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Abstract the operations lookup and update for the states, the oper-
ations raise and handle for the excepti [10]. Another
Global states and exceptions form two basic computgproach is based drawvere theorieshis point of view
tional effects. In this paper it is proved that they can lierelated to monads by an adjuncti@h [6].
seen as dual to each other: the lookup and update opera computational effect relies on a kind of zooming pro-
tions for global states are dual to the raise and handle epss from aiddenpoint of view, where the effect is par-
erations for exceptions, respectively. In order to get thially hidden, to arexplicit point of view, where the effect
result we use a monad for exceptions and a comonadd@pears explicitly. For instance, there is no explicit tpe
global states. for states in an imperative language (the state is hidden),
however the set of states does appear explicitly in the
denotational semantics for global states. In this paper, we
1 Introduction focus on two computational effects: global states and ex-
ceptions, and we prove that they are mutudllal, both
The denotational semantics of languages witmputa- from the explicit and from the hidden point of view.
tional effectsan be expressed in categorical terms, thanksFirst in sectio[]2 these two effects are treated in an
to monads{lﬂ, E]: for instance, global states correspond &xplicit way. We prove that they can be seen as mutu-
the monad orSet with endofuntorT’(X) = (X x St)%* ally dual, in the sense that their denotational semantics
whereSt is the set of states, while exceptions correspoigddefined by the models of two dual specifications. We
to the monad oiSet with endofuntorT’(X) = X + Ezc usesketchess specifications, since they provide a clean
where Exc is the set of exceptions. Each computationakatement of sums as dual to products. The idea is that
effect comes with its associated operations: for instancéé,x St for a fixed St is dual toX + Ezxc for a fixed Exc,



and that this duality can be extended to the operationss Let S, denote the specification made $f, a point
lookup is dual to raise, and update is dual to handle. Then S, called the type o$tatesand an arrow; : S — V;
in section|]3 we look at the effects from th@denpoint for eachi € Loc, called thelookupati. Letl =
of view. For this purpose, as in the classical approach we (I;)jcroc : S — Hj V; denote the tuple of thg’s.
use the monad'(X) = X + Exc for the exceptiond]7], o

but we use the dualomonadl’(X) = X x St for the  ® FOF each location, lety; : V; x 5 — J[;V; be
global states. We prove that the duality can also be eas- def_med aspi = (¥ij)jeroc Wherep; ; : Vi x S —
ily expressed from this point of view. Our notations and V5 IS*

results are summarized in appenf]x A.

To our knowledge, the fact that global states and excep-
tions are dual computational effects is a new result. It has wherepry. : Vi x S — V; andprg : V; x S — S
been necessary to use both monads and comonads for get-denote the projections.
ting this resultin its right setting, i.e., when the effeats
hidden. We would like to suggest that, while monads are® Theexplicit specification for global statesis made
indeed one major tool for expliciting effects, additional ~ 0f Sg and anarrow; : V;x.S — Sforeach € Loc,
tools like comonads or other categorical features may also called theupdateat:, together with the equation:

helpful.
be helpfu lou;, =, . 1)

Vi = DTy, andy; ; =, o prg whenyj # ¢

2 Duality of effects, explicitly Remark 2.2. A model M, of S, in a categoryC with
finite products is simply made of an objektl; = M,V;
In this section the effects appear explicitly in the specif@’ €achi € Loc. A model}, of S, in C is made, in
cations. We use sketches as specificatifhs [1]: a skelgidlition, of a sebi = M, S and a morphismi/,/ : 5t —
with finite productsS for global states and dually a sketch1; Val;- For getting a model of S in C we add for
with finite sumsE for exceptions. The category of mod€achi € Loc a morphismiMu; : Val; x St — St such
els of a sketctSp with values in a categor¢ is denoted thatMl o Mu; = My; for eachi € Loc. WhenC =
Mod(Sp, C). WhenSp, is a subsketch o8p and M, Set. this means that for each; € Val; ands € 5,
a model ofSp,, we denoteMod(Sp, C)|, the sub- MUi(Mui(w;, 5)) = xi and Ml;(Mui(z;, 5)) = Ml;(s)
category ofMod(Sp, C) made of the modeld/ of Sp whenj 7# i.
with values inC which coincide with}M, on Sp, and propesition 2.3. LetC be a category with finite products.
of the morphisms of models which extend the identifyy¢ M, be a model 08, in C, made of an objectal, —
of My. We often writeM ... for M(...) when M is M,V for eachi € Loc. There is a terminal model &, in
a model of a sketch. For set-valued models we den@eaboveMp, denoted]]], itis such thaf[S]] = ][, Val,

Mod(Sp) = Mod(Sp, Set). and([[1]] : [[S]] — TI, Val, is the identity. Thef(]] can
be extended in a unique way as a modebafi C above
2.1 Global states, explicitly M, still denoted[[]]: for eachi € Loc the morphism

[[ui]] = Val; x [[S]] — [[S]] is defined byf[u;]] = [[¢:]]-
The explicit specification for global states is defined im addition,[[]] is a terminal model of abovel,,.

several steps.
P Proof. Let M, be a model ofS, abovel,, then the

Definition 2.1. Let Loc be a set, called the set tifca- Unique morphismn : M, — [[]] above), is defined by
tions ms = Mqy(l) : My(S) — [1; Val;, so thaf[]] is a termi-
nal model ofS, abovel,. Since[[l]] is the identity, equa-
e Let S, denote the specification simply made of tions (1) determinéu;]] = [[:]] for each location, so
pointV; for eachi € Loc, called the type ofalues that|[[]] extends in this unique way as a modeBo&bove
of 4. M,. Now let M be a model o8 aboveM,, it is easy to



check thatngo Mu,; = [[:]]o (id vai, X ms) foreachlo- e For each location, let ¢, : Zj P; — P, + E be
cationi, so thatm is the unique morphism : M — [[]] defined as); = [¥; ;] jemtype Wherey; ; : P; —
aboveM,,. P, + Eis:
MS LTI val;  ValixMS™s M
le = \Lid z‘dxle = iMl whereinp, : P, - P+ Eanding,;, : E - P+ E
T Val, KRy Val,  Val;x]] Valj[[ﬂ [ Val; denote the coprojections.
e The explicit specification for exceptiors is made
of E, and an arrowh; : E — P, + E for each
Remark 2.4. When C = Set, in the terminal model i € Btype, called thehand!mgpf exceptions of type
the function[[w;]] : Val; x []; Val; — []; Val; maps i, together with the equation:
(@i, (x);) to (z;); wherez; = z; andz; = y; when o — @)
j # i. When in addition the se¥al; does not depend on 0T =i
j.say Val; = Val for eachj, then:

wi,i = i’flpi andz/)m = inEJ- or; Whenj 75’&

O

Remark 2.7. A model M, of E, in a categoryC with
finite sums is simply made of an objefur; = M,P;
for eachi € FEtype. A modelM, of E, in C is made,

It follows from remark[ZR and propositiofi .3 tha? addition, of an objectize = M, £ and a morphism

the next definition corresponds to the usual semantics’g#” > bary — Ege. For getting a model/ of
global states. E in C we add for eachi € FEtype a morphismMh; :

Exc — Par; + Exc such thatM h; o Mr = Mz7p; for
Definition 2.5. Let C be a category with finite productseachi € Etype. WhenC = Set, this means that (writing
Let M, be a model o8, with values inC. The category explicitly the inclusions asn pq,, : Par; — Par; + Exc
of loose semantics for global states@abovel/,, is the andin g, ; : Exc — Par; + Excin order to avoid ambi-
categoryMod(S, C)|as, of models ofS in C above)M,,. guity) Mh;(Mri(z;)) = inpar,(x;) for eachz; € Par;
Theterminal semantics for global states @ aboveM,,, andMh;(Mr;(x;)) = inpeci(Mr;(z;)) for eachj €
is the terminal model a8 in C abovel/,,. FEtype such thatj # ¢ and eachr; € P;. This means
that the handling functiod/ h; runs as follows: for each
e € Exc, the valueMh;(e) says whethee is an excep-
tion of typei, if so thenMh;(e) returns the parameter
Now the explicit specification for exceptioris defined z; € Par; such thate = Mr;(x;), otherwiseM h;(e)
as thedual of the explicit specification for global statesreturnse € Ezc without analyzing it any further.

For readability, the names of the points and arrows are o o
changed. Proposition 2.8. Let C be a category with f_|n|te sums.
Let Etype be a set, called the set ekception types -6t be amodel o, in C, made of an obje@ar; =

M, P; for eachi € Etype. There is an initial model of
Definition 2.6. e Let E, denote the specification sim-E, in C abovel,, denoted]]], it is such that[[E]] =
ply made of a poinf; for eachi € Etype, calledthe >_; Par; and [[r]] : > , Par; — [[E]] is the identity.
type of parameterdor exceptions of type. Thenl[]] can be extended in a unique way as a model of
o ~ Ein C aboveM,, still denoted][]]: for eachi € Etype
e LetE, denote the specification madel®f, a point the morphisni[h;]] : [[E]] — Par; + [[E]] is defined by

E, called the type obxceptionsand an arrow; = [[p,]] = [[;]]. In addition, [[]] is an initial model ofE
P, — FE for eachi € Etype, called theraising of abovel,.

exceptions of type. Letr = [r;] e prype : D_; P —
E denote the cotuple of the’s. Proof. This proof is dual to the proof of propositi¢n P.3.

(S]] = Vaitee .

2.2 Exceptions, explicitly



The corresponding diagrams are: e otherwise if f(z) raises an exception of the form
ri(x;) for somex; € Par;, thenH (z) = g(z,z;) €

S Par; M AR ME - p 4 ME Y + Ezc,
idT = TMT- MT-T = TidJr Mr e otherwise (i.e., iff () raises an exceptianwhich is
[[¥i]] not of typei), thenH (z) = f(z) € Exc.

> Par, iZParj > Par; —"P; + ) Par;
The handling of several types of exceptions is easily ob-
O tained by iterating the constructighhandle [i = g].

K h in the initial | th We are going to generalize this construction to any ex-
]Ic?emgr 2.9. WhenC = Set, In the initia _mo:ef_t € tensive category. Following[l[Z], we define artensive
unction|[h;]] mapsz; € Par; 1o z; € Par; (in the first categoryas a category with finite sums where the sums

summand) and; € 3 _; Par; toz;j € )2, Par; (inthe 40 wellhehavedin the sense that for each commutative
second summand) when=£ i. When in addition the setdiagram'

Par; does not depend ofy say Par; = Par for eachy, X, Y,

then:
[[E]] = Etype x Par . l - J/
. . X—=Y1+Y;
When in additionPar = 1, then[[E]] = Etype. T ! T ?

We claim that the next definition corresponds to the

usual semantics of exceptions in programming languages.

This claim is supported by remakk 2113. where the right column is a sum, the two squares are pull-
PP Y backs if and only if the left column is a sum.

Xo———=Y

Definition 2.10. Let C be a category with finite sums
Let M, be a model oE, with values inC. The category
of loose semantics for exceptions@ aboveM,, is the
categoryMod(E, C)|ys, of models ofE in C abovel,,.
Theinitial semantics for exceptions i@ abovel,, is the
initial model of E in C abovel,,.

‘Definition 2.12. Let C be an extensive category. Let us
consider a modelM of the specificatiorE with values
in C, and letPar; = M P; for each: and Exzc = ME.
Let X, Y be two objects and : X — Y + Fuc, g :
X x Par; — Y + Exzc two morphisms inC. Let us
decompos&X = X;+X;+ X7 thanks to the well-behaved

Remark 2.11. Let us come back to the usual meaninBrOpe_rty of sums, applied twice as follows (nofeh; is
of exceptions, in an explicit set-valued context. |Eatc Used in the second diagram):

be a set, called theet of exceptionswith a function i
r; : Par; — FExc for raising an exception of type Let Xp ——
f: X — Y + Ezc be some function; for each € X, if mll = J/my
f(x) =ec Ezc then we say thaf (x) raises the excep- Y Y 4+ Eze
tione. Leti € Etype and letg : X x Par; — Y + FEuc,
theng may be used to handle an exception raised lify i"OT = T”‘E
this exception is of type; it should be noted that itself Xo LG Ezc
may raise an exception. The fact of usipdor handling
an exception of type raised byf means that instead of X, fi Par.
f: X =Y + Ewecall afunction : X — Y + E, ! !
which may be denotedl = f handle [¢ = ¢], defined ml/ = l"”’
. fo Mh;
as follows. For each € X: Xo ——— Exc — Par; + Fxc
e if f(x) does not raise any exception théf(z) = m‘T - TmE
f(x) €Y, Xz I FExc



We define three morphisms: theoren] 2.14 is also a theorem about the duality of effects
from the hidden point of view. In order to safely hide the

e H: X1 Y + ExcasH, = foiny = iny o fi, typesS and E from the specifications, we have to distin-

o H;: X; =Y + ErcasH; = go (ing o ini, i), guish three kinds of arrows in these specifications; then
we say that the specifications are decorated. Moreover,
o Hy: Xs =Y + ExcasHy = ingg. o fi. we define a decorated category as a category with three

' ] ] kinds of morphisms satisfying some compatibility proper-
Thenf handle [i = g] : X — Y + Euxcis defined as tjes. Then we can define decorated models and prove that
[H1|Hi|H7] : X1+ X; + X7 = Y + Euzc. we recover, from the hidden point of view, the semantics

Remark 2.13. WhenC = Set, both functions denotedOf global states and the semantics of exceptions.

f handle [i = g] in definition[2.1p and in remark 2J11 _ o
coincide. 3.1 Decorated categories and specifications

Given a monadT, 7, 1) (or simplyT’) on a categonC,
2.3 Duality, explicitly the canonical functor fronC to the Kleisli categonCr
N . ... .of T is the identity on objects. If in addition thono
ow we can state our main result, from the explicit point "~ . : P . : .
of view on effects. Indeed: .requwemenUS sa_tlsfleq, i.e., ifnx is a monqmorph|sm
in C for each objectX in C, then this canonical functor
o the specificatior for global states (definitio@.l)is faithful, so that up to isomorphism it is an inclusion.
and the specificationE for exceptions (defini- In [[l, the morphisms o€ are called theomputations
tion @) are dual, and the morphisms i€ the values(so that each value
is a computation). The values are sometimes also called
e categories with finite products (denot€d) and cat- the pure morphisms. This classification of morphisms is
egories with finite sums (denot€dls) are dual, now generalized (for a more subtle use of the notion of

o the categoryMod(S, Cs)|x, and the categorydecorat'on’Se‘ﬂ[3])-

Mod(E, Cg)|u, are dual, Definition 3.1. In this paper, adecorated specification
Sp?e is a sketch where each arrow has at least one dec-
orationd € {p,q,r}. A decorated categor®C? is
The next result follows immediately from these remarkgade of three nested categories with the same objects
and from the definitions of the semantics (definitipng 24" & C? S C” (we use £ for an inclusion which
and). is the identity on objects). A morphisifin C¢, for every
d € {p,q,r}, is denotedf, and the symbaf is called a
Theorem 2.14. e The loose semantics for globabecorationof f. Clearly everyf? is also anf¢ and every
states and the loose semantics for exceptions gteis also anf”, and the identities are i€?. A deco-
dual. rated modebf a decorated specificatidp“ with val-
) ) _ues in a decorated categaB*c is defined like a model
e The terminal semantics for global states and the iz 5 gpecification in a category, which in addition pre-
tial semantics for exceptions are dual. serves the decorations. This gives rise to the category of
Mod¢(Sp?ee, Cdec),

e terminality and initiality are dual.

3 Dua"ty of effects Decorated categories can be built from monads and du-

. . i . ally from comonads, as follows.
In this section we define global states and exceptions as

effects with hidden typeS andE, respectively. We show Definition 3.2. Let C be a category and’, n, ) (or sim-
that their semantics, as defined in seclﬂ)n 2, can alsoge T) a monad onC satisfying the mono requirement
defined directly from this hidden point of view, so thateachnx is a mono). TherDr(C) = C%. € Ci. € CI;



is the decorated category with the same objects asch Remark 3.5. If there are enough products @, then ev-
that: ery family of morphismg : X — Y; givesrise to a tuple
(fi)i - X — [, Vi characterized byr? o (f;){ = f for

e C% = C, sothatithas a morphisift : X — Y for eachi, wherepr? : [[, Y; — Y; is the projection.

eachf : X - Y inC,

e C7. = Cr (the Kleisli category ofl'), so thatithas 3 2 Global states
a morphismf? : X — Y foreachf : X — TY in

C, Let C be a category with a terminal objelGtwith a distin-

) _ guished objecfkt called the type oftatesand a product-

e C7 has a morphisnf™ : X — Y in C7. for each with-¢ functor7(...) = ... x St. ThenT is the endo-
f:TX — TY in C, and the composition is as infynctor of a comonadT’, ¢, §) wheres y : X x St — X
C. is the projection andx : X x St — X x St x St du-

The inclusionCZ < CZ corresponds to mapping : plicates theSt-component. Therefore_, we g(_etadecorated
X 5 Ytongeof: X — TY inC. The inclusion categoryDr(C), denotedDg; (C), as in sectiof 3}1.

Ci € C correspon_ds to mapping : X — TY to Definition 3.6. Let Sp
py ol f:TX —TY inC.

In addition, the composition of a morphism@f. with a
morphism inCY. is in C%.: g" o f7 = (go f)q.

de¢ he a decorated specification.
The expansiorof Sp?“ for global states is the specifica-
tion E5(Sp?°) with the same points &p?°* and a new
point.S and with:

Remark 3.3. If there are enough sums @, then every
family of morphismsf/ : X; — Y gives rise to a cotuple
[filf - >, X; — Y characterized byf;] o in?’ = f{ for
eachi, wherein? : X; — >, X; is the coprojection.

e an arrowf, : X — Y foreachf? : X — Y in
Spdec,

e anarrowf, : X x § — Y foreachf?: X —Yin

dec

Definition 3.4. Let C be a category an(’, ¢, ) (or sim- Sp“,

ply T) a comonad orC satisfying the epi requirement

(eachey is an epi). TherD(C) = C%. C C% C CI, e an arr(‘iowfr : X xS —=YxSforeachf": X - Y
is the decorated category with the same objects aach in Sp™**.

that: The following result is easy to check directly, it can also

e Cl = C, so that it has a morphisif? : X — Y for be obtained from an adjunctiof [4].

eachf : X - Y inC, . d L
Proposition 3.7. Let Sp®*“ be a decorated specification

e C1 = Cr (the coKleisli category of"), so that it andC a category with a terminal objedt a distinguished
has a morphisnf? : X — Y foreachf : TX — Y objectSt and a comonad.. x St. Then there is a bijec-
in C, tion:

e C’. has a morphisnf” : X — Y in CZ for each Mod?(Sp?*®, Dg;(C)) = Mod(Es(Sp?), C)|s:
f:TX — TY in C, and the composition is as in
C. where Mod(Es(Sp?°),C)|s; is the subcategory of
Mod(Es(Sp?©),C) made of the models which map
S to St and of the morphisms with the identity &s
component.

The inclusionC’. € CI. corresponds to mapping :
X > Ytofoex : TX — Y in C. The inclusion
Ccl € ClL correspor]ds to mapping : TX — Y to
Tfodx :TX = TYinC. Now, we define the decorated specification for global

In addition, the composition of a morphism@¥, with a - statessec by hiding S in definition[2.]., then we apply
morphism inC7 is in C7.: g% o f" = (g0 f)?. propositior] 37 t .



Definition 3.8. Let Loc be a set. Thelecorated specifi- Remark 3.11. It is usual to formalize the exceptions
cation for global state$?** is made of, for each€ Loc, thanks to the monad.. + E [@]. Then the raising
a pointV;, an arrowl : 1 — V;, an arrowu] : V; — 1 of exceptions is often defined by operatiansise; x :

and an equation: P, — X for each: and for each objecX, and it is
Toul =¢f. (3) often assumed thalP;, = 1 for everyi. This point of
view is easily recovered from our approach, by defining
Wher?lq = (Z?ZJELOC :ql — HJ' Vi and(‘f; tVi— Hj VJ raise; x = [|x or : P, — X (with []x : 0 — X)),
1S defmgd ag] = (5 ;)jcLoc Wherep]; : Vi — Vs and assuming thal, = 1 if it is required. On the other
(with ()y, = Vi — 1) hand, [] contains a preliminary version of the treatment

i ., of exceptions as in this paper.
o, =id}, andp?; =170 ()}, whenj # i

Itis easy to check that the expansiBg(S*) of S** 4 Conclusion
is the specificatio from definition[2.]L, so that proposi-

tion 8.7 has the following consequence. In this paper we have proved the duality between two fun-

Corollary 3.9. Let C be a category with finite IorOOILICtSdamental effects: the global states and the exceptions.

and with a distinguished objest. Let M, be a decorated g?i;:éllir?mg«l:se tzgnlgtrz(iléfﬁgrnsz thsir:??srgﬁésznése of
model ofS? with values inDg;(C) (M, is made of an 9 P ) yp

object Val;, = M, (V;) for eachi € Loc). Then thereis a the c_omonad. - x St for d_eallng .W'th the glob_al states.
bijection: Dealing more generally with multivariate functions would

require more sophisticated products, like the sequential
Mod?e¢(S%°, Dg,(C ~ Mod(Es(S%*), C productsin[|3]. Adding exponentialsis a challenge, where
( s(C)l, (Es( ) Clty.s closed Freyd-categories might prove helpfu] [11].
This result allows to define the semantics for global
states directly from the decorated specifica®iric.
References

Remark 3.10. Usually the global state effect is formal-
ized using the monad with endofunctbf(X) = (X x  [1] Michael Barr, Charles WellsCategory Theory for
S)S, assuming that there are exponentials of the form Computing Science. 3rd ed., Publications CRM
(... x 8)%in C. Up to currification, the Kleisli cate- PM023 (1999).

gory of the monadl” can be identified to the category ) )
C7.. Thus, with the point of view of monads, we get thel2] A. Carbor_n, S. Lac_k, R.F._C. Walters._ Introduction
inclusionC%. C C7.: the morphisms irC7. (the compu- to extensive and distributive categorie®ournal of
tations) may modify the state, the morphism€#} (the Pure and Applied Algebré4: 145-158 (1993).
values) are the pure functions, but the intermediate catgs
gory C/. for the inspectors, which may observe the stat
without modifying it, is lacking.

] Jean-Guillaume Dumas, Dominique Duval, Jean-
Claude Reynaud. Cartesian effect categories are
Freyd-categories. CoRR abs/0903.3311 (2009)

3.3 Exceptions [4] Dominique Duval. Diagrammatic Specifications.
Mathematical Structures in Computer Sciet8):

Following the same lines as in sectidns] 2.1 gnfi 2.2, the 857-890 (2003).

treatment of exceptions as hidden effect is dual to the

treatment of global states as hidden effect in sen 3.%5] Dominique Duval, Jean-Claude Reynaud. Diagram-
see the table in appen(ﬂ A. Thus, the semantics for ex- matic logic and effects : the example of exceptions.
ceptions can be defined directly from the decorated spec- Rapport de Recherche (21 décembre 2004) ccsd-
ification E e, 00004129.



[6]

[7]

[8]

[9]

[10]

[11]

A

Martin Hyland, John Power. The Category Theo-
retic Understanding of Universal Algebra: Lawvere
Theories and Monad&lectr. Notes Theor. Comput.
Sci.172: 437-458 (2007).

Eugenio Moggi. Computational Lambda-Calculus
and Monads. Logic in Computer Science (LICS '89)
IEEE Conference Proceedingk4-23 (1989).

Eugenio Moggi. Notions of Computation and Mon-
ads.Inf. Comput93(1): 55-92 (1991).

Gordon D. Plotkin, John Power. Notions of Com-
putation Determine Monads. FoSSaCS’Q2cture
Notes in Computer Scien@803: 342-356 (2002).

Gordon D. Plotkin, John Power. Algebraic Oper-
ations and Generic Effects.Applied Categorical
Structuresl1(1): 69-94 (2003).

John Power, Hayo Thielecke. Closed Freyd- and
kappa-categories. ICALP’9Becture Notes in Com-
puter Sciencd644: 625-634 (1999).

Table of notations

The following table summarizes most notations used in
the paper. When the main columns are subdivided, the
left hand-side is from the hidden point of view while the
right hand-side is from the explicit point of view.



Global states

Exceptions

Category

C with 1, with S and. .. x

S

C with 0, with Fand... + F

(Co)Monad

CoMonadT(X)=X x S

Monad T(X)=X+ F

Ex: X XS =X, 0x: XxS—=-Xx8xS8 nx X > X+FEux: X+E+F—>X+FE
p=q=>r
(p) X—-Y (p) X—-Y

(99 X—=>Y+FE
) X+ESY+E

rf:PZ-HO ri: Pp—>F

l=()i: S =1LV ri=[l;:>,P—0 |r=[ri:>,Ph—E

T
update handle
up Vi =1 up: Vix 8= 58 h;:0—=F; hi:E— P+ FE
o Vi=V; pij Vix S =V Vi P — P VYij:Pj—> P+ E
pi ;= 1dy, Pii = Ppry, o= 1dp Vi = inp,
0l iz =1 °0v Pijri =ljoprg i = g or] Yijti = NE; OT;
o = (¥15); @i = (#i); o = [ Vi = (Vi 5
Vi i HJV] Vix S = HJV] ZijL)Pi ZijLP’L+E
ul l = yia u; l = Vi | i} = Thf i} = Thi
1 CLTLYs S LILV | P ——0 > P — E
Remarks

if 1 =(l;); - S — [, Vi isterminal (for fixedV;’s) | if r = [r;]; : >, P; — Eisinitial (for fixed P;’s

thenl : S = [,V

thenr: Y, P, > E

and bycoinduction: existence and unicity af and byinduction: existence and unicity of




