
HAL Id: hal-00445873
https://hal.science/hal-00445873v2

Preprint submitted on 21 Jan 2010 (v2), last revised 19 May 2011 (v4)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

States and exceptions are dual effects
Jean-Guillaume Dumas, Dominique Duval, Laurent Fousse, Jean-Claude

Reynaud

To cite this version:
Jean-Guillaume Dumas, Dominique Duval, Laurent Fousse, Jean-Claude Reynaud. States and excep-
tions are dual effects. 2010. �hal-00445873v2�

https://hal.science/hal-00445873v2
https://hal.archives-ouvertes.fr

States and exceptions are dual effects

Jean-Guillaume Dumas

LJK, Université de Grenoble

BP 53, 38041 GRENOBLE Cedex 9, France

Jean-Guillaume .Dumas@imag.fr

Dominique Duval

LJK, Université de Grenoble

BP 53, 38041 GRENOBLE Cedex 9, France

Dominique.Duval@imag.fr

Laurent Fousse

LJK, Université de Grenoble

BP 53, 38041 GRENOBLE Cedex 9, France

Laurent.Fousse@imag.fr

Jean-Claude Reynaud

Malhivert, 38640 CLAIX, France

Jean-Claude.Reynaud@imag.fr

January 21, 2010

Abstract

Global states and exceptions form two basic computa-
tional effects. In this paper it is proved that they can be
seen as dual to each other: the lookup and update opera-
tions for global states are dual to the raise and handle op-
erations for exceptions, respectively. In order to get this
result we use a monad for exceptions and a comonad for
global states.

1 Introduction

The denotational semantics of languages withcomputa-
tional effectscan be expressed in categorical terms, thanks
to monads[7, 8]: for instance, global states correspond to
the monad onSet with endofuntorT (X) = (X × St)St

whereSt is the set of states, while exceptions correspond
to the monad onSet with endofuntorT (X) = X + Exc

whereExc is the set of exceptions. Each computational
effect comes with its associated operations: for instance,

the operations lookup and update for the states, the oper-
ations raise and handle for the exceptions [10]. Another
approach is based onLawvere theories; this point of view
is related to monads by an adjunction [6].

A computational effect relies on a kind of zooming pro-
cess from ahiddenpoint of view, where the effect is par-
tially hidden, to anexplicit point of view, where the effect
appears explicitly. For instance, there is no explicit typeS

for states in an imperative language (the state is hidden),
however the set of statesSt does appear explicitly in the
denotational semantics for global states. In this paper, we
focus on two computational effects: global states and ex-
ceptions, and we prove that they are mutuallydual, both
from the explicit and from the hidden point of view.

First in section 2 these two effects are treated in an
explicit way. We prove that they can be seen as mutu-
ally dual, in the sense that their denotational semantics
is defined by the models of two dual specifications. We
usesketchesas specifications, since they provide a clean
treatement of sums as dual to products. The idea is that
X × St for a fixedSt is dual toX +Exc for a fixedExc,

and that this duality can be extended to the operations:
lookup is dual to raise, and update is dual to handle. Then
in section 3 we look at the effects from thehiddenpoint
of view. For this purpose, as in the classical approach we
use the monadT (X) = X + Exc for the exceptions [7],
but we use the dualcomonadT (X) = X × St for the
global states. We prove that the duality can also be eas-
ily expressed from this point of view. Our notations and
results are summarized in appendix A.

To our knowledge, the fact that global states and excep-
tions are dual computational effects is a new result. It has
been necessary to use both monads and comonads for get-
ting this result in its right setting, i.e., when the effectsare
hidden. We would like to suggest that, while monads are
indeed one major tool for expliciting effects, additional
tools like comonads or other categorical features may also
be helpful.

2 Duality of effects, explicitly

In this section the effects appear explicitly in the specifi-
cations. We use sketches as specifications [1]: a sketch
with finite productsS for global states and dually a sketch
with finite sumsE for exceptions. The category of mod-
els of a sketchSp with values in a categoryC is denoted
Mod(Sp,C). WhenSp0 is a subsketch ofSp andM0

a model ofSp0, we denoteMod(Sp,C)|M0
the sub-

category ofMod(Sp,C) made of the modelsM of Sp
with values inC which coincide withM0 on Sp0 and
of the morphisms of models which extend the identity
of M0. We often writeM . . . for M(. . .) whenM is
a model of a sketch. For set-valued models we denote
Mod(Sp) = Mod(Sp,Set).

2.1 Global states, explicitly

The explicit specification for global states is defined in
several steps.

Definition 2.1. Let Loc be a set, called the set ofloca-
tions.

• Let Sp denote the specification simply made of a
point Vi for eachi ∈ Loc, called the type ofvalues
of i.

• Let Sq denote the specification made ofSp, a point
S, called the type ofstatesand an arrowli : S → Vi
for eachi ∈ Loc, called thelookupat i. Let l =
(lj)j∈Loc : S →

∏
j Vj denote the tuple of theli’s.

• For each locationi, let ϕi : Vi × S →
∏
j Vj be

defined asϕi = (ϕi,j)j∈Loc whereϕi,j : Vi × S →
Vj is:

ϕi,i = prVi
andϕi,j = lj ◦ prS whenj 6= i

whereprVi
: Vi × S → Vi andprS : Vi × S → S

denote the projections.

• Theexplicit specification for global statesS is made
of Sq and an arrowui : Vi×S → S for eachi ∈ Loc,
called theupdateat i, together with the equation:

l ◦ ui = ϕi . (1)

Remark 2.2. A modelMp of Sp in a categoryC with
finite products is simply made of an objectVal i = MpVi
for eachi ∈ Loc. A modelMq of Sq in C is made, in
addition, of a setSt =MqS and a morphismMql : St →∏
j Valj . For getting a modelM of S in C we add for

eachi ∈ Loc a morphismMui : Val i × St → St such
thatMl ◦Mui = Mϕi for eachi ∈ Loc. WhenC =
Set, this means that for eachxi ∈ Val i and s ∈ St ,
Mli(Mui(xi, s)) = xi andMlj(Mui(xi, s)) = Mlj(s)
whenj 6= i.

Proposition 2.3. LetC be a category with finite products.
LetMp be a model ofSp in C, made of an objectVal i =
MpVi for eachi ∈ Loc. There is a terminal model ofSq in
C aboveMp, denoted[[]], it is such that[[S]] =

∏
j Val j

and [[l]] : [[S]] →
∏
j Val j is the identity. Then[[]] can

be extended in a unique way as a model ofS in C above
Mp, still denoted[[]]: for each i ∈ Loc the morphism
[[ui]] : Val i × [[S]] → [[S]] is defined by[[ui]] = [[ϕi]].
In addition,[[]] is a terminal model ofS aboveMp.

Proof. Let Mq be a model ofSq aboveMp, then the
unique morphismm : Mq → [[]] aboveMp is defined by
mS =Mq(l) :Mq(S) →

∏
j Val j , so that[[]] is a termi-

nal model ofSq aboveMp. Since[[l]] is the identity, equa-
tions (1) determine[[ui]] = [[ϕi]] for each locationi, so
that[[]] extends in this unique way as a model ofS above
Mp. Now letM be a model ofS aboveMp, it is easy to

2

check thatmS ◦Mui = [[ϕi]]◦(idVali ×mS) for each lo-
cationi, so thatm is the unique morphismm : M → [[]]
aboveMp.

MS
Ml //

Ml
��

∏
Val j

id
��∏

Val j
id // ∏Val j

=

Val i×MS
Mui //

id×Ml
��

MS

Ml
��

Val i×
∏

Valj
[[ϕi]]// ∏Val j

=

Remark 2.4. WhenC = Set, in the terminal model
the function[[ui]] : Val i ×

∏
j Val j →

∏
j Val j maps

(xi, (xj)j) to (zj)j wherezi = xi and zj = yj when
j 6= i. When in addition the setVal j does not depend on
j, sayValj = Val for eachj, then:

[[S]] = ValLoc .

It follows from remark 2.2 and proposition 2.3 that
the next definition corresponds to the usual semantics of
global states.

Definition 2.5. Let C be a category with finite products.
LetMp be a model ofSp with values inC. The category
of loose semantics for global states inC aboveMp is the
categoryMod(S,C)|Mp

of models ofS in C aboveMp.
The terminal semantics for global states inC aboveMp

is the terminal model ofS in C aboveMp.

2.2 Exceptions, explicitly

Now the explicit specification for exceptionsis defined
as thedual of the explicit specification for global states.
For readability, the names of the points and arrows are
changed.

LetEtype be a set, called the set ofexception types.

Definition 2.6. • LetEp denote the specification sim-
ply made of a pointPi for eachi ∈ Etype, called the
type ofparametersfor exceptions of typei.

• Let Eq denote the specification made ofEp, a point
E, called the type ofexceptionsand an arrowri :
Pi → E for eachi ∈ Etype, called theraising of
exceptions of typei. Letr = [rj]j∈Etype :

∑
j Pj →

E denote the cotuple of theri’s.

• For each locationi, let ψi :
∑

j Pj → Pi + E be
defined asψi = [ψi,j]j∈Etype whereψi,j : Pj →
Pi + E is:

ψi,i = inPi
andψi,j = inE,i ◦ rj whenj 6= i

whereinPi
: Pi → Pi +E andinE,i : E → Pi +E

denote the coprojections.

• The explicit specification for exceptionsE is made
of Eq and an arrowhi : E → Pi + E for each
i ∈ Etype, called thehandlingof exceptions of type
i, together with the equation:

hi ◦ r = ψi . (2)

Remark 2.7. A modelMp of Ep in a categoryC with
finite sums is simply made of an objectPar i = MpPi
for eachi ∈ Etype. A modelMq of Eq in C is made,
in addition, of an objectExc = MqE and a morphism
Mqr :

∑
j Par j → Exc. For getting a modelM of

E in C we add for eachi ∈ Etype a morphismMhi :
Exc → Par i + Exc such thatMhi ◦ Mr = Mψi for
eachi ∈ Etype. WhenC = Set, this means that (writing
explicitly the inclusions asinPar i

: Par i → Par i + Exc

andinExc,i : Exc → Par i + Exc in order to avoid ambi-
guity)Mhi(Mri(xi)) = inPar i

(xi) for eachxi ∈ Par i
andMhi(Mrj(xj)) = inExc,i(Mrj(xj)) for eachj ∈
Etype such thatj 6= i and eachxj ∈ Pj . This means
that the handling functionMhi runs as follows: for each
e ∈ Exc, the valueMhi(e) says whethere is an excep-
tion of type i, if so thenMhi(e) returns the parameter
xi ∈ Par i such thate = Mri(xi), otherwiseMhi(e)
returnse ∈ Exc without analyzing it any further.

Proposition 2.8. Let C be a category with finite sums.
LetMp be a model ofEp in C, made of an objecPar i =
MpPi for eachi ∈ Etype. There is an initial model of
Eq in C aboveMp, denoted[[]], it is such that[[E]] =∑

j Par j and [[r]] :
∑

j Par j → [[E]] is the identity.
Then[[]] can be extended in a unique way as a model of
E in C aboveMp, still denoted[[]]: for eachi ∈ Etype

the morphism[[hi]] : [[E]] → Par i + [[E]] is defined by
[[hi]] = [[ψi]]. In addition, [[]] is an initial model ofE
aboveMp.

Proof. This proof is dual to the proof of proposition 2.3.

3

The corresponding diagrams are:

∑
Par j

Mr // ME

∑
Par j

id //

id

OO

∑
Par j

Mr

OO
=

ME
Mhi // Pi +ME

∑
Par j

[[ψi]]//

Mr

OO

Pi +
∑

Par j

id+Mr

OO
=

Remark 2.9. WhenC = Set, in the initial model the
function [[hi]] mapsxi ∈ Par i to xi ∈ Par i (in the first
summand) andxj ∈

∑
j Par j to xij ∈

∑
j Par j (in the

second summand) whenj 6= i. When in addition the set
Par j does not depend onj, sayPar j = Par for eachj,
then:

[[E]] = Etype × Par .

When in additionPar = 1, then[[E]] = Etype.

We claim that the next definition corresponds to the
usual semantics of exceptions in programming languages.
This claim is supported by remark 2.13.

Definition 2.10. Let C be a category with finite sums.
LetMp be a model ofEp with values inC. The category
of loose semantics for exceptions inC aboveMp is the
categoryMod(E,C)|Mp

of models ofE in C aboveMp.
Theinitial semantics for exceptions inC aboveMp is the
initial model ofE in C aboveMp.

Remark 2.11. Let us come back to the usual meaning
of exceptions, in an explicit set-valued context. LetExc

be a set, called theset of exceptions, with a function
ri : Par i → Exc for raising an exception of typei. Let
f : X → Y + Exc be some function; for eachx ∈ X , if
f(x) = e ∈ Exc then we say thatf(x) raises the excep-
tion e. Let i ∈ Etype and letg : X × Par i → Y + Exc,
theng may be used to handle an exception raised byf if
this exception is of typei; it should be noted thatg itself
may raise an exception. The fact of usingg for handling
an exception of typei raised byf means that instead of
f : X → Y + E we call a functionH : X → Y + E,
which may be denotedH = f handle [i ⇒ g], defined
as follows. For eachx ∈ X :

• if f(x) does not raise any exception thenH(x) =
f(x) ∈ Y ,

• otherwise iff(x) raises an exception of the form
ri(xi) for somexi ∈ Par i, thenH(x) = g(x, xi) ∈
Y + Exc,

• otherwise (i.e., iff(x) raises an exceptione which is
not of typei), thenH(x) = f(x) ∈ Exc.

The handling of several types of exceptions is easily ob-
tained by iterating the constructionf handle [i⇒ g].

We are going to generalize this construction to any ex-
tensive category. Following [2], we define anextensive
categoryas a category with finite sums where the sums
arewell-behaved, in the sense that for each commutative
diagram:

X1

��

// Y1

��
X // Y1 + Y2

=

=

X0

OO

// Y2

OO

where the right column is a sum, the two squares are pull-
backs if and only if the left column is a sum.

Definition 2.12. Let C be an extensive category. Let us
consider a modelM of the specificationE with values
in C, and letPar i = MPi for eachi andExc = ME.
Let X , Y be two objects andf : X → Y + Exc, g :
X × Par i → Y + Exc two morphisms inC. Let us
decomposeX = X1+Xi+Xı thanks to the well-behaved
property of sums, applied twice as follows (note:Mhi is
used in the second diagram):

X1

in1

��

f1 // Y

inY

��
X

f // Y + Exc

=

=

X0

in0

OO

f0 // Exc

inExc

OO

Xi

ini

��

fi // Par i

inPari
��

X0
f0 // Exc

Mhi // Par i + Exc

=

=

Xı

inı

OO

fı // Exc

inExc,i

OO

4

We define three morphisms:

• H1 : X1 → Y + Exc asH1 = f ◦ in1 = inY ◦ f1,

• Hi : Xi → Y + Exc asHi = g ◦ (in0 ◦ ini, fi),

• Hı : Xı → Y + Exc asHı = inExc ◦ fı.

Thenf handle [i ⇒ g] : X → Y + Exc is defined as
[H1|Hi|Hı] : X1 +Xi +Xı → Y + Exc.

Remark 2.13. WhenC = Set, both functions denoted
f handle [i ⇒ g] in definition 2.12 and in remark 2.11
coincide.

2.3 Duality, explicitly

Now we can state our main result, from the explicit point
of view on effects. Indeed:

• the specificationS for global states (definition 2.1)
and the specificationE for exceptions (defini-
tion 2.6) are dual,

• categories with finite products (denotedCS) and cat-
egories with finite sums (denotedCE) are dual,

• the categoryMod(S,CS)|Mp
and the category

Mod(E,CE)|Mp
are dual,

• terminality and initiality are dual.

The next result follows immediately from these remarks
and from the definitions of the semantics (definitions 2.1
and 2.6).

Theorem 2.14. • The loose semantics for global
states and the loose semantics for exceptions are
dual.

• The terminal semantics for global states and the ini-
tial semantics for exceptions are dual.

3 Duality of effects

In this section we define global states and exceptions as
effects with hidden typesS andE, respectively. We show
that their semantics, as defined in section 2, can also be
defined directly from this hidden point of view, so that

theorem 2.14 is also a theorem about the duality of effects
from the hidden point of view. In order to safely hide the
typesS andE from the specifications, we have to distin-
guish three kinds of arrows in these specifications; then
we say that the specifications are decorated. Moreover,
we define a decorated category as a category with three
kinds of morphisms satisfying some compatibility proper-
ties. Then we can define decorated models and prove that
we recover, from the hidden point of view, the semantics
of global states and the semantics of exceptions.

3.1 Decorated categories and specifications

Given a monad(T, η, µ) (or simplyT) on a categoryC,
the canonical functor fromC to the Kleisli categoryCT

of T is the identity on objects. If in addition themono
requirementis satisfied, i.e., ifηX is a monomorphism
in C for each objectX in C, then this canonical functor
is faithful, so that up to isomorphism it is an inclusion.
In [7], the morphisms ofCT are called thecomputations
and the morphisms inC the values(so that each value
is a computation). The values are sometimes also called
thepuremorphisms. This classification of morphisms is
now generalized (for a more subtle use of the notion of
decoration, see [3]).

Definition 3.1. In this paper, adecorated specification
Sp

dec is a sketch where each arrow has at least one dec-
oration d ∈ {p, q, r}. A decorated categoryCdec is
made of three nested categories with the same objects
Cp j Cq j Cr (we use “j” for an inclusion which
is the identity on objects). A morphismf in Cd, for every
d ∈ {p, q, r}, is denotedfd, and the symbold is called a
decorationof f . Clearly everyfp is also anf q and every
f q is also anf r, and the identities are inCp. A deco-
rated modelof a decorated specificationSpdec with val-
ues in a decorated categoryCdec is defined like a model
of a specification in a category, which in addition pre-
serves the decorations. This gives rise to the category of
Moddec(Spdec,Cdec).

Decorated categories can be built from monads and du-
ally from comonads, as follows.

Definition 3.2. LetC be a category and(T, η, µ) (or sim-
ply T) a monad onC satisfying the mono requirement
(eachηX is a mono). ThenDT (C) = C

p
T j C

q
T j Cr

T

5

is the decorated category with the same objects asC such
that:

• C
p
T = C, so that it has a morphismfp : X → Y for

eachf : X → Y in C,

• C
q
T = CT (the Kleisli category ofT), so that it has

a morphismf q : X → Y for eachf : X → TY in
C,

• Cr
T has a morphismf r : X → Y in C

q
T for each

f : TX → TY in C, and the composition is as in
C.

The inclusionCp
T j C

q
T corresponds to mappingf :

X → Y to ηY ◦ f : X → TY in C. The inclusion
C
q
T j Cr

T corresponds to mappingf : X → TY to
µY ◦ Tf : TX → TY in C.
In addition, the composition of a morphism inCq

T with a
morphism inCr

T is inC
q
T : gr ◦ f q = (g ◦ f)q.

Remark 3.3. If there are enough sums inC, then every
family of morphismsf qi : Xi → Y gives rise to a cotuple
[fi]

q
i :

∑
iXi → Y characterized by[fi]

q
i ◦ in

p
i = f

q
i for

eachi, whereinpi : Xi →
∑

iXi is the coprojection.

Definition 3.4. LetC be a category and(T, ε, δ) (or sim-
ply T) a comonad onC satisfying the epi requirement
(eachεX is an epi). ThenDT (C) = C

p
T j C

q
T j Cr

T

is the decorated category with the same objects asC such
that:

• C
p
T = C, so that it has a morphismfp : X → Y for

eachf : X → Y in C,

• C
q
T = CT (the coKleisli category ofT), so that it

has a morphismf q : X → Y for eachf : TX → Y

in C,

• Cr
T has a morphismf r : X → Y in C

q
T for each

f : TX → TY in C, and the composition is as in
C.

The inclusionCp
T j C

q
T corresponds to mappingf :

X → Y to f ◦ εX : TX → Y in C. The inclusion
C
q
T j Cr

T corresponds to mappingf : TX → Y to
Tf ◦ δX : TX → TY in C.
In addition, the composition of a morphism inCr

T with a
morphism inCq

T is inC
q
T : gq ◦ f r = (g ◦ f)q.

Remark 3.5. If there are enough products inC, then ev-
ery family of morphismsf qi : X → Yi gives rise to a tuple
(fi)

q
i : X →

∏
i Yi characterized byprpi ◦ (fi)

q
i = f

q
i for

eachi, whereprpi :
∏
i Yi → Yi is the projection.

3.2 Global states

LetC be a category with a terminal object1, with a distin-
guished objectSt called the type ofstates, and a product-
with-St functorT (. . .) = . . . × St . ThenT is the endo-
functor of a comonad(T, ε, δ) whereεX : X × St → X

is the projection andδX : X × St → X × St × St du-
plicates theSt-component. Therefore, we get a decorated
categoryDT (C), denotedDSt (C), as in section 3.1.

Definition 3.6. Let Spdec be a decorated specification.
Theexpansionof Spdec for global states is the specifica-
tionES(Sp

dec) with the same points asSpdec and a new
pointS and with:

• an arrowfp : X → Y for eachfp : X → Y in
Spdec,

• an arrowfq : X × S → Y for eachf q : X → Y in
Spdec,

• an arrowfr : X×S → Y ×S for eachf r : X → Y

in Spdec.

The following result is easy to check directly, it can also
be obtained from an adjunction [4].

Proposition 3.7. LetSpdec be a decorated specification
andC a category with a terminal object1, a distinguished
objectSt and a comonad. . .× St . Then there is a bijec-
tion:

Moddec(Spdec, DSt (C)) ∼= Mod(ES(Sp
dec),C)|St

where Mod(ES(Sp
dec),C)|St is the subcategory of

Mod(ES(Sp
dec),C) made of the models which map

S to St and of the morphisms with the identity asS-
component.

Now, we define the decorated specification for global
statesSdec by hidingS in definition 2.1, then we apply
proposition 3.7 toSdec.

6

Definition 3.8. Let Loc be a set. Thedecorated specifi-
cation for global statesSdec is made of, for eachi ∈ Loc,
a pointVi, an arrowlqi : 1 → Vi, an arrowuri : Vi → 1
and an equation:

lq ◦ uri = ϕ
q
i . (3)

wherelq = (lqj)j∈Loc : 1 →
∏
j Vj andϕqi : Vi →

∏
j Vj

is defined asϕqi = (ϕqi,j)j∈Loc whereϕqi,j : Vi → Vj is
(with ()pVi

: Vi → 1):

ϕ
q
i,i = id

p
Vi

andϕqi,j = l
q
j ◦ ()

p
Vi

whenj 6= i

It is easy to check that the expansionES(Sdec) of Sdec

is the specificationS from definition 2.1, so that proposi-
tion 3.7 has the following consequence.

Corollary 3.9. Let C be a category with finite products
and with a distinguished objectSt . LetMp be a decorated
model ofSp with values inDSt (C) (Mp is made of an
objectVal i = Mp(Vi) for eachi ∈ Loc). Then there is a
bijection:

Moddec(Sdec, DSt (C))|Mp
∼= Mod(ES(S

dec),C)|Mp,St

This result allows to define the semantics for global
states directly from the decorated specificationSdec.

Remark 3.10. Usually the global state effect is formal-
ized using the monad with endofunctorT ′(X) = (X ×
S)S , assuming that there are exponentials of the form
(. . . × S)S in C. Up to currification, the Kleisli cate-
gory of the monadT ′ can be identified to the category
Cr
T . Thus, with the point of view of monads, we get the

inclusionCp
T j Cr

T : the morphisms inCr
T (the compu-

tations) may modify the state, the morphisms inC
p
T (the

values) are the pure functions, but the intermediate cate-
goryCq

T for the inspectors, which may observe the state
without modifying it, is lacking.

3.3 Exceptions

Following the same lines as in sections 2.1 and 2.2, the
treatment of exceptions as hidden effect is dual to the
treatment of global states as hidden effect in section 3.2:
see the table in appendix A. Thus, the semantics for ex-
ceptions can be defined directly from the decorated spec-
ificationEdec.

Remark 3.11. It is usual to formalize the exceptions
thanks to the monad. . . + E [10]. Then the raising
of exceptions is often defined by operationsraisei,X :
Pi → X for eachi and for each objectX , and it is
often assumed thatPi = 1 for every i. This point of
view is easily recovered from our approach, by defining
raisei,X = []X ◦ ri : Pi → X (with []X : 0 → X),
and assuming thatPi = 1 if it is required. On the other
hand, [5] contains a preliminary version of the treatment
of exceptions as in this paper.

4 Conclusion

In this paper we have proved the duality between two fun-
damental effects: the global states and the exceptions.
One key point is the introduction of the morphismshi
for handling exceptions. Another key point is the use of
the comonad. . . × St for dealing with the global states.
Dealing more generally with multivariate functions would
require more sophisticated products, like the sequential
products in [3]. Adding exponentials is a challenge, where
closed Freyd-categories might prove helpful [11].

References

[1] Michael Barr, Charles Wells.Category Theory for
Computing Science. 3rd ed., Publications CRM
PM023 (1999).

[2] A. Carboni, S. Lack, R.F.C. Walters. Introduction
to extensive and distributive categories.Journal of
Pure and Applied Algebra84: 145-158 (1993).

[3] Jean-Guillaume Dumas, Dominique Duval, Jean-
Claude Reynaud. Cartesian effect categories are
Freyd-categories. CoRR abs/0903.3311 (2009)

[4] Dominique Duval. Diagrammatic Specifications.
Mathematical Structures in Computer Science(13):
857-890 (2003).

[5] Dominique Duval, Jean-Claude Reynaud. Diagram-
matic logic and effects : the example of exceptions.
Rapport de Recherche (21 décembre 2004) ccsd-
00004129.

7

[6] Martin Hyland, John Power. The Category Theo-
retic Understanding of Universal Algebra: Lawvere
Theories and Monads.Electr. Notes Theor. Comput.
Sci.172: 437-458 (2007).

[7] Eugenio Moggi. Computational Lambda-Calculus
and Monads. Logic in Computer Science (LICS ’89)
IEEE Conference Proceedings: 14-23 (1989).

[8] Eugenio Moggi. Notions of Computation and Mon-
ads.Inf. Comput.93(1): 55-92 (1991).

[9] Gordon D. Plotkin, John Power. Notions of Com-
putation Determine Monads. FoSSaCS’02.Lecture
Notes in Computer Science2303: 342-356 (2002).

[10] Gordon D. Plotkin, John Power. Algebraic Oper-
ations and Generic Effects.Applied Categorical
Structures11(1): 69-94 (2003).

[11] John Power, Hayo Thielecke. Closed Freyd- and
kappa-categories. ICALP’99Lecture Notes in Com-
puter Science1644: 625-634 (1999).

A Table of notations

The following table summarizes most notations used in
the paper. When the main columns are subdivided, the
left hand-side is from the hidden point of view while the
right hand-side is from the explicit point of view.

8

Global states Exceptions

Category

C with 1, with S and. . .× S C with 0, withE and. . .+ E

(Co)Monad

CoMonad T (X) = X × S Monad T (X) = X + E

εX : X × S → X , δX : X × S → X × S × S ηX : X → X + E, µX : X + E + E → X + E

p⇒ q ⇒ r

(p) X → Y (p) X → Y

(q) X × S → Y (q) X → Y + E

(r) X × S → Y × S (r) X + E → Y + E

“q”

lookup raise

l
q
i : 1 → Vi li : S → Vi r

q
i : Pi → 0 ri : Pi → E

lq = (lqi)i : 1 →
∏
i Vi l = (li)i : S →

∏
i Vi rq = [rqi]i :

∑
i Pi → 0 r = [ri]i :

∑
i Pi → E

“r”

update handle

uri : Vi → 1 ui : Vi × S → S hri : 0 → Pi hi : E → Pi + E

ϕ
q
i,j : Vi → Vj ϕi,j : Vi × S → Vj ψ

q
i,j : Pj → Pi ψi,j : Pj → Pi + E

ϕ
q
i,i = id

p
Vi

ϕi,i = prVi
ψ
q
i,i = id

p
Pi

ψi,i = inPi

ϕ
q
i,j 6=i = l

q
j ◦ ()Vi

ϕi,j 6=i = lj ◦ prS ψ
q
i,j 6=i = []pE ◦ rqj ψi,j 6=i = inE,i ◦ rj

ϕ
q
i = (ϕqi,j)j ϕi = (ϕi,j)j ψ

q
i = [ψqi,j]j ψi = [ψi,j]j

Vi
ϕ

q

i //

ur
i ��

∏
j Vj

idp

��
1

lq //
∏
j Vj

=

Vi × S
ϕi //

ui

��

∏
j Vj

id��
S

l //
∏
j Vj

=

∑
j Pj

ψ
q

i // Pi

∑
j Pj

rq //
idp

OO

0

hr
i

OO
=

∑
j Pj

ψi // Pi + E

∑
j Pj

r //
id

OO

E

hi

OO
=

Remarks

if l = (li)i : S →
∏
i Vi is terminal (for fixedVi’s) if r = [ri]i :

∑
i Pi → E is initial (for fixedPi’s

thenl : S
≃
→

∏
i Vi thenr :

∑
i Pi

≃
→ E

and bycoinduction: existence and unicity ofu and byinduction: existence and unicity ofh

9

