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Abstract : The purpose of this paper is to illustrate the potential in-
terest of the control theory framework for cryptographic applications. It is
shown that under the properties of left invertibility and flatness, dynamical
systems are structurally equivalent to some specific cryptographic primitives
called self-synchronizing stream ciphers. After having motivated the interest
of considering hybrid systems for such ciphers, the development is particu-
larized for the special class of switched linear systems. We also show that
identifiability is a necessary condition for security, describe an identification
procedure as a possible attack and assess its complexity.

Hybrid systems have inspired a great deal of research from both control
theory and theoretical computer science ([HSCC(2008)]). They provide a
strong theoretical foundation which combines discrete-event and continuous-
time systems in a manner that can capture software logic and physical dy-
namics in a unified modeling framework. The most well-known area of appli-
cability of hybrid systems are naturally modeling, analysis and control design
of embedded systems. From a theoretical point of view, stability, identifiabil-
ity, controller or observer design are challenging problems widely studied in
the literature ([Shorten et al.(2007), Bemporad et al.(2000), Juloski et al.(2005),
Balluchi et al.(2002), Babaali and Egerstedt(2004)]).

In this paper, left invertibility, flatness and identifiability of discrete-
time switched linear systems are investigated. The hybrid aspect is really
taken into account insofar as the minimum ”dwell-time” assumption is re-
laxed or in other words, since the switching rule is not restricted to the
case when the modes are active during a sufficient large time. The condi-
tions characterizing left invertibility ([Sain and Massey(1969)]) and flatness
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([Levine and Nguyen(2003)]) of linear systems are no longer valid.

Next, it is shown that under the properties of left invertibility and flat-
ness, dynamical systems are structurally equivalent to some specific crypto-
graphic primitives called self-synchronizing stream ciphers. The considera-
tion of hybrid systems is motivated by the fact that introducing heterogene-
ity in the ciphers sounds relevant. Indeed, in order to improve the security
of a cipher, a general idea has been proposed and motivated by Shamir
(see ([Klimov and Shamir(2004)]) as a pioneering work). Shamir suggests
to mix algebraic domains and thereby to use combinations of boolean and
arithmetic operations. And yet, switched systems are intrinsically hetero-
geneous in this sense since they involve several algebraic models which are
switched in time according to some logical rules ([Liberzon(2003)]). The
development is particularized here for switched linear systems. We further
show that identifiability is a necessary condition for security, describe an
identification procedure as a possible attack and assess its complexity.

The paper is organized as follows. Section 1 presents algebraic condi-
tions under which switched linear discrete-time systems are left invertible
and flat. A sequential left inversion procedure is provided. Next, identifia-
bility and identification are addressed. In Section 2, a structural comparison
between such dynamical systems and the special encryption schemes called
self-synchronizing stream ciphers is brought out and illustrated through a
simple numerical example. Further issues to be investigated in the perspec-
tive of designing fully-fledged cryptographic primitives are sketched.

1 Left invertibility, flatness and identification of

switched linear systems

In this section, results on left invertibility, flatness and identification of
switched linear systems are expressed in a form suitable to discuss their
impact in secure communication applications. More general treatments can
be found in ([Millerioux and Daafouz(2009)]) for left invertibility and flat-
ness properties and in ([Vidal et al.(2003)]) for identification.

Before proceeding further, let us introduce some useful notation. Con-
sider the switched linear dynamical system:

{

xk+1 = Aσ(k)xk + Bσ(k)uk

yk = Cσ(k)xk + Dσ(k)uk
(1)

where xk ∈ R
n, uk ∈ R and yk ∈ R. All the matrices, namely Aσ(k) ∈ R

n×n,
Bσ(k) ∈ R

n×1, Cσ(k) ∈ R
1×n and Dσ(k) ∈ R belong to the respective finite

sets (Aj)1≤j≤J , (Bj)1≤j≤J , (Cj)1≤j≤J and (Dj)1≤j≤J . At a given time k, the
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index j corresponds to the mode of the system and results from a switching
function σ : k ∈ N 7→ j = σ(k) ∈ {1, . . . , J}. {σ}k2

k1
refers to the mode

sequence {σ(k1), . . . , σ(k2)}.
Let U be the space of input sequences over [0,∞) and Y the corresponding
output space. At time k, for each initial state xk ∈ R

n, when the system (1)
is driven by the input sequence {u}k+T

k = {uk, . . . , uk+T } ∈ U , for a mode

sequence {σ}k+T
k , {x(xk, σ, u)}k+T

k refers to the solution of (1) starting from

xk in the interval of time [k, k + T ] and {y(xk, σ, u)}k+T
k ∈ Y refers to the

corresponding output sequence in the same interval of time [k, k + T ].

1.1 Left invertibility and left inversion

Before addressing the left invertibility property, the relative degree of a
switched linear system must be defined. We first recall a general definition.

Definition 1 The relative degree of a dynamical system with respect to its
input uk is the required number r of iterations of its output yk so as yk+r

depends explicitly on uk.

Remark 1 Hereafter, we only consider the case when the relative degree r
is constant.

We are checking for an algebraic interpretation of the relative degree for (1)
in terms of its state space description matrices. To this end, we must write
down the expression of yk+i by iterating (1)

yk+i = Cσ(k+i)A
σ(k+i−1)
σ(k) xk +

j=i
∑

j=0

T i,j

σ(k)uk+j (2)

with

T i,j

σ(k) = Cσ(k+i)A
σ(k+i−1)
σ(k+j+1)Bσ(k+j) if j ≤ i − 1, T i,i

σ(k) = Dσ(k+i) (3)

and with the transition matrix defined as:

A
σ(k1)
σ(k0) = Aσ(k1)Aσ(k1−1) . . . Aσ(k0) if k1 ≥ k0

= 1n if k1 < k0

1n is the identity matrix of dimension n.
According to the Definition 1, the relative degree r of (1) is

• r = 0 if T 0,0
σ(k) 6= 0 for all k
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• the least integer r < ∞ such that for all k

T i,j

σ(k) = 0 for i = 0, . . . , r − 1 and j = 0, . . . , i

T r,0
σ(k) 6= 0

(4)

Let us notice that the product of matrices involved in T i,j

σ(k) is the generaliza-
tion of the well-known discrete-time Markov parameters CAsB for a linear
system described by the 4− uple (A,B,C,D) of state space matrices.

When (1) has relative degree r, its output reads at time k + r:

yk+r = Cσ(k+r)A
σ(k+r−1)
σ(k) xk + T r,0

σ(k)uk (5)

Definition 2 The system (1) is left invertible if there exists a nonnegative
integer R < ∞ such that, for two any inputs sequences {u}k+R

k , {u′}k+R
k ∈ U ,

the following implication applies:

∀σ,∀xk {y(xk, σ, u)}k+R
k = {y(xk, σ, u′)}k+R

k ⇒ uk = u′
k (6)

In other words, (1) is left invertible if the input uk can be uniquely de-
termined from an output sequence of finite length for any known initial
condition and switching rule. It turns out that if (1) has a finite relative
degree r, it is also left invertible with R = r. Indeed, if (1) has a finite
relative degree r, (5) holds and the input uk can be deduced in a unique
way. It reads:

uk = (T r,0
σ(k))

−1(yk+r − Cσ(k+r)A
σ(k+r−1)
σ(k) xk) (7)

The existence of the inverse of T r,0
σ(k) is guaranteed since, by definition (see

Eq. (3)), it is always different from zero. Actually, let us notice that for (1),
according to (7), only the last sample yk+R of the sequence {y(xk, σ, u)}k+R

k

is required for recovering uk. We are now concerned with a recursive left
inversion of (1) achieving the recovery of uk from yk without any knowledge
of xk. Let us define the inverse transition matrix as

P
σ(k1)
σ(k0) = P r

σ(k1)P
r
σ(k1−1) . . . P r

σ(k0) if k1 ≥ k0

= 1n if k1 < k0

with
P r

σ(k) = Aσ(k) − Bσ(k)(T
r,0

σ(k))
−1Cσ(k+r)A

σ(k+r−1)
σ(k) (8)

Proposition 1 Assume that (1) is left invertible and has relative degree
r. The following dynamical system is a stable r−delayed inverter for (1)
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whenever the system νk+1 = P r
σ(k)νk is uniformly asymptotically stable











x̂k+r+1 = P r
σ(k)x̂k+r + Bσ(k)(T

r,0
σ(k))

−1yk+r

ûk+r = −(T r,0
σ(k))

−1Cσ(k+r)A
σ(k+r−1)
σ(k) x̂k+r

+(T r,0
σ(k))

−1yk+r

(9)

Proof 1 On one hand, substituting (5) into (9) yields:

x̂k+r+1 = P r
σ(k)x̂k+r + Bσ(k)(T

r,0
σ(k))

−1Cσ(k+r)A
σ(k+r−1)
σ(k) xk

+Bσ(k)(T
r,0

σ(k))
−1T r,0

σ(k)uk

(10)

Taking into account (8) and noticing that (T r,0
σ(k))

−1T r,0
σ(k) = 1, ǫk = xk −

x̂k+r fulfills the recursion:

ǫk+1 = (Aσ(k) − Bσ(k)(T
r,0

σ(k))
−1Cσ(k+r)A

σ(k+r−1)
σ(k) )ǫk

= P r
σ(k)ǫk

(11)

On the other hand, from the expression (7) of uk and the expression of ûk+r

in (9), we get that:

uk − ûk+r = −(T r,0
σ(k))

−1Cσ(k+r)A
σ(k+r−1)
σ(k) (xk − x̂k+r) (12)

From (12) we can infer that ûk+r converges toward uk as long as x̂k+r

converges toward xk, that is provided that the system νk+1 = P r
σ(k)νk with

νk = ǫk is uniformly asymptotically stable.

1.2 Flatness

We first recall a general definition of flat output (for details about flatness,
the reader can refer to ([Fliess et al.(1995)]) or the book ([Sira-Ramirez and Agrawal(2004)])).

Definition 3 A flat output of a dynamical system is an output variable yk

such that all system variables can be expressed as a function of yk and a
finite number of its forward/backward iterates. In particular, there exists
two functions F , G and integers t1 < t2, t′1 < t′2 such that

xk = F(yk+t1 , · · · , yk+t2)
uk = G(yk+t′

1
, · · · , yk+t′

2
)

(13)
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We derive an algebraic interpretation of flat outputs for (1).

Proposition 2 The output yk of (1), assumed to be left invertible and to
have relative degree r, is a flat output if there exists a positive integer 0 <
K < ∞ such that for all k ≥ 0

P
σ(k+K−1)
σ(k) = 0 (14)

where 0 stands for the null matrix.

Proof 2 The proof is based on the inverse system. If (1) is left invertible
and has relative degree r, (9) exists. Iterating (9) l − 1 times yields:

x̂k+r+l = P
σ(k+l−1)
σ(k) x̂k+r

+
∑l−1

i=0 P
σ(k+l−1)
σ(k+i+1)

Bσ(k+i)T
r,0
σ(k+i)

yk+i+r

(15)

If (14) is fulfilled, (15) turns into

x̂k+r+K =
∑K−1

i=0 P
σ(k+K−1)
σ(k+i+1) Bσ(k+i)T

r,0
σ(k+i)yk+i+r (16)

revealing that x̂k+r+K is independent of x̂k+r. In particular, (16) holds for
x̂k0+r = xk0

for all k0 ≥ 0, that is for ǫk0
= 0 with k0 ≥ 0. By virtue of

(11), we infer that ǫk = 0 for all k ≥ k0 and thus x̂k+r+K = xk+K for all
k ≥ 0. Therefore, after performing the change of variable k → k − K, we
obtain an explicit form for F involved in (13).

xk =
∑K−1

i=0 P
σ(k−1)
σ(k+i+1−K)Bσ(k+i−K)T

r,0
σ(k+i−K)yk+i+r−K (17)

On the other hand, substituting (17) into (7) yields an explicit form for G
involved in (13) and then, we infer that yk is a flat output according to the
Definition 3.

1.3 Identification

Let θ be a parameter vector consisting of a subset of entries of (Aj)1≤j≤J ,
(Bj)1≤j≤J , (Cj)1≤j≤J and (Dj)1≤j≤J in the state space model (1). Hav-
ing in mind the crytpographic context which will be further considered, we
present an identification procedure of θ based on the input/output model of
(1).

When the switched system (1) is flat, its input/output model can be
obtained in a systematic and convenient way. Indeed, if (1) is flat with flat
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output yk, the state vector xk obeys (17). Substituting the expression (17)
of xk into (5) yields the input/output relation:

yk+r = Cσ(k+r)A
σ(k+r−1)
σ(k) ·

(
∑K−1

i=0 P
σ(k−1)
σ(k+i+1−K)Bσ(k+i−K)T

r,0
σ(k+i−K)yk+i+r−K) + T r,0

σ(k)uk

(18)

Let {σ1}
k+r−1
k+r−K, . . . , {σN}k+r−1

k+r−K the N possible mode sequences {σ(k + r −
K), . . . , σ(k + r − 1)} over the interval of time [k + r − K,k + r − 1]. The
number N of all possible mode sequences is finite since the number J of
modes of (1) is. These mode sequences will be respectively denoted for
short σ1, . . . , σN in the sequel. Thus, for t = 1, . . . , N , the input/output
relation (18) can be rewritten as

yk+r =

K−1
∑

j=0

aj(σt)yk+j+r−K + c(σt)uk (19)

where c(σt) and the aj(σt)’s (j = 0, . . . ,K − 1) are coefficients depending,
in different ways according to the sequence σt, on the entries of the matrices
(Aj)1≤j≤J , (Bj)1≤j≤J , (Cj)1≤j≤J and (Dj)1≤j≤J of (1)
Based on (19), two identification procedures can be distinguished according
to the assumption on the accessibility of σt.

First identification procedure
Let us first assume that σt is accessible. Since for each σt, the parameters
c(σt) and the aj(σt)’s appear in a linear fashion in the input/output relation
(19), they are obviously identifiable and the identification is easy. Indeed,
for a given mode sequence σt, under the usual Persistently Exciting (PE)
conditions, the identification can always be performed by iterating the re-
lation (19) until a set of linear independent equations is obtained and can
be solved. The solution is unique for each σt and gives c(σt) and the aj(σt)’s.

Second identification procedure
Conversely, let us assume that σt is not accessible. The previous procedure
does no longer hold. Thus the identification procedure for recovering c(σt)
and the aj(σt)’s must be substituted by another one. It turns out that it can
be inspired from the method proposed in ([Vidal et al.(2003)]) for switched
ARX systems. This method is summed up and adapted to our context.
Each input/output relation (19) can be rewritten for t = 1, . . . , N

zT
k bt = 0 (20)

• zk = [yk+r, yk+r−1, · · · , yk+r−K, uk]
T ∈ R

K+2

• bt = [1,−a0(σt), . . . ,−aK−1(σt),−c(σt)]
T ∈ R

K+2
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zk is the regressor vector while bt is the parameter vector corresponding to
the mode sequence σt.
We can thereby define N hyperplanes St, t = 1 . . . , N

St = {zk : zT
k bt = 0}

The key idea rests on the fact that the so-called Hybrid Decoupling Con-
straint equation is fulfilled regardless of the switching sequences:

pN (zk) =

N
∏

t=1

(zT
k bt) = νN (zk)

T hN = 0 (21)

hN ∈ R
MN is the coefficient of the Hybrid Decoupling Polynomial and νN :

zk ∈ R
K+2 7→ ξk ∈ R

Mn is a Veronese map of degree N , the components of
ξk corresponding to all the MN monomials (product of the components of
zk) sorted in the degree-lexicographic order. The quantity MN is given by

MN =

(

N + K − 1
N

)

=
(N + K − 1)!

N !(K − 1)!
(22)

For the identification of the bt’s in (20), it is first needed to compute the
coefficients hN of (21). To this end, let LN denote an embedded data matrix
involving N mapped regressor vectors zk through νN

LN =









νN (zk1
)

νN (zk2
)

...
νN (zkN

)









T

∈ R
N×MN

The following relation applies:

LNhN = 0 (23)

If the mapped regressor vectors νN (zki
) are sufficiently exciting (PE condi-

tions), the existence of an integer N ′ such that the νN ′(zki
)’s (i = 1, . . . , N ′)

can span a MN − 1 dimensional vector space, i.e

rank(LN ′) = (MN − 1) (24)

is guaranteed. The lower bound of N ′ is MN − 1. If (24) is fulfilled, the
coefficient hN can be retrieved by

hN = Ker(LN ′) (25)

Ker stands for the null space.
If wt is a point lying on the tth hyperplane St, we can obtain, for t = 1, . . . , N ,
the bt’s from the knowledge of hN by performing:

bt =
DpN (wt)

eDpN (wt)
(26)
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where e stands for the vector [1 0 · · · 0] ∈ R
K+2 and DpN(wt) stands for the

derivative DpN (zk) of pN (zk) with zk = wt. DpN(zk) reads

DpN(zk) =
∂pN (zk)

∂zk

=
∂

∂zk

N
∏

t=1

(zT
k bt) =

N
∑

t=1

bt

∏

l 6=t

(zT
k bl) (27)

Remark 2 An algebraic solution to determine the N distinct points wt that
lie on the N hyperplanes St can be found in ([Vidal et al.(2003)]).

The unicity of the solution of an identification procedure is directly re-
lated to the notion of parametric identifiability ([Nõmm and Moog(2004)])([Anstett et al.(2008)]).
Indeed, let us recall that a parameter of a discrete-time dynamical system is
identifiable if it can be rewritten as a unique function of the input, the output
and their iterates. For (1), it turns out that the aforementioned identification
procedures provide c(σt) and the aj(σt)’s (j = 0, . . . ,K − 1, t = 1, . . . , N)
of (19) in a unique way and that they depend on the input, the output
and their iterates. Indeed, observe that bt (and so c(σt) and the aj(σt)’s
(j = 0, . . . ,K − 1, t = 1, . . . , N)) are inferred from (26) which involves pN ,
pN depending in turn on hN through (21). Finally, hN depends on the in-
put, the output and their iterates of (1) through (25). On the other hand,
the rank condition (24) and the normalization of bt in (26) guarantee unic-
ity. Thus, recalling that θ is a subset of entries of (Aj)1≤j≤J , (Bj)1≤j≤J ,
(Cj)1≤j≤J and (Dj)1≤j≤J of (1), the unicity of θ is guaranteed provided that
θ can be deduced from c(σt) and the aj(σt)’s in a unique way.

2 Application to secure communication

The aim of this Section is to show and to illustrate the potential interest,
for cryptographic applications, of the control theory framework developed
in Section 1.

2.1 Generalities on stream ciphers

mk m̂k

eavesdropper

receiver

ẑkzk

secret key k
e secret key k

d

d(ẑk, ck)
ck

e(zk, mk)

transmitter
generator generator

Figure 1: General encryption mechanism
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A general stream cipher mechanism is illustrated in Fig. 1. We are
given an alphabet A, that is, a finite set of basic elements named symbols.
On the transmitter part, a plaintext (also called information or message)
m ∈ M (M is called the message space) consisting of a string of symbols
mk ∈ A is encrypted according to an encryption function e which depends
on a so-called running key zk. Consequently, for stream ciphers, the encryp-
tion function can change for each symbol. The sequence {zk} is called the
keystream. The resulting ciphertext c ∈ C (C is called the ciphertext space),
a string of symbols ck from an alphabet B usually (and assumed hereafter)
identical to A, is conveyed through a public channel to the receiver. At
the receiver side, the ciphertext c is decrypted according to a decryption
function d which depends on the running key ẑk. For a prescribed zk, the
function e must be invertible. The running keys zk and ẑk are delivered by
generators which are identical at the transmitter and receiver sides. They
are respectively parametrized at the transmitter side by a secret key ke ∈ K,
(K being the key space) and parametrized at the receiver side by kd ∈ K.
For proper decryption, the equality kd = ke must be fulfilled. In the sequel,
the secret key will be denoted kd = ke = θ.
Stream ciphers are generally well appropriate and their use can even be com-
pulsory when buffering is limited or when only one symbol can be processed
at a time: the field of telecommunications often include such constraints.
Next we detail the special class of stream ciphers called self-synchronizing
stream ciphers.

2.2 Self-synchronizing stream ciphers

Self-synchronizing stream ciphers admit the following recursion, written with
the usual notation encountered in the literature:

{

zk = σss
θ (ck−l, . . . , ck−l′)

ck+bs
= e(zk,mk)

(28)

mk is the plaintext and ck is the the ciphertext. σss
θ is the function of the

keystream generator and is parameterized by a vector θ which acts as the
secret key. σss

θ depends on ck−i (i = l, . . . , l′) that is a fixed number of past
values of ck. Let us notice that, for computational reasons, there may exist
a delay bs ≥ 0 between the plaintext mk and the corresponding ciphertext
ck+bs

.
The equations (28) reveal the following merits and shortcomings of SSSC.
First, if a ciphertext is deleted, inserted or flipped, the SSSC will automati-
cally resume proper decryption after a short, finite and predictable transient
time. Hence, SSSC does not require any additional synchronization flags or
interactive protocols for recovering lost synchronization. Secondly, the self-
synchronizing mechanism also enables the receiver to switch at any time into
an ongoing enciphered transmission. Third, any modification of ciphertext
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symbols by an active eavesdropper causes incorrect decryption for a fixed
number of next symbols. As a result, an SSSC prevents active eavesdrop-
pers from undetectable tampering with the plaintext: message authenticity
is possible.

The equations of the decryption part obey:

{

ẑk = σss
θ (ck−l, . . . , ck−l′)

m̂k+bs
= d(ck+bs

, ẑk)
(29)

with, according to the principle of symmetric ciphers explained above, the
decryption function d obeying the rule:

m̂k+bs
:= d(ck+bs

, ẑk) = mk if ẑk = zk (30)

Since the generators function σss
θ share, at the transmitter and receiver sides,

the same quantities, namely the past ciphertexts, it is clear that the gen-
erators synchronize automatically after a finite transient time of length M ,
that is ẑk = zk for k ≥ M . That explains the terminology self-synchronizing
stream ciphers.

Actually, (28) is a conceptual model, called canonical representation,
that may correspond to numerous different architectures and may result
from different design approaches ([Maurer(1991)])([Daemen and Kitsos(2005)]).
We show in the next section, with a special treatment on switched linear sys-
tems, that under the properties of left invertibility and flatness, dynamical
systems are structurally equivalent to self-synchronizing stream ciphers.

2.3 The role of left invertibility and flatness in the design of

SSSC

Proposition 3 If (1) has a finite relative degree r and yk is a flat output,
then (1) is structurally equivalent to a self-synchronizing stream cipher.

Proof 3 By virtue of (5) and (17), the system (1) can be rewritten in the
following equivalent form:

{

xk =
∑K−1

i=0 P
σ(k−1)
σ(k+i+1−K)

Bσ(k+i−K)T
r,0

σ(k+i−K)
yk+i+r−K

yk+r = Cσ(k+r)A
σ(k+r−1)
σ(k) xk + T r,0

σ(k)uk

(31)

and the result follows from the identification of (31) with (28), the corre-
spondences being:

• uk ↔ mk (plaintext)

• yk ↔ ck (ciphertext)
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• xk ↔ zk (keystream)

• F ↔ σss
θ (keystream generator)

• (xk, uk) 7→ Cσ(k+r)A
σ(k+r−1)
σ(k) xk + T r,0

σ(k)uk ↔ e (encryption function)

• r ↔ bs (delay)

2.4 Identification and security

An essential issue for the validation of ciphers is the cryptanalysis, that is
the study of attacks against cryptographic schemes in order to reveal their
possible weakness. A fundamental assumption in cryptography first stated
by A. Kerkhoff in ([Delfs and Knebl(2002)]), is that any unauthorized per-
son (called adversary or eavesdropper) knows all the details of the cipher,
including the algorithm and its implementation, except the secret key. As a
result, insofar as the parameters of (1) are expected to act as the secret key,
the security is directly related to the complexity of retrieving the parameters
θ.
It is usual assuming that the eavesdropper has the opportunity of controlling
the input of the cipher, namely the plaintext, and analyzing the correspond-
ing ciphertext (the attack is called chosen plaintext attack). In our context,
if the dynamical system (1) is considered as a cipher, that means that the
pair (uk, yk) is assumed to be known by the eavesdropper. The recovery of
θ can only be based on the input/output model of (1).
Besides, it worth emphasizing that a cipher must face at least the most basic
attack, i.e. the brute force attack. This attack consists in trying exhaus-
tively every possible parameter value in the parameter space of the secret key
(which is in practice a finite space). The quicker the brute force attack, the
weaker the cipher. Consequently, the worst situation for the eavesdropper
and the best for the security arises when, for known plaintexts and corre-
sponding ciphertext sequences, only one solution in the parameters of the
cipher exists. As explained in Subsection 1.3, the unicity is directly related
to the notion of parametric identifiability. As a result, we conclude that the
most relevant parameters of a system to act as the secret key are the ones
which are identifiable. Such a result might appear as paradoxical at first
glance because of a possible misunderstanding on the meaning of ”identi-
fiable”. Actually, identifiability means unicity in the parameters. Such a
paradox has been highlighted in ([Anstett et al.(2006)]).

Thus, according to the above discussion and Subsection 1.3, we infer the
following Proposition:

Proposition 4 The secret key θ must be the set of entries of (Aj)1≤j≤J ,
(Bj)1≤j≤J , (Cj)1≤j≤J and (Dj)1≤j≤J of (1) which can be deduced from c(σt)
and the aj(σt)’s in a unique way.
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Actually, the security is related to the complexity of the underlying iden-
tification procedure. The recovery of the secret parameters can be performed
through the identification procedures described in Subsection 1.3. Clearly
the identification procedure is much more complex when σt is not accessi-
ble. Thus the secret key θ must be determined so that the eavesdropper has
no other choice than resorting to the second identification procedure. As a
result, σt must not be directly accessible and the following Proposition must
be thereby fulfilled:

Proposition 5 The switching rule σ must depend on θ.

We can assess the security in terms of the complexity of the required al-
gebraic computations to identify θ. The most important task in the second
identification procedure is the computation of the coefficients hN through
(25). In practice, the kernel (null space) is obtained through a Singular Val-
ues Decomposition (SVD) of which complexity is O(min(N ′M2

N , N ′2MN )).
The lower bound of N ′ being MN − 1, when MN is large enough, the com-
plexity can be approximated by O(MN3). The increasing rate of MN is
depicted on Figure 2.
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Figure 2: MN versus N for different values of K.

3 Illustrative example

We consider a switched linear system in the form (1) with

Aσ(k) =

(

q1
σ(k) 1

q3 0

)

, Bσ(k) =

(

0
q2
σ(k)

)

and with Cσ(k) = (1 0) and Dσ(k) = 0 for any k.
We consider any switching rule σ with J = 2 modes where the time-varying
entries fulfill q1

1 = 1.7, q1
2 = −1.7, q2

1 = −0.01, q2
2 = 0.01 and q3 = 0.5.
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i) The relative degree is r = 2 according to (4) since T i,j

σ(k) = 0 for i =

0, 1 and j = 0, . . . , i while T 2,0
σ(k) = Cσ(k+2)Aσ(k+1)Bσ(k) 6= 0 for all k.

ii) The computation of (14) gives 0 with K = 2 and reveals that yk is a flat
output.

From i) and ii), we can infer that, according to the Proposition 3, the
system is structurally equivalent to a self-synchronizing stream cipher.

iii) Let us examine the setting θ = (θ(1) θ(2) θ(3) θ(4) θ(5)) = (q1
1 q1

2 q3 q2
1 q2

2) =
(1.7 − 1.7 0.5 − 0.01 0.01). The dimension L of θ is L = 5. Let us
check whether θ would be an admissible choice for the secret key in terms
of identifiability.
The computation of (18) allows us to obtain an input/output relation in the
form (19)

yk+2 = q3yk + q1
σ(k+1)yk+1 + q2

σ(k)uk

= a0(σt)yk + a1(σt)yk+1 + c(σt)uk

(32)

In the time interval [k, k + 1], to the N = 4 possible modes sequences σ1 =
{1, 1}, σ2 = {1, 2}, σ3 = {2, 1}, σ4 = {2, 2}, correspond four respective
input/output equations

t = 1, yk+2 = θ(3)yk + θ(1)yk+1 + θ(4)uk

t = 2, yk+2 = θ(3)yk + θ(2)yk+1 + θ(4)uk

t = 3, yk+2 = θ(3)yk + θ(1)yk+1 + θ(5)uk

t = 4, yk+2 = θ(3)yk + θ(2)yk+1 + θ(5)uk

with the following relations

θ(1) = a1(σ1) or θ(1) = a1(σ3)

θ(2) = a1(σ2) or θ(2) = a1(σ4)

θ(3) = a0(σt) for any t = 1, . . . , 4

θ(4) = c(σ1) or θ(4) = c(σ2)

θ(5) = c(σ3) or θ(5) = c(σ4)

(33)

From (33), we infer that θ can be recovered in a unique way from the knowl-
edge of (a0(σt), a1(σt), c(σt)) (t = 1, . . . , 4) and then Proposition 4 is fulfilled.
Consequently θ could act as the secret key and must also be involved in the
switching rule σ according to the Proposition 5. We can define for example
a switching rule σ in the form,

σ(k) = Int(
L

∑

i=1

θ(i)yk−i) + 1 (mod J)

where Int stands for the integer part and mod stands for the congruential
operation.
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iv) Let us illustrate the second identification procedure described in Sub-
section 1.3. It consists in injecting known inputs uk into (1) and collecting
the corresponding outputs yk. We iterate (1) until the matrix LN ′ fulfills
the rank condition (24). After computing hN from (25), we derive b1, . . . , b4

by (26)

b1 = [1 -0.5 −1.7 0.01]T

b2 = [1 -0.5 1.7 0.01]T

b3 = [1 -0.5 −1.7 −0.01]T

b4 = [1 -0.5 1.7 −0.01]T

and then recover the c(σt)’s and the aj(σt)’s (j = 0, . . . ,K−1, t = 1, . . . , N)
and finally the θ(i)’s by (33).

4 Conclusion

In this paper, we have discussed and illustrated the potential interest of the
control theory framework for cryptographic applications. It has been shown
that invertibility and flatness are two properties which allow a dynamical
system to be structurally equivalent to a self-synchronizing stream cipher.
Identifiability is related to the notion of unicity in the parameters, a nec-
essary required property of any ciphers when parameters act as the secret
key. Involving hybrid systems is motivated by the relevance of introducing
heterogeneity in the ciphers. In this paper, switched linear systems have
been investigated. Nevertheless, if a fully specified cipher is thought, the
security aspect deserves a deeper investigation.
Indeed, identification consists of a so-called algebraic attack in the context
of cryptography. It could be expected that the linearity of the modes is a
weakness and that nonlinearities should be introduced, while keeping het-
erogeneity through hybrid models and a similar control theory framework.
Besides, others kinds of attacks should be considered, to mention a few, lin-
ear and differential cryptanalysis, distinguisher-based attacks, side channels
attacks. Those kinds of issues are naturally out of the scope of the present
paper.
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