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1 Introduction

"A picture is worth one thousand words". This proverb comes from Confucius � a Chinese philosopher before about
2500 years ago. Now, the essence of these words is universally understood. A picture can be magical in its ability to
quickly communicate a complex story or a set of ideas that can be recalled by the viewer later in time.

Visual information plays an important role in our society, it will play an increasingly pervasive role in our lives, and
there will be a growing need to have these sources processed further. The pictures or images are used in many application
areas like architectural and engineering design, fashion, journalism, advertising, entertainment, etc. Thus it provides the
necessary opportunity for us to use the abundance of images. However, the knowledge will be useless if one can't �nd it.
In the face of the substantive and increasing apace images, how to search and to retrieve the images that we interested
with facility is a fatal problem: it brings a necessity for image retrieval systems. As we know, visual features of the
images provide a description of their content. Content-based image retrieval (CBIR), emerged as a promising mean for
retrieving images and browsing large images databases. CBIR has been a topic of intensive research in recent years. It
is the process of retrieving images from a collection based on automatically extracted features.

This paper focuses on presenting the existing approaches of shape-based feature extraction. E�cient shape features
must present some essential properties such as:

� identi�ability: shapes which are found perceptually similar by human have the same feature di�erent from the
others.

� translation, rotation and scale invariance: the location, rotation and scaling changing of the shape must not a�ect
the extracted features.

� a�ne invariance: the a�ne transform performs a linear mapping from 2D coordinates to other 2D coordinates that
preserves the "straightness" and "parallelism" of lines. A�ne transform can be constructed using sequences of
translations, scales, �ips, rotations and shears. The extracted features must be as invariant as possible with a�ne
transforms.

� noise resistance: features must be as robust as possible against noise, i.e., they must be the same whichever be the
strength of the noise in a give range that a�ects the pattern.

� occultation invariance: when some parts of a shape are occulted by other objects, the feature of the remaining part
must not change compared to the original shape.

� statistically independent: two features must be statistically independent. This represents compactness of the
representation.

� reliable: as long as one deals with the same pattern, the extracted features must remain the same.

In general, shape descriptor is some set of numbers that are produced to describe a given shape feature. A descriptor
attempts to quantify shape in ways that agree with human intuition (or task-speci�c requirements). Good retrieval
accuracy requires a shape descriptor to be able to e�ectively �nd perceptually similar shapes from a database. Usually,
the descriptors are in the form of a vector. Shape descriptors should meet the following requirements:

� the descriptors should be as complete as possible to represent the content of the information items.

� the descriptors should be represented and stored compactly. The size of descriptor vector must not be too large.

� the computation of distance between descriptors should be simple; otherwise the execution time would be too long.

Shape feature extraction and representation plays an important role in the following categories of applications:
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� shape retrieval: searching for all shapes in a typically large database of shapes that are similar to a query shape.
Usually all shapes within a given distance from the query are determined or the �rst few shapes that have the
smallest distance.

� shape recognition and classi�cation: determining whether a given shape matches a model su�ciently, or which of
representative class is the most similar.

� shape alignment and registration: transforming or translating one shape so that it best matches another shape, in
whole or in part.

� shape approximation and simpli�cation: constructing a shape of fewer elements (points, segments, triangles, etc.),
that is still similar to the original.

Many shape description and similarity measurement techniques have been developed in the past. A number of new
techniques have been proposed in recent years. There are 3 main di�erent classi�cation methods as follows:

� Contour-based methods and region-based methods [1]. This is the most common and general classi�cation and it is
proposed by MPEG-7. It is based on the use of shape boundary points as opposed to shape interior points. Under
each class, di�erent methods are further divided into structural approaches and global approaches. This sub-class
is based on whether the shape is represented as a whole or represented by segments/sections (primitives).

� Space domain and transform domain. Methods in space domain match shapes on point (or point feature) basis,
while feature domain techniques match shapes on feature (vector) basis.

� Information preserving (IP) and non-information preserving (NIP). IP methods allow an accurate reconstruction
of a shape from its descriptor, while NIP methods are only capable of partial ambiguous reconstruction. For object
recognition purpose, IP is not a requirement.

Unlike the traditional classi�cation, the approaches of shape-based feature extraction and representation are classi�ed
according to their processing approaches. The �gure 1 shows the hierarchy of the classi�cation of shape feature extraction
approaches.
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Figure 1: An overview of shape description techniques

Without being complete, in the following sections, we will describe and group a number of these methods together.
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2 Shape parameters

Basically, shape-based image retrieval consists of the measuring of similarity between shapes represented by their fea-
tures. Some simple geometric features can be used to describe shapes. Usually, the simple geometric features can only
discriminate shapes with large di�erences; therefore, they are usually used as �lters to eliminate false hits or combined
with other shape descriptors to discriminate shapes. They are not suitable to be stand alone shape descriptors. A shape
can be described by di�erent aspects. These shape parameters are Center of gravity, Axis of least inertia, Digital bending
energy, Eccentricity, Circularity ratio, Elliptic variance, Rectangularity, Convexity, Solidity, Euler number, Pro�les, Hole
area ratio. They will be introduced in this section.

2.1 Center of gravity

The center of gravity is also called centroid. Its position should be �xed in relation to the shape.
If a shape is represented by its region function Eq. ??, its centroid (gx, gy) is:{

gx = 1
N

∑N
i=1 xi

gy = 1
N

∑N
i=1 yi

(1)

where N is the number of point in the shape, (xi, yi) ∈ {(xi, yi) | f(xi, yi) = 1}.
If a shape is represented by its contour Eq. ??, the position of its centroid is given below:{

gx = 1
6A

∑N−1
i=0 (xi + xi+1)(xiyi+1 − xi+1yi)

gy = 1
6A

∑N−1
i=0 (yi + yi+1)(xiyi+1 − xi+1yi)

(2)

where A is the contour's area and

A =
1

2

∣∣∣∣∣
N−1∑
i=0

(xiyi+1 − xi+1yi)

∣∣∣∣∣ (3)

The position of shape centroid is �xed with di�erent points distribution on a contour. One can notice that the
position of the centroid in Figure 2 is �xed no matter how the points distribution is.

(a) (b)

The dots are points distributed on contour by uniformly (a) and non-uniformly (b). The star is the centroid of original
contour; the inner dot is the centroid of sampled contour.

Figure 2: Centroid of contour

So using Eq. 2, we can obtain the genuine centroid of a contour under whatever the contour is normalized.

2.2 Axis of least inertia

The axis of least inertia is unique to the shape. It serves as a unique reference line to preserve the orientation of the
shape. The axis of least inertia (ALI) of a shape is de�ned as the line for which the integral of the square of the distances
to points on the shape boundary is a minimum.

Since the axis of inertia pass through the centroid of a contour, to �nd the ALI, transfer the shape and let the centroid
of the shape be the origin of Cartesian coordinate system. Let x sin θ − y cos θ = 0 be the parametric equation of ALI.
The slope angle θ is estimated as follows:

Let α be the angle between the axis of least inertia and the x-axis. The inertia is given by [2, 3]:

I =
1

2
(a+ c)− 1

2
(a− c) cos(2α)− 1

2
bsin(2α)
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where a =
∑N−1
i=0 x2

i , b = 2
∑N−1
i=0 xiyi, c =

∑N−1
i=0 y2

i .
Hence,

dI

dα
= (a− c) sin(2α)− b cos(2α)

d2I

dα2
= 2(a− c) cos(2α) + 2b sin(2α)

Let dI/dα = 0, we obtain

α =
1

2
arctan

(
b

a− c

)
, −π

2
< α <

π

2

The slope angle θ is given by

θ =

{
α+ π

2
if d2I

dα2 < 0

α otherwise

2.3 Average bending energy

Average bending energy BE is de�ned by

BE =
1

N

N−1∑
s=0

K(s)2

where K(s) is the curvature function, s is the arc length parameter, and N is the number of points on a contour [4].
In order to compute the average bending energy more e�ciently, Young et. al. [5] did the Fourier transform of the
boundary and used Fourier coe�cients and Parseval's relation.

One can prove that the circle is the shape having the minimum average bending energy.

2.4 Eccentricity

Eccentricity is the measure of aspect ratio. It is the ratio of the length of major axis to the length of minor axis. It can
be calculated by principal axes method or minimum bounding rectangle method.

2.4.1 Principal axes method

Principal axes of a given shape can be uniquely de�ned as the two segments of lines that cross each other orthogonally
in the centroid of the shape and represent the directions with zero cross-correlation [6]. This way, a contour is seen as
an instance from a statistical distribution. Let us consider the covariance matrix C of a contour:

C =
1

N

N−1∑
i=0

(
xi − gx
yi − gy

)(
xi − gx
yi − gy

)T
=

(
cxx cxy
cyx cyy

)
(4)

where
cxx = 1

N

∑N−1
i=0 (xi − gx)2

cxy = 1
N

∑N−1
i=0 (xi − gx)(yi − gy)

cyx = 1
N

∑N−1
i=0 (yi − gy)(xi − gx)

cyy = 1
N

∑N−1
i=0 (yi − gy)2

G(gx, gy) is the centroid of the shape. Clearly, here cxy = cyx.
The lengths of the two principal axes equal the eigenvalues λ1 and λ2 of the covariance matrix C of a contour,

respectively.
So the eigenvalues λ1 and λ2 can be calculated by

det(C − λ1,2I) = det

(
cxx − λ1,2 cxy

cyx cyy − λ1,2

)
= (cxx − λ1,2)(cyy − λ1,2)− c2xy = 0

So 
λ1 = 1

2

[
cxx + cyy +

√
(cxx + cyy)2 − 4

(
cxxcyy − c2xy

)]
λ2 = 1

2

[
cxx + cyy −

√
(cxx + cyy)2 − 4

(
cxxcyy − c2xy

)]
Then, eccentricity can be calculated:

E = λ2/λ1 (5)
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2.4.2 Minimum bounding rectangle

Minimum bounding rectangle is also called minimum bounding box. It is the smallest rectangle that contains every
point in the shape. For an arbitrary shape, eccentricity is the ratio of the length L and width W of minimal bounding
rectangle of the shape at some set of orientations. Elongation, Elo, is an other concept based on eccentricity (cf. Figure
3):

Elo = 1−W/L (6)

Figure 3: Minimum bounding rectangle and corresponding parameters for elongation

Elongation is a measure that takes values in the range [0, 1]. A symmetrical shape in all axes such as a circle or
square will have an elongation value of 0 whereas shapes with large aspect ratios will have an elongation closer to 1.

2.5 Circularity ratio

Circularity ratio represents how a shape is similar to a circle [7]. There are 3 de�nitions:

� Circularity ratio is the ratio of the area of a shape to the area of a circle having the same perimeter:

C1 =
As
Ac

(7)

where As is the area of the shape and Ac is the area of the circle having the same perimeter as the shape. Assume
the perimeter is O, so Ac = O2/4π. Then C1 = 4π ·As/O2. As 4π is a constant, so we have the second circularity
ratio de�nition.

� Circularity ratio is the ratio of the area of a shape to the shape's perimeter square:

C2 =
As
O2

(8)

� Circularity ratio is also called circle variance, and de�ned as:

Cva =
σR
µR

(9)

where µR and σR are the mean and standard deviation of the radial distance from the centroid (gx, gy) of the shape to
the boundary points (xi, yi), i ∈ [0, N − 1]. They are the following formulae respectively:

µR =
1

N

N−1∑
i=1

di and σR =

√√√√ 1

N

N−1∑
i=1

(di − µR)2

where di =
√

(xi − gx)2 + (yi − gy)2.

The most compact shape is a circle. See Figure 4.
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Figure 4: Circle variance

2.6 Ellipse variance

Ellipse variance Eva is a mapping error of a shape to �t an ellipse that has an equal covariance matrix as the shape:
Cellipse = C (cf. Eq.4). It is practically e�ective to apply the inverse approach yielding.

We assume

Vi =

(
xi − gx
yi − gy

)

d′i =
√
V Ti · C

−1
ellipse · Vi

µ′R =
1

N

N−1∑
i=1

d′i and σ′R =

√√√√ 1

N

N−1∑
i=1

(d′i − µ′R)2

Then

Eva =
σ′R
µ′R

(10)

Comparing with Eq. 9, intuitively, Eva represents a shape more accurately than Cva, cf. Figure 5.

Figure 5: Ellipse variance

2.7 Rectangularity

Rectangularity represents how rectangular a shape is, i.e. how much it �lls its minimum bounding rectangle:

Rectangularity = AS/AR

where AS is the area of a shape; AR is the area of the minimum bounding rectangle.

2.8 Convexity

Convexity is de�ned as the ratio of perimeters of the convex hull OConvexhull over that of the original contour O [6]:

Convexity =
OConvexhull

O (11)
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Figure 6: Illustration of convex hull

The region R2 is a convex if and only if for any two points P1, P2 ∈ R2, the whole line segment P1P2 is inside the
region. The convex hull of a region is the smallest convex region including it. In Figure 6, the outline is the convex hull
of the region.

In [6], the authors presented the algorithm for constructing a convex hull by traversing the contour and minimizing
turn angle in each step.

2.9 Solidity

Solidity describes the extent to which the shape is convex or concave [8] and it is de�ned by

Solidity = As/H

where, As is the area of the shape region and H is the convex hull area of the shape. The solidity of a convex shape is
always 1.

2.10 Euler number

Euler number describes the relation between the number of contiguous parts and the number of holes on a shape. Let S
be the number of contiguous parts and N be the number of holes on a shape. Then the Euler number is:

Eul = S −N

For example

Euler Number equal to 1, -1 and 0, respectively.

2.11 Pro�les

The pro�les are the projection of the shape to x-axis and y-axis on Cartesian coordinate system. We obtain two one-
dimension functions:

Prox(i) =

jmax∑
j=jmin

f(i, j) and Proy(j) =

imax∑
i=imin

f(i, j)

where f(i, j) represents the region of shape Eq. ??. See Figure 7.
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Figure 7: Pro�les

2.12 Hole area ratio

Hole area ratio HAR is de�ned as

HAR =
Ah
As

where As is the area of a shape and Ah is the total area of all holes in the shape. Hole area ratio is most e�ective in
discriminating between symbols that have big holes and symbols with small holes [9].

3 One-dimensional function for shape representation

The one-dimensional function which is derived from shape boundary coordinates is also often called shape signature
[10, 11]. The shape signature usually captures the perceptual feature of the shape [12]. Complex coordinates, Centroid
distance function, Tangent angle (Turning angles), Curvature function, Area function, Triangle-area representation and
Chord length function are the commonly used shape signatures.

Shape signature can describe a shape all alone; it is also often used as a preprocessing to other feature extraction
algorithms, for example, Fourier descriptors, wavelet description. In this section, the shape signatures are introduced.

3.1 Complex coordinates

A complex coordinates function is simply the complex number generated from the coordinates of boundary points,
Pn(x(n), y(n)), n ∈ [1, N ]:

z(n) = [x(n)− gx] + i[y(n)− gy]

where (gx, gy) is the centroid of the shape, given by Eq. 2.

3.2 Centroid distance function

The centroid distance function is expressed by the distance of the boundary points from the centroid (gx, gy) (Eq. 2) of
a shape

r(n) = [(x(n)− gx)2 + (y(n)− gy)2]
1/2

Due to the subtraction of centroid, which represents the position of the shape, from boundary coordinates, both
complex coordinates and centroid distance representation are invariant to translation.

3.3 Tangent angle

The tangent angle function at a point Pn(x(n), y(n)) is de�ned by a tangential direction of a contour [13]:

θ(n) = θn = arctan
y(n)− y(n− w)

x(n)− x(n− w)

since every contour is a digital curve; w is a small window to calculate θ(n) more accurately.

Tangent angle function has two problems. One is noise sensitivity. To decrease the e�ect of noise, a contour is �ltered
by a low-pass �lter with appropriate bandwidth before calculating the tangent angle function. The other is discontinuity,
due to the fact that the tangent angle function assumes values in a range of length 2π, usually in the interval of [−π, π]
or [0, 2π]. Therefore θn in general contains discontinuities of size 2π. To overcome the discontinuity problem, with an
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arbitrary starting point, the cumulative angular function ϕn is de�ned as the angle di�erences between the tangent at
any point Pn along the curve and the tangent at the starting point P0 [14, 15]:

ϕ(n) = [θ(n)− θ(0)]

In order to be in accordance with human intuition that a circle is �shapeless�, assume t = 2πn/N , then ϕ(n) =
ϕ(tN/2π). A periodic function is termed as the cumulative angular deviant function ψ(t) and is de�ned as

ψ(t) = ϕ(
N

2π
t)− t t ∈ [0, 2π]

N is the total number of contour points.

In [16], the authors proposed a method based on tangent angle. It is called tangent space representation. A digital
curve C simpli�ed by polygon evolution is represented in the tangent space by the graph of a step function, where the
x-axis represents the arc length coordinates of points in C and the y-axis represents the direction of the line segments in
the decomposition of C. For example, �gure 8 shows a digital curve and its step function representation in the tangent
space.

Figure 8: Digital curve and its step function representation in the tangent space

3.4 Contour curvature

Curvature is a very important boundary feature for human to judge similarity between shapes. It also has salient
perceptual characteristics and has proven to be very useful for shape recognition [17]. In order to use K(n) for shape
representation, we quote the function of curvature, K(n), from [18, 19] as:

K(n) =
ẋ(n)ÿ(n)− ẏ(n)ẍ(n)

(ẋ(n)2 + ẏ(n)2)3/2
(12)

Therefore, it is possible to compute the curvature of a planar curve from its parametric representation. If n is the
normalized arc-length parameter s, then Eq. 12 can be written as:

K(s) = ẋ(s)ÿ(s)− ẏ(s)ẍ(s) (13)

As given in Eq. 13, the curvature function is computed only from parametric derivatives, and, therefore, it is invariant
under rotations and translations. However, the curvature measure is scale dependent, i.e., inversely proportional to the
scale. A possible way to achieve scale independence is to normalize this measure by the mean absolute curvature, i.e.,

K′(s) =
K(s)

1
N

∑N
s=1 |K(s)|

where N is the number of points on the normalized contour.

When the size of the curve is an important discriminative feature, the curvature should be used without the normal-
ization; otherwise, for the purpose of scale-invariant shape analysis, the normalization should be performed.

An approximate arc-length parametrization based on the centripetal method is given by the following [19]:

Let P =
∑N
n=1 dn be the perimeter of the curve and L =

∑N
n=1

√
dn, where dn is the length of the chord between

points pn and pn+1, n=1, 2, . . . , N-1. The approximate arc-length parametrization relations:

s1 = 0;

sk = sk−1 +
P
√
dk−1

L
, k = 2, 3, . . . , N .

Starting from an arbitrary point and following the contour clockwise, we compute the curvature at each interpolated
point using Eq. 13. Convex and concave vertices will imply negative and positive values, respectively (the opposite is
veri�ed for counterclockwise sense). Figure 9 is an example of curvature function. Clearly, as a descriptor, the curvature
function can distinguish di�erent shapes.
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(a) Contours normalized to 128 points; the dots marked star are the starting points on the contours; (b) curvature
functions; the curvature is computed clockwise.

Figure 9: Curvature function

3.5 Area function

When the boundary points change along the shape boundary, the area of the triangle formed by two successive boundary
points and the center of gravity also changes. This forms an area function which can be exploited as shape representation.
Figure 10 shows an example. Let S(n) be the area between the successive boundary points Pn, Pn+1 and center of gravity
G.

(a) Original contour; (b) the area function of (a).

Figure 10: Area function

The area function is linear under a�ne transform. However, this linearity only works for shape sampled at its same
vertices.

3.6 Triangle-area representation

The triangle-area representation (TAR) signature is computed from the area of the triangles formed by the points on
the shape boundary [20, 21]. The curvature of the contour point (xn, yn) is measured using the TAR as follows.

For each three consecutive points Pn−ts(xn−ts , yn−ts), Pn(xn, yn), and Pn+ts(xn+ts , yn+ts), where n ∈ [1, N ] and
ts ∈ [1, N/2− 1], N is even. The signed area of the triangle formed by these points is given by:

TAR(n, ts) =
1

2

∣∣∣∣∣∣
xn−ts yn−ts 1
xn yn 1

xn+ts yn+ts 1

∣∣∣∣∣∣ (14)

When the contour is traversed in counter clockwise direction, positive, negative and zero values of TAR mean convex,
concave and straight-line points, respectively. Figure 11 demonstrates these three types of the triangle areas and the
complete TAR signature for the hammer shape.
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Figure 11: Three di�erent types of the triangle-area values and the TAR signature for the hammer shape

By increasing the length of the triangle sides, i.e., considering farther points, the function of Eq. 14 will represent
longer variations along the contour. The TARs with di�erent triangle sides can be regarded as di�erent scale space
functions. The total TARs, ts ∈ [1, N/2− 1], compose a multi-scale space TAR.

Figure 12 shows the multi-scale space TAR function and its dynamic space warping (DSW) matching (cf. Subsection
1.3.2). In (a), the correspondent points on the model contour to these on the query contour are consistent with human
perception after DSW matching.

(a) The query contour (left) and the model contour (right); (b) the multi-scale space TAR function of the model contour;
(c) the multi-scale space TAR function of the query contour; (d) dynamic space warping (DSW) matching table of the
multi-scale space TAR functions (b) and (c).

Figure 12: Dynamic space warping (DSW) matching
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In [21], authors show that the multi-scale space TAR is relatively invariant to the a�ne transform and robust to
non-rigid transform. The computation complexity of the TAR stage is O(N2).

3.7 Chord length function

The chord length function is derived from shape boundary without using any reference point. For each boundary point
p, its chord length function is the shortest distance between p and another boundary point p' such that line pp' is
perpendicular to the tangent vector at p [10].

The chord length function is invariant to translation and it overcomes the biased reference point (which means the
centroid is often biased by boundary noise or defections) problems. However, it is very sensitive to noise, there may be
drastic burst in the signature of even smoothed shape boundary.

3.8 Discussions

A shape signature represents a shape by a 1-D function derived from shape contour. To obtain the translation invariant
property, they are usually de�ned by relative values. To obtain the scale invariant property, normalization is neces-
sary. In order to compensate for orientation changes, shift matching is needed to �nd the best matching between two
shapes. Having regard to occultation, Tangent angle, Contour curvature and Triangle-area representation have invariance
property. In addition, shape signatures are computationally simple.

Shape signatures are sensitive to noise, and slight changes in the boundary can cause large errors in matching.
Therefore, it is undesirable to directly describe shape using a shape signature. Further processing is necessary to increase
its robustness and reduce the matching load. For example, a shape signature can be simpli�ed by quantizing the signature
into a signature histogram, which is rotationally invariant.

4 Polygonal approximation

Polygonal approximation can be set to ignore the minor variations along the edge, and instead capture the overall shape.
This is useful because it reduces the e�ects of discrete pixelization of the contour. In general, there are two methods to
realize it. One is merging, the other is splitting [22].

4.1 Merging methods

Merging methods add successive pixels to a line segment if each new pixel that is added doesn't cause the segment to
deviate too much from a straight line.

4.1.1 Distance threshold method

Choose one point as a starting point, on the contour, for each new point that we add, let a line go from the starting
point to this new point. Then, we compute the squared error for every point along the segment/line. If the error exceeds
some threshold, we keep the line from the start point to the previous point and start a new line.

In practice, the most of practical error measures in use are based on distance between vertices of the input curve
and the approximation linear segments. The distance dk(i, j) from curve vertex Pk = (xk, yk) to the corresponding
approximation linear segments (Pi, Pj) is de�ned as follows (cf. Figure 13):

dk(i, j) =
|(xj − xi)(yi − yk)− (xi − xk)(yj − yi)|√

(xj − xi)2 + (yj − yi)2

Figure 13: Illustration of the distance from a point on the boundary to a linear segment

4.1.2 Tunneling method

If we have thick boundaries rather than single-pixel thick ones, we can still use a similar approach called tunneling.
Imagine that we're trying to lay straight rods along a curved tunnel, and that we want to use as few as possible. We
can start at one point and lay as long a straight rod as possible. Eventually, the curvature of the �tunnel� won't let us
go any further, so we lay another rod and another until we reach the end.
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Both the distance threshold and tunneling methods can do polygonal approximation e�ciently. However, the great
disadvantage is that the position of starting point will a�ect greatly the approximate polygon.

4.1.3 Polygon evolution

The basic idea of polygons evolution in [23] is very simple: in every evolution step, a pair of consecutive line segments
(the line segment is the line between two consecutive vertices) s1,s2 is substituted with a single line segment joining the
endpoints of s1 and s2.

The key property of this evolution is the order of the substitution. The substitution is done according to a relevance
measure K given by

K(s1, s2) =
β(s1, s2)l(s1)l(s2)

l(s1) + l(s2)
,

where β(s1, s2) is the turn angle at the common vertex of segments s1, s2 and l(α) is the length of α, α = s1 or s2,
normalized with respect to the total length of a polygonal curve. The evolution algorithm is assuming that vertices
which are surrounded by segments with a high value of K(s1, s2) are important while those with a low value are not.
Figure 14 is an example.

Figure 14: A few stages of polygon evolution according to a relevant measure

The curve evolution method achieves the task of shape simpli�cation, i.e., the process of evolution compares the
signi�cance of vertices of the contour based on a relevance measure. Since any digital curve can be regarded as a polygon
without loss of information (with possibly a large number of vertices), it is su�cient to study evolutions of polygonal
shapes for shape feature extraction.

4.2 Splitting methods

Splitting methods work by �rst drawing a line from one point on the boundary to another. Then, we compute the
perpendicular distance from each point along the boundary segment to the line. If this exceeds some threshold, we break
the line at the point of greatest distance. We then repeat the process recursively for each of the two new lines until we
don't need to break any more. See Figure 15 for an example.

Figure 15: Splitting methods for polygonal approximation

This is sometimes known as the ��t and split� algorithm. For a closed contour, we can �nd the two points that lie
farthest apart and �t two lines between them, one for one side and one for the other. Then, we can apply the recursive
splitting procedure to each side.
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4.3 Discussions

Polygonal approximation technique can be used as a simple method for contour representation and description. The
polygon approximation have some interesting properties:

� it leads to simpli�cation of shape complexity with no blurring e�ects.

� it leads to noise elimination.

� although irrelevant features vanish after polygonal approximation, there is no dislocation of relevant features.

� the remaining vertices on a contour do not change their positions after polygonal approximation.

Polygonal approximation technique can also be used as preprocessing method for further extracting features from a
shape.

5 Spatial interrelation feature

Spatial interrelation feature describes the region or the contour of shape by the relation of their pixels or curves. In
general, the representation is done by using their geometric features: length, curvature, relative orientation and location,
area, distance and so on.

5.1 Adaptive grid resolution

The adaptive grid resolution (AGR) was proposed by [24]. In the AGR, a square grid that is just big enough to cover
the entire shape is overlaid on a shape. A resolution of the grid cells varies from one portion to another according to the
content of the portion of the shape. On the borders or the detail portion on the shape, the higher resolution, i.e. the
smaller grid cells, are applied; on the other hand, in the coarse regions of the shape, lower resolution, i.e. the bigger grid
cells, are applied.

To guarantee rotation invariance, it needs to convert an arbitrarily oriented shape into a unique common orientation.
First, �nd the major axis of the shape. The major axis is the straight line segment joining the two points P1 and P2 on
the boundary farthest away from each other. Then we rotate the shape so that its major axis is parallel to the x-axis.
This orientation is still not unique as there are two possibilities: P1 can be on the left or on the right. This problem
is solved by computing the centroid of the polygon and making sure that the centroid is below the major axis, thus
guaranteeing a unique orientation.

Let us now consider scale and translation invariance. We de�ne the bounding rectangle (BR) of a shape as the
rectangle with sides parallel to the x and y axes just large enough to cover the entire shape (after rotation). Note that
the width of the BR is equal to the length of the major axis. To achieve scale invariance, we proportionally scale all
shapes so that their BRs have the same �xed width (pixels).

The method of computation of the AGR representation of a shape applies quad-tree decomposition on the bitmap
representation of the shape. The decomposition is based on successive subdivision of the bitmap into four equal-size
quadrants. If a bitmap-quadrant does not consist entirely of part of shape, it is recursively subdivided into smaller and
smaller quadrants until we reach bitmap-quadrants, i.e., termination condition of the recursion is that the resolution
reaches that one prede�ned. Figure 16(a) is an example of AGR.

(a) Adaptive Grid Resolution (AGR) image; (b) quad-tree decomposition of AGR.

Figure 16: Adaptive resolution representations

To represent the AGR image, in [24], quad-tree method is applied. Each node in the quad-tree covers a square region
of the bitmap. The level of the node in the quad-tree determines the size of the square. The internal nodes (shown by
gray circles) represent �partially covered� regions; the leaf nodes shown by white boxes represent regions with all 0s while
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the leaf nodes shown by black boxes represent regions with all 1s. The �all 1s� regions are used to represent the shape,
Figure 16(b). Each rectangle can be described by 3 numbers: its center C = (Cx, Cy) and its size (i.e. side length) S. So
each shape can be mapped to a point in 3n-dimensional space (n is the number of the rectangles occupied by the shape
region).

Due to the fact that the normalization before computing AGR, AGR representation is invariant under rotation,
scaling and translation. It is also computationally simple.

Figure 17: Flowchart of shape divided by bounding box

5.2 Bounding box

Bounding box computes homeomorphisms between 2D lattices and its shapes. Unlike many other methods, this mapping
is not restricted to simply connected shapes but applies to arbitrary topologies [25].

To make bounding box representation invariant to rotation, a shape should be normalized by the same method
as for AGR (Subsection 5.1) before further computation. After the normalization, a shape S is a set of L pixels,
S =

{
pk ∈ R2|k = 1, 2, · · · , L

}
and also write |S| = L. The minimum bounding rectangle or bounding box of S is

denoted by B(S); its width and height, are called w and h, respectively.

Figure 17 shows the algorithm �owchart based on bounding box that divides a shape S into m (row) × n (column)
parts. The output B is a set of bounding boxes.

An illustration of this procedure and its result is shown in Figure 18.
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(a) Compute the bounding box B(S) of a pixel set S ; (b) subdivide S into n vertical slices; (c) compute the bounding
box B(Sj) of each resulting pixel set Sj , where j = 1, 2, · · · , n; (d) subdivide each B(Sj) into m horizontal slices; (e)
compute the bounding box B(Sij) of each resulting pixel set Sij , where i = 1, 2, · · · ,m.

Figure 18: The �ve steps of bounding box splitting

To represent each bounding box, one method is that partial points of the set of bounding boxes are sampled. Figure
19 shows an example.

Figure 19: A sample points on lattice and examples of how it is mapped onto di�erent shapes

If v = (vx, vy)T denotes the location of the bottom left corner of the initial bounding box of S, and uij = (uijx , u
ij
y )

denotes the center of sample box Bij , then the coordinates

(
µijx
µijy

)
=

( (
uijx − vx

)
/w(

uijy − vy
)
/h

)

provide a scale invariant representation of S. Sampling k points of an m× n lattice therefore allows to represent S as a
vector

r =
[
µi(1)j(1)x , µi(1)j(1)y , · · · , µi(k)j(k)x , µi(k)j(k)y

]
where i(α) < i(β) if α < β and likewise for the index j.

Bounding box representation is a simple computational geometry approach to compute homeomorphisms between
shapes and lattices. It is storage and time e�cient. It is invariant to rotation, scaling and translation and also robust
against noisy shape boundaries.

5.3 Convex hull

The approach is that the shape is represented by a serie of convex hulls. The convex region has be de�ned in Sebsection
1.2.8. The convex hull H of a region is its smallest convex region including it. In other words, for a region S, the convex
hull conv(S) is de�ned as the smallest convex set in R2 containing S. In order to decrease the e�ect of noise, common
practice is to �rst smooth a boundary prior to partitioning.

The representation of the shape may be obtained by a recursive process which results in a concavity tree. See Figure
20. Each concavity can be described by its area, chord (the line connects the cut of the concavity) length, maximum
curvature, distance from maximum curvature point to the chord. The matching between shapes becomes a string or a
graph matching.
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(a) Convex hull and its concavities; (b) concavity tree representation of convex hull.

Figure 20: Illustrates recursive process of convex hull

Convex hull representation has a high storage e�ciency. It is invariant to rotation, scaling and translation and also
robust against noisy shape boundaries (after �ltering). However, extracting the robust convex hulls from the shape is
where the shoe pinches. [26, 27] and [28] gave the boundary tracing method and morphological methods to achieve
convex hulls respectively.

5.4 Chain code

Chain code is a common approach for representing di�erent rasterized shapes as line-drawings, planar curves, or contours.
Chain code describes an object by a sequence of unit-size line segments with a given orientation [7]. Chain code can be
viewed as a connected sequence of straight-line segments with speci�ed lengths and directions [29].

5.4.1 Basic chain code

Freeman [30] �rst introduced a chain code that describes the movement along a digital curve or a sequence of border
pixels by using so-called 8-connectivity or 4-connectivity. The direction of each movement is encoded by the numbering
scheme {i|i = 0, 1, 2, · · · , 7} or {i|i = 0, 1, 2, 3} denoting a counter-clockwise angle of 45◦ × i or 90◦ × i regarding the
positive x -axis, as shown in Figure 21.

(a) Chain code in eight directions (8-connectivity); (b) chain code in four directions (4-connectivity).

Figure 21: Basic chain code direction

By encoding relative, rather than absolute position of the contour, the basic chain code is translation invariant. We
can match boundaries by comparing their chain codes, but with the two main problems: 1) it is very sensitive to noise;
2) it is not rotationally invariant. To solve these problems, di�erential chain codes (DCC) and resampling chain codes
(RCC) were proposed.

Di�erential chain codes (DCC) is encoding di�erences in the successive directions. This can be computed by subtract-
ing each element of the chain code from the previous one and taking the result modulo n, where n is the connectivity.
This di�erencing allows us to rotate the object in 90-degree increments and still compare the objects, but it doesn't get
around the inherent sensitivity of chain codes to rotation on the discrete pixel grid.

Re-sampling chain codes (RCC) consists in re-sampling the boundary onto a coarser grid and then computing the
chain codes of this coarser representation. This smoothes out small variations and noise but can help compensate for
di�erences in chain-code length due to the pixel grid.

5.4.2 Vertex chain code (VCC)

To improve chain code e�ciency, in [29] the authors proposed a chain code for shape representation according to vertex
chain code (VCC). An element of the VCC indicates the number of cell vertices, which are in touch with the bounding
contour of the shape in that element's position. Only three elements �1�, �2� and �3� can be used to represent the
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bounding contour of a shape composed of pixels in the rectangular grid. Figure 22 shows the elements of the VCC to
represent a shape.

Figure 22: Vertex chain code

5.4.3 Chain code histogram (CCH)

Iivarinen and Visa derive a chain code histogram (CCH) for object recognition [31]. The CCH is computed as hi = ]{i∈M,
M is the range of chain code}, ]{α} denotes getting the number of the value α.

The CCH re�ects the probabilities of di�erent directions present in a contour.
If the chain code is used for matching it must be independent of the choice of the starting pixel in the sequence. The

chain code usually has high dimensions and is sensitive to noise and any distortion. So, except the CCH, the other chain
code approaches are often used as contour representations, but is not as contour attributes.

5.5 Smooth curve decomposition

In [32], the authors proposed smooth curve decomposition as shape descriptor. The segment between the curvature
zero-crossing points from a Gaussian smoothed boundary are used to obtain primitives, called tokens. The feature for
each token is its maximum curvature and its orientation. In Figure 23, the �rst number in the parentheses is its maximum
curvature and the second is its orientation.

(a) (b)

(a) θ is the orientation of this token; (b) an example of smooth curve decomposition.

Figure 23: Smooth curve decomposition

The similarity between two tokens is measured by the weighted Euclidean distance. The shape similarity is measured
according to a non-metric distance. Shape retrieval based on token representation has shown to be robust in the presence
of partially occulted objects, translation, scaling and rotation.

5.6 Symbolic representation based on the axis of least inertia

In [33], a method of representing a shape in terms of multi-interval valued type data is proposed. The proposed shape
representation scheme extracts symbolic features with reference to the axis of least inertia, which is unique to the shape.
The axis of least inertia (ALI) of a shape is de�ned as the line for which the integral of the square of the distances to
points on the shape boundary is a minimum (cf. Subsection 1.2.2).
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Once the ALI is calculated, each point on the shape curve is projected on to ALI. The two farthest projected points
say E1 and E2 on ALI are chosen as the extreme points as shown in Figure 24. The Euclidean distance between these
two extreme points de�nes the length of ALI. The length of ALI is divided uniformly by a �xed number n; the equidistant
points are called feature points. At every feature point chosen, an imaginary line perpendicular to the ALI is drawn. It
is interesting to note that these perpendicular lines may intersect the shape curve at several points. The length of each
imaginary line in shape region is computed and the collection of these lengths in an ascending order de�nes the value of
the feature at the respective feature point.

Figure 24: Symbolic features based axis of least inertia

Let S be a shape to be represented and n the number of feature points chosen on its ALI. Then the feature vector F
representing the shape S, is in general of the form F = [f1 , f2 , ..., ft , ..., fn ], where ft = {dt1 , dt2 , · · · dtk} for some tk ≥ 1.

The feature vector F representing the shape S is invariant to image transformations viz., uniform scaling, rotation,
translation and �ipping (re�ection).

5.7 Beam angle statistics

Beam angle statistics (BAS) shape descriptor is based on the beams originated from a boundary point, which are de�ned
as lines connecting that point with the rest of the points on the boundary [34].

Let B be the shape boundary. B = {P1, P2, · · · , PN} is represented by a connected sequence of points, Pi =
(xi, yi), i = 1, 2, · · · , N, where N is the number of boundary points. For each point Pi, the beam angle between the

forward beam vector Vi+k =
−−−−→
PiPi+k and backward beam vector Vi−k =

−−−−→
PiPi−k in the k th order neighborhood system, is

then computed as (see Figure 25, k=5 for example)

Ck(i) = (θVi+k − θVi−k )

where θVi+k = arctan
yi+k − yi
xi+k − xi

, θVi−k = arctan
yi−k − yi
xi−k − xi

Figure 25: Beam angle at the neighborhood system 5 for a boundary point
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(a) Original contour; (b) noisy contour; (c), (d) and (e) are the BAS plot 1st, 2nd and 3rd moment, respectively.

Figure 26: The BAS descriptor for original and noisy contour

For each boundary point Pi of the contour, the beam angle Ck(i) can be taken as a random variable with the
probability density function P (Ck(i)). Therefore, beam angle statistics (BAS), may provide a compact representation
for a shape descriptor. For this purpose, mth moment of the random variable Ck(i) is de�ned as follows:

E[Cm(i)] =

(N/2)−1∑
k=1

Cmk (i) · Pk(Ck(i)) m = 1, 2, · · ·

In the above formula E indicates the expected value. See Figure 26 as an example.

Beam angle statistics shape descriptor captures the perceptual information using the statistical information based
on the beams of individual points. It gives globally discriminative features to each boundary point by using all other
boundary points. BAS descriptor is also quite stable under distortions and is invariant to translation, rotation and
scaling.

5.8 Shape matrix

Shape matrix descriptor is an M × N matrix to present a region shape. There are two basic modes of shape matrix:
Square model [35] and Polar model [36].

5.8.1 Square model shape matrix

Square model of shape matrix, also called grid descriptor [37, 35], is constructed by the following: for the shape S,
construct a square centered on the center of gravity G of S ; the size of each side is equal to 2L, L is the maximum
Euclidean distance from G to a point M on the boundary of the shape. Point M lies in the center of one side and GM
is perpendicular to this side.

Divide the square into N × N subsquares and denote Skj , k, j = 1, · · · , N , the subsquares of the constructed grid.
De�ne the shape matrix SM = [Bkj ],

Bkj =

{
1⇔ µ(Skj ∩ S) ≥ µ(Skj)/2

0 otherwise

where µ(F ) is the area of the planar region F. Figure 27 shows an example of square model of shape matrix.
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(a) Original shape region; (b) square model shape matrix; (c) reconstruction of the shape region.

Figure 27: Square model shape matrix

For a shape with more than one maximum radius, it can be described by several shape matrices and the similarity
distance is the minimum distance between these matrices. In [35], authors gave a method to choose the appropriate
shape matrix dimension.

5.8.2 Polar model shape matrix

Polar model of shape matrix is constructed by the following steps. Let G be the center of gravity of the shape, and GA
is the maximum radius of the shape. Using G as center, draw n circles with radii equally spaced. Starting from GA, and
counterclockwise, draw radii that divide each circle into m equal arcs. The values of the matrix are same as in square
model shape matrix. Figure 28 shows an example, where n = 5 and m =12. Its polar model of shape matrix is

PSM =


1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 0 1 1 1
1 0 0 0 0 1 1 0 0 0 0 1
1 0 0 0 0 1 1 0 0 0 0 0



Figure 28: Polar model shape

Polar model of shape matrix is simpler than square model because it only uses one matrix no matter how many
maximum radii are on the shape. However, since the sampling density is not constant with the polar sampling raster, a
weighed shape matrix is necessary. For the detail, refer to [36].

The shape matrix exists for every compact shape. There is no limit to the scope of the shapes that the shape matrix
can represent. It can describe even shapes with holes. Shape matrix is also invariant under translation, rotation and
scaling of the object. The shape of the object can be reconstructed from the shape matrix; the accuracy is given by the
size of the grid cells.

5.9 Shape context

In [38], the shape context has been shown to be a powerful tool for object recognition tasks. It is used to �nd corresponding
features between model and image.
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Shape contexts analysis begins by taking N samples from the edge elements on the shape. These points can be on
internal or external contours. Consider the vectors originating from a point to all other sample points on the shape.
These vectors express the appearance of the entire shape relative to the reference point. This descriptor is the histogram
of the relative polar coordinates of all other points:

hi(k) = ] {Q 6= Pi : (Q− Pi) ∈ bin(k)}

An example is shown in Figure 29. (c) is the diagram of log-polar histogram that has 5 bins for the polar direction and
12 bins for the angular direction. The histogram of a point Pi is formed by the following: putting the center of the
histogram bins diagram on the point Pi, each bin of this histogram contains a count of all other sample points on the
shape falling into that bin. Note on this �gure, the shape contexts (histograms) for the points marked by ◦ (in (a)), � (in
(b)) and / (in (a)) are shown in (d), (e) and (f), respectively. It is clear that the shape contexts for the points marked
by ◦ and �, which are computed for relatively similar points on the two shapes, have visual similarity. By contrast, the
shape context for / is quite di�erent from the others. Obviously, this descriptor is a rich description, since as N gets
large, the representation of the shape becomes exact.

(a) and (b) Sampled edge points of two shapes; (c) diagram of log-polar histogram bins used in computing the shape
contexts; (d), (e) and (f) shape contexts for reference sample points marked by ◦, � and / in (a) and (b), respectively.
(Dark=large value).

Figure 29: Shape context computation and graph matching

Shape context matching is often used to �nd the corresponding points on two shapes. It has been applied to a variety
of object recognition problems [38, 39, 40, 41]. The shape context descriptor has the following invariance properties:

� translation: the shape context descriptor is inherently translation invariant as it is based on relative point locations.

� scaling: for clutter-free images the descriptor can be made scale invariant by normalizing the radial distances by
the mean (or median) distance between all point pairs.

� rotation: it can be made rotation invariant by rotating the coordinate system at each point so that the positive
x-axis is aligned with the tangent vector.

� shape variation: the shape context is robust against slight shape variations.

� few outliers: points with a �nal matching cost larger than a threshold value are classi�ed as outliers. Additional
`dummy' points are introduced to decrease the e�ects of outliers.

5.10 Chord distribution

The basic idea of chord distribution is to calculate the lengths of all chords in the shape (all pair-wise distances between
boundary points) and to build a histogram of their lengths and orientations [42]. The �lengths� histogram is invariant
to rotation and scales linearly with the size of the object. The �angles� histogram is invariant to object size and shifts
relative to object rotation. Figure 30 gives an example of chord distribution.
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(a) Original contour; (b) chord lengths histogram; (c) chord angles histogram (each stem covers 3 degrees).

Figure 30: Chord distribution

5.11 Shock graphs

Shock graphs is a descriptor based on the medial axis. The medial axis is the most popular that has been proposed as
a useful shape abstraction tool for the representation and modeling of animate shapes. Skeleton and medial axes have
been extensively used for characterizing objects satisfactorily using structures that are composed of line or arc patterns.
Medial axis is an image processing operation which reduces input shapes to axial stick-like representations. It is as the
loci of centers of bi-tangent circles that �t entirely within the foreground region being considered. Figure 31 illustrates
the medial axis for a rectangular shape.

Figure 31: Medial axis of a rectangle de�ned in terms of bi-tangent circles

We notice that the radius of each circle is variable. This variable is a function of the loci of points on the medial
axis. We call this function as the radius function.

A shock graph is a shape abstraction that decomposes a shape into a set of hierarchically organized primitive parts.
Siddiqi and Kimia de�ne the concept of a shock graph [43] as an abstraction of the medial axis of a shape onto a directed
acyclic graph (DAG). Shock segments are curve segments of the medial axis with monotonic �ow, and give a more re�ned
partition of the medial axis segments. Figure 32 is for example.

Figure 32: Shock segments

The skeleton points are �rst labeled according to the local variation of the radius function at each point. Shock graph
can distinguish the shapes but the medial axis cannot. Figure 33 shows two examples of shapes and their shock graphs.

Figure 33: Examples of shapes and their shock graphs
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To calculate the distance between two shock graphs, in [44], the authors employ a polynomial-time edit-distance
algorithm. It shows this algorithm has the good performances for boundary perturbations, articulation and deformation
of parts, segmentation errors, scale variations, viewpoint variations and partial occultation. However the authors also
indicate the computation complexity is very high. The matching shape typically takes about 3-5 minutes on an SGI
Indigo II (195 MHz), which limits the number of shapes that can be practically matched.

5.12 Discussions

Spacial feature descriptor is a direct method to describe a shape. These descriptors can apply the theory of tree-based
(Adaptive grid resolution and Convex hull), statistic (Chain code histogram, Beam angle statistics, Shape context and
Chord distribution) or syntactic analysis (Smooth curve decomposition) to extract or represent the feature of a shape.
This description scheme not only compresses the data of a shape, but also provides a compact and meaningful form to
facilitate further recognition operations.

6 Moments

The concept of moment in mathematics evolved from the concept of moment in physics. It is an integrated theory
system. For both contour and region of a shape, one can use moment's theory to analyze the object.

6.1 Boundary moments

Boundary moments, analysis of a contour, can be used to reduce the dimension of boundary representation [28]. Assume
shape boundary has been represented as a 1-D shape representation z(i) as introduced in Section 3, the r th moment mr

and central moment µr can be estimated as

mr =
1

N

N∑
i=1

[z(i)]r and µr =
1

N

N∑
i=1

[z(i)−m1]r

where N is the number of boundary points.
The normalized moments m̄r = mr/(µ2)r/2and µ̄r = µr/(µ2)r/2 are invariant to shape translation, rotation and

scaling. Less noise-sensitive shape descriptors can be obtained from

F1 =
(µ2)1/2

m1
, F2 =

µ3

(µ2)3/2
and F3 =

µ4

(µ2)2
,

The other boundary moments method treats the 1-D shape feature function z(i) as a random variable v and creates a
K bins histogram p(vi) from z(i). Then, the r th central moment is obtained by

µr =

K∑
i=1

(vi −m)r p(vi) and m =

K∑
i=1

vip(vi)

The advantage of boundary moment descriptors is that it is easy to implement. However, it is di�cult to associate higher
order moments with physical interpretation.

6.2 Region moments

Among the region-based descriptors, moments are very popular. These include invariant moments, Zernike moments,
Radial Chebyshev moments, etc.

The general form of a moment function mpq of order (p+ q) of a shape region can be given as:

mpq =
∑
x

∑
y

Ψpq(x, y)f(x, y) p, q = 0, 1, 2 · · ·

where Ψpq is known as the moment weighting kernel or the basis set ; f(x, y) is the shape region Eq. ??.

6.2.1 Invariant moments (IM)

Invariant moments (IM) are also called geometric moment invariants. Geometric moments, are the simplest of the
moment functions with basis Ψpq = xpyq, while complete, is not orthogonal [30]. Geometric moment function mpq of
order (p+ q) is given as:

mpq =
∑
x

∑
y

xpyqf(x, y) p, q = 0, 1, 2 · · ·

The geometric central moments, which are invariant to translation, are de�ned as:
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µpq =
∑
x

∑
y

(x− x̄)p (y − ȳ)q f(x, y) p, q = 0, 1, 2 · · ·

where x̄ = m10/m00 and ȳ = m01/m00

A set of 7 invariant moments (IM) are given by [30]:
φ1 = η20 + η02
φ2 = (η20 − η02)2 + 4η2

11

φ3 = (η30 − 3η12)2 + (3η21 − η03)2

φ4 = (η30 + η12)2 + (η21 + η03)2

φ5 = (η30 − 3η12)(η30 + η12)
[
(η30 + η12)2 − 3(η21 + η03)2

]
+ (3η21 − η03)(η21 + η03)

·
[
3(η30 + η12)2 − (η21 + η03)2

]
φ6 = (η20 − η02)

[
(η30 + η12)2 − (η21 + η03)2

]
+ 4η2

11(η30 + η12)(η21 + η03)
φ7 = (3η21 − η03)(η30 + η12)

[
(η30 + η12)2 − 3(η21 + η03)2

]
+ (3η12 − η03)(η21 + η03)

·
[
3(η30 + η12)2 − (η21 + η03)2

]
where ηpq = µpq/µ

γ
00 and γ = 1 + (p+ q)/2 for p+ q = 2, 3, · · ·

IM are computationally simple. Moreover, they are invariant to rotation, scaling and translation. However, they
have several drawbacks [45]:

� information redundancy: since the basis is not orthogonal, these moments su�er from a high degree of information
redundancy.

� noise sensitivity: higher-order moments are very sensitive to noise.

� large variation in the dynamic range of values: since the basis involves powers of p and q, the moments computed
have large variation in the dynamic range of values for di�erent orders. This may cause numerical instability when
the image size is large.

6.2.2 Algebraic moment invariants

The algebraic moment invariants are computed from the �rst m central moments and are given as the eigenvalues
of prede�ned matrices, M[j,k], whose elements are scaled factors of the central moments [46]. The algebraic moment
invariants can be constructed up to arbitrary order and are invariant to a�ne transformations. However, algebraic
moment invariants performed either very well or very poorly on the objects with di�erent con�guration of outlines.

6.2.3 Zernike moments (ZM)

Zernike Moments (ZM) are orthogonal moments [45]. The complex Zernike moments are derived from orthogonal Zernike
polynomials:

Vnm(x, y) = Vnm(r cos θ, sin θ) = Rnm(r) exp(jmθ)

where Rnm(r)is the orthogonal radial polynomial:

Rnm(r) =

(n−|m|)/2∑
s=0

(−1)s
(n− s)!

s!×
(
n−2s+|m|

2

)
!
(
n−2s−|m|

2

)
!
rn−2s

n = 0, 1, 2, · · · ; 0 ≤ |m| ≤ n; and n− |m| is even.
Zernike polynomials are a complete set of complex valued functions orthogonal over the unit disk, i.e., x2 + y2 ≤ 1.

The Zernike moment of order n with repetition m of shape region f(x, y) (Eq. ??) is given by:

Znm =
n+ 1

π

∑
r

∑
θ

f(r cos θ, r sin θ) ·Rnm(r) · exp(jmθ) r ≤ 1

Zernike moments (ZM) have the following advantages [47]:

� rotation invariance: the magnitudes of Zernike moments are invariant to rotation.

� robustness: they are robust to noise and minor variations in shape.

� expressiveness: since the basis is orthogonal, they have minimum information redundancy.

However, the computation of ZM (in general, continuous orthogonal moments) pose several problems:

� coordinate space normalization: the image coordinate space must be transformed to the domain where the orthog-
onal polynomial is de�ned (unit circle for the Zernike polynomial).
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� numerical approximation of continuous integrals: the continuous integrals must be approximated by discrete sum-
mations. This approximation not only leads to numerical errors in the computed moments, but also severely a�ects
the analytical properties such as rotational invariance and orthogonality.

� computational complexity: computational complexity of the radial Zernike polynomial increases as the order be-
comes large.

6.2.4 Radial Chebyshev moments (RCM)

The radial Chebyshev moment of order p and repetition q is de�ned as [48]:

Spq =
1

2πρ(p,m)

m−1∑
r=0

2π∑
θ=0

tp(r) · exp(−jqθ) · f(r, θ)

where tp(r) is the scaled orthogonal Chebyshev polynomials for an image of size N ×N :
t0(x) = 1
t1(x) = (2x−N + 1)/N

tp(x) =

(2p− 1)t1(x)tp−1(x)− (p− 1)

{
1− (p− 1)2

N2

}
tp−2(x)

p
, p > 1

ρ(p,N) is the squared-norm:

ρ(p,N) =

N

(
1− 1

N2

)(
1− 22

N2

)
· · ·
(

1− p2

N2

)
2p+ 1

p = 0, 1, · · · , N − 1

and m = (N/2) + 1.
The mapping between (r, θ) and image coordinates (x, y) is given by:

x =
rN

2(m− 1)
cos(θ) +

N

2

y =
rN

2(m− 1)
sin(θ) +

N

2

Compared to Chebyshev moments, radial Chebyshev moments possess rotational invariance property.

6.3 Discussions

Besides the previous moments, there are other moments for shape representation, for example, homocentric polar-radius
moment [49], orthogonal Fourier-Mellin moments (OFMMs) [50], pseudo-Zernike Moments [51], etc. The study shows
that the moment-based shape descriptors are usually concise, robust and easy to compute. It is also invariant to scaling,
rotation and translation of the object. However, because of their global nature, the disadvantage of moment-based
methods is that it is di�cult to correlate high order moments with a shape's salient features.

7 Scale space approaches

In scale space theory a curve is embedded into a continuous family {Γσ : σ ≥ 0} of gradually simpli�ed versions. The
main idea of scale spaces is that the original curve Γ = Γ0 should get more and more simpli�ed, and so small structures
should vanish as parameter σ increases. Thus due to di�erent scales (values of σ), it is possible to separate small details
from relevant shape properties. The ordered sequence {Γσ : σ ≥ 0} is referred to as evolution of Γ. Scale-spaces �nd
wide application in computer vision, in particular, due to smoothing and elimination of small details.

A lot of shape features can be analyzed in scale-space theory to get more information about shapes. Here we
introduced 2 scale-space approaches: curvature scale-space (CSS) and intersection points map (IPM).

7.1 Curvature scale-space

The curvature scale-space (CSS) method, proposed by F. Mokhtarian in 1988, was selected as a contour shape descriptor
for MPEG-7. This approach is based on multi-scale representation and curvature to represent planar curves. For
convenience, we copy the nature parametrization equation (Eq. ??) as following:

Γ(µ) = (x(µ), y(µ)) (15)

An evolved version of that curve is de�ned by

Γσ(µ) = (X(µ, σ), Y (µ, σ))
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where X(µ, σ) = x(µ)∗g(µ, σ) and Y (µ, σ) = y(µ)∗g(µ, σ), ∗ is the convolution operator, and g(µ, σ) denotes a Gaussian
�lter with standard deviation σ de�ned by

g(µ, σ) =
1

σ
√

2π
exp(

−µ2

2σ2
)

Functions X(µ, σ) and Y (µ, σ) are given explicitly by

X(µ, σ) =

ˆ ∞
−∞

x(v)
1

σ
√

2π
exp(

−(µ− v)2

2σ2
)dv

Y (µ, σ) =

ˆ ∞
−∞

y(v)
1

σ
√

2π
exp(

−(µ− v)2

2σ2
)dv

The curvature of is given by

k(µ, σ) =
Xµ(µ, σ)Yµµ(µ, σ)−Xµµ(µ, σ)Yµ(µ, σ)

(Xµ(µ, σ)2 − Yµ(µ, σ)2)3/2

where

Xµ(µ, σ) =
∂

∂µ
(x(µ) ∗ g(µ, σ)) = x(µ) ∗ gµ(µ, σ)

Xµµ(µ, σ) =
∂2

∂µ2
(x(µ) ∗ g(µ, σ)) = x(µ) ∗ gµµ(µ, σ)

Yµ(µ, σ) =
∂

∂µ
(y(µ) ∗ g(µ, σ)) = y(µ) ∗ gµ(µ, σ)

Yµµ(µ, σ) =
∂2

∂µ2
(y(µ) ∗ g(µ, σ)) = y(µ) ∗ gµµ(µ, σ)

Note that σ is also referred to as a scale parameter. The process of generating evolved versions of Γσ as σ increases
from 0 to ∞ is referred to as the evolution of Γσ. This technique is suitable for removing noise and smoothing a planar
curve as well as gradual simpli�cation of a shape.

The function de�ned by k(µ, σ) = 0 is the CSS image of Γ. Figure 34 is a CSS image examples.

(a)

(b)

(a) Evolution of Africa: from left to right σ = 0(original), σ = 4, σ = 8 and σ = 16, respectively; (b) CSS image of
Africa.

Figure 34: Curvature scale-space image

The representation of CSS is the maxima of CSS contour of an image. Many methods for representing the maxima
of CSS exist in the literatures [52, 53, 19] and the CSS technique has been shown to be robust contour-based shape
representation technique. The basic properties of the CSS representation are as follows:

� it captures the main features of a shape, enabling similarity-based retrieval;
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� it is robust to noise, changes in scale and orientation of objects;

� it is compact, reliable and fast;

� It retains the local information of a shape. Every concavity or convexity on the shape has its own corresponding
contour on the CSS image.

Although CSS has a lot of advantages, it does not always give results in accordance with human vision system. The main
drawbacks of this description are due to the problem of shallow concavities/convexities on a shape. It can be shown
that the shallow and deep concavities/convexities may create the same large contours on the CSS image. In [54, 55], the
authors gave some methods to alleviate these e�ects.

7.2 Intersection points map

Similarly to the CSS, many methods also use a Gaussian kernel to progressively smooth the curve relatively to the
varying bandwidth. In [56], the authors proposed a new algorithm, intersection points map (IPM), based on this
principle, instead of characterizing the curve with its curvature involving 2nd order derivatives, it uses the intersection
points between the smoothed curve and the original. As the standard deviation of the Gaussian kernel increases, the
number of the intersection points decreases. By analyzing these remaining points, features for a pattern can be de�ned.
Since this method deals only with curve smoothing, it needs only the convolution operation in the smoothing process.
So this method is faster than the CSS one with equivalent performances. Figure 35 is an example of IPM.

(a) An original contour; (b) an IPM image in the (u, σ) plane. The IPM points indicated by (1)�(6) refer to the
corresponding intersection points in (a).

Figure 35: Example of the IPM

The IPM pattern can be identi�ed regardless of its orientation, translation and scale change. It is also resistant to
noise for a range of noise energy. The main weakness of this approach is that it fails to handle occulted contours and
those having undergone a non-rigid deformation.

7.3 Discussions

As multi-resolution analysis in signal processing, scale-space theory can obtain abundant information about a contour
with di�erent scales. In scale-space, global pattern information can be interpreted from higher scales, while detailed
pattern information can be interpreted from lower scales. Scale-space algorithm bene�t from the boundary information
redundancy in the new image, making it less sensitive to errors in the alignment or contour extraction algorithms. The
great advantages are the high robustness to noise and the great coherence with human perception.

8 Shape transform domains

The transform domain class includes methods which are formed by the transform of the detected object or the transform
of the whole image. Transforms can therefore be used to characterize the appearance of images. The shape feature is
represented by the all or partial coe�cients of a transform.

8.1 Fourier descriptors

Although, Fourier descriptor (FD) is a 40-year-old technique, it is still considered as a valid description tool. The shape
description and classi�cation using FD either in contours or regions are simple to compute, robust to noise and compact.
It has many applications in di�erent areas.
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8.1.1 One-dimensional Fourier descriptors

In general, Fourier descriptor (FD) is obtained by applying Fourier transform on a shape signature that is a one-
dimensional function which is derived from shape boundary coordinates (cf. Section 3). The normalized Fourier trans-
formed coe�cients are called the Fourier descriptor of the shape. FD derived from di�erent signatures has signi�cant
di�erent performance on shape retrieval. As shown in [10, 53], FD derived from centroid distance function r(t) outper-
forms FD derived from other shape signatures in terms of overall performance. The discrete Fourier transform of r(t) is
then given by

an =
1

N

N−1∑
t=0

r(t)exp

(
−j2πnt
N

)
, n = 0, 1, · · · , N − 1

Since the centroid distance function r(t) is only invariant to rotation and translation, the acquired Fourier coe�cients
have to be further normalized so that they are scaling and start point independent shape descriptors. From Fourier
transform theory, the general form of the Fourier coe�cients of a contour centroid distance function r(t) transformed
through scaling and change of start point from the original function r(t)(o) is given by

an = exp(jnτ) · s · a(o)
n

where an and a
(o)
n are the Fourier coe�cients of the transformed shape and the original shape, respectively, τ is the

angles incurred by the change of start point; s is the scale factor. Now considering the following expression:

bn =
an
a1

=
exp(jnτ) · s · a(o)

n

exp(jτ) · s · a(o)
1

=
a
(o)
n

a
(o)
1

exp[j(n− 1)τ ] = b(o)n exp[j(n− 1)τ ]

where bn and b
(o)
n are the normalized Fourier coe�cients of the transformed shape and the original shape, respectively.

If we ignore the phase information and only use magnitude of the coe�cients, then |bn| and
∣∣∣b(o)n ∣∣∣ are the same. In other

words, |bn| is invariant to translation, rotation, scaling and change of start point.
The set of magnitudes of the normalized Fourier coe�cients of the shape {|bn| , 0 < n < N} are used as shape

descriptors, denoted as
{FDn, 0 < n < N} .

One-dimensional FD has several nice characteristics such as simple derivation, simple normalization and simple to
do matching. As indicated by [53], for e�cient retrieval, 10 FDs are su�cient for shape description.

8.1.2 Region-based Fourier descriptor

The region-based FD is referred to as generic FD (GFD), which can be used for general applications. Basically, GFD is
derived by applying a modi�ed polar Fourier transform (MPFT) on shape image [57, 12]. In order to apply MPFT, the
polar shape image is treated as a normal rectangular image. The steps are

1. the approximated normalized image is rotated counter clockwise by an angular step su�ciently small.

2. the pixel values along positive x-direction starting from the image center are copied and pasted into a new matrix
as row elements.

3. the steps 1 and 2 are repeated until the image is rotated by 360°.

The result of these steps is that an image in polar space plots into Cartesian space.
Figure 36 shows the polar shape image turning into normal rectangular image.

(a) (b)

(a) Original shape image in polar space; (b) polar image of (a) plotted into Cartesian space.

Figure 36: The polar shape image turns into normal rectangular image.
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The Fourier transform is acquired by applying a discrete 2D Fourier transform on this shape image.

pf(ρ, φ) =
∑
r

∑
i

f(r, θi)exp[j2π(
r

R
ρ+

2πi

T
φ)]

where 0 ≤ r =
√

[(x− gx)2 + (y − gy)2] < R, and θi = i(2π/T ); 0 ≤ ρ < R, 0 ≤ φ < T . (gx, gy) is the center of mass of
the shape; R and T are the radial and angular resolutions. The acquired Fourier coe�cients are translation invariant.
Rotation and scaling invariance are achieved by the following:

GFD =

{
|pf(0, 0)|
area

,
|pf(0, 1)|
|pf(0, 0)| , · · · ,

|pf(0, n)|
|pf(0, 0)| , · · · ,

|pf(m, 0)|
|pf(0, 0)| , · · · ,

|pf(m,n)|
|pf(0, 0)|

}
where area is the area of the bounding circle in which the polar image resides. m is the maximum number of the radial
frequencies selected and n is the maximum number of angular frequencies selected. m and n can be adjusted to achieve
hierarchical coarse to �ne representation requirement.

For e�cient shape description, in the implementation of [57], 36 GFD features re�ecting m = 4 and n = 9 are selected
to index the shape. The experimental results have shown GFD as invariant to translation, rotation, and scaling. For
obtaining the a�ne and general minor distortions invariance, in [57], the authors proposed Enhanced Generic Fourier
Descriptor (EGFD) to improve the GFD properties.

8.2 Wavelet transform

A hierarchical planar curve descriptor is developed by using the wavelet transform [58]. This descriptor decomposes a
curve into components of di�erent scales so that the coarsest scale components carry the global approximation information
while the �ner scale components contain the local detailed information. The wavelet descriptor has many desirable
properties such as multi-resolution representation, invariance, uniqueness, stability, and spatial localization. In [59], the
authors use dyadic wavelet transform deriving an a�ne invariant function. In [60], a descriptor is obtained by applying
the Fourier transform along the axis of polar angle and the wavelet transform along the axis of radius. This feature is
also invariant to translation, rotation, and scaling. At same time, the matching process of wavelet descriptor can be
accomplished cheaply.

8.3 Angular radial transformation

The angular radial transformation (ART) is based in a polar coordinate system where the sinusoidal basis functions are
de�ned on a unit disc. Given an image function in polar coordinates, f(ρ, θ), an ART coe�cient Fnm (radial order n,
angular order m) can be de�ned as [61]:

Fnm =

ˆ 2π

0

ˆ 1

0

Vnm(ρ, θ)f(ρ, θ)ρdρdθ

Vnm(ρ, θ) is the ART basis function and is separable in the angular and radial directions so that:

Vnm(ρ, θ) = Am(θ)Rn(ρ)

The angular basis function, Am, is an exponential function used to obtain orientation invariance. This function is de�ned
as:

Am(θ) =
1

2π
ejmθ

Rn, the radial basis function, is de�ned as:

Rn(ρ) =

{
1 if n = 0

2 cos(πnρ) if n 6= 0

In MPEG-7, twelve angular and three radial functions are used (n < 3,m < 12). Real parts of the 2-D basis functions
are shown in Figure 37.

Figure 37: Real parts of the ART basis functions
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For scale normalization, the ART coe�cients are divided by the magnitude of ART coe�cient of order n = 0,m = 0.
MPEG-7 standardization process showed the e�ciency of 2-D angular radial transformation. This descriptor is robust

to translations, scaling, multi-representation (remeshing, weak distortions) and noises.

8.4 Shape signature harmonic embedding

A harmonic function is obtained by a convolution between the Poisson kernel PR(r, θ) and a given boundary function
u(Rejφ). Poisson kernel is de�ned by

PR(r, θ) =
R2 − r2

R2 − 2Rr cos(θ) + r2

The boundary function could be any real- or complex-valued function, but here we choose shape signature functions
for the purpose of shape representation. For any shape signature s[n], n = 0, 1, · · · , N − 1, the boundary values for a
unit disk can be set as

u(Rejφ) = u(Rejω0n) = s[n]

where ω0 = 2π/N , φ = ω0n.
So the harmonic function u can be written as

u(rejθ) =
1

2π

ˆ 2π

0

u(Rejφ)PR(r, φ− θ)dφ (16)

The Poisson kernel PR(r, θ) has a low-pass �lter characteristic, where the radius r is inversely related to the bandwidth
of the �lter. The radius r is considered as scale parameter of a multi-scale representation [62]. Another important property
is PR(0, θ) = 1, indicating u(0) is the mean value of boundary function u(Rejφ).

In [62], the authors proposed a formulation of a discrete closed-form solution for the Poisson's integral formula Eq.
16, so that one can avoid the need for approximation or numerical calculation of the Poisson summation form.

As in Subsection 8.1.2, the harmonic function inside the disk can be mapped to a rectilinear space for a better
illustration. Figure 38 shows an example for a star shape. Here, we used curvature as the signature to provide boundary
values.

(a) Example shape; (b) harmonic function within the unit disk; (c) rectilinear mapping of the function.

Figure 38: Harmonic embedding of curvature signature

The zero-crossing image of the harmonic functions is extracted as shape feature. This shape descriptor is invariant
to translation, rotation and scaling. It is also robust to noise. Figure 39 is for example. The original curve is corrupted
with di�erent noise levels, and the harmonic embeddings show robustness to the noise.

(a) Original and noisy shapes; (b) harmonic embedding images for centroid distance signature.

Figure 39: centroid distance signature harmonic embedding that is robust to noisy boundaries

At same time, it is more e�cient than CSS descriptor. However, it is not suitable for similarity retrieval, because it
is unconsistent to non-rigid transform.
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8.5 <-Transform

The <-Transform to represent a shape is based on the Radon transform. The approach is presented as follow. We assume
that the function f is the domain of a shape, cf. Eq. ??. Its Radon transform is de�ned by:

TR(ρ, θ) =

ˆ ∞
−∞

ˆ ∞
−∞

f(x, y)δ(x cos θ + y sin θ − ρ)dxdy

where δ(.) is the Dirac delta-function:

δ(x) =

{
1 if x = 0

0 otherwise

θ ∈ [0, π] and ρ ∈ (−∞,∞). In other words, Radon transform TR(ρ, θ) is the integral of f over the line L(ρ,θ) de�ned
by ρ = x cos θ + y sin θ.

Figure 40 is an example of a shape and its Radon transform.

Figure 40: A shape and its Radon transform

The following transform is de�ned as <-transform:

<f (θ) =

ˆ ∞
−∞

T 2
R(ρ, θ)dρ

where TR(ρ, θ) is the Radon transform of the domain function f . In [63], the authors show the following properties of
<f (θ):

� periodicity: <f (θ ± π) = <f (θ)

� rotation: a rotation of the image by an angle θ0 implies a translation of the <-transform of θ0: <f (θ + θ0).

� translation: the <-transform is invariant under a translation of the shape f by a vector −→u = (x0, y0).

� scaling: a change of the scaling of the shape f induces a scaling in the amplitude only of the <-transform.

Given a large collection of shapes, one <-transform per shape is not e�cient to distinguish from the others because the
<-transform provides a highly compact shape representation. In this perspective, to improve the description, each shape
is projected in the Radon space for di�erent segmentation levels of the Chamfer distance transform. Chamfer distance
transform is introduced in [64, 65] (See Appendix A for detail).

Given the distance transform of a shape, the distance image is segmented into N equidistant levels to keep the
segmentation isotropic. For each distance level, pixels having a distance value superior to that level are selected and at
each level of segmentation, an <-transform is computed. In this manner, both the internal structure and the boundaries
of the shape are captured.

Since a rotation of the shape implies a corresponding shift of the <-transform. Therefore, a one-dimensional Fourier
transform is applied on this function to obtain the rotation invariance. After the discrete one-dimensional Fourier
transform F, <-transform descriptor vector is de�ned as follows:

RTD = (
F<1(

π

M
)

F<1(0)
, · · · ,

F<1(
iπ

M
)

F<1(0)
, · · · , F<

1(π)

F<1(0)
, · · · ,

F<N (
π

M
)

F<N (0)
, · · · ,

F<N (
iπ

M
)

F<N (0)
, · · · , F<

N (π)

F<N (0)
)

where i∈ [1,M ], M is the angular resolution. F<α is the magnitude of Fourier transform to <-transform. α ∈ [1, N ], is
the segmentation level of Chamfer distance transform.
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8.6 Shapelets descriptor

Shapelets descriptor was proposed to present a model for animate shapes and extracting meaningful parts of objects.
The model assumes that animate shapes (2D simple closed curves) are formed by a linear superposition of a number of
shape bases. A basis function ψ(s;µ, σ) is de�ned in [66]: µ ∈ [0, 1] indicates the location of the basis function relative to
the domain of the observed curve, and σ is the scale of the function ψ. Figure 41 shows the shape of the basis function
ψ at di�erent σ values. It displays variety with di�erent parameter and transforms.

Figure 41: Each shape base is a lobe-shaped curve

The basis functions are subject to a�ne transformations by a 2 Ö 2 matrix of basis coe�cients:

Ak =

[
ak bk
ck dk

]
The variables for describing a base are denoted by bk = (Ak, µk, σk) and are termed basis elements. The shapelet is
de�ned by

γ(s; bk) = Akψ(s;µk, σk)

Figure 41 (b,c,d) demonstrates shapelets obtained from the basis functions ψ by the a�ne transformations of rotation,
scaling, and shearing respectively, as indicated by the basis coe�cient Ak. By collecting all the shapelets at various µ,
σ, A and discretizing them at multiple levels, an over-complete dictionary is obtained

∆ = {γ(s; bk ) : ∀b; aγ0, a > 0} .

A special shapelet γ0 is de�ned as an ellipse.
Shapelets are the building blocks for shape contours, and they form closed curves by linear addition:

Γ(s) =

[
x0

y0

]
+

K∑
k=1

[
ak bk
ck dk

]
ψ(s;µk, σk) + n(s)

Here (x0, y0) is the centroid of the contour and n is residue.
A discrete representation B = (K,b1,b2, · · · ,bK), shown by the dots in second row of Figure 42, represents a shape.

B is called the �shape script� by analogy to music scripts, where each shapelet is represented by a dot in the (µ, σ)
domain. The horizontal axis is µ ∈ [0, 1] and the vertical axis is the σ. Large dots correspond to big coe�cient matrix

A2
k = a2

k + b2k + c2k + d2
k

Figure 42: Pursuit of shape bases for an eagle contour

Clearly, computing the shape script B is a non-trivial task, since ∆ is over-complete and there will be multiple sets
of bases that reconstruct the curve with equal precision. [66] gave some pursuit algorithms to use shapelets representing
a shape.
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8.7 Discussions

As a kind of global shape description technique, shape analysis in transform domains takes the whole shape as the
shape representation. The description scheme is designed for this representation. Unlike the spacial interrelation feature
analysis, shape transform projects a shape contour or region into an other domain to obtain some of its intrinsic features.
For shape description, there is always a trade-o� between accuracy and e�ciency. On one hand, shape should be described
as accurate as possible; on the other hand, shape description should be as compact as possible to simplify indexing and
retrieval. For a shape transform analysis algorithm, it is very �exible to accomplish a shape description with di�erent
accuracy and e�ciency by choosing the number of transform coe�cients.

9 Summary table

For convenience to compare these shape feature extraction approaches in this chapter, we summarize their properties in
Table 1.

Frankly speaking, it is not equitable to a�rm a property of an approach by rudely speaking �good� or �bad�. Because
certain approaches have great di�erent performances under di�erent conditions. For example, the method area function
is invariant with a�ne transform under the condition of the contours sampled at its same vertices; whereas it is not
robust to a�ne transform if the condition can't be contented. In addition, some approaches have good properties for
certain type shapes; however it is not for the others. For example, the method shapelets representation is especially
suitable for blobby objects, and it has shortcomings in representing elongated objects. So the simple evaluations in this
table are only as a reference. These evaluations are drawn by assuming that all the necessary conditions have been
contented for each approach.

10 Conclusion

In this chapter we made a study and a comparison the methods of shape-based feature extraction and representation.
About 40 techniques for extraction of shape features have been shortly described and compared. Unlike the traditional
classi�cation, the approaches of shape-based feature extraction and representation were classi�ed by their processing
approaches. These processing approaches included shape signatures, polygonal approximation methods, spatial inter-
relation feature, moments approaches, scale-space methods and shape transform domains: in such way, one can easily
select the appropriate processing approach. A synthetic table has been established for a fast and global comparison of
the performances of these approaches.

Extracting a shape feature in accordance with human perception is not an easy task. Due to the fact that human
vision and perception are an extraordinary complicated system, it is a utopia to hope that the machine vision has super
excellent performance with small complexity. In addition, choosing appropriate features for a shape recognition system
must consider what kinds of features are suitable for the task. There exists no general feature which would work best
for every kind of images.
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Curvature function  No Good Good Good Bad Bad Good Average Low 

Area function No Good Good Good Good Good Good Bad Low 

Triangle-area representation No Good Good Good Good Good Average Average Low 

Sh
ap

e 
si

gn
at

ur
es

 

Chord length function No Good Good Good Bad Bad Bad Bad Low 

Distance threshold No Good Good Good Bad Good Bad Bad Average 

Tunneling No Good Good Good Bad Good Bad Bad Average Merging 

Polygon evolution No Good Good Good Bad Good Bad Bad Average 

Po
ly

go
na

l 

ap
pr

ox
im

at
io

n 

Splitting  No Good Good Good Bad Good Bad Bad Average 

Adaptive grid resolution Yes Good Good Good Bad Good Good Bad Low 

Bounding box Yes Good Good Good Average Good Good Average Average 

Convex hull No Good Good Good Good Average Bad Bad High 

Basic chain code Yes Good Bad Bad Bad Bad Good Bad Low 

Vertex chain code  Yes Good Bad Bad Bad Bad Good Bad Low 
Chain 

code 
Statistic chain code No Good Bad Bad Bad Bad Bad Bad Low 

Smooth curve decomposition No Good Good Good Bad Good Good Average Average 

ALI-based representation No Good Good Good Average Good Average Bad Average 

Beam angle statistics No Good Good Good Bad Good Bad Bad Low 

Square model Yes Good Good Good Bad Bad Good Bad Average Shape 

matrix Polar model Yes Good Good Good Bad Bad Good Bad Low 

Shape context No Good Good Good Bad Bad Average Average Average 

Chord distribution No Good Good Good Bad Good Bad Bad Low 

Sp
ac

e 
in

te
rr

el
at

io
n 

Fe
at

ur
e 

Shock graphs Yes Good Good Good Good Good Good Good High 

Boundary moments No Good Good Good Bad Average Bad Bad Low 

Invariant moments No Good Good Good Bad Bad Bad Bad Average 

Algebraic Moment No Good Good Good Good Average Bad Bad Average 

Zernike Moments No Good Good Good Bad Good Average Average High M
om

en
ts

 

Region 

moments 
Radial Chebyshev 

Moments 
No Good Good Good Bad Good Average Average High 

Curvature scale space No Good Good Good Average Good Good Average Average 

Sc
al

e-
sp

ac
e 

m
et

ho
ds

 

Intersection points map No Good Good Good Average Good Good Bad Average 

1-D Fourier 

descriptor 
No Good Good Good Bad Bad Bad Bad Average 

Fourier 

descriptors Region-based 

Fourier descriptor 
No Good Good Good Good Good Average Average High 

Wavelet transform No Good Good Good Good Average Average Bad Average 

Angular radial transformation No Good Good Good Bad Good Bad Bad High 

Signature harmonic embedding No Good Good Good Average Good Average Bad High 

ℜ -Transform No Good Good Good Bad Good Average Average High 

Sh
ap

e 
tr

an
sf

or
m

 d
om

ai
ns

 

Shapelets descriptor No Good Good Good Bad Good Bad Bad High 

Table 1: Properties of shape feature extraction approaches 
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