
HAL Id: hal-00445873
https://hal.science/hal-00445873v1

Preprint submitted on 11 Jan 2010 (v1), last revised 19 May 2011 (v4)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

States and exceptions are dual effects
Jean-Guillaume Dumas, Dominique Duval, Laurent Fousse, Jean-Claude

Reynaud

To cite this version:
Jean-Guillaume Dumas, Dominique Duval, Laurent Fousse, Jean-Claude Reynaud. States and excep-
tions are dual effects. 2010. �hal-00445873v1�

https://hal.science/hal-00445873v1
https://hal.archives-ouvertes.fr

States and exceptions are dual effects

Jean-Guillaume Dumas, Dominique Duval, Laurent Fousse, Jean-Claude Reynaud

LJK, University of Grenoble, France

January 11., 2010

Abstract. Global states and exceptions form two basic computational effects. In this paper it is
proved that they can be seen as dual to each other: the lookup and update operations for global states
are dual to the raise and handle operations for exceptions, respectively. In order to get this result we
use a monad for exceptions and a comonad for global states.

1 Introduction

The denotational semantics of languages with computational effects can be expressed in categorical terms,
thanks to monads [7]: for instance, global states correspond to the monad on Set with endofuntor T (X) =
(X × St)St where St is the set of states, while exceptions correspond to the monad on Set with endofuntor
T (X) = X + Exc where Exc is the set of exceptions. Each computational effect comes with its associated
operations: for instance, the operations lookup and update for the states, the operations raise and handle for
the exceptions. Another approach is based on Lawvere theories ; this point of view is related to monads by an
adjunction [6]. However, there are still several issues for designing a categorical semantics for computational
effects. One of these issues is that some of the operations associated with the effects are not algebraic, as
defined in [9]: for instance, lookup, update and raise are algebraic operations, while handle is not algebraic
[8, 9].

A computational effect relies on a kind of translation from a situation where the effect is partially hidden
to a situation where it becomes explicit: for instance, there is no explicit type S for states in an imperative
language, however the set of states St does appear explicitly in the semantics for global states. In this paper,
we focus on two computational effects: global states and exceptions. First, in section 2, these two effects are
treated in an explicit way. We prove that they can be seen as mutually dual, in the sense that their semantics
is defined by the models of two dual algebraic specifications. More precisely, we use sketches as algebraic
specifications, since this provides a clean treatement of sums as dual to products. The idea is that X × St
for a fixed St is dual to X + Exc for a fixed Exc, and that this duality can be extended to the operations:
lookup is dual to raise, and update is dual to handle. Then, in section 3, we come back to the proper effects,
with hidden features. For this purpose, as in the classical approach we use the monad T (X) = X + Exc
for the exceptions, but we use the dual comonad T (X) = X × St for the global states. We prove that the
duality can be easily expressed from this point of view.

To our knowledge, the fact that global states and exceptions are dual computational effects is a new result.
It has been necessary to use both monads and comonads for getting this result in its right setting, i.e., when
the effects are hidden. We would like to suggest that, while monads are indeed one major tool for expliciting
effects, additional tools like comonads or other categorical features may also be helpful.

2 Duality

In this section the effects are not seen as such, since they are explicit in the specifications. We use sketches
[1] as specifications: a sketch with finite products S for global states and dually a sketch with finite sums
E for exceptions. The category of (set-valued) models of a sketch Sp is denoted Mod(Sp). When Sp

0
is a

subsketch of Sp and M0 a model of Sp
0
, we denote Mod(Sp)|M0

the subcategory of Mod(Sp) made of the
models M of Sp which coincide with M0 on Sp

0
and of the morphisms which extend the identity of M0.

We often write M . . . for M(. . .) when M is a model of a sketch. In order to focus on the usual semantics of
effects in their simplest setting, we look only at set-valued models. However they could easily be replaced
by the models in a category C with the required products (for global sates) and sums (for exceptions).

1

2.1 Global states

Let Loc = {i} be a set, called the set of locations.

Definition 2.1. Let S0 denote the specification simply made of:
– a point Vi for each i ∈ Loc, called the type of values of i.
The specification for global states S is made of S0 and:
– a point S, called the type of states,
– an arrow li : S → Vi for each i ∈ Loc, called the lookup at i,
– an arrow ui : Vi × S → S for each i ∈ Loc, called the update at i,
– an equation li ◦ ui = prVi

for each i ∈ Loc,

– an equation lj ◦ ui = lj ◦ prS for each pair (i, j) ∈ Loc2 with i 6= j,
where prVi

: Vi × S → Vi and prS : Vi × S → S are the projections.

Remark 2.2. A model M0 of S0 is simply made of a set Val i = M0Vi for each i ∈ Loc, while a model
of S is made of a set Val i = MVi for each i ∈ Loc, a set St = MS, and for each i ∈ Loc two functions
Mli : St → Val i and Mui : Val i × St → St such that:
– Mli(Mui(xi, s)) = xi for each xi ∈ Val i and s ∈ St
– Mlj(Mui(xj , s)) = Mlj(s) for each j ∈ Loc such that j 6= i, each xj ∈ Valj and s ∈ St .

Proposition 2.3. Let M0 be a model of S0, made of a set Val i = M0Vi for each i ∈ Loc. The category
Mod(S)|M0

has a terminal object denoted [[]], such that:
– [[S]] =

∏
j Val j,

– [[li]] :
∏

j Val j → Val i is the projection, for each i ∈ Loc,
– [[ui]] : Val i ×

∏
j Valj →

∏
j Val j maps (xi, (xj)j) to (zj)j where zi = xi and zj = yj for every j 6= i, for

each i ∈ Loc.

It follows from remark 2.2 and proposition 2.3 that the next definition corresponds to the usual semantics
for global states in algebraic specifications.

Definition 2.4. Let M0 be a model of S0. The category of loose semantics for global states above M0 is
the category Mod(S)|M0

of models of S above M0. The terminal semantics for global states above M0 is the
terminal model of S above M0.

2.2 Exceptions

Now the specification for exceptions is defined as the dual of the specification for global states. For readability,
the names of the points and arrows are changed.

Let Etype = {i} be a set, called the set of exception types.

Definition 2.5. Let E0 denote the specification simply made of:
– a point Pi for each i ∈ Etype, called the type of parameters for exceptions of type i.
The specification for exceptions E is made of E0 and:
– a point E, called the type of exceptions,
– an arrow ri : Pi → E for each i ∈ Etype, called the raising of exceptions of type i,
– an arrow hi : E → Pi + E for each i ∈ Etype, called the handling of exceptions of type i,
– an equation hi ◦ ri = inPi

for each i ∈ Etype,
– an equation hi ◦ rj = inE ◦ rj for each pair (i, j) ∈ Etype2 with i 6= j,
where inPi

: Pi → Pi + E and inE : E → Pi + E are the coprojections.

Remark 2.6. A model M0 of E0 is simply made of a set Par i = M0Pi for each i ∈ Etype, while a model
of E is made of a set Par i = MPi for each i ∈ Etype, a set Exc = ME, and for each i ∈ Etype two
functions Mri : Par i → Exc and Mhi : Exc → Par i + Exc such that (writing explicitly the inclusions as
inPar : Par i → Par i + Exc and inExc : Exc → Par i + Exc in order to avoid ambiguity):

2

– Mhi(Mri(xi)) = inPar i
(xi) for each xi ∈ Par i

– Mhi(Mrj(xj)) = inExc(Mrj(xj)) for each j ∈ Etype such that j 6= i and each xj ∈ Pj .
This means that the handling function Mhi runs as follows. For each e ∈ Exc, the result of Mhi(e) identifies
whether e is an exception of type i, if so then Mhi(e) returns the parameter xi ∈ Par i such that e = Mri(xi),
otherwise Mhi(e) returns e ∈ Exc without analyzing it any further.

Proposition 2.7. Let M0 be a model of E0, made of a set Par i = M0Pi for each i ∈ Etype. The category
Mod(E)|M0

has an initial object denoted [[]], such that:
– [[E]] =

∑
j Par j,

– [[ri]] : Par i →
∑

j Par j is the coprojection, for each i ∈ Etype,
– [[hi]] :

∑
j Par j → Par i +

∑
j Par j maps xi ∈ Par i to xi ∈ Par i (in the first summand) and xj ∈

∑
j Par j

to xij ∈
∑

j Par j (in the second summand) when j 6= i, for each i ∈ Etype.

We claim that the next definition corresponds to the usual semantics of exceptions in programming languages.
This claim is supported by proposition 2.9.

Definition 2.8. Let M0 be a model of E0. The category of loose semantics for exceptions above M0 is the
category Mod(E)|M0

of models of E above M0. The initial semantics for exceptions above M0 is the initial
model of E above M0.

For a while, let us forget about the previous sections and come back to the usual meaning of exceptions, in
an explicit set-valued context. Let Exc be a set, called the set of exceptions, with a function ri : Par i → Exc
for raising an exception of type i. Let f : X → Y + Exc be some function; for each x ∈ X , if f(x) = e ∈ Exc
then we say that f(x) raises the exception e. Let i ∈ Etype, and let g : X × Par i → Y + Exc, then g may
be used to handle an exception raised by f if this exception is of type i; it should be noted that g itself may
raise an exception. The fact of using g for handling an exception of type i raised by f means that instead of
f : X → Y + E we call a function, which will be denoted f handle [i ⇒ g] : X → Y + E, defined as follows.
For each x ∈ X :
– if f(x) does not raise any exception then (f handle [i ⇒ g])(x) = f(x) ∈ Y ,
– otherwise if f(x) raises an exception of the form ri(xi) for some xi ∈ Par i, then (f handle [i ⇒ g])(x) =
g(x, xi) ∈ Y + Exc,
– otherwise (i.e., if f(x) raises an exception e which is not of type i), then (f handle [i ⇒ g])(x) = f(x) ∈ Exc.
The handling of several types of exceptions is easily obtained by iterating the construction f handle [i ⇒ g].

Proposition 2.9. Let us consider a model M of the specification E, and let Par i = MPi for each i and
Exc = ME. Let us consider two sets X, Y and two functions f : X → Y +Exc and g : X×Par i → Y +Exc.
Then f handle [i ⇒ g], as define above, can be built from M , f and g, using only the fact that Set has sums
of the form . . . + Exc and that these sums are well-behaved.

The sums . . . + Exc in C are well-behaved, in the sense of extensive categories [2], if for each commutative
diagram:

X1

��

// Y

��
X // Y + Exc

=

=

X0

OO

// Exc

OO

where the right column is the sum, the two squares are pullbacks if and only if the left column is a sum.

Proof. First, the set X is decomposed as X = X1 + Xi + Xı thanks to the well-behaved property of sums,

3

applied twice. Note that Mhi is used in the second diagram.

X1

in1

��

f1 // Y

inY

��
X

f // Y + Exc

=

=

X0

in0

OO

f0 // Exc

inExc

OO

Xi

ini

��

fi // Par i

inPari

��
X0

f0 // Exc
Mhi// Par i + Exc

=

=

Xı

inı

OO

fı // Exc

inExc,i

OO

Then, a function H : X → Y + Exc is defined as H = [H1|Hi|Hı] : X1 + Xi + Xı → Y + Exc:
— H1 : X1 → Y + Exc is H1 = f ◦ in1 = inY ◦ f1, which means that H(x) = f(x) ∈ inY (Y) when f does
not raise any exception,
— Hi : Xi → Y + Exc is Hi = g ◦ (in0 ◦ in i, fi), which means that H(x) = g(x, xi) ∈ Y + Exc when f(x)
raises an exception ri(xi) of type i,
— Hı : Xı → Y + Exc is Hı = inExc ◦ fı, which means that H(x) = f(x) ∈ inExc(Exc) when f(x) raises an
exception which is not of type i,.

2.3 Duality

Theorem 2.10. The semantics of global states and the semantics of exceptions are dual.

Proof. Definition 2.4 provides the semantics of global states, definition 2.8 is its dual, and proposition 2.9
shows that it does provide the semantics of exceptions. This yields the result for the loose semantics, then
the result follows for the specific semantics since terminal is dual to initial.

3 Effects

In this section we define global states and exceptions as effects, with hidden types S and E, respectively.
We show that their semantics, as defined in section 2, can also be defined directly from this point of view, so
that the duality theorem 2.10 actually is a theorem about effects. It can be assumed that the base category
C is Set.

3.1 Decorated categories

Given a monad T on a category C, the canonical functor from C to the Kleisli category CT of T is the
identity on objects. Following [7], the morphisms of CT may be called the computations and the morphisms
in the image of C the values (so that each value is a computation). The values are sometimes also called the
pure morphisms. This classification of morphisms is now generalized (for a more subtle use of the notion of
decoration, see [3]).

Definition 3.1. In this paper, a decorated category Cdec is made of three nested categories with the same
objects Cp j Cq j Cr (we use “j” for an inclusion which is the identity on objects). A morphism in Cd,
for every d ∈ {p, q, r}, is denoted fd, and the symbol d is called a decoration of fd. Clearly every fp is also
an f q and every f q is also an f r, and the identities are in Cp. A decorated specification Spdec is a sketch
where each arrow has at least one decoration d ∈ {p, q, r}.

Let C be a category and (T, η, µ) a monad on C. Then in C, every morphism fp : X → Y gives rise to
ηY ◦ fp : X → TY , every morphism fq : X → TY gives rise to µY ◦ Tfq : TX → TY , and when fq = ηY ◦ fp

then µY ◦ Tfq = µY ◦ TηY ◦ Tfp = Tfp. This yields a decorated category DT (C), as defined below, where
essentially Cp is C and Cq is the Kleisli category of T .

4

Definition 3.2. Let C be a category and (T, η, µ) (simply denoted T) a monad on C. Then DT (C) =
C

p
T j C

q
T j Cr

T is the decorated category with the same objects as C such that:
– there is a morphism f r : X → Y in Cr

T for each fr : TX → TY in C,
– such a morphism f r : X → Y is in C

q
T if and only if fr = µY ◦ Tfq for some fq : X → TY in C,

– and such a morphism f q : X → Y is in C
p
T if and only if fq = ηY ◦ fp for some fp : X → Y in C.

The composition on Cr
T is the composition in C, so that in C

p
T the composition is also as in C, and in C

q
T

it is the Keisli composition. In addition, the composition of a morphism in C
q
T with a morphism in Cr

T is in
C

q
T : gr ◦ f q = (g ◦ f)q.

If there are enough sums in C, then every family of morphisms f
q
i : Xi → Y gives rise to [fi]

q
i :

∑
i Xi → Y

.. characterized (up to isomorphism) by [fi]
q
i ◦ inp

i = f
q
i for each i, where inp

i : Xi →
∑

i Xi is the injection.

Dually, each comonad (T, ε, δ) (or simply T) on a category C gives rise to a decorated category, still denoted
DT (C).

3.2 Global states

Let Loc = {i} be a set, called the set of locations.

Let C be a category with a terminal object 1, with a distinguished object St called the type of states,
and a product-with-St functor T (. . .) = . . . × St . Then T is the endofunctor of a comonad (T, ε, δ) where
εX : X × St → X is the projection and δX : X × St → X × St × St duplicates the St-component. So, we get
a decorated category D...×St (C) as in section 3.1.

Definition 3.3. Let Spdec be a decorated specification. The expansion of Spdec for global states is the
specification E...×S(Spdec) with the same points as Spdec and with:
– a point S,
– an arrow fp : X → Y for each fp : X → Y in Spdec,

– an arrow fq : X → Y × S for each f q : X → Y in Spdec,

– an arrow fr : X × S → Y × S for each f r : X → Y in Spdec,
– and similarly for the equations.

The following result is easy to check directly, it can also be obtained from an adjunction [4]. A deco-
rated model of a decorated specification Spdec in a decorated category Cdec is defined like a model of a
specification in a category which in addition preserves the decorations. This gives rise to the category of
Moddec(Spdec,Cdec).

Proposition 3.4. Let Spdec be a decorated specification and C a category with a terminal object 1, a
distinguished object St and a comonad T (. . .) = . . . × St. Then there is a bijection:

Moddec(Spdec, D...×St (C)) ∼= ModS 7→St (E...×S(Spdec),C)

where ModS 7→St (E...×S(Spdec),C) is the full subcategory of Mod(E...×S(Spdec),C) made of the models which
map S to St.

Definition 3.5. Let Sdec
0

denote the decorated specification simply made of:
– a point Vi for each i ∈ Loc, called the type of values of i.
The decorated specification for global states Sdec is made of Sdec

0
and:

– an arrow l
q
i : 1 → Vi for each i ∈ Loc, called the lookup at i,

– an arrow ur
i : Vi → 1 for each i ∈ Loc, called the update at i,

– an equation l
q
i ◦ ur

i = idp
Vi

for each i ∈ Loc,

– an equation l
q
j ◦ ur

i = l
q
j ◦ ()p

Vi
for each pair (i, j) ∈ Loc2 with i 6= j, where ()p

Vi
: Vi → 1.

Then the expansion E...×S(Sdec) is the specification S from definition 2.1. So, proposition 3.4 state that
Moddec(Sdec, D...×St (Set)) ∼= ModS 7→St (S,Set) The next reuslt follows.

5

Corollary 3.6. Let M0 be a model of Sdec
0

. The category of loose semantics for global states above M0 is
the category Moddec(Sdec , D...×St (Set))|M0

of decorated models of Sdec above M0.

Remark 3.7. Usually the global state effect is formalized using the monad with endofunctor T ′(X) =
(X × S)S , assuming that there are exponentials of the form (. . . × S)S in C. Up to currifying the Kleisli
category of the monad T ′ can be identified to the category Cr. So, with the point of view of monads, we
get the inclusion Cp j Cr, but the intermediate category Cq has to be added.

3.3 Exceptions

Following the same lines as in section 2.2, the treatment of exceptions as effects is dual to the treatment of
global states as effects in section 3.2,

Remark 3.8. It is usual to formalize the exceptions thanks to the monad . . . + E. Usually the raising of
exceptions is defined by operations raisei,X : Pi → X for each i and for each object X . This point of
view is easily recovered from our approach, by defining raisei,X = []X ◦ ri : Pi → X . But the handling of
exceptions does not fit into the usual treatment of effects by monads because it is not an algebraic operation
in the sense of [9]. On the other hand, [5] contains a preliminary version of the treatment of exceptions as
in this paper.

References

[1] Michael Barr, Charles Wells. Category Theory for Computing Science. 3rd ed., Publications CRM
PM023 (1999).

[2] A. Carboni, S. Lack, R.F.C. Walters. Introduction to extensive and distributive categories. Journal of
Pure and Applied Algebra 84: 145-158 (1993).

[3] Jean-Guillaume Dumas, Dominique Duval, Jean-Claude Reynaud. Cartesian effect categories are Freyd-
categories. CoRR abs/0903.3311 (2009)

[4] Dominique Duval. Diagrammatic Specifications. Mathematical Structures in Computer Science (13):
857-890 (2003).

[5] Dominique Duval, Jean-Claude Reynaud. Diagrammatic logic and effects : the example of exceptions.
Rapport de Recherche (21 dcembre 2004) ccsd-00004129.

[6] Martin Hyland, John Power. The Category Theoretic Understanding of Universal Algebra: Lawvere
Theories and Monads. Electr. Notes Theor. Comput. Sci. 172: 437-458 (2007).

[7] Eugenio Moggi. Notions of Computation and Monads. Inf. Comput. 93(1): 55-92 (1991).

[8] Gordon D. Plotkin, John Power. Notions of Computation Determine Monads. FoSSaCS’02. Lecture
Notes in Computer Science 2303: 342-356 (2002).

[9] Gordon D. Plotkin, John Power. Algebraic Operations and Generic Effects. Applied Categorical Struc-
tures 11(1): 69-94 (2003).

6

A Table

This table summarizes most notations used in the paper. When the two main columns are subdivided, the
left hand-side is decorated while the right hand-side is explicit.

Global states Exceptions

Category

C with 1, with S and . . .× S C with 0, with E and . . .+E

(Co)Monad

CoMonad T (X) = X × S Monad T (X) = X +E

εX : X × S → X, δX : X × S → X × S × S ηX : X → X + E, µX : X + E +E → X + E

p⇒ q ⇒ r

(p) X → Y (p) X → Y

(q) X × S → Y (q) X → Y +E

(r) X × S → Y × S (r) X + E → Y + E

“q”

lookup raise

l
q
i : 1 → Vi li : S → Vi r

q
i : Pi → 0 ri : Pi → E

lq = (lqi)i : 1 →
Q

i
Vi l = (li)i : S →

Q

i
Vi rq = [rqi]i :

P

i
Pi → 0 r = [ri]i :

P

i
Pi → E

“r”

update handle

uri : Vi → 1 ui : Vi × S → S hri : 0 → Pi hi : E → Pi + E

ϕ
q
i,j : Vi → Vj ϕi,j : Vi × S → Vj ψ

q
i,j : Pj → Pi ψi,j : Pj → Pi + E

ϕ
q
i,i = id

p
Vi

ϕi,i = prVi
ψ
q
i,i = id

p
Pi

ψi,i = inPi

ϕ
q
i,j 6=i = l

q
j ◦ ()Vi

ϕi,j 6=i = lj ◦ prS ψ
q
i,j 6=i = []pE ◦ rqj ψi,j 6=i = inE ◦ rj

ϕ
q
i = (ϕqi,j)j ϕi = (ϕi,j)j ψ

q
i = [ψqi,j]j ψi = [ψi,j]j

Vi
ϕ

q

i //

ur
i ��

Q

j
Vj

id
p

��
1

lq //
Q

j
Vj

=

Vi × S
ϕi //

ui

��

Q

j
Vj

id��
S

l //
Q

j
Vj

=

P

j
Pj

ψ
q

i // Pi

P

j
Pj

eq

//
id

p

OO

0

hr
i

OO
=

P

j
Pj

ψi // Pi + E

P

j
Pj

e //
id

OO

E

hi

OO
=

Remarks

if ∀i Vi = Val if ∀i Pi = Par

then l : S → ValLoc (where Loc = {i}) then e : Etype × Par → E (where Etype = {i})

if l = (li)i : S →
Q

i Vi is terminal if r = [ri]i :
P

i Pi → E is initial

then l : S
≃
→

Q

i Vi then e :
P

i Pi
≃
→ E

and by coinduction: existence and unicity of u and by induction: existence and unicity of h

7

