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Abstract—The CALAS project consists in a laser measure
system allowing to localize precisely straddle carriers in a
container terminal. The information given by such a tool makes
an optimization possible. In fact, a box terminal is an open system
subject to dynamics, in which many events can occur. Among
others, they concern container arrivals and departures. Within
the terminal, straddle carriers are trucks which are able to carry
one container at a time in order to move it through the terminal.
We aim to optimize the straddle carrier handling in order to
improve the terminal management. Moreover, missions come into
the system in an unpredictable way and straddle carriers are
handled by humans. They can choose to follow the schedule or
not. For these reasons, the exact state of the system is unknown.
The optimization process that we try to build must be fail-safe
and adaptive. In this context, we propose an approach using
a meta-heuristic based on Ant Colony to resolve the problem
of assigning missions to straddle carriers. We built a simulator
which is able to test and to compare different scheduling policies.

Index Terms—swarm intelligence, colored ant colony system,
dynamic graph, multiple criteria optimization, vehicle routing
problem, container terminal.

I. SYSTEM DESCRIPTION

The CALAS project aims at localizing precisely handling

trucks on a box terminal. It uses a laser localizing system

and software which allows to deal with the data sent by laser

sensors. This project is the result of a collaboration between

Laser Data Technology Terminal company and the Terminaux

de Normandie company. The goal of the CALAS project is

to know the state of the terminal in real time, meaning both

containers and vehicles location.

A container terminal is divided into three main areas (see

Fig. 1). Each part is a set of box rows where containers can be

stacked up and these areas are linked by oriented roads. The

first area is the quayside. It is beside a channel where ships

can tie to the dockside. It is an area bound to prepare the ship

(un)loading. The second area, the landside, is used to load

or unload trucks and trains. The third part is a storing area

linking the two others. Containers are moved into this area

when a ship, a truck or a train is unloaded, and containers are
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moved from this area when a ship, a truck or a train is loaded.

Managing a box terminal involves three kinds of tasks:

• Preparing a ship (un)loading;

• Preparing a truck (or a train) (un)loading;

• Optimizing storing area.

In order to accomplish these tasks, containers are moved

from one position to another. Such moves are called missions.

Each mission is assigned to a straddle carrier.

Fig. 1. Terminal de Normandie, Le Havre, France1.

The container terminal is an open system subject to dynam-

ics. Though a subset of missions is known before starting the

schedule, new missions arise when the schedule has already

been established and its execution has started. Moreover,

trucks arriving time is not known precisely enough to forecast

container delivery. If a truck is late, the straddle carrier which

has to load or unload it, could be assigned to another mission

instead of staying idle and waiting for the truck. Human

behavior also affects the system because straddle carriers are

handled by human drivers who can choose to follow the

schedule or not.

II. RELATED WORK

In such a system, the turn around time of both vessels and

trucks/trains has to be as small as possible. Three different

ways have already been used to solve this real problem.

1source: http://www.t-n.fr/tn.htm



First, the analytical approach is based on a study of interre-

lated factors which have to be taken into account to improve

the efficiency of the system. In [1], an integrative decision

support system is described. It has been created by studying

inter-related decisions made daily in a container terminal. The

authors evaluated the system at a terminal in Hong Kong and

measured a reduction of 30% of the ships turn around time

and the costs of container handling have dropped by 35%.

The second approach is the simulation. It consists in build-

ing a simulator which is able to test several methods of

optimization. In [2], the authors have used both a genetic

algorithm and a neural network system for the regulation of

container yard operations. With 2 berths, 64 blocks, a planning

period of 24h and a forecast period of 3 days, their simulation

had shown a reduction of the total ship waiting time from 64h

to 46h. In [3], the authors tried to improve the performance of

the Rotterdam’s Maasvlakte port area in studying its design.

Their simulation gives information about quay length, storage

capacity and handling and transport equipment of the terminal.

Their results are useful for designing the next terminals.

The last approach is the multi-agent system (MAS).

Thurston and Hu [4] aimed at improving the performance of

the terminal by a dynamic and cooperative rescheduling of

quay cranes and straddle carriers. Here each part of the system

is considered as an autonomous agent able to take decisions

according to the information of its own environment. Henesey

et al. [5]–[8] have developed this idea. Their agents try to reach

their own goal by searching, coordinating, communicating,

and negotiating with other agents. They take their decisions

according to a market based mechanism. Like in an auction,

they bid for winning a task. Their system allows to test several

policies of berthing, stacking or sequencing. They figured out

that good decisions about stacking and berth allocation impact

positively on the vessel turn around time.

According to these last conclusions, it appears that optimiz-

ing the performance of a container terminal means handling

the vehicles’ moves and their missions allocation. In this

context, we deal with a vehicle routing problem.

III. VEHICLE ROUTING PROBLEMS

Vehicle routing problems (VRP) are largely studied and

represent practical interest since they appear in many industrial

processes. In general, VRP can be formulated as follows.

One or many vehicles must start from a depot, visit a set

of customers, delivering (or picking-up) some goods, and

come back to the depot. The aim is to minimize the vehicles’

routes. Many different subproblems belong to the VRP class,

such as Capacitated Vehicle Routing Problem (CVRP) or

Vehicle Routing Problem with Pickup and Delivery (VRPPD)

for instance. Every subproblem contains a little variation of

the main one, for example, there can be many depots, or

vehicles must respect time windows... We distinguish static

and dynamic instances of these problems because the methods

to solve them are different.

A. Vehicle Routing Problem with Time Windows (VRPTW)

The Vehicle Routing Problem with Time Windows [9]

(VRPTW) consists in visiting a set of cities by a set of

capacitated vehicles, optimizing overall path length. For

instance, an Italian factory produces toys. It has to deliver

a set of stores spread all over the country and goods are

carried by trucks. Trucks capacity is restricted and they all

start from the factory depot. Deliveries can only be done

during a defined time interval. If a truck comes too early, it

will have to wait. A solution to this problem should minimize

the global length of the trucks runs.

The Dynamic VRPTW (DVRPTW) includes dynamics of

the new orders. For the above example, if the stores can ask

for deliveries when an already scheduled plan is running, then

this problem belongs to DVRPTW class.

B. Pickup and Delivery Problem (PDP)

According to [10], PDP contains three subclasses:

1) Many to Many Pickup and Delivery Problems (M-

MPDP) : Here, the vehicles have to pickup many objects to

many locations. This kind of problem still relatively neglected

because it is not frequently present in real situations.

2) One to Many to One Pickup and Delivery Problems

(1-M-1PDP) : In this class, there are two different directions

for the goods. They are first delivered to the customer. When

the customer has done with them, he will ask for bringing

back the goods to the depot. These problems may be with

single or combined demands. In the first case, each customer

asks either for a delivery or a pickup. With combined

demands, the same customer can ask for both a delivery and

a pickup.

3) One to One Pickup and Delivery Problems (1-1PDP) :

This is the main subclass of Pickup and Delivery Problem,

meaning the most frequently encountered problem in real

life. It deals with picking-up one object at one location

and delivering it to one destination. The main problem of

this class is the Vehicle Routing Problem with Pickup and

Delivery (VRPPD). In this problem, we have to compute the

best routes for a fleet of vehicles in order to move objects

on a graph. Every route has to start and to end at the depot.

The difference to a 1-M-1PDP is that here, each object has

its own pickup and delivery location.

When the problem deals with people, it is called Dial-

A-Ride Problem (DARP). Some particular cases of VRPPD

problems like the Stacker Crane Problem (SCP) are also

common in practical life. This is a single vehicle with

unit capacity problem. In another subproblem, vehicles are

allowed to temporarily drop their loads on specials locations

called transshipment points to be able to answer customers

demands faster. This is called Vehicle Routing Problem with

Pickup, Delivery and Transshipment.

When some requests are not known in advance the

above static problems may become dynamic. Those Dynamic

Pickup and Delivery Problems [11]–[13] (DPDP or DVRPPD)



consist in optimizing vehicles routes in order to pickup a

load somewhere, then to deliver it to its destination, adapting

these routes to the new incoming orders without recomputing

from scratch. Most of the time, DVRPPD has to handle time

windows (DVRPPDTW). Indeed, to start a mission, vehicles

have to wait the beginning of its time window. If it is not

respected, the vehicle will have to wait for the right time and,

meanwhile this vehicle becomes useless.

As we have just seen, the Vehicle Routing Problem class

contains a lot of different subproblems. It becomes very

important to exactly identify our own problem.

C. Identification of our problem

In our problem [14], several vehicles (straddle carriers)

of unit capacity must accomplish missions (by moving

containers within the container terminal). They can also use

transshipment location to make the tasks more efficient. A

very specific aspect of our system is that the straddle carriers

can start from anywhere, i.e. they do not have to start from

the depot. Moreover, every mission has a time window in

which the container must be delivered. If a vehicle comes

too early for picking up or delivering a container, it will

have to wait the beginning of the missions time window.

Furthermore, if a straddle carrier is late, meaning its time

window is already closed, in some cases, the mission must

be aborted and a new one dealing with the same container

will appear into the system.

For all these reasons, our problem belongs to the Dynamic

Vehicle Routing Problem with Pickup and Delivery and Time

Windows (DVRPPD-TW).

Three interconnected problems must be solved:

• Minimize straddle carriers moves: shortest path problem

• Minimize resources: clustering problem

• Minimize customers delays: scheduling problem

In order to construct a good schedule, the system must

integrate the shortest path concept. In the same time, schedul-

ing shortest paths tends to reduce straddle carriers moves.

Moreover, we have to define a quality of service level to satisfy

customers while lowering operation costs. This is a dynamic

large scale problem which requires a real time solution. We

propose an on-line algorithm based on Ant Colony Optimiza-

tion [15], [16] and more precisely on a colored version of this

swarm algorithm [17].

IV. ANT COLONY AND STRADDLE CARRIER HANDLING

Ant Colony [15], [16] is a meta-heuristic which makes a

solution appear thanks to the run of artificial ants into the

solution space. The system is self-regulated. In fact, ants

spread pheromone according to the solution quality (positive

feedback) but the pheromone tracks evaporate progressively

(negative feedback). The positive feedback makes the algo-

rithm converge to a quality solution, and the negative feedback

prevents it to trap into a local extremum.

Ant Colony with one colony provides a sorted list of

missions to accomplish [18]–[20]. The problem is to set a

mission to a specific straddle carrier.

We propose to employ a solution using colored ants [17].

In our model, every straddle carrier represents a colony with

its own color. Convergence is assured by the fact that ants are

attracted by the pheromone of their own colony and repulsed

by the pheromones of foreign colonies. This approach simu-

lates a mechanism of collaboration and competition between

colonies and will provide a sorted list of missions for each

straddle carrier.

A. Modelling

1) Graph construction: Our algorithm uses a graph

representation of the problem. In this oriented graph, every

vertex represents a mission. We first build a precedence

graph. We say that a mission is prior to another if its time

window starts before the one of the other mission. Once this

precedence graph has been built, a colored node is added to

the graph for each straddle carrier. Those vertices are linked

to every compatible mission by an arc of the same color. Next,

the arcs added during the precedence graph construction are

colored according to the compatibility between the straddle

carrier and the missions. In fact, if two missions, linked by an

arc in the precedence graph, match with the straddle carrier

of color c, then we color the edge between them with the

color c. If there is already a colored arc between these two

nodes, then instead of changing the color of this arc, we add

a new one colored with the color c. At the end, if uncolored

arcs remain, they are removed from the graph. So we obtain a

multi-graph allowing to run our colored ant colony algorithm.

• Straddle Carriers:

Name Color

s0 green

s1 blue

• Missions:

Name Start End Matching vehicles

m0 5:00 6:00 s0, s1

m1 5:30 6:00 s0

m2 7:00 9:00 s0

m3 6:00 7:30 s0, s1

Fig. 2. Example of a simple instance of our problem

2) Example: Consider a simple instance of our problem

where two straddle carriers have to execute four missions.

The compatibility between these vehicles and the missions

are as in Fig. 2. So we first build the precedence graph (see

Fig. 3). Then we add the straddle carriers nodes (see Fig.

4). Finally we color the arcs as described above. The Fig. 5

shows the multi-graph obtained using this procedure.



Fig. 3. Precedence graph of the problem described in 2

Fig. 4. The vehicles nodes are added to the precedence graph

Fig. 5. Mission graph for 2 straddle carriers and 4 missions

3) Arcs weighting: We introduce arc weights which influ-

ence the ants when moving in the graph. The weight of an

arc measures how efficient it is to assign the two missions

connected by the arc to the same carrier. This part of our model

provides flexibility and allows to test different weighting

policies.

Our policy takes into account both the cost of the mission

execution and the time windows proximity. Indeed, if two

missions have time windows which are too close, and if they

are assigned to the same straddle carrier, then the execution

of the first mission will cause the overrunning of the time

window of the second mission. It is really important to

prevent these phenomena by modelling the linking penalty.

We also define a concept of priority. The more the end of

the time window is close, the more the priority is high. The

weighting function of the arcs takes into account also the

distance between the delivery location of the first mission

and the pickup location of the second one.

B. Colored Ant Colony Algorithm

In this algorithm, each straddle carrier has a corresponding

colony of the same color. Each colony starts from the node

representing its straddle carrier. Then, the ants move in the

graph using only the arcs of their color. When an ant is in

a node, it chooses the next node to visit according to three

factors:

• the pheromone rate of its own color

• the pheromone rate of foreign colors

• the weight of the arc

The ant is attracted by the pheromone of its color and repulsed

by the pheromone of different colors. Once an ant have

reached the chosen node, it spreads pheromone according to

the quality of this choice. When a straddle carrier of color c

asks for a new mission, it chooses the mission which has the

highest rate of pheromone of color c. The overall description

of algorithm is shown on Fig. 6.

1: for all colony c do

2: for all ant of colony c do

3: choose an unvisited destination

4: move towards it according to the ant speed

5: spread pheromone

6: end for

7: end for

8: evaporation

Fig. 6. Colored Ant System main algorithm

Our ant colony approach is relevant for solving the consid-

ered problem because of its dynamic nature, the large size of

the solution space and the real time constraint.

The main asset of ant colony is to provide an anytime

solution. It is an on-line algorithm which adapts easily to the

changing environment. Indeed, ants reinforce the pheromone

rates to get closer to the best solution. At the same time,

evaporation process provides a feedback control of the

algorithm by preventing it to get stuck into a local optimum

and allowing dynamic events to be handled.

Ant colony deals with many parameters such as evaporation,

solution evaluation, ants quantity and speed, dynamic events,

etc... Here is the major weakness of this metaheuristic. Solu-

tion quality strongly depends on these interdependent settings.

We have tried to make these parameters self-adaptive. We use

a local method to adapt some of these parameters on-line.



C. Division of labor

As there are several distinct colonies and each ant has only

a local vision of its environment, there is no way to use a

pheromone spreading process based on a global characteristic.

In fact, in this architecture, a colony cannot compare the

quality of its own solution to the solutions of the other

colonies. So, we must use the same pheromone spreading

process for each colony. However, we are able to adapt the

quantity of pheromone spread by ants of a colony according to

the corresponding vehicle skill for a task. Indeed, we observed

that we can reduce the serving time of mission by specializing

the vehicles into a kind of missions.

We can increase the quantity of pheromone spread by

a given vehicle for tasks concerning a specific area in the

container terminal and decrease the quantity spread for the

tasks located into the other areas. At the same time, we do

the opposite for all other vehicles. In this way, we try to

specialize the vehicle in a kind of tasks and we are able

to regulate these quantities by taking into account both the

preference and the distance criteria.

This regulation keeps the benefit of allowing a vehicle to

take a mission for which it is not specialized. It is really

important in some cases where the number of missions is

high because this regulation prevents the system from having

unused vehicles in an area of the terminal and unaffected

missions, close of the end of their time window, in an other

area.

This original approach has a limit. In fact, the time needed

by the adaptive system for affecting a vehicle to a mission

which does not belong to its specialization may be consider-

able. For this reason, the system may become less responsive

than with no specialization.

D. Reducing resources

Always in a cost lowering purpose, we try to decrease the

number of straddle carriers in the system. Our current solution

to the entire problem tends to distribute the missions upon all

the vehicles. So, every vehicle has almost the same activity

rate. But if this rate is under a defined lower threshold, it

is possible to conclude that a vehicle could be removed.

Otherwise, if the rate is greater than the upper threshold, it is

possible to say that a new vehicle should be added to the fleet.

The thresholds must be computed by taking into account

several facts. First, it has to deal with the quality of service.

Indeed, the system must answer the requests before the end

of their time windows. Furthermore, if a vehicle is ready

to serve several missions before the beginning of their time

windows, it means that this vehicle is maybe superfluous, and

the thresholds must be modified accordingly. On the other

hand, the target rate has to deal with other criteria like the

covered distance of a vehicle per mission or the ratio between

the number of vehicles and the number of missions, and it

has to set these criteria against the penalties of transcended

time windows. Measuring the time of inactivity of every

straddle carrier may also lead the optimization. Concerning

this last criterion, we must interrelate the time of inactivity

with the penalties of transcended time windows.

So, as for the missions arrivals into the system, the number

of vehicles is subject to dynamicity. A vehicle can break down

and then must be sent to the maintenance. In function of the

failure seriousness, we can estimate the time needed to repair

the vehicle and so make it available for routing. We take a rate

of fault into account for optimizing the number of vehicles into

the system because if this number is as low as possible without

transcending some time windows, it will become too low if

one vehicle of the fleet breaks down.

V. SIMULATOR

The simulator has two main parts. The first one is the

terminal simulation (see Fig. 7), and the second one is the

Colored Ant Colony Optimization System (see Fig. 8). The

first part contains an implementation of the terminal structure

and components. Roads and crossroads provide the network

of the terminal on which straddle carriers will be able to

go. Some of these roads may contain containers. Quay crane

locations are represented by these specials roads, as well as

the trucks handling locations. This terminal is built at the

very beginning of the simulation. A scenario file is read

to set the terminal configuration. The second part of the

simulator contains the algorithmic view of the simulation,

i.e. the dynamic mission graph. In this way, it shows how

the missions are chosen by the vehicles. This part of the

simulator uses GraphStream2 toolkit which allows to handle

dynamic graphs easily [21].

The simulator uses a discrete time engine which has to

iterate every object of the simulation on every time step.

During the simulation, the scenario file is read and some

dynamic events are sent back to both terminal and Ant Colony

views. In this way, the system can simulate the dynamicity

of the incoming missions and of the vehicles availability.

In order to have relevant tests and results, we have to

define several levels of dynamicity. In [22], Allan Larsen

points out two main ways to measure the degree of dynamicity.

First, the degree of dynamism (dod) [23] is the ratio

between the number of dynamical requests and the total

number of requests. The main weakness of this measure is

that it does not take into account the arrival time of these

requests into the system. Indeed, with dod if the requests

come into the system at the beginning of the day, the system

is as dynamic as if they come late in the day. Yet, the

later these requests are known, the shorter is the delivery

delay. This lateness impacts on the performance of the system.

For this reason, Larsen et al. in [22] defined the effective

degree of dynamism (edod) by the following formula:

2http://graphstream-project.org/



Fig. 7. Terminal view in the simulator

edod =

∑ηd

i=1

ti

T

ηd + ηs

(1)

Here, ηs and ηd are respectively the number of static and

dynamic requests, ti is the arrival time of request i (with 0 <

ti < T ) and T is the time of the simulation end. This measure

takes into account the average of the incoming time of the

requests into the system. The more the dynamical requests

come late, the more edod will be high. If edod = 0, then the

system is totally static. Else, if edod = 1, then the system is

purely dynamic.

Every straddle carrier on the terminal simulation receives

a schedule from the Colored Ant Colony System. Then they

act in function of it and move to their pick-up location.

Once they have picked-up their container, they move to the

delivery location to achieve their mission. At the same time,

the mission graph is dynamically updated and the colored

ants keep colonizing it.

Simulator gives information about each mission like its

length, container, straddle carrier, pickup and delivery time

windows, etc. and about other parts of the terminal like the

state of the roads for instance.

VI. PRELIMINARY RESULTS

As we are still collecting real data from our partners, we

are just able to test the relevance of our modelling and of our

algorithm on simulated data. For this purpose, we have first

run a simulation with a static context, which means that every

mission is known at the very beginning of the simulation and

that the resources are always available. In a second time, we

have added dynamic events such as new incoming missions.

For each simulation we have measured the global time needed

for achieving all the missions, the number of overrun time

windows and the global overrun time. We consider that a

time window has been overrun if the non respect of this time

Static Half Dynamic Dynamic

dod 0 0.5 1

edod 0 0.25 1

End time 22693 22276 22693

Number of overrun tw 3 5 7

Overrun time penalty 6467 8477 12485

Fig. 9. Results of simulations

window represents a penalty for the container terminal. Indeed,

if we overrun the time window of a mission in which we have

to move a container from or toward a truck for instance, then

the truck will ask for a compensation.

Figure 9 shows the results of three instances containing 12

missions and 3 straddle carriers. The only difference between

these instances is their degree of dynamicity. Indeed, we have

only changed the arrival time of these missions into the system

to make them more or less dynamic.

As we can see in Fig. 9, our algorithm seems to act as

expected. It means that the more the missions are known in

advance, the better is the performance. The worst case occurs

when the mission is known at the very beginning of its time

window. These are preliminary results and we have not tested

all the parameters of the ant algorithm yet.

VII. CONCLUSION

The problem considered in this paper belongs to the Dy-

namic Pickup and Delivery Problem with Time Windows class.

However, it does not exactly fit. So it is an original unsolved

problem. We propose to solve it using swarm intelligence

method. An Ant Colony System is being developed. It uses

colored ants and a graph modelling in order to plan a schedule.

Moreover, we are trying to minimize the number of vehicles

into the fleet in order to both maintain a sufficient quality

of service and reduce costs. A simulator able to reproduce

the behavior of such a system and to handle dynamic events

is being developed. The preliminary results confirm that our

algorithm is able to handle dynamicity and we are actually

collecting data in order to compare the performance of our

system into a container terminal environment with the current

scheduling methods used in a terminal of the seaport of Le

Havre in France.
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