i∈Z(`n)

14



3 Modular correspondences and theta null points

associated to a triple (Ak ,L ,ΘAk
) such that ΘBk

and ΘAk
are compatible [FLR09]. Let

eπ : eAk → eBk be the morphism such that π∗(ϑ
ΘBk
i ) = ϑ

ΘAk
i for i ∈ Z(n). Note that the isogeny

π : Ak → Bk lifts to the affine cone as eπ.
Let {ei}i∈[1..g] be the canonical “basis” of Z(`n), and { fi}i∈[1..g] be the canonical “basis” of

Ẑ(`n) so that {ei , fi}i∈[1..g] is the canonical symplectic basis of K(`n). For i ∈ Z(`n), we let

Pi = ΘAk
(i , 0)) and for i ∈ Ẑ(`n) we let Qi = ΘAk

(0, i). The points
¦

Pei
,Q fi

©

i∈[1..g]
form

a symplectic basis of K(L ) for the commutator pairing induced by the theta structure: we
have for i , j ∈ [1..g] eL (Pei

,Q f j
) = δ i

j where δ i
j is the Kronecker symbol.

We have seen (see Section 3.1) that the theta structure ΘAk
induces a section s = sK(L ) :

K(L ) → G(L ) of the canonical projection κ : G(L ) → K(L ). The kernel Kπ of the
isogeny π : Ak → Bk is ΘAk

(Ẑ(`)). Let eKπ = s(Kπ) and recall (see Section 3.2) that G(L0) =

Z ( eKπ)/ eKπ. In particular, we have K(L0) = Z (Kπ)/Kπ where Z (Kπ) = κ(Z ( eKπ)) is the
orthogonal of Kπ for the commutator pairing eL . Explicitly, we have: Kπ = {Qi}i∈Z(`) and
Z (Kπ) = {Pi}i∈Z(n)×{Qi}i∈Z(`n) so that K(L0) = {π(Pi )}i∈Z(n)×π({Qi}i∈Z(`n)).

In the following, if Xk is an abelian variety, we denote by Aut∗(Xk ) the group of isomor-
phisms of Xk seen as an algebraic variety, in particular an element of Aut∗(Xk ) does not
necessarily fix the point 0 of Xk . The action by translation ρ∗L : K(L )→Aut∗(Ak ) induces an
action ρ∗L : K(L )→Aut∗(Bk ) viaπ: if x ∈K(L ), the action of ρ∗L (x) on Bk is the translation
byπ(x). This action extends the action by translation ρ∗L0

: K(L0)→Aut∗(Bk ). We recall that

the action of G(L ) on V =Γ(Ak ,L ) is given by (x,ψx ).v =ψ
−1
x τ

∗
x (v) for (x,ψx ) ∈G(L )

and v ∈V from which we derive an action of G(L ) on Ak (V ). By restriction, we obtain
an action eρ∗L : G(L )→Aut∗( eAk ). Similarly, we define an action eρ∗L0

: G(L0)→Aut∗(eBk ).

(Note that eπ does not induce an action from G(L ) on eBk via eρ∗L ; see Corollary 3.5). Still,
we would like to be able to recover eρ∗L from eρ∗L0

and the theta structure ΘBk
. First, we have:

Proposition 3.4:
Let g ∈Z ( eKπ) and note g its image in Z ( eKπ)/ eKπ. We have eρ∗L0

(g ) = eπ ◦ eρL (g ).

Proof: This is as an immediate consequence of the fact that the two theta structures ΘAk
and

ΘBk
are compatible. �

For g ∈ G(L ), we can define a mapping eπg : eAk → eBk given on geometric points by

ex 7→ eπ(eρ∗L (g ).ex). If g ∈Z ( eKπ); Proposition 3.4 then shows that eπg = eρ
∗
L0
(g ) ◦ eπ, hence eπg

can be recovered from eπ and the theta structure ΘBk
. SinceZ ( eKπ)⊃ s (K2(L )), we only have

to study the mappings eπi = eπs(Pi )
for i ∈ Z(`n). They are given on geometric points by

eπi (( eϑ j (ex)) j∈Z(`n)) = (
eϑi+`. j (ex)) j∈Z(n).
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4 The addition relations

Corollary 3.5:
1. Let S be a subset of Z(`n), such that S + Z(n) = Z(`n). Then ex ∈ eAk is uniquely

determined by {eπi (ex)}i∈S .

2. Let ey ∈ eAk be such that eπ(ey) = eπ(ex). Then there exists j ∈ Ẑ(`) ⊂ Ẑ(`n) such that
ey = (1,0, j ).ex and

eπi (ey) = e
`n(i , j )eπi (ex).

In particular eπi (ey) and eπi (ex) differ by an `t h -root of unity.

Proof:

1. Since eπi (( eϑ j (ex)) j∈Z(`n)) = (
eϑi+`. j (ex)) j∈Z(n), from {eπi (ex)}i∈S one can obtain the val-

ues
n

eϑ j (ex)
o

j∈S +Z(n)
. If S + Z(n) = Z(`n) this shows that we can recover ex =

( eϑ j (ex)) j∈Z(`n).

2. If eπ(ey) = eπ(ex), then pAk
(ey)− pAk

(ex) ∈ Kπ. So there exists j ∈ Ẑ(`) and α ∈ k
∗

such

that ey = (α, 0, j ).ex. Hence eϑi (ey) = αe
`n(i , j ) eϑi (ex). Since eπ(ex) = eπ(ey), α= 1. Moreover,

as j ∈ Ẑ(`), e
`n(i + k , j ) = e

`n(i , j ) if k ∈ Z(n) so that eπi (ex) = e
`n(i , j )eπi (ey). �

Example 3.6:
• If ` is prime to n, the canonical mappings Z(n)→ Z(`n) and Z(`)→ Z(`n) induce an

isomorphism Z(n)×Z(`) ∼→ Z(`n), and one can take S = Z(`) in Corollary 3.5.

• If ` is not prime to n, a possible choice for S is

S = {
∑

i∈[1..g]

λi ei |λi ∈ [0..`− 1]}.

4 The addition relations
In this section we study the addition relations and introduce the notion of addition chain
on the affine cone of an abelian variety. This chain addition will be our basic tool for our
isogenies computation in Section 5 and Vélu’s like formula in Section 6.

In Section 4.1 we introduce the concept of extended commutator pairing. The importance
of this pairing comes from the fact that the isogenies we compute with our algorithm (see
Section 2.2) correspond to subgroups that are isotropic for this extended commutator pair-
ing [FLR09]. We explain in Section 7 how to use addition chains to compute this pairing. In
Section 4.2 we prove in an algebraic setting the Riemann relations, and we deduce from them
the addition relations. In Section 4.3 we use the results of Section 3.4 to study the properties
of the addition chain.
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4.1 Evaluation of algebraic theta functions at points of `-torsion
For the rest of this article, we suppose that we have fixed a e0Bk

∈ p−1
Bk
(0Bk
). This give us a

canonical way to fix an affine lift of 0Ak
: we denote e0Ak

the unique point in p−1
Ak
(0Ak
) such that

e0Bk
= eπ(e0Ak

). We recall that the theta structure ΘAk
gives a section sK(L ) : K(L )→G(L ).

This means that the map x ∈K(L ) 7→ sK(L )(x).e0Ak
∈ eAk induces a section K(L )→ eAk of the

map pAk
: eAk →Ak . We remark that the choice of e0Ak

∈ p−1
Ak
(0Ak
)⊂ eAk is equivalent to the

choice of an evaluation isomorphism: ε0 :L (0)' k. For any x ∈K(L ), let sL (x) = (x,ψx ),
we define eϑi (x) = ε0(sL (x).ϑi ) = ε0 ◦ψ−1

x ◦τ
∗
x (ϑi ). Then the section K(L )→ eAk is given by:

sK(L )(x).e0Ak
= ( eϑi (x))i∈Z(`n).

Thus we have a canonical way to fix an affine lift for any geometric point in K(L ).
For i ∈ Z(`n), let ePi = (1, i , 0).e0Ak

, and for j ∈ Ẑ(`n), let eQ j = (1,0, j ).e0Ak
. We also put

eRi = eπ(ePi ) = eπi (e0Ak
), and Ri = pBk

(eRi ). We remark that {Ri}i∈Z(`) is the kernel Kπ̂ of π̂

which explains the primordial role the points eRi will play for the rest of this paper.
More generally, we can define an affine lift for any point of Bk[`] by considering the

isogeny given by [`] rather than by π: letM0 = [`]
∗L0 on Bk . AsL0 is symmetric, we have

thatM0 ' L `2

0 [Mum70] and so K(M0), the kernel ofM0 is isomorphic to K(`2n). Let
ΘBk ,M0

be a theta structure on (Bk ,M0) compatible with the theta structure ΘBk
on (Bk ,L0).

We notefBk
′
the affine cone of (Bk ,M0), and Ý[`] the morphismfBk

′
→ eBk induced by [`].

We recall that there is a natural action of G(M0) on H 0(M0) which can be transported via

ΘBk ,M0
to an action ofH (`2n) on H 0(M0). We note e0

fBk
′ the affine lift of the theta null point

offBk
′
such that Ý[`]e0

fBk
′ =e0Bk

. We can then generalize the definition of the eRi by looking at

the points:

{Ý[`](1, i , j ).e0
fBk
′ |i , j ∈ Z(`2n)× Ẑ(`2n)}.

Let H = {(1, i , j )|i , j ∈ Z(`)}. H is a commutative subgroup ofH (`2n) such that Ý[`]ex1 =
Ý[`]ex2 if and only if x1 = h.x2 where h ∈H . We see that the section of a point in Bk[`] is only
defined up to an `t h -root of unity. (This is also the case for the lift eRi of Ri : if we change the
theta structure on Ak , it changes the eRi by an `t h -root of unity. See also Corollary 3.5 and
Example 6.8). The geometric meaning of these affine lifts is explained in Section 6.2.

The polarizationM0 induces a commutator pairing eM0
([Mum66]) on K(M0) and asM0

descends toL0 via the isogeny [`], we know that eM0
is trivial on Bk[`]. For x1, x2 ∈ Bk[`], let

x ′1, x ′2 ∈ Bk[`
2] be such that `.x ′i = xi for i = 1,2. We remark that x ′1 and x ′2 are defined up to an

element of Bk[`]. As a consequence, eM0
(x ′1, x2) = eM0

(x1, x ′2) = eM0
(x ′1, x ′2)

`, does not depend
on the choice of x ′1 and x ′2 and if we put e ′

`
(x1, x2) = eM0

(x ′1, x2), we obtain a well defined

bilinear application e ′
`

: Bk[`n]×Bk[`n]→ k. We call e ′
`

the extended commutator pairing. It
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4 The addition relations

extends the commutator pairing eL0
since if x, y ∈ Bk[n] we have e ′

`
(x, y) = eL0

(x, y)`. When
we speak of isotropic points in Bk[`], we always refer to isotropic points with respect to e ′

`
.

We quote the following important result from [FLR09]: the modular points ϕ−1
1 (bi )i∈Z(n)

that we compute in Section 2.2 correspond to isogenies whose kernel are isotropic for e ′
`
.

4.2 The general Riemann relations
The Riemann relations (2) forM

`n and the Riemann equations (4) for Ak are all particular
case of more general Riemann relations, which we will use to get the addition relations on
Ak . An analytic proof of these relations can be found in [Mum83].

Theorem 4.1 (Generalized Riemann Relations):
Let x1, y1, u1, v1, z ∈ Ak be such that x1 + y1 + u1 + v1 = 2z. Let x2 = z − x1, y2 = z − y1,
u2 = z − u1 and v2 = z − v1. Then there exist ex1 ∈ p−1

Ak
(x1), ey1 ∈ p−1

Ak
(y1), eu1 ∈ p−1

Ak
(u1),

ev1 ∈ p−1
Ak
(v1), ex2 ∈ p−1

Ak
(x2), ey2 ∈ p−1

Ak
(y2), eu2 ∈ p−1

Ak
(u2), ev2 ∈ p−1

Ak
(v2) that satisfy the following

relations: for any i , j , k , l , m ∈ Z(`n) such that i + j + k + l = 2m, let i ′ = m− i , j ′ = m− j ,
k ′ = m− k and l ′ = m− l , then for all χ ∈ Ẑ(2), we have

�

∑

t∈Z(2)

χ (t )ϑi+t (ex1)ϑ j+t (ey1)
�

.
�

∑

t∈Z(2)

χ (t )ϑk+t (eu1)ϑl+t (ev1)
�

=

�

∑

t∈Z(2)

χ (t )ϑi ′+t (ex2)ϑ j ′+t (ey2)
�

.
�

∑

t∈Z(2)

χ (t )ϑk ′+t (eu2)ϑl ′+t (ev2)
�

. (8)

Proof: If x = y = u = v = 0A, the preceding result gives the algebraic Riemann relations,
a proof of these relations can be found in [Mum66]. We just need to adapt the proof of
Mumford for the general case.

Let p1 and p2 be the first and second projections from Ak ×Ak to Ak . LetM = p1
∗(L )⊗

p2
∗(L ). The theta structure ΘAk

induces a theta structure ΘAk×Ak
such that for (i , j ) ∈

Z(`n)×Z(`n) we have ϑΘA×A

i , j = ϑ
ΘAk
i ⊗ϑ

ΘAk
j . (see [Mum66, Lemma 1 p. 323].) Consider

the isogeny ξ : Ak ×Ak → Ak ×Ak , (x, y) 7→ (x + y, x − y). We have ξ ∗(M ) =M 2. Since
ΘAk

is a symmetric theta structure ΘAk
it induces a theta structure onL 2 and onM 2. One

can check that this theta structure is compatible with the isogeny ξ . Applying the isogeny
theorem (see [Mum66, p324]), we obtain that there exists λ ∈ k

∗
such that for all i , j ∈ Z(`n)

and x, y ∈Ak (k):

(ϑLi ⊗ϑ
L
j )(ξ (x, y)) = λ

∑

u,v∈Z(2l n)
u+v=i
u−v= j

(ϑL
2

u ⊗ϑ
L 2

v )(x, y) (9)

In the preceding equation, in order to evaluate the sections ofM orM 2 at a geometric
point of x ∈ Ak ×Ak we just choose any isomorphism betweenMx orM 2

x and OAk×Ak ,x
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4 The addition relations

where OAk×Ak
is the structural sheaf of Ak ×Ak . To simplify the notations, we suppose in the

following that λ= 1.
Using equation (9) we compute for all i , j ∈ Z(2`n) which are congruent modulo Z(`n)

and x, y ∈Ak (k):
∑

t∈Z(2)

χ (t )ϑLi+ j+t (x + y)ϑLi− j+t (x − y) =
∑

t∈Z(2)
u,v∈Z(2l n)

u+v=i+ j+t
u−v=i− j+t

χ (t )ϑL
2

u (x)ϑ
L 2

v (y)

=
∑

t1,t2∈Z(2)

χ (t1+ t2)ϑ
L 2

i+t1
(x)ϑL

2

j+t2
(y)

=







∑

t∈Z(2)

χ (t )ϑL
2

i+t (x)






·







∑

t∈Z(2)

χ (t )ϑL
2

j+t (y)







So we have:

�

∑

t∈Z(2)

χ (t )ϑLi+ j+t (x + y)ϑLi− j+t (x − y)
�

.
�

∑

t∈Z(2)

χ (t )ϑLk+l+t (u + v)ϑLk−l+t (u − v)
�

=

�

∑

t∈Z(2)

χ (t )ϑL
2

i+t (x)
�

·
�

∑

t∈Z(2)

χ (t )ϑL
2

j+t (y)
�

·
�

∑

t∈Z(2)

χ (t )ϑL
2

k+t (u)
�

·
�

∑

t∈Z(2)

χ (t )ϑL
2

l+t (v)
�

=

�

∑

t∈Z(2)

χ (t )ϑLi+l+t (x + v)ϑLi−l+t (x − v)
�

.
�

∑

t∈Z(2)

χ (t )ϑLk+ j+t (u + y)ϑLk− j+t (u − y)
�

(10)

Now if we let x = x0+ y0, y = x0− y0, u = u0+v0 and v = u0−v0, we have x+ y+ u+v =
2(x0+u0) so we can choose z = x0+u0, so that z−x = u0−y0, z−y = u0+y0, z−u = x0−v0,
z− v = x0+ v0. By doing the same variable change for i , j , k , l we see that the theorem is just
a restatement of Equation (10). (see [Mum66, p334]). �

From the generalized Riemann relations it is possible to derive addition relations. First
remark that since the theta structureΘAk

is symmetric there exists a constant λ ∈ k
∗

such that

for all i ∈ Z(`n), ϑi (−x) = λ.ϑ−i (x). In particular if ex ∈ eAk , we put −ex = ( eϑ−i (ex))i∈Z(`n).

Theorem 4.2 (Addition Formulas):
Let x, y ∈ Ak (k) and suppose that we are given ex ∈ p−1

Ak
(x), ey ∈ p−1

Ak
(y), àx − y ∈ p−1

Ak
(x − y),

then there is a unique point àx + y ∈ eAk (k) verifying for i , j , k , l ∈ Z(`n)

�

∑

t∈Z(2)

χ (t )ϑi+t (àx + y)ϑ j+t (àx − y)
�

.
�

∑

t∈Z(2)

χ (t )ϑk+t (e0Ak
)ϑl+t (e0Ak

)
�

=

�

∑

t∈Z(2)

χ (t )ϑ−i ′+t (ey)ϑ j ′+t (ey)
�

.
�

∑

t∈Z(2)

χ (t )ϑk ′+t (ex)ϑl ′+t (ex)
�

, (11)
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4 The addition relations

and we have pAk
(àx + y) = x + y.

Thus the addition law on Ak extends to a pseudo addition law on eAk ; we call it an addition
chain and we note àx + y = chaine_add(ex,ey,àx − y).

Proof: We apply the Riemann relations (8) to x+ y, x− y, 0A, 0A. We have 2x = (x+ y)+(x−
y)+0A+0A, −y = x− (x+ y), y = x− (x− y), x = x−0A, x = x−0A so Theorem 4.1 shows
that there exist a point àx + y ∈ eAk (k) satisfying the addition relations (11).

It remains to show that this point is unique. But first we reformulate the addition formulas
(see [Mum66, p334]). Let H = Z(`n)× Ẑ(2), and for (i ,χ ) ∈H define

eui ,χ (ex) =
∑

t∈Z(2)

χ (t ) eϑi+t (ex).

Then we have for all i , j , k , l , m ∈H such that 2m = i + j + k + l

eui (àx + y)eu j (àx − y)euk (e0Ak
)eul (e0Ak

) =
1

22g

∑

ξ∈H ,2ξ=∈Z(2)×0

(m2+ ξ2)(2ξ1)eui−m+ξ (ey)eum− j+ξ (ey)eum−k+ξ (ex)eum−l+ξ (ex) (12)

It is easy to see that ( eϑi (ex))i∈Z(`n), is determined by (eui (ex))i∈H . That means there is a j ∈H

such that eu j (àx − y) 6= 0 otherwise we would have eϑi (àx − y) = 0 for all i ∈ Z(`n). Now for all

i ∈H , we need to find k , l ∈H such that i + j + k + l = 2m and euk (e0) 6= 0, eul (e0) 6= 0. In that
case equation (12) allows us to compute eui (àx + y)eu j (àx − y)euk (0)eul (0) from (eui (ex))i∈H and

(eui (ey))i∈H , so we can obtain eui (àx + y).
In [Mum66, p. 339], Mumford prove that for any i ∈H , there is an α ∈ 2Z(`n) such that

eui+(α,0)(0) 6= 0. So we can choose k = i , l = j , we have i + j + k + l = 2m, and if necessary

we add an element of 2Z(`n) to k and l . �

Algorithm 4.3 (Addition chain):
Input ex,ey and àx − y such that pAk

(ex)− pAk
(ey) = pAk

(àx − y).

Output àx + y = chaine_add(ex,ey,àx − y).
Step 1 For all i ∈ Z(`n), χ ∈ Ẑ(2) and X ∈ {àx + y,ex,ey,e0Ak

} compute

eui ,χ (X ) =
∑

t∈Z(2)

χ (t ) eϑi+t (X ).

Step 2 For all i ∈ Z(`n) choose j , k , l ∈ Z(`n) such that i + j + k + l = 2m, eu j (àx − y) 6= 0,
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4 The addition relations

euk (e0Ak
) 6= 0, eul (e0Ak

) 6= 0 and compute

eui (àx + y) =
1

22g
eu j (àx − y)euk (e0Ak

)eul (e0Ak
)

∑

ξ∈H ,2ξ=∈Z(2)×0

(m2+ ξ2)(2ξ1)eui−m+ξ (ey)eum− j+ξ (ey)eum−k+ξ (ex)eum−l+ξ (ex). (13)

Step 3 For all i ∈ Z(`n) output

eϑi (àx + y) =
1

2g

∑

ξ∈Ẑ(2)

eui ,χ (àx + y).
♦

Complexity Analysis 4.4:
We use a linear transformation between the eϑ coordinates and the eu coordinates in the Steps 1
and 3 because we have seen in the proof of Theorem 4.2 that the latter are more suited for
additions.

As eui+t ,χ = χ (t )eui ,χ we only need to consider (`n)g coordinates and the linear transfor-

mation between eu and eϑ can be computed at the cost of (2n`)g additions in k. We also have
eui ,χ (−ex) = eu−i ,χ (ex).

Using the fact that for t ∈ Z(2) the right hand terms of (13) corresponding to ξ = (ξ1+t ,ξ2)
and to ξ = (ξ1,ξ2) are the same up to a sign, one can compute the left hand side of (13) with
4 · 4g multiplications and 4g additions in k. In total one can compute an addition chain in
4.(4`n)g multiplications, (4`n)g additions and (`n)g divisions in k. We remark that in order
to compute several additions using the same point, there is no need to convert back to the eϑ
at each step so we only need to perform Step 2.

The addition chain formula is a basic step for our isogenies computations, and in the sequel
we consider it as our basic unit for the complexity analysis. In some cases it is possible to
greatly speed up this computation. See for instance [Gau07] which uses the duplication
formula between theta functions to speed up the addition chain of level two (in genuses 1 and
2). See also Section 5.1 where it is explained how to use isogenies to compute the addition
chain for a general level by using only addition chains of level two, so that we can use the
speed up of [Gau07] in every level. ♦

Remark 4.5:
The addition formulas can also be used to compute the usual addition law in Ak by choosing
j = 0 in Equation (13) for every i .

It is also possible to use directly the ϑ coordinates as follows: if x, y ∈Ak (k) and i ∈ Z(`n),
for every χ ∈ Ẑ(2), one can choose k , l ∈ Z(`n) such that i + k + l is divisible by 2 and

�

∑

t∈Z(2)

χ (t )ϑk+t (0)ϑl+t (0)
�

6= 0.
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4 The addition relations

So one can use (11) to compute

ai ,χ :=
�

∑

t∈Z(2)

χ (t )ϑi+t (P +Q)ϑ0+t (P −Q)
�

,

and recover ϑi (P +Q) by inversing a matrix. For instance we have ϑi (x) =
1

2g

∑

χ∈Ẑ(2)

aχ ,i ♦

The addition chain law on eAk induces a multiplication by a scalar law which reduces via
pAk

to the usual multiplication by a scalar law deduced from the group structure of Ak . Let

ex,ey ∈ eAk and àx + y ∈ p−1
Ak
(x + y), then we can compute â2x + y := chaine_add(àx + y,ex,ey).

More generally there is a recursive algorithm to compute for every m ¾ 2:

ämx + y := chaine_add( å(m− 1)x + y,ex, å(m− 2)x + y)

We put chaine_multadd(n,àx + y,ex,ey) :=ämx + y and define chaine_mult(m,ex) := chaine_multadd(m,ex,ex,e0Ak
).

We have pAk
(chaine_mult(m,ex)) = m.pAk

(ex). We call chaine_multadd a multiplication
chain.

Algorithm 4.6 (Multiplication chain):
Input m ∈N, àx + y,ex,ey ∈ eAk .
Output chaine_multadd(m,àx + y,ex,ey).
Step 1 Compute the binary decomposition of m :=

∑I
i=0 bi 2

i . Set m′ := 0, xy0 := ey,

xy−1 := chaine_add(ey,−ex,àx + y), x0 :=e0Ak
and x1 := ex.

Step 2 For i in [I ..0] do
If bi = 0 then compute

x2m′ := chaine_add(xm′ ,xm′ ,x0)
x2m′+1 := chaine_add(xm′+1,xm′ ,x1)
xy2m′ := chaine_add(xym′ ,xm′ ,xy0)

m′ := 2m′.

Else compute

x2m′+1 := chaine_add(xm′+1,xm′ ,x1)
x2m′+2 := chaine_add(xm′+1,xm′+1,x0)
xy2m′+1 := chaine_add(xym′ ,xm′ ,xy−1)

m′ := 2m′+ 1.

Step 3 Output xym . ♦
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4 The addition relations

Correction and Complexity Analysis 4.7:
In Corollary 4.13 we show that multiplication chains are associative, so we can use a Lucas
sequence to compute them. In order to do as few division as possible, we use a Montgomery
ladder for our Lucas sequence, hence the algorithm.

We see that a multiplication chain requires O(log(m)) addition chains. ♦

Lemma 4.8:
For λx ,λy ,λx−y ∈ k

∗
and ex,ey ∈Ak (k), we have:

chaine_add(λxex,λyey,λx−y
àx − y) =

λ2
xλ

2
y

λx−y
chaine_add(ex,ey,àx − y), (14)

chaine_multadd(n,λx+y
àx + y,λxex,λyey) =

λn(n−1)
x λn

x+y

λn−1
y

chaine_multadd(n,àx + y,ex,ey),

(15)

chaine_mult(n,λxex) = λ
n2

x chaine_mult(n,ex). (16)

Proof: Formula (14) is an immediate consequence of the addition formulas (11). The rest of
the lemma follows by an easy recursion. �

4.2.1 The case n = 2

Let x be the generic point of Ak . Then the Riemann equations (17) come from the following
addition formula:

x = chaine_add(x, 0A, x). (17)

We suppose here that n = 2 and ` = 1. We have for all i ∈ Z(2), (−1)∗ϑi = ϑi , where
(−1) is the inverse automorphism on Ak . As a consequence,L gives an embedding of the
Kummer variety KA=A/± 1. The equations (17) are trivial, so that Riemann equations does
not give the projective equations of this embedding (except when g = 1). Nonetheless, one
can recover these equations by considering more general addition relations.

Let p : Ak → KA be the natural projection. If x, y ∈ KA, let x0 ∈ p−1(x) and y0 = p−1(y),
we have p(p−1(x)+ p−1(y)) = p(±x0+±y0) = {p(x0+ y0), p(x0− y0)}. As a consequence,
there is no properly defined addition law on KA: from ±x ∈ KA and ±y ∈ KA, we may
compute ±x ± y which give two points on KA. However, if we are also given ±(x − y) ∈KA,
then we can identify ±(x + y) ∈ {±x ± y}. Thus the addition chain law from Theorem 4.2
extends to a pseudo addition on the Kummer variety. We remark that our addition chain is a
generalization of the pseudo addition law on the Kummer variety.

Let x, y ∈ KA. To compute ±x ± y without ±(x − y) we can proceed as follows: let
X = (Xi )i∈Z(2), Y = (Yi )i∈Z(2) be the two projections of the generic point on KA×KA. Then
the addition relations chaine_add(X , x, y,Y ) describe a system of degree 2 in KA×KA, whose
solutions are (±(x + y),±(x − y)) and (±(x − y),±(x + y)). From this system, it is easy to
recover the points {±(x + y),±(x − y)}, but this involves a square root in k. (The preceding
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4 The addition relations

claims will be proved on an upcoming paper). Coming back to isogenies computations, it
means that when working with n = 2, we have to avoid computing normal additions, since
they require a square root and are much slower than addition chains.

We make a last remark concerning additions on the Kummer variety. Suppose that we
are given x, y, z ∈ KA, together with ±(x + y), ±(y + z). We want to find ±(x + z). Using
the addition relations, we can compute S = {±(x + z),±(x − z)}. Let A ∈ S, then the
solutions of the addition relations chaine_add(X , x+y,A,Y ) are {±(2x+y+ z),±(y− z)} if
A=±(x+ z), and {±(2x+ y− z),±(y+ z)} if A=±(x− z). This allows to find ±(y+ z) ∈ S
if 2x 6= 0,2y 6= 0,2z 6= 0,2(x + y + z) 6= 0. We call this the compatible addition relation, and
we can use this to compute ±(x + z) directly without taking a square root (by computing the
gcd between the two systems of degree two given by the addition relations).

4.3 Theta group and addition relations
In this Section, we study the action of the theta group on the addition relations. We use
this action to find the addition relations linking the coordinates of the points {eRi}i∈Z(`n).
By considering different isogenies π : Ak → Bk , we can then understand the addition chains
between any isotropic subgroup of Bk[`] (see Section 4.1). In particular we exploit this to
show that we can compute the chain multiplication by ` in O(log(`)) addition chains.

Lemma 4.9:
Suppose that ex1,ey1, eu1, ev1,ex2,ey2, eu2, ev2 ∈ eAk satisfy the general Riemann relations (8).

• For every g ∈G(L ), g .ex1, g .ey1, g .eu1, g .ev1, g .ex2, g .ey2, g .eu2, g .ev2 also satisfy the Riemann
relations.

• For every isogeny π : (A,L ,ΘAk
)→ (B ,L0,ΘBk

) such that ΘBk
is π-compatible of type 1

with ΘAk
, then eπ(ex1), eπ(ey1), eπ(eu1), eπ(ev1), eπ(ex2), eπ(ey2), eπ(eu2), eπ(ev2) ∈ eBk also satisfy the

Riemann relations.

Proof: This is an immediate computation. �

Lemma 4.10:
Let (α, i , j ) ∈H (`n). Let ex = (α, i , j ).e0Ak

∈ eAk . Then we have −ex = (α,−i ,− j ).e0Ak
.

More generally, if ex ∈ eAk , then −(α, i , j ).ex = (α,−i ,− j ).− ex, and we have eπ(−x) =−eπ(x).

Proof: If ex = (xi )i∈Z(`n), we recall that we have defined−ex = (x−i )i∈Z(`n). Lete0Ak
= (ai )i∈Z(`n),

if u ∈ Z(`n) we have by (3): xu = ((α, i , j ).e0Ak
)u = α j (−u − i)au+i , ((α,−i ,− j ).e0Ak

)−u =
α(− j )(u + i)a−u−i = au+i = xu .

The generalization and the rest of the lemma is trivial. �

An interesting property of the addition formulas, is that they are compatible with the
action sK1(L ) : K1(L )→ eAk :
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4 The addition relations

Proposition 4.11 (Compatibility of the pseudo-addition law):
For ex,ey,àx − y ∈ eAk , and i , j ∈ Z(`n), we have:

(1, i + j , 0).chaine_add(ex,ey,àx − y) = chaine_add((1, i , 0).ex, (1, j , 0).ey, (1, i − j , 0).àx − y)
(18)

In particular if we set ePi = (1, i , 0).e0Ak
we have:

ePi+ j = chaine_add(ePi , eP j , ePi− j )

Proof: Letàx + y = chaine_add(ex,ey,àx − y). By Theorem 4.2, we have for every a, b , c , d , e ∈
Z(`n) such that a+ b + c + d = 2e :

�

∑

t∈Z(2)

χ (t )ϑa+t (àx + y)ϑb+t (àx − y)
�

.
�

∑

t∈Z(2)

χ (t )ϑc+t (e0)ϑd+t (e0)
�

=

�

∑

t∈Z(2)

χ (t )ϑ−e+a+t (ey)ϑe−b+t (ey)
�

.
�

∑

t∈Z(2)

χ (t )ϑe−c+t (ex)ϑe−d+t (ex)
�

. (19)

Applying (19) to a′ = a+ i + j , b ′ = b + i − j , c ′ = c , d ′ = d , e ′ = e + i , it comes:

�

∑

t∈Z(2)

χ (t )ϑi+ j+a+t (àx + y)ϑb+i− j+t (àx − y)
�

.
�

∑

t∈Z(2)

χ (t )ϑc+t (e0)ϑd+t (e0)
�

=

�

∑

t∈Z(2)

χ (t )ϑ− j−e+a+t (ey)ϑ j+e−b (ey)
�

.
�

∑

t∈Z(2)

χ (t )ϑi+e−c+t (ex)ϑi+e−d+t (ex)
�

. (20)

Thus (1, i + j , 0).àx + y, (1, i , 0).ex, (1, j , 0).ey and (1, i − j , 0).àx − y satisfy the additions rela-
tions. �

By applying eπ, we obtain the following corollary:

Corollary 4.12:

eπi+ j (chaine_add(ex,ey,àx − y)) = chaine_add(eπi (ex), eπ j (ey), eπi− j (àx − y))

Proof: Remember that by definition eπi (ex) = eπ((1, i , 0).ex). The lemma is then a trivial conse-
quence of Proposition 4.11 and Lemma 4.9. �

We discuss two consequences of the preceding corollary. The first is that we can recover the
point ex = (ϑi (ex))i∈Z(`n) from only a subset of its coordinates {ϑi (ex)}i∈Z(`n) (see Section 5.1).

The second application is the computation of the dual isogeny π̂ (see Section 5.2).
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But first we remark that by setting ex = ey =e0Ak
in Corollary 4.12, we find

eRi+ j = chaine_add(eRi , eR j , eRi− j ).

By considering different isogenies π : Ak → Bk , we can use Corollary 4.12 to study the
associativity of chain additions:

Corollary 4.13:
Let x ∈ Bk[`] and y ∈ Bk . Choose any affine lifts ex, ey and àx + y of respectively x, y and x + y.

1. Letãnx + y = chaine_multadd(n,àx + y,ex,ey) and fnx = chaine_mult(n,ex).
We have

å(n1+ n2)x + y = chaine_add(än1x + y,gn2x, å(n1− n2)x + y) (21)

In particular, we see that we can computeãnx + y in O(log(n)) addition chains by using a
Montgomery ladder [Plo29].

2. −ãnx + y = chaine_add(n,−(àx + y),−ex,−ey)

Proof: We prove the two assertions.

1. Let K be a maximal isotropic group containing x, and let Ak = Bk/K . Let π : Ak → Bk
be the contragredient isogeny, and choose any theta structure on (Ak ,π∗L0) compatible
with π. There exist i ∈ Z(`) and λi ∈ k

∗
such that ex = λi eπi (e0Ak

). If λi = 1, then
Corollary 4.13 is a consequence of Corollary 4.12. But it is easy (see Lemma 4.8) to see
that (21) is homogeneous in λi , hence the result.

2. Once again, let i ∈ Z(`) be such that ex = λi eπ
�

(1, i , 0).e0Ak

�

, and let ey ′ be any point in
eπ−1(ey). By homogeneity we may suppose that λi = 1. By Corollary 4.12 and Proposi-
tion 4.11, we haveãnx + y = eπ

�

(1, n.i , 0).ey ′
�

. Now by Lemma 4.10, we have−ãnx + y =
eπ
�

−(1, n.i , 0).ey ′
�

= eπ
�

(1,−n.i , 0).− ey ′
�

= chaine_add(n,−(àx + y),−ex,−ey). �

We make a last remark concerning Corollary 4.12 namely a useful fact for studying the
case ` not prime to n:

Remark 4.14:
Let ex ∈ eAk , i ∈ Z(`n) and let ey = eπ(ex). Let m ∈Z such that `|m. By Proposition 4.11 and
Corollary 4.12, we have

eπ ((1, mi , 0).ex) = chaine_multadd(m, eπi (ex), eRi ,ey)

But if `|m, then mi ∈ Z(n)⊂ Z(`n), by Proposition 3.4 we have eπ ((1, mi , 0).ex) = (1, mi , 0).ey,
and (1, mi , 0).ey can be computed with the formulas (3). Hence

(1, mi , 0).ey = chaine_multadd(m, eπi (ex), eRi ,ey)

♦
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For the purpose of Section 6.2, we have to study the addition relations between the points
in Bk[`] which does not necessarily belong to K(L0). From Section 4.1, we see that we need

to understand the link between the addition relations and the isogeny Ý[`]. More generally,
for the rest of this section we will study the relationship between the addition relations and a
general isogeny. First we take a closer look at the action of sK2(L ) on the addition relations.
Let I be the automorphism of the Theta group from Section 3.3 that permutes K1 and K2.
Since sK2(L ) = I ◦ sK1(L ) ◦ I we see that it suffices to study the action of I on the addition
relations.

Proposition 4.15:
Suppose that x, y, u, v, x ′, y ′, u ′, v ′ ∈ eAk satisfy the general Riemann equations (8). Then I.x, I.y,
I.u, I.v, I.x ′, I.y ′, I.u ′, I.v ′ also satisfy (8).

Proof: If x = (xi )i∈Z(`n) we recall (see (7)) that

I.x = (
∑

j∈Z(`n)

e(i , j )x j )i∈Z(`n)

where e = eL is the commutator pairing.
By hypothesis, we have for i , j , k , l ∈ Z(`n) such that i + j + k + l = 2m:

�

∑

t∈Z(2)

ϑi+t (x)ϑ j+t (y)
�

.
�

∑

t∈Z(2)

ϑk+t (u)ϑl+t (v)
�

=

�

∑

t∈Z(2)

ϑi ′+t (x
′)ϑ j ′+t (y

′)
�

.
�

∑

t∈Z(2)

ϑk ′+t (u
′)ϑl ′+t (v

′)
�

. (22)

Let Aχ ,x,y,i , j =
�∑

t∈Z(2)χ (t )ϑi+t (x)ϑ j+t (y)
�

. We have if I , J ,K , L ∈ Z(`n) are such that
I + J +K + L= 2M :

Aχ ,I.x,I.y,I ,J =
∑

T∈Z(2)

χ (T )
�

∑

i∈Z(`n)

e(I +T , i)ϑi (x)
��

∑

j∈Z(`n)

e(J +T , j )ϑ j (x)
�

=
∑

T∈Z(2),i , j∈Z(`n)

χ (T )e(T , i + j )e(I , i)e(J , j )ϑi (x)ϑ j (y)

Aχ ,I.x,I.y,I ,J Aχ ,I.u,I.v,K ,L =
∑

T1,T2∈Z(2)
i , j ,k ,l∈Z(`n)

χ (T1+T2)e(T1, i+ j )e(T2, k+ l )e(I , i)e(J , j )e(K , k)e(L, l )ϑi (x)ϑ j (y)ϑk (u)ϑl (v)

=
∑

i , j ,k ,l∈Z(`n)

e(I , i)e(J , j )e(K , k)e(L, l )ϑi (x)ϑ j (y)ϑk (u)ϑl (v)

�

∑

T1,T2∈Z(2)

χ (T1+T2)e(T1, i + j )e(T2, k + l )
�
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4 The addition relations

But

�

∑

T1,T2∈Z(2)

χ (T1+T2)e(T1, i + j )e(T2, k + l )
�

=
¨

4g if e(·, i + j ) = e(·, k + l ) = χ
0 otherwise

and e(·, i + j ) = e(·, k + l ) (as characters on Z(2)) iff there exists m ∈ Z(`n) such that
i+ j + k+ l = 2m. Now since I + J +K+L= 2M we have e(I + J , ·) = e(K+L, ·) so we have:

λ
∑

t1,t2∈Z(2)

e(I , i + t1)e(J , j + t1)e(K , k + t2)e(L, l + t2)ϑi+t1
(x)ϑ j+t1

(y)ϑk+t2
(u)ϑl+t2

(v) =

λe(I , i)e(J , j )e(K , k)e(L, l )
∑

t1,t2∈Z(2)

ϑi+t1
(x)ϑ j+t1

(y)ϑk+t2
(u)ϑl+t2

(v) =

λe(I , i)e(J , j )e(K , k)e(L, l )
∑

t1,t2∈Z(2)

ϑi ′+t1
(x ′)ϑ j ′+t1

(y ′)ϑk ′+t2
(u ′)ϑl ′+t2

(v) =

λe(I ′, i ′)e(J ′, j ′)e(K ′, k ′)e(L′, l ′)
∑

t1,t2∈Z(2)

ϑi ′+t1
(x ′)ϑ j ′+t1

(y ′)ϑk ′+t2
(u ′)ϑl ′+t2

(v)

where λ= 4g if i + j + k + l = 2m and λ= 0 otherwise. By combining these relations we
find that

Aχ ,I.x,I.y,I ,J Aχ ,I.u,I.v,K ,L =Aχ ,I.x ′,I.y ′,I ′,J ′Aχ ,I.u ′,I.v ′,K ,L

which concludes the proof. (We remark that we did not need to use the general Riemann
relations with characters on our proof. By considering I ◦ I, this shows that the general
Riemann relations with characters are induced by the general Riemann relations without
characters.) �

Corollary 4.16:
Let ex,ey,àx − y ∈ eAk , and let i , j ∈ Z(`n), k , l ∈ Ẑ(`n). Then we have:

(1, i+ j , k+l ).chaine_add(ex,ey,àx − y) = chaine_add((1, i , k).ex, (1, j , l ).ey, (1, i− j , k−l ).àx − y)

Proof: By Propositions 4.11 and 4.15 we have

s2(k + l ).chaine_add(ex,ey,àx − y) = chaine_add(s2(k).ex, s2(l ).ey, s2(k − l ).àx − y) (23)

Now since (1, i , k) = s1(i)s2(k), we conclude by combining Equations (18) and (23). �

Corollary 4.17:
Suppose that ex1, ey1, eu1, ev1, ex2, ey2, eu2, ev2 ∈ eAk satisfy the Riemann relations (8).

If π : (A,L ,ΘAk
)→ (B ,L0,ΘBk

) is an isogeny such that ΘBk
is π-compatible with ΘAk

, then

eπ(ex1), eπ(ey1), eπ( eu1), eπ( ev1), eπ(ex2), eπ(ey2), eπ( eu2), eπ( ev2) ∈ eBk also satisfy the general Riemann
Relations.

In particular we have

eπ(chaine_add(ex,ey,àx − y) = chaine_add(eπ(ex), eπ(ey), eπ(àx − y))
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5 Application of the addition relations to isogenies

Proof: By Lemma 4.9, this is the case for compatible isogenies of type 1. By Proposition 4.15
this is also the case for compatible isogenies of type 2, which concludes since every compatible
isogeny is a composition of isogenies of type 1 or 2. �

5 Application of the addition relations to isogenies
In this Section we apply the results of Section 4 to the computation of isogenies (see Sec-
tion 5.2). More precisely, we present an algorithm to compute the isogeny π̂ : Bk →Ak from
the knowledge of the modular point e0Ak

. We give in Section 6 algorithms to compute e0Ak

from the kernel of π̂.
Since the embedding of Ak that we consider is given by a theta structure of level `n, a point

π̂(x) is given by (`n)g coordinates, which get impractical when ` is high. In order to mitigate
this problem, in Section 5.1, we give a point compression algorithm such that the number of
coordinates of a compressed point does not depend on `.

We recall that we have chosen in Section 4.1 e0Ak
= (ai )i∈Z(`n) thus that eπ(e0Ak

) =e0Bk
, and

that we have defined for i ∈ Z(`n) eRi = (ai+ j ) j∈Z(n).

5.1 Point compression
Suppose that ` is prime to n. We know that ex ∈ eAk can be recovered from (eπi (ex))i∈Z(`),

by (ex)ni+` j = (eπi (ex)) j . If (d1, · · · , dg ) is a basis of Z(`), we can prove that ex can be easily
computed from just (eπdi

(ex))i∈[1..g] and (eπdi+d j
(ex))i , j∈[1..g]). If (e1, · · · , eg ) is the canonical

basis of Z(`n), in the following, we take as a basis of Z(`) the di = nei if i ∈ [1..g].

Proposition 5.1:

eπi+ j (ex) = chaine_add(eπi (ex), eR j , eπi− j (ex)).

Proof: We apply Corollary 4.12 with ey =e0Ak
,àx − y = ex, so that we have chaine_add(ex,ey,áx − y) =

ex. We obtain:
eπi+ j (ex) = chaine_add(eπi (ex), eπ j (e0Ak

), eπi− j (ex)). �

Definition 5.2:
Let S ⊂G be a subset of a finite abelian group G such that 0G ∈ S. We note S ′ the inductive
subset of G defined by S ′ = S

⋃

{x+ y|x ∈ S ′, y ∈ S ′, x− y ∈ S ′}. We say that S is a chain basis
of G if S ′ =G.

Example 5.3:
Let G = Z(`). Let {e1, · · · , eg } be the canonical basis of G. There are two cases to consider to
get a chain basis of G:
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5 Application of the addition relations to isogenies

• If ` is odd, then one can take

S = {0G , ei , ei + e j }i , j∈[1..g],i< j

• If ` is even, we use

S = {0G , ei1
, ei1
+ ei2

, · · · , ei1
+ · · ·+ eig

}i1,··· ,ig∈[1..g],i1<···<ig

In each case, the chain basis S is minimal, we call it the canonical chain basis S(G) of G.

We recall that we have defined a section S ⊂ Z(`n) of Z(`n)→ Z(n) in Example 3.6.
To this set we associate a canonical chain basis S ⊂ S as follow: if ` is prime to n, then
S = Z(`) ⊂ Z(`n), and we define S = S(Z(`)) = {d1, · · · , dg , d1 + dg , · · · , dg−1 + dg }.
Otherwise we will take S=S(Z(`n)).

Theorem 5.4 (Point compression):
Let ex ∈ eAk . Then ex is uniquely determined by e0Ak

and {eπi (ex)}i∈S.
e0Ak

is uniquely determined by {eπi (e0Ak
)}i∈S = {eRi}i∈S.

Proof: By Proposition 4.11 we have eπi+ j (ex) = chaine_add(eπi (ex), eπ j (e0Ak
), eπi− j (ex),e0Bk

).
So by induction, from {eπi (x)}i∈S we can compute every {eπi (x)}i∈S′ . Since S′ = S (or
contains S if n is not prime to `), Corollary 3.5 shows that ex is entirely determined by
{eπi (x)}i∈S and {eπi (e0Ak

)}i∈S.

In particular, e0Ak
is entirely determined by {eπi (e0Ak

)}i∈S. But eπi (e0Ak
) = eπ(ePi ). by Proposi-

tion 3.4 which concludes. �

In the description of the algorithms, we suppose that ` is prime to n, so that S = Z(`)⊂
Z(`n).

Algorithm 5.5 (Point compression):
Input ex = ( eϑi (ex))i∈Z(`n) ∈

eAk

Output The compressed coordinates (eπi (ex))i∈S.
Step 1 For each i ∈S, output (eπi (ex)) = ( eϑni+` j (ex)) j∈Z(n) ♦

Algorithm 5.6 (Point decompression):
Input The compressed coordinates eπ(ex)i∈S of ex.

Ouput ex = ( eϑi (ex))i∈Z(`n) ∈
eAk .

Step 1 Set S ′ :=S.
Step 2 While S ′ 6=S , choose i , j ∈S ′ such that i + j ∈S \S ′ and i − j ∈S ′.

Compute eπi+ j (ex) = chaine_add(eπi (ex), eR j , eπi− j (ex)).
S ′ :=S ′

⋃

{i + j }.
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5 Application of the addition relations to isogenies

Step 3 For all i ∈ Z(`n), write i = ni0+ ` j and output eϑi (x) =
�

eπi0
(ex)
�

j
. ♦

Correction and Complexity Analysis 5.7:
By using repeatedly the formula from Proposition 4.11:

eπi+ j (ex) = chaine_add(eπi (ex), eR j , eπi− j (ex),e0Bk
)

we can reconstitute every eπi (ex) for i ∈ Z(`) in Step 2 since S is a chain basis of Z(`). We can
then trivially recover the coordinates of ex in Step 3 since they are just a permutation of the
coordinates of the {eπi (ex), i ∈ Z(`)} (see Section 3.5).

To recover ex, we need to do #S − #S =O(`g ) chain additions. The compressed point
{eπi (ex)}i∈S is given by #S× n g coordinates.

If `n = 2n0 and n0 is odd we see that we can store a point in eAk with 2g (1+ g (g + 1)/2)
coordinates (4g if n0 is even) rather than (2n0)

g . ♦

5.1.1 Addition chains with compressed coordinates

Let ex, ey and àx − y ∈ eAk . Suppose that we have the compressed coordinates {eπi (ex)}i∈S,
{eπi (ey)}i∈S, {eπi (àx − y)}i∈S. Then if i ∈S we have by Corollary 4.12

eπi (àx + y) = chaine_add(eπi (ex), eπ0(ey), eπi (àx − y),

hence we may recover the compressed coordinates of àx + y.
We can compare this with an addition chain with the full coordinates (of level `n). By the

formulas from Theorem 4.2, since 2|n and the formulas sum over points of 2-torsion, we
see that we are doing #S addition chains in Bk of level n. This mean that we are doing the
same addition chains in Bk when we use a chain addition with compressed coordinates and
then use the point decompression algorithm. But if we just need the compressed coordinates,
the chain additions with compressed coordinates are much faster since we need to do only
#S addition chains of level n. In particular, since we can compute the multiplication by m
with chain additions, we see that the cost of a multiplication by m is O(#S log(m)) addition
chains of level n.

Since we can take n = 2, this mean that the additions formulas of level 2 allows us to
compute addition chains of any level. In particular the speed up for these formulas given
by [Gau07] affects all levels.

5.2 Computing the dual isogeny
We recall that we have the following diagram:
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5 Application of the addition relations to isogenies

y ∈ Bk

z ∈Akx ∈Ak

π̂π

[`]

Let ey ∈ p−1
Bk
(y) and let ex ∈ eAk be such that eπ(ex) = ey. Let i ∈ Z(`). In this section, we

describe an algorithm to compute eπi (`.ex). By using this algorithm for i ∈ {d1, · · · , dg , d1+
d2, · · ·dg−1+dg }, we can then recover π̂(y) = pAk

(`.ex) (see Theorem 5.4, {di}i∈[1..g] is the basis

of Z(`) defined in Section 5.1). We know that πi (x) = y+Ri . For i ∈ Z(`), we choose a point
πa

i (x) ∈ p−1
A (y +Ri ) so that for each i ∈ Z(`) there exists λi ∈ k

∗
such that eπi (ex) = λiπ

a
i (x).

If ex ′ is another point in eπ−1(y), then we have eπi (ex
′) = λ′iπ

a
i (x), with λ′i = ζ λi , ζ a `-root of

unity. As a consequence, it is possible to recover λi only up to an `t h -root of unity, but this
information is sufficient to compute eπi (`.ex):

Theorem 5.8:
For all i ∈ Z(`),

eπi (`.ex) = λ`i chaine_multadd(`,πa
i (x),ey, eRi )),

where λ`i is determined by:

ey = λ`i chaine_multadd(`,πa
i (x),

eRi ,ey).

Proof: By Proposition 4.11 and Lemma 4.8 we have:

eπi (`.ex) = chaine_multadd(`, eπi (ex), eπ(ex), eπ(ePi )) = λ
`
i chaine_multadd(`,πa

i (x),ey, Ri ).

Now we only need to find the λ`i for i ∈ Z(`). But by Proposition 4.11 and an easy
recursion, we have ex = sK1(L )(i)

`.ex so that by Corollary 4.12 and Lemma 4.8

eπ(ex) = chaine_multadd(`, eπi (ex), Ri ,ey) = λ
`
i .chaine_multadd(`,πa

i (x), Ri ,ey) �

Algorithm 5.9 (The image of a point by the isogeny):
Input y ∈ Bk .
Output The compressed coordinates of π̂(y) ∈Ak .
Step 1 For each i ∈S compute y +Ri and choose an affine lift yi of y +Ri .
Step 2 For each i ∈ S, compute ylRi := chaine_multadd(`, yi , eRi , y0) and λi such that

y0 = λi ylRi .
Step 3 For each i ∈S, compute eπ(π̂(y0))i = λi chaine_multadd(`, yi ,ey, eRi )). ♦
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5 Application of the addition relations to isogenies

Correction and Complexity Analysis 5.10:
In Step 3 we compute eπi (π̂(y)) = λ

`
i chaine_multadd(`, yi ,ey, eRi )) where λ`i is given in

Step 2 by by ey = λ`i chaine_multadd(`, yi , eRi ,ey).

We can easily recover π̂(y) from the eπi (π̂(y)), i ∈ Z(`), but we note that it is faster to only
compute the eπi (π̂(y)) only for i ∈S (with the notations of Example 5.3 in the preceding
section), and then do a point decompression (see Algorithm 5.7). This last step is of course
unnecessary if the compressed coordinates of π̂(y) are sufficient.

To compute eπi (`.x), we need to do two multiplication chains of length `. We obtain the
compressed coordinates of `.x after g (g + 1)/2 such operations. In total we can compute the
compressed coordinates of a point in O( 12 g (g + 1) log(`)) additions in Bk (with 1

2 g (g + 1)n g

divisions in k) and the full coordinates in O(`g ) additions in Bk . We recover the equations of
the isogeny by applying this algorithm to the generic point of Bk . ♦

The case (n,`)> 1 In this case we have to use S= {e1, · · · , eg , e1+ e2, · · · }, and in this case

if i ∈S, eRi is a point of `n-torsion. But we have by Remark 4.14

(1,`i , 0).ey = λ`i chaine_multadd(`,πa
i (x),

eRi ,ey),

so that we can still recover λ`i .

The case n = 2 The only difficult part here is the ordinary additions y + Ri , since the
addition chains do not pose any problems with n = 2. In particular, we first choose one of
the two points ±(x ±Re1

), which requires a square root. Now, since we have e0Ak
given by a

theta structure of degree `n > 2, we have the coordinates of Re1
+Ri on Bk . This means that

we can compute the compatible additions x +Ri from x +Re1
and Re1

+Ri .

5.3 Computation of the kernel of the isogeny
We know that the kernel of the isogeny π̂ : B→A is the subgroup K generated by {Rdi

}i∈[1..g].

Let ey ∈ eBk[`], up to a projective factor, we may suppose that chaine_mult(`,ey) =e0Bk
. Then

y is in K if and only if for all i ∈ Z(`) we have eπi (π̂(ey)) = eRi . Let ây +Ri be any affine point
above y+Ri . Since y and Ri are points of `-torsion, for all i ∈ Z(`), there exist αi ,βi ∈ k

∗
such

that chaine_multadd(`,ây +Ri ,ey, eRi )) = αi
eRi chaine_multadd(`,ây +Ri , eRi ,ey) = βiey.

By Theorem 5.8, we know that eπi (π̂(ey)) =
αi
βi

eRi . In particular y ∈K if and only if αi
βi
= 1 for

all i ∈ Z(`n).
In fact, we will show in Section 7 that αi/βi = e ′

`
(y, Ri ) where e ′

`
is the extended com-

mutator pairing from Section 4.1. We obtain that y is in K if and only if eW (y, Ri ) = 1 for
i ∈ {d1, · · · , dg }.
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6 The computation of a modular point

6 The computation of a modular point
In the Section 6.1 we explain how to compute the theta null point e0Ak

from the knowledge
of the kernel of π̂. This section introduces the notion of a “true” point of `-torsion, which
is an affine lift of a point of `-torsion that satisfy Equation (27). We study this notion in
Section 6.2, and we use these results in Section 6.3 where we study the computation of all (or
just one) modular points.

6.1 An analog of Vélu’s formulas
We have seen in Section 4 how to use the addition formula to compute the isogeny π̂ : Bk →
Ak . For this computation, we need to know the theta null point (ai )i∈Z(`n) corresponding
to Ak . In this section, we explain how to recover the theta null point (ai )i∈Z(`n), given the
kernel K = {Ti}i∈Z(`) of π̂, by using only the addition relations. This gives an analog to Vélu’s

formulas for higher genus. As in the course of the algorithm we have to take `t h -root in k,
we suppose that k is algebraically closed. (If k = Fq , with `|q − 1 so that we have the `-root
of unity, we only have to work over an extension of degree ` of k).

Let {Td1
, · · · ,Tdg

} be a basis of K . Let (ai )i∈Z(`n) be the theta null point corresponding
to any theta structure on Ak compatible with the theta structure on Bk . The compatible
automorphisms of the theta structure on Ak allows us to recover all the theta null point of
the compatibles theta structures on Ak , via the actions:

{eRi}i∈Z(`) 7→ {
eRψ1(i)

}i∈Z(`), (24)

{eRi}i∈Z(`) 7→ {e(ψ2(i), i)eRi}i∈Z(`), (25)

where ψ1 is an automorphism of Z(`) and ψ2 is a symmetric endomorphism of Z(`)
(see [FLR09, Prop. 7]). The eRi were defined in Section 4.1, and we recall they determine
e0Ak

entirely. In fact the results of Section 5.1 show that e0Ak
is completely determined by

{eRdi
, eRdi+d j

}i , j∈[1..g] where d1, · · · , dg is a basis of Z(`).

Up to an action (24) we may suppose that e0Ak
is such that eπdi

(e0Ak
) = Tdi

. Fix i ∈ Z(`). Let
eTi be any affine point above Ti , we have eRi = λi

eTi . Write `= 2`′+ 1, since Ri is a point of
`-torsion, we have (1,`′+ 1,0).eRi =−(1,`′, 0).eRi . By Proposition 4.11 and Lemma 4.8, we
have

chaine_mult(`′+ 1, eRi ) =−chaine_mult(`′, eRi ),

λ(`
′+1)2

i chaine_mult(`′+ 1, eTi ) =−λ
`′2

i chaine_mult(k , eTi ),

λ`i chaine_mult(`′+ 1, eTi ) =−chaine_mult(`′, eTi ). (26)

Hence we may find λi up to an `t h -root of unity. If we apply this method for i ∈
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6 The computation of a modular point

{d1, · · · , dg , d1+ d2, · · · , dg−1+ dg }, we find eRi up to an `t h -root of unity. But the action (25)

shows that every choice of eRi comes from a valid theta null point e0Ak
.

Algorithm 6.1 (Vélu’s like formula):
Input Td1

, · · ·Tdg
a basis of the kernel K of π̂.

Output The compressed coordinates of e0Ak
, the theta null point of level `n corresponding

to π̂.
Step 1 For i , j ∈ [1..g] compute the points Tdi

+Td j
. Let S= {d1, · · · , dg , d1+ d2, · · ·dg−1+

dg }.
Step 2 For each i ∈S choose any affine lift T ′i of Ti , and compute (βi

j ) j∈Z(n) := chaine_mult(`′,T ′i ),
and (γ i

j ) j∈Z(n) := chaine_mult(`′+ 1,T ′i ).
Step 3 For each i ∈S compute αi such that (γ i

j ) j∈Z(n) = αi (β
i
− j ) j∈Z(n).

Step 4 For each i ∈S, output eRi := (αi )
1
` ·T ′i . ♦

Correction and Complexity Analysis 6.2:
In Step 4 we compute eRi be any of the ` affine lift of Ti such that: chaine_mult(`′+1, eRi ) =
−chaine_mult(`′, eRi ). Then {eRi}i∈S give the compressed coordinates of e0Ak

, we can then

recover e0Ak
by doing a point decompression (see Algorithm 5.7).

To find eRi , we need to do two chain multiplications of length `/2, and then take an `t h -root
of unity. After g (g+1)/2 such operations, we obtain the compressed coordinates of ae0Ak

, and

we may recover the full coordinates of the corresponding e0Ak
using the point decompression

algorithm 5.7. We remark that we only need the compressed coordinates of e0Ak
to compute

the compressed coordinates of π̂. In total we need to compute g (g + 1)/2 `t h -roots of unity
and O( 12 g (g + 1) log(`)) additions in Bk to recover the compressed coordinates of e0Ak

. We

can then recover the full coordinates of e0Ak
at the cost of O(`g ) additions in Bk . ♦

Remark 6.3:
Each choice of the g (g + 1)/2 `t h -roots of unity give a theta null point corresponding to
the same Abelian variety Ak = Bk/K . However, each such point comes from a different
theta structure on Ak , and hence give a different decomposition of the `-torsion A[`] =
K1(`)⊕K2(`). Since Bk = Ak/K2(`), K2(`) = K is fixed so that each point gives a different
K1(`). This mean that if Ck = Ak/K1(`) we can recover different `2-isogeny Bk → Ck
from such choices (see Section 3.3). By looking at the action (25), we see that there is a
bijection between the `g (g+1)/2 choices and the `2 isogenies whose kernel K⊂ Bk is such that
K[`] =K . ♦

The case (n,`)> 1. In this case once again we have to recover eRi for i ∈S= {e1, · · · , eg , e1+
e2, · · · , e1 + eg }. Suppose that we have {Ti}i∈Z(`), `

g points of `n-torsion such that `.Ti =

(1,`i , 0).0B . Once again if i ∈S, we may suppose that eRi = λi
eTi .
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6 The computation of a modular point

We have if `= 2`′+ 1 is odd:

λ`i chaine_mult(`′+ 1, eTi ) =−(1,`(n− 1), 0).chaine_mult(`′, eTi )

so that once again we can find λ`i .
The kernel of π̂ is then K = {nTi}i∈Z(`). Even if K is isotropic, the {Ti}i∈Z(`) may not be,

so some care must be taken when we choose the {Ti}i∈Z(`).
If `= 2`′ is even, we have:

λ2`
i chaine_mult(`′+ 1, eTi ) =−(1,`(n− 1), 0).chaine_mult(`′− 1, eTi )

so we can recover only λ2`
i . But every choice still corresponds to a valid theta null point

(ai )i∈Z(`n), because when 2|`, to the actions (24) and (25) we have to add the action given by
the change of the maximal symmetric level structure [FLR09, Proposition 7].

The case n = 2 Once again, the only difficulty rest in the standard additions. Using standard
additions, we may compute Re1

±Re2
, · · · , Re1

±Reg
, making a choice each time. Then we can

compute Rei
+Re j

by doing an addition compatible with Re1
+Rei

and Re1
+Re j

.

6.2 Theta group and `-torsion
Let ex ∈ eBk be such that pBk

(x) is a point of `-torsion. We say that x is a “true” point of
`-torsion if ex satisfy (see (26)):

chaine_mult(`′+ 1,ex) =−chaine_mult(`′,ex). (27)

Remark 6.4:
If ex is a “true” point of `-torsion, then Lemma 4.8 shows it is also the case for λex for any λ
an `t h -root of unity. ♦

We have seen in the preceding Section the importance of taking lifts that are “true” points
of `-torsion. The aim of this section is to use the results of Section 4.3 to show that the
addition chain of “true” points of `-torsion is again a “true”-point of `-torsion. We will
use this in Section 6.3 to compute “true” affine lifts of Bk[`] by taking as few `t h -roots as
possible.

We will use the affine lifts of points in Bk[`] that we have introduced in Section 4.1 to
study this notion. LetM0 = [`]

∗L0 on Bk and ΘBk ,M0
a theta structure forM0 compatible

withΘBk
. Recall that we notefBk

′
the affine cone of (Bk ,M0), andÝ[`] the morphismfBk

′
→ eBk

induced by [`]. SinceM0 'L `2

0 , the natural action of G(M0) on H 0(M0) give via ΘBk ,M0

an action ofH (`2n) on H 0(M0).
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6 The computation of a modular point

Lemma 6.5:
Let y ∈ Bk[`], ey ∈ p−1

Bk
(y) and ex ∈Ý[`]

−1
(ey). Then there exists (α, ni , n j ) ∈ k`×Z(`2n)×Ẑ(`2n)

such that ex = (α, ni , n j ).0
fBk
′ . Moreover, ey is a true point of `-torsion if and only if α = λi , jµ

where µ is an `t h -root of unity and λi , j = ec (i ,− j )`′n(`−1).

(If x ′ ∈fBk
′
, then x ′ ∈Ý[`]

−1
(y) if and only if x ′ = (1,`i ′,` j ′).x where (i ′, j ′) ∈ Z(`2n)×

Ẑ(`2n)), so the class of α in k∗/k∗` does not depend on ex but only on ey).

Proof: Since p
fBk
′(ex) ∈ Bk[`

2], there is an element h ∈ H (`2n) such that ex = h.0
fBk
′ , with

h = (α, ni , n j ). By Remark 6.4, we only need to check that (λi , j , ni , n j ).0
fBk
′ is a “true” point

of `-torsion. Let m ∈ Z, and let exm = chaine_mult(m,ex), eym = chaine_mult(m,ey). By

Corollary 4.16 we have exm = (1, m · i , m · j ).0
fBk
′ , and by Corollary 4.16 eym =Ý[`](1, m ·

i , m · j ).0
fBk
′ . So by Lemma 4.10 ey`′ =Ý[`](1,`′ · i ,`′ · j ).0

fBk
′ = ec (ni ,`n(`− 1) j )Ý[`](1,`′ · i +

`n(`−1),`′ · j +`n(`−1)).0
fBk
′ = λ−`i , j

Ý[`](1,−(`′+1) · i ,−(`′+1) · j ).0
fBk
′ = λ−`i , j

Ý[`](−ex`′+1) =

−λ−`i , j
ey`′+1. �

Proposition 6.6:
Let ey1, ey2,ây1− y2 ∈ eBk be points of “true” `-torsion. Then ây1+ y2 := chaine_add(ey1, ey2,ây1− y2)
is a “true” point of `-torsion.

Proof: Let (α1, i1, j1) ∈H (`2n), (α2, i2, j2) ∈H (`2n), (α3, i3, j3) ∈H (`2n), be such that

Ý[`](α1, i1, j1).0fBk
′ = ey1, Ý[`](α2, i2, j2).0fBk

′ = ey2, Ý[`](α3, i3, j3).0fBk
′ =ây1− y2

By the Remark at the end of Lemma 6.5, we may suppose that i3 = i1 − i2, j3 = j1 − j2.
Since ey1, ey2 and ây1− y2 are “true” points of `-torsion, by Remark 6.4 and Lemma 6.5 we may
suppose that α1 = λi1, j1

, α2 = λi2, j2
and α3 = λi1−i2, j1− j2

.
By Corollary 4.16 and Lemma 4.8, we have

ây1+ y2 =
λ2

i1, j1
λ2

i2, j2

λi1−i2, j1− j2

(1, i1+ i2, j1+ j2).0fBk
′ = (λi1+i2, j1+ j2

, i1+ i2, j1+ j2).0fBk
′ ,

so ây1+ y2 is indeed a “true” point of `-torsion by Lemma 6.5. �

6.3 Improving the computation of a modular point
In [FLR09], to compute the modular points e0Ak

, the following algorithm was used: write the

Riemann relations of level `n to get a system in which we plug the known coordinates e0Bk
.

We obtain a system S of with a finite number of solutions, that can be solved using a Gröbner
basis algorithm. But even for g = 2 and `= 3, the system was too hard to be solved with a
general Gröbner basis algorithm, so we had to design a specific one.
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6 The computation of a modular point

In this section we explain how, using the “Vélu’s”-like formulas of Section 6.1, it is possible
to recover every modular point e0Ak

solution of the system S from the knowledge of the
`-torsion of Bk . We then discuss different methods to compute the `-torsion in Bk .

Algorithm 6.7 (Computing all modular points):
Input T1, · · · ,T2g a basis of the `-torsion of Bk .
Output All `-isogenies.

We only give an outline of the algorithm, since we give a detailed description in Example 6.8:

Compute any affine “true” `-torsion lifts eT1, · · · , eT2g ,äT1+T2, · · · , åTg−1+Tg , and then use

addition chains to compute affine lifts eT for every point T ∈ Bk[`]. By Proposition 6.6 eT is
a “true” point of `-torsion.

For every isotropic subgroup K ⊂ Bk[`], take the corresponding lifts and use them to
reconstitute the corresponding theta null point e0Ak

(see Section 6.1). ♦

Example 6.8:
Suppose that {T1, . . . ,T2g } is a symplectic basis of Bk[`]. (A symplectic basis is easy to obtain
from a basis of the `-torsion, we just need to compute the discrete logarithms of some of the
pairings between the points, and we can use Algorithm 7.5 to compute these).

Let ΘBk ,M0
be any theta structure of level `2n on Bk compatible with ΘBk

, and e0′Bk
be the

corresponding theta null point (see Section 4.1). We may suppose (see Section 6.1) that eT1 =
Ý[`](1, (n, 0, · · · , 0), 0).e0′Bk

, eT2 =Ý[`](1, (0, n, · · · , 0), 0).e0′Bk
, . . . ,ßTg+1 =Ý[`](1,0, (n, 0, · · · , 0)).e0′Bk

,

ßTg+2 =Ý[`](1,0, (0, n, · · · , 0)).e0′Bk
, . . . , åT1+Tg+2 =Ý[`](1, (n, 0, · · · , 0), (0, n, 0, · · · , 0)).e0′Bk

, . . .
Then by Corollary 4.16, using Algorithm 6.7, we compute the following affine lifts of the

`-torsion:
{Ý[`](1, i n, j n).e0′Bk

: i , j ∈ {0,1, · · · ,`− 1}g ⊂ Z(`2n)}. (28)

Now if K ⊂ Bk[`] is an isotropic group, in the reconstruction algorithm 6.1 we need to

compute points of the form Ý[`](1, i n, j n).e0′Bk
for i , j ∈ Z(`2n). But we have

Ý[`](1, i n, j n).e0′Bk
=Ý[`]ζ `βn·(i−`α)n(1,`αn,`βn).(1, (i − `α)n, ( j − `β)n).e0′Bk

=Ý[`]ζ `βn·(i−`α)n(1, (i − `α)n, ( j − `β)n).e0′Bk
,

where α,β ∈ Z(`2n), and ζ is a (`2n)t h -root of unity. As a consequence, we can always go
back to a point computed in (28) up to an `t h -root of unity.

We give a detailed example with g = 1, ` = 3, n = 4. Let Bk be an elliptic curve, with
a theta structure ΘBk

of level n. Let T1, T2 be a basis of Bk[`], and choose “true” affine

lifts eT1, eT2,äT1+T2. Let ΘBk ,M0
be any theta structure of level `2n compatible with ΘBk

,

and e0′Bk
be the corresponding theta null point (see Section 4.3). We take ΘBk ,M0

such that

eT1 =Ý[`](1, n, 0).e0′Bk
, eT2 =Ý[`](1,0, n).e0′Bk

, andäT1+T2 =Ý[`](1, n, n).e0′Bk
.
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6 The computation of a modular point

We have seen in (28) that in the Algorithm 6.7 we compute the points: Ý[`](1, i n, j n).e0′Bk
for

i , j ∈ 0,1, · · · ,`− 1⊂Z/`2nZ.
Now let T =Ý[`](1, n, 2n).e0′Bk

, K =< pBk
(T ) > is an isotropic subgroup of Bk[`]. Let

Ak = Bk/K , choose a compatible theta structure ΘAk
on A, and let e0Ak

be the associated theta
null point.

As usual, we define eRi = eπi (e0Ak
) if i ∈Z/`Z ⊂Z/`nZ, and we may suppose (Section 6.1)

thatΘAk
is such that R1 = T . More explicitly, if n = 4 we havee0Ak

= (a0,a1,a2,a3,a4,a5,a6,a7,a8,a9,a10,a11),
eπ(
�

xi
�

i∈Z/12Z) = (x0, x3, x6, x9) so that eR0 = (a0,a3,a6,a9) =e0Bk
(Remember that we always

choose e0Ak
such that eπ(e0Ak

) = e0Bk
), eR1 = (a4,a7,a10,a1) and eR2 = (a8,a11,a2,a5). Now by

Theorem 5.4 we know that e0Ak
is entirely determined by eR1 (and e0Bk

), in fact we have:
eR2 = chaine_add(R1, R1,e0Bk

). By Corollary 4.16, we have

eR2 =Ý[`](1,2n, 4n).e0′Bk
=Ý[`]ζ 2n·3n(1,0,3n).(1,2n, n).e0′Bk

= ζ 2n·3n
Ý[`](1,2n, n).e0′Bk

,

where ζ is a (`2n)t h -root of unity.
This shows that in the reconstruction step, we have to multiply the point Ý[`](1,2n, n).e0′Bk

which we have already computed by the `-root of unity ζ 2n·`n .

Complexity Analysis 6.9:
To compute an affine lift eTi , we have to compute an `t h -root of unity (and do some addition
chains but we can reuse the results for the next step). Once we have computed the `(2`+ 1)-
root, we compute the whole (affine lifts of) `-torsion by using O(`2g ) addition chains. We can
now compute the pairings e(Ti ,T j ) with just one division since we have already computed
the necessary addition chain (see Section 7). From these pairings we can compute a symplectic
basis of Bk[`]. This requires to compute the discrete logarithm of the pairings and can be
done in O(`). Using this basis, we can enumerate every isotropic subgroup K ⊂ Bk[`], and
reconstruct the corresponding theta null point with O(`g )multiplications by an `t h -root of
unity. ♦

The case (n,` > 1) In this case, the only difference is that we have to compute Bk[`n]
rather than Bk[`], and when Ti is a point of `n-torsion, we compute an affine lift eTi such
that:

chaine_mult(`′+ 1, eTi ) =−(1,`(n− 1), 0).chaine_mult(`′, eTi ).

The case n = 2: This works as in Section 6.1, once we have computed the fTe1
+fTei

, we

have to take compatible additions to compute the fTei
+fTe j

.
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6 The computation of a modular point

Computing the points of `-torsion in Bk : The first method is to use the Riemann relations
of level δ = (n, n, n, · · · ,`n). Let ϕ : Z(n)→ Z(δ) be the canonical injection. LetMδ be the
modular space of theta null points of level δ, and VJ the subvariety defined by the ideal J
generated by aϕ(i) = bi for i ∈ Z(n).

Then to every (non degenerate) point solution correspond an isogeny π : Ak → Bk .
The kernel of the contragredient of π is then of the form {0Bk

,T , 2T , · · · , (`− 1)T } where
T is a primitive point of `-torsion. We may recover T as follows: if i ∈ Z/`Z, let πi =
π ◦ s1(0,0, · · · , ni), then we have πi (e0Ak

) = i ·T .
By using this method for every point solution (even the degenerate ones), we find all the

points of `-torsion (the degenerate point solutions giving points of `-torsion that are not
primitive [FLR09, Theorem 4]).

When we look at the equations of VJ , we see that we can reformulate them as follows.

Let R1, · · · , R`−1 be the `− 1 projections of the generic point of eBk × eBk × · · · × eBk and let
R0 =e0Bk

. Then the equations on Bk comes from the addition relations: for all i , j ∈ Z(`),

Ri+ j = chaine_add(Ri , R j , Ri− j ).

We see that we can describe the system with less unknowns and equations by looking only
at equations of the form:

R2i = chaine_add(Ri , Ri , R0),

R2i+1 = chaine_add(Ri+1, Ri , R0).

This requires n g O(log(`)) variables, and each equations is of degree 4.
A second method is to work directly over the variety Bk . The Riemann relations (11) allows

us to compute the ideal of `-division in Bk . Here we have n g unknown, but the equations
are of degree `2g . Contrary to the first method, we recover projective points of `-torsion,
so we have to compute an `t h -root of unity to compute a “true” affine lift of `-torsion. But
this mean that the degree of our system is `2g rather than `2g+1, so a generic Gröbner basis
algorithm will finish faster. In genus 2, using a Core 2 with 4 GB of RAM, this allows us to
compute up to `= 13.

In general we prefer to work over the Kummer surface (so with n = 2), since it cuts the
degree of the system by two. In genus 2, Gaudry and Schost [GS08] have an algorithm to
compute the `-torsion on the Kummer surface using resultants rather than a general purpose
Gröbner-based algorithm. The points are given in Mumford coordinates, but we can use the
results of Wamelen [Wam99] to have them in theta coordinates. With this algorithm, we
can go up to `= 31. This algorithm is in eO(`6) (where we use the notation eO to mean we
forget about the log factors). The computation of the “true” affine points of `-torsion from
Algorithm 6.7 is in eO(`4), and each of the O(`3) isogeny requires O(`2)multiplication by an
`t h -root of unity. In total we see that we can compute all (`,`)-isogenies in eO(`6) in genus 2.

Lastly, if we know the zeta function of Bk (for instance if Bk comes from complex multipli-
cation), we can recover a point of `-torsion by taking a random point of Bk and multiplying
it by the required factor.
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7 Pairing computations

Isogenies graph:
Usually when we compute every isogenies, this is to build isogenies graph. However, our

Vélu’s like algorithm from Section 6.1 gives us a theta null point 0Ak
of level `n from a point

of level n. We can use the Modular correspondence from Section 3.3 to go back to a theta
null point 0Ck

of level n, but the corresponding isogeny Bk →Ck is a `2 isogeny, so with our
method we can only draw `2-isogenies graphs.

There is however one advantage of using the intermediate step 0Ak
: since it is a theta null

point of level `n, we have all the `-torsion on Ak . Let π2 : Ak → Ck be the corresponding
isogeny, K2 :=π2(Ak[`]) gives us half the `-torsion of Ck . (to get an explicit description of K2,
just apply I to the results of Section 3.4). Since K2 is the kernel of the dual isogeny Ck →Ak ,
this allows us to build an isogeny graph of `2 isogenies where the composition of two such
isogenies give an `4-isogeny and not (for instance if g = 2) a (1,`2,`2,`4)-isogeny (it suffices
to consider the isotropic subgroups of Ck[`] that intersect K2 trivially). The knowledge of
K2 also allows us to speed up the computation of Ck[`]: In the following section, we will
give an algorithm to compute the extended commutator pairing e on Ck[`]. Let (G1, · · · ,Gg )
be a basis of K2, and consider the system of degree `g+1 given by the ideal of `-torsion and
the relations e(Gi , ·) = 1 for i ∈ [2..g]. Let H1 be a point in this system different from
<G1 > (it suffices to check that e(G1, H1) 6= 1. We can now construct the system of degree
`g given by the ideal of `-torsion and the relations e(Gi , ·) = 1 for i 6= 2 and e(H1, ·) = 1;
and look for a solution H2 such that e(G2, H2) 6= 1. We see that we can construct a basis
G1, · · · ,Gg , H1, · · · , Hg o f Ck[`] by solving a system of degree `g+1, then of degree `g , . . . ,
then of degree `2. This is faster than solving the ideal of `-torsion which is a system of degree
`2g .

7 Pairing computations
In this section, we explain how to use the addition chains introduced in Section 4.2 in order to
compute the commutator, Weil and Tate pairings on Abelian varieties. We suppose here that
Bk is provided with a polarizationL0 which is the n t h power of a principal polarization. This
allows us to make the link between the extended commutator pairing and the Weil pairing
in Section 7.1. We then give an algorithm to compute the extended commutator pairing in
Section 7.2.

7.1 Weil pairing and commutator pairing
We recall the definition of the extended commutator pairing from Section 4.1: LetM0 =
[`]∗L0 on Bk . AsL0 is symmetric, we have thatM0 'L `2

0 and as a consequence K(M0),

the kernel ofM0 is isomorphic to K(`2n). The polarization M0 induces a commutator
pairing eM0

([Mum66]) on K(M0) and asM0 descends toL0 via the isogeny [`], we know
that eM0

is trivial on Bk[`]. For x1, x2 ∈ Bk[`], let x ′1, x ′2 ∈ Bk[`
2] be such that `.x ′i = xi for

i = 1,2. The extended commutator pairing is then e ′
`
(x1, x2) = eM0

(x ′1, x2) = eM0
(x1, x ′2), this

is a well defined bilinear application e ′
`

: Bk[`]×Bk[`]→ k. As eM0
is a perfect pairing, for
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7 Pairing computations

any x ′1 ∈ Bk[`
2] there exits x ′2 ∈ Bk[`

2] such that eM0
(x ′1, x ′2) is a primitive `2t h root of unity.

As a consequence, for any x1 ∈ Bk[`] there exists x2 ∈ Bk[`] such that e ′
`
(x1, x2) is a primitive

`t h root of unity and e ′
`

is also a perfect pairing.
As the kernel of L0 is Bk[n], we have an isogeny Bk → B̂k with kernel Bk[n] and by

composing this isogeny on the right side of e ′
`
, we obtain a perfect pairing e ′W : Bk[`]×

B̂k[`]→µ` where µ` is the subgroup of `t h -roots of unity of k.
We have

Proposition 7.1:
The pairing e ′W is the Weil pairing eW .

Proof: For y ∈ B̂k[`], we denote by Λy the degree-0 line bundle on Bk associated to y. We
first recall a possible definition of the Weil pairing eW . Let (x, y) ∈ Bk[`]× B̂k[`]. Let OBk

be the structural sheaf of Bk , and as y ∈ B̂k[`] there is an isomorphism ψ′y : [`]∗Λy ' OBk
.

As a consequence, Λy is obtained as the quotient of the trivial bundle Bk ×A1
k

over Bk by an

action g of Bk[`] on Bk ×A1
k

given by gx (t ,α) = (t + x,χ (x).α) where (t ,α) ∈ (Bk ×A1
k
)(k),

x ∈ Bk[`] and χ is a character of Bk[`]. By definition [Mum70], we have eW (x, y) = χ (x).
In order to give another formulation of this definition, we chose an isomorphism OBk

(0)' k
from which we deduce via ψ′y (resp. τ∗xψ

′
y ) an isomorphism ψ0 : [`]∗Λy (0) ' k (resp. ψ1 :

τ∗x[`]
∗Λy (0)' k). There exists a unique isomorphism ψx : [`]∗Λy → τ∗x[`]

∗Λy compatible
on the 0 fiber with ψ0 and ψ1, i.e. we have that ψ1 ◦ψx ◦ψ−1

0 is the identity of k. Then, the
following diagram commutes up to a multiplication by eW (x, y):

[`]∗Λy OBk

τ∗x[`]
∗Λy τ∗xOBk

ψ′y

τ∗xψ
′
y

ψx eW (x, y)

The polarizationL0 gives the natural isogeny ϕL0
, defined on geometric points by

ϕL0
(k) : Bk (k)→ B̂k (k)

y 7→Λy =L0⊗ (τ
∗
yL0)

−1.

As a consequence, for y ∈ B̂k[`] there exists y0 ∈ Bk (k) such thatΛy =L0⊗(τ∗y0
L0)

−1. Let y ′ ∈
Bk[`

2] be such that `.y ′ = y0. As [`]∗L0 =M0, we have [`]∗Λy = [`]
∗(L0⊗ (τ∗y0

L0)
−1) =

M0⊗ (τ∗y ′M0)
−1. We remark that the isomorphism ψ′y : [`]∗Λy =M0⊗ (τ∗y ′M0)

−1→OBk

gives by tensoring on the right by τ∗
y ′
M0 an isomorphism ψy ′ :M0 → τ∗

y ′
M0. Thus, the

following diagram is commutative up to a multiplication by eW (x, y):
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M0 τ∗
y ′
M0

τ∗xM0 τ∗
x+y ′
M0

ψy ′

τ∗xψy ′

ψx τ∗
y ′
ψx

�

But this is exactly the definition of e ′W (x, y) thus we have e ′W (x, y) = eW (x, y).

7.2 Commutator pairing and addition chains
In this paragraph, we explain how to compute the pairing e ′

`
using addition chains. From

Section 7.1 this give a different algorithm to compute the Weil pairing than the usual Miller
loop [Mil04]. We chose a theta structureΘBk ,M0

forM0 compatible withΘBk
(see Section 3.3)

from which we deduce a decomposition K(M0) = K1(M0)×K2(M0) of K(M0) into isotropic
subspaces for the commutator pairing and a basis (ϑi )i∈Z(`2n)

of H 0(M0). We recall that there

is a natural action of G(M0) on H 0(M0) which can transported via ΘBk ,M0
to an action of

H (`2n) on H 0(M0). Let x, y ∈ Bk[`], and x ′, y ′ ∈ Bk[`
2] be such that `.x ′ = y and `.y ′ = y.

We put x ′ = x ′1+ x ′2 and y ′ = y ′1+ y ′2 with x ′i , y ′i ∈ Ki (M0), for i = 1,2. Let κ : G(M0)→
K(M0) be the natural projection and let (α1,α2), (β1,β2) ∈ Z(`2n)× Ẑ(`2n) be such that
κ(ΘBk ,M0

(αi )) = x ′i and κ(ΘBk ,M0
(βi )) = y ′i . This mean that we have x ′ = (1,α1,α2).0Ak

and
y ′ = (1,β1,β2).0Ak

.

Lemma 7.2:
Let i ∈ Z(`2n) and put

s(1) =
((1,α1, 0).(1,β1, 0).ϑi )(e0Bk

)

((1,α1, 0).ϑi )(e0Bk
)

.
ϑi (e0Bk

)

((1,β1, 0).ϑi )(e0Bk
)
.

For all k ∈N, we have

s(k) =
((1,α1, 0).(1, k .β1, 0).ϑi )(e0Bk

)

((1,α1, 0).ϑi )(e0Bk
)

.
ϑi (e0Bk

)

((1, k .β1, 0).ϑi )(e0Bk
)
= s(1)k . (29)

Proof: Consider the degree-0 line bundle Λ= τ∗
y ′1
M0⊗M−1

0 . We remark that as y ′1 ∈K(M0),

Λ is isomorphic to the trivial line bundle on Bk . Let K be the subgroup of K1(M0) generated
by x ′1 and let Ck be the quotient of Bk by K . The line bundle Λ descends to a line bundle
Λ′ over Ck . As Λ′ has degree 0, it is the quotient of Bk × A1

k
by an action of the form

g ′x (t ,α) = (t + x,χ0(x).α), where (t ,α) ∈ Bk ×A1
x , x ∈K , and χ0 is a character of K .

As ϑi ∈H 0(M0), we remark that f = ((1,β1, 0).ϑi )/(ϑi ) is a section of Λ. Thus, we have
s(k) = f (k .x ′1)/ f (0Bk

) = χ0(k) and s(k) = s(1)k . �
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7 Pairing computations

Remark 7.3:
We remark that in the preceding lemma, α1 and β1 play the same role and as a consequence
can be permuted. ♦

We keep the notation of the beginning of this paragraph to state the

Proposition 7.4:
We put:

L=
((1,`.α1+β1,`.α2+β2)ϑi )(e0Bk

)

((1,β1,β2)ϑi )(e0Bk
)

.
ϑi (e0Bk

)

((1,`.α1,`.α2)ϑi )(e0Bk
)
.

R=
((1,α1+ `.β1,α2+ `.β2)ϑi )(e0Bk

)

((1,α1,α2)ϑi )(e0Bk
)

.
ϑi (e0Bk

)

((1,`.β1,`.β2)ϑi )(e0Bk
)
.

We have :
e ′
`
(x, y) = L−1.R. (30)

Proof: In order to clarify the notations we denote by ec the canonical pairing between Z(`2n)
and Ẑ(`2n). First, we compute L. We have:

(1,`.α1+β1,`.α2+β2)ϑi = ec (`.α1+β1,−`.α2−β2)(1,`.α+β1, 0)(1,0,`.α2+β2)ϑi

= ec (`.α1+β1,−`.α2−β2)(1,`.α1+β1, 0)ϑi .

In the same way, we have:

(1,β1,β2)ϑi = ec (β1,−β2)(1,β1, 0)ϑi ,
(1,`.α1,`.α2)ϑi = ec (`.α1,−`.α2)(1,`.α1, 0)ϑi .

Taking the product, we obtain that

L= ec (`.α1,−β2).L
′,

with

L′ =
((1,β1, 0).(1,`.α1, 0)ϑi )(e0Bk

)

(1,β1, 0)ϑi (e0Bk
)

ϑi (e0Bk
)

(1,`.α1, 0)ϑi (e0Bk
)
.

In the same manner, we have:
R= ec (`.β1,−α2).R

′,

with

R′ =
((1,α1, 0).(1,`.β1, 0)ϑi )(e0Bk

)

(1,α1, 0)ϑi (e0Bk
)

ϑi (e0Bk
)

(1,`.β1, 0)ϑi (e0Bk
)
.

Using lemma 7.2 and the fact that (1,α1, 0) commutes with (1,β1, 0) we get that L′ = R′.
Therefore,

L−1.R= ec (`.α1,β2).ec (`.α2,β1) = e ′
`
(x, y). �
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7 Pairing computations

The preceding proposition gives us an algorithm to compute the pairing:

Algorithm 7.5 (Pairing computation):
Input P,Q ∈ Bk[`]
Output e ′

`
(P,Q)

Let P,Q ∈ Bk[`], and choose any affine lift eP , eQ andâP +Q, we can compute the following
via addition chains:

e0Bk
eP 2eP . . . `eP = λ0

P
e0Bk

eQ âP +Q 2eP + eQ . . . `eP + eQ = λ1
P
eQ

2 eQ eP + 2 eQ

. . . . . .

` eQ = λ0
Q
e0Bk

eP + ` eQ = λ1
Q P

Namely we compute:

`eP := chaine_mult(`, eP ) ` eQ := chaine_mult(`, eQ)

`eP + eQ := chaine_multadd(`,âP +Q, eP , eQ) eP + ` eQ := chaine_multadd(`,âP +Q, eQ, eP ).

Then we have:

e ′
`
(P,Q) =

λ1
Pλ

0
Q

λ1
Qλ

0
P

(31)
♦

Proof: Assume that eP , eQ andâP +Q are such that eP =Ý[`](1,α1,β1)e0
′
Bk

, eQ =Ý[`](1,α2,β2)e0
′
Bk

,

and âP +Q = Ý[`](1,α1 + α2,β1 + β2)e0
′
Bk

. Then by Corollary 4.16, we find that λ0
P =

ϑi (0)
((1,`.α1,`.α2)ϑi )(0)

= 1 and that λ1
P =

((1,`.α1+β1,`.α2+β2)ϑi )(0)
((1,β1,β2)ϑi )(0)

, so that by Proposition 7.4, we have:

e ′
`
(P,Q) =

λ1
Pλ

0
Q

λ1
Qλ

0
P

Now by Lemma 4.8, it is easy to see that (31) is homogeneous and does not depend on the

affine lifts eP , eQ and âP +Q, which concludes the proof. �

Complexity Analysis 7.6:
By using a Montgomery ladder, we see that we can compute e ′

`
(P,Q) with four fast addition

chains of length `, hence we need O(log(`)) additions. It should be noted that we can reuse a
lot of computation between the addition chains P, 2P, 4P, . . . and P +Q, 2P +Q, 4P +Q, . . .
since we always add the same point at the same time between the two chains. ♦
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8 Conclusion

The case n = 2 Let ±P,±Q ∈KB , then we have e ′
`
(±P,±Q) = {e ′

`
(P,Q), e ′

`
(P,Q)−1}. Thus

the pairing on the Kummer variety is a bilinear pairing KB×KB → k∗,± where k∗,± = k∗/{x =
1/x}. We represent a class x ∈ k∗,± by x + 1/x ∈ k, and we define the symmetric pairing
e ′s (±P,±Q) = e ′

`
(P,Q) + e ′

`
(P,−Q). We can use the addition relations to compute P ±Q

and then use Algorithm 7.5 to compute e ′
`
(P,Q), e ′

`
(P,−Q), but since e ′s is symmetric there

should be a method to compute it without solving the degree-2 system given by the addition
relations. This will be the object of a future article.

8 Conclusion
We have described an algorithm that give a modular point from an isotropic kernel, and
another one that can compute the isogeny associated to a modular point. By combining these
two algorithms, we can compute any isogeny between abelian varieties. However, the level of
the modular space that we use depend on the degree of the isogeny. That means that a point
in this modular spaceM

`n corresponds to an isogeny and to the choice of a symplectic basis
of Bk[`]. So in our case it is easier to compute directly the points of `-torsion in Bk than to
compute directly the modular points inM

`n since the degree of this latter system is higher.
These remarks mean that we cannot use our algorithm to speed up Schoof point counting
algorithm, like in the genus-one case (see for instance [Elk98]). A solution would be to have
an efficient characterization ofM

`n modulo the action by the symplectic group of order `.
Still, we can go back to a modular point of level n by using the modular correspondence

introduced in [FLR09]. This mean that we can compute isogeny graphs if we restrict to
`2-isogenies. We have also introduced a point compression algorithm, that allows to dras-
tically reduce the number of coordinates of a projective embedding of level 4`. This new
representation can be useful when one has to work with such a projective embedding, rather
than the usual one of level 4 (for instance if one need a quick access to the translation by a
point of `-torsion).

We have also described a new way to compute the Weil pairing, that use addition chains
rather than a Miller loop. We remark that our new algorithm apply to any abelian variety, so
it extends the range of pairings accessible for cryptography.
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