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CONSTRUCTION PROCESS FOR SIMPLE LIE ALGEBRAS

Dehbia ACHAB

Abstract

We give here a construction process for the complex simple Lie algebras and the non

Hermitian type real forms which intersect the minimal nilpotent complex adjoint orbit,

using a finite dimensional irreducible representation of the conformal group, or of some

2-fold covering of it, with highest weight a semi-invariant of degree 4. This process

leads to a 5-graded simple complex Lie algebra and the underlying semi-invariant is

intimately related to the structure of the minimal nilpotent orbit. We also describe a

similar construction process for the simple real Lie algebras of Hermitian type.

Conformal and Meta-Conformal Groups

Let V be a Euclidean complex vector space and Q a degree 4 homogeneous polynomial

on V . Let L be defined by

L := {g ∈ GL(V ) | ∃γ(g) ∈ C,Q(gz) = γ(g)Q(z)}

and suppose that it has an open orbit and that L is self-ajoint :

∀g ∈ L, g∗ ∈ L.

More precisely, V is a semi-simple complex Jordan algebra with rank ≤ 4, L is the

structure group of V and Q semi-invariant for L.

If V =
s∑

i=1

Vi is the decomposition of V into simple ideals, then Q(z) =
s∏

i=1

∆ki

i (zi),

where ∆i is the determinant polynomilal of Vi and the ki are positive integers such

that
s∑

i=1

kiri = 4, ri being the rank of the Jordan algebra Vi. In the sequel, e is the

unit element of V .

Let K be the conformal group of V , that is the set of rationnal transformations g of

V such that, for each z ∈ V where g is defined, the differential Dg(z) ∈ L.

K is a semi-simple Lie group. It is generated by L, the group N of translations

τa(a ∈ V ) and the conformal inversion σ(z) = ∇logQ(z).

P := LnN is a maximal parabolic subgroup of K and L is its Lévi factor.

The Lie algebra k of K writes k = k−1 + k0 + k1, with

k−1 = Lie(N), k1 = Lie(σNσ) , k0 = Lie(L).

Let p be the complex vector space generated by the polynomials Q(z− a) with a ∈ V .

We first suppose that there exists a character χ of L such that

Q(l.z) = χ(l)2Q(z).

Then, the conformal group K acts on p by :
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(κ(g)p)(z) = µ(g, z)p(g−1z)

with

µ(g−1, z) = χ(Dg(z))−1.

In particular

(κ(τa)p)(z) = p(z − a) (a ∈ V )

(κ(l)p)(z) = χ(l)p(l−1z) (l ∈ L)

(κ(σ)p)(z) = Q(z)p(−z−1).

κ is the finite dimensional irreducible representation of K with highest weight Q. It is

also the representation IndK
P χ obtained by parabolic induction from the chatacter χ

of L. The derived representation dκ can be obtained on the generators of k as follows :

For X ∈ k−1, let v ∈ V be such that exp(tX) = τtv, then

(dκ(X)p)(z) = d
dt

|t=0 p(z − tv) = −Dp(z)(v).

For X ∈ k0 ,

(dκ(X)p)(z) =
d

dt
|t=0 γ(exp(

t

2
X))p(exp(−tX)z)

= Dγ(id) ◦D(exp)(0)(
1

2
X)p(z) −Dp(z)(D(exp)(0)(X)z)

=
1

2
Dγ(id)(X)p(z)−Dp(z)(X.z).

For X ∈ k1, exp(tX) = στtuσ with u ∈ V , then

(dκ(X)p)(z) =
d

dt
|t=0 (κ(στtuσ)p)(z)

=
d

dt
|t=0 (κ(σ)κ(τtu)[Q(z)p(σ(z))] =

d

dt
|t=0 (κ(σ)[Q(z − tu)p(σ(z − tu))]

=
d

dt
|t=0 [Q(z)Q(σ(z) − tu)p(σ(σ(z) − tu))] =

d

dt
|t=0 Q(e− tzu)p(zσ(e− tzu))

= −DQ(e)(zu)p(z)−Dp(z)(zu)

If the character χ of L does’nt exist, we consider the 2-fold-covering group of L defined

by

L̃(2) = {(l, α) ∈ L× C∗ | α2 = γ(l)−1}.

L̃(2) acts on V by (l, α).z = αl.z, then

Q((l, α).z) = α4γ(l)Q(z) = α2Q(z) = χ̃(l, α)2Q(z)

where χ̃(l, α) = α is a character of L̃(2). Moreover, L̃(2) is a subgroup of a 2-fold-

covering group of the conformal group K, which will be called the meta-conformal

group, defined by :

K̃(2) = {(g, φ) ∈ K ×O(V ) | φ(z)2 = γ(Dg(z))−1}

equipped with the group law given by :

(g1, φ1).(g2, φ2) = (g1g2, φ3), with φ3(z) = φ1(g2z)φ2(z).
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Proposition. For each g ∈ K, the function ψg : z 7→ γ(Dg(z))−1, holomorphic on

V − {z ∈ V | Dg(z) = 0}, has an analytic continuation to V . Moreover, there exists

φg ∈ O(V ), such that ψg = φ2
g.

Proof. Using the cocycle property D(g1g2)(z) = Dg1(g2(z))Dg2(z) which implies

ψg1g2
(z) = ψg1

(g2.z)ψg2
(z), it suffises to prove the proposition for the generators of K.

For g = l ∈ L, Dg(z) = l and ψg(z) = γ(l)−1 for z ∈ V . For g = τv, Dg(z) = idV

and ψg(z) = 1 for z ∈ V . If g = σ, as for each invertible z,Dσ(z) = P (z)−1 and

det(P (z)w) = det(z)2det(w) (cf. [F-K] Proposition II.3.3), then we get ψg(z) = Q(z)2

which is a polynomial, it follows that ψg has analytic continuation to V and φg(z)
2 = ψ,

φg being the holomorphic function φg(z) = Q(z). �

Corollary. K̃(2) is a 2-fold covering group of K, which contains the covering L̃(2) of

L. Moreover, K̃(2) is generated by the elements

(l, α) with (l ∈ L,α = γ(l)−
1
2 ),

(τv, 1) with v ∈ V ,

(σ,Q).

The group K̃(2) will be called the meta-conformal group of V , associated to the semi-

invariant Q. The subgroup P̃ (2) generated by L̃(2) and the (τv, 1) is maximal parabolic

of K̃(2) with Levi factor L̃(2).

We consider the representation κ̃ of K̃(2) in p defined by

(κ̃(τv, 1)p)(z) = p(z − v)

(κ̃(l, α)p)(z) = α−1p(l−1.z)

(κ̃(σ,Q)p)(z) = Q(z)p(−σ(z)).

κ̃ is the finite dimensional irreducible representation of K̃(2) with highest weight Q. It

is also the representation IndK̃(2)

P̃ (2) χ̃ obtained by parabolic induction from the chatacter

χ̃ of L̃(2). The derived representation dκ̃ can be obtained on the generators of k as

follows :

For X ∈ k−1, let v ∈ V be such that exp(tX) = (τtv, 1), then

(dκ̃(X)p)(z) = d
dt

|t=0 p(z − tv) = −Dp(z)(v).

For X ∈ k0,

(dκ̃(X)p)(z) =
d

dt
|t=0 γ(exp(

t

2
X))p(exp(−tX)z)

= Dγ(id) ◦D(exp)(0)(
1

2
X)p(z) −Dp(z)(D(exp)(0)(X)z)

=
1

2
Dγ(id)(X)p(z)−Dp(z)(X.z).
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For X ∈ k1,

(dκ̃(X)p)(z) =
d

dt
|t=0 (κ̃((σ,Q).(τtu, 1).(σ,Q))p)(z)

=
d

dt
|t=0 (κ̃((σ,Q))κ̃((τtu, 1))κ̃((σ,Q))p)(z)

=
d

dt
|t=0 (κ̃((σ,Q))κ̃((τtu, 1))[Q(z)p(σ(z))]

=
d

dt
|t=0 (κ̃((σ,Q))[Q(z − tu)p(σ(z − tu))]

=
d

dt
|t=0 [Q(z)Q(σ(z) − tu)p(σ(σ(z) − tu))]

=
d

dt
|t=0 Q(e− tzu)p(zσ(e− tzu))

= −DQ(e)(zu)p(z)−Dp(z)(zu).

Notice that the infinitesimal representations dκ and dκ̃ are equal. In the sequel, We

denote this representation of k in p by ρ.

Graduation of k and p.

The Lie algebra k = Lie(K) is the Kantor-Koecher-Tits Lie algebra of V .

We denote by ht the dilation of V : ht.z = e−tz (t ∈ R). Then ht ∈ L, ht = etH

with H ∈ Lie(L) and χ(ht) = e−2t (In the case of the character χ̃ of L̃(2), we consider

h̃t = (ht, e
2t) ∈ L̃(2) in such a way that χ̃(h̃t) = e−2t).

We can prove that ρ(H) = E−2, where E is the Euler operator (Ep)(z) =< z,∇p(z) >.

H defines a graduation of k :

k = k−1 ⊕ k0 ⊕ k1

with

kj = {X ∈ k | ad(H)X = jX} j = −1, 0, 1.

Notice that

Ad(σ) : kj → k−j ,X 7→ σXσ

k−1 = Lie(N) ' V, k0 = Lie(L), k1 = Lie(σNσ) ' V

and that

H ∈ z(k0) (centre of z(k0)).

H defines also a graduation of p :

p = p−2 + p−1 + p0 + p1 + p2

with

pj = {p ∈ p | ρ(H)p = jp}.

pj is the set of homogeneous polynomials of degree j + 2 in p.

Notice that

κ(σ) : pj → p−j , p 7→ κ(σ)p

p−2 = C, p2 = C.Q, p−1 ' V, p1 ' V .
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Construction process of simple Lie algebras

Let g be the vector space defined by g := k + p. Let’s denote by E = Q,F = 1

(E,F ∈ p).

Theorem 1. There exists on g a unique Lie algebra structure such that :

(S1) [X,X ′] = [X,X ′]k (X,X ′ ∈ k)

(S2) [X, p] = ρ(X)p (X ∈ k, p ∈ p)

(S3) [E,F ] = H.

Lemma 1.

(a) ∀X ∈ k−1, ρ(X)F = 0 et ∀Y ∈ k1, ρ(Y )E = 0.

(b) ∀X ∈ k−1, ρ(X)E ∈ p1 and ∀Y ∈ k1, ρ(Y )F ∈ p−1.

(c) ∀X ∈ k0, ρ(X)E = α(X)E and ρ(X)F = −α(X)F with α(X) = − 1
2
Dγ(id)(X).

Proof.

(a) Let be X ∈ k−1, then (ρ(X)F )(z) = −DF (z)(v) = 0.

Let be Y ∈ k1, then

(ρ(Y )E)(z) =
d

dt t=0
(κ(σ)κ(τtv)κ(σ)E)(z)

=
d

dt t=0
(κ(σ)κ(τtv)F )(z) =

d

dt t=0
(κ(σ)F )(z) = 0.

(b) Let be X ∈ k−1. Then for λ ∈ C∗,

(ρ(X)E)(λz) =
d

dt t=0
E(λz + tv) =

d

dt t=0
E(λ(z +

t

λ
v))

=
d

dt t=0
λ4E(z +

t

λ
v) = λ4 1

λ

d

dss=0
E(z + sv)

= λ3(ρ(X)E)(z).

Let be Y ∈ k1. Then Y = σXσ with X ∈ k−1. It follows that (ρ(Y )F ) = κ(σ)ρ(X)E ∈

κ(σ)(p1) = p−1.

(c) Let be X ∈ k0 then

(ρ(X)E)(z) =
d

dt t=0
γ(exp(

t

2
X)E(exp(−tX)z)

=
d

dt t=0
γ(exp(−

t

2
X))E(z) = −

1

2
Dγ(id)(X)E(z)

(ρ(X)F )(z) =
d

dt t=0
γ(exp(

t

2
X)F (exp(−tX)z)

=
d

dt t=0
γ(exp(

t

2
X))F (z) =

1

2
Dγ(id)(X)F (z). �
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Lemma 2.

(a) ∀p ∈ p1,∃!X ∈ k−1, p = ρ(X)E.

(b) ∀p ∈ p−1,∃!Y ∈ k1, p = ρ(Y )F .

Proof. As p is a simple k-module with highetst weight E, we can write p = ρ(U(k))E,

where U(k) is the envelopping algebra of k. This allows, using lemma 1, to prove that

X,Y,X1,X2 exist. On an other side, the linear maps

k−1 → p1,X 7→ ρ(X)E and k1 → p−1, Y 7→ ρ(Y )F

are injective. In fact, let X ∈ k−1 be such that dκ(X)E = 0. Then, for each z ∈ V ,

d
dt t=0

E(z + tv) = 0. As E(z) =
s∏

i=1

∆ki

i (zi), then, denoting by z = (zi) and v = (vi),

we get

d
dt t=0

E(z + tv) = d
dt |t=0

s∏

i=1

∆ki

i (zi + tvi) = 0.

Then if all the zi are invertible,

d
dt t=0

s∏

i=1

∆ki

i (zi + tvi) =
s∑

i=1

ki∆
ki

i (zi)tr(z
−1
i ui)

∏

j 6=i

∆
kj

j (zj) = E(z)
s∑

i=1

kitr(z
−1
i vi),

then for each zi ∈ Vi invertible,
s∑

i=1

kitr(z
−1
i vi) = 0, which implies that for each zi ∈ Vi,

s∑

i=1

kitr(zivi) = 0, and finally for each 1 ≤ i ≤ s, ∀zi ∈ Vi, tr(zivi) = 0, and as the

bilinear form tr(xy) is non degenerated on each Vi, then for each i, vi = 0, i.e. v = 0

and X = 0.

Let Y ∈ k1 be such that ρ(Y )F = 0, i.e. κ(σ)dκ(X)E = 0 where Y = σXσ with

X ∈ k−1. Then ρ(X)E = 0 and then X = 0 and Y = 0. �

Lemma 3. The representation ρ : k → End(p) is injective.

Proof. Let X ∈ k be such that ρ(X) = 0. We write X = X−1 +X0 +X1 with Xj ∈ kj .

As ρ(kj)(pi) ⊂ pi+j , we obtain that ρ(X−1) = ρ(X0) = ρ(X1) = 0.

ρ(X−1) = 0 implies that for all p ∈ p and z ∈ V , Dp(z)(v) = 0 (where exp(tX−1) =

τtv). In particular, if p(z) = tr(zu) with u ∈ V , then tr(vu) = 0 for arbitrary u, and

, as V semisimple means that the bilinear form tr(uv is non degenerate, then we get

v = 0 andX−1 = 0.

ρ(X0) = 0 implies ρ(X0)E = 0, then Dγ(id)(X0) = 0. Now, as for each linear

form p on V , ρ(X0)p(z) == 1
2
Dγ(id)(X0)p(z) + d

dt t=0
p(exp(−tX0)z) = 0, and as

Dγ(id)(X0) = 0, we have d
dt t=0

p(exp(−tX0)z) = p(−X0.z) = 0. If p(z) = tr(zu) with

u ∈ V then tr(−X0.zu) = 0 for each z, u ∈ V , then X0 = 0.

As X1 = σY−1σ with Y−1 ∈ k−1, then it is clear that ρ(X1) = 0 implies ρ(Y−1) = 0,

implies Y−1 = 0 and X1 = 0.
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Proof of theorem 1. We define the Lie bracket [p, p′] ∈ k for two elements p, p′ of p

in such a way that

[E,F ] = H, [pi, pj ] ⊂ ki+j

and

[X, [p, p′]]k = [[X, p], p′]k + [p, [X, p′]]k = [ρ(X)p, p′]k + [p, ρ(X)p′]k. (∀X ∈ k).

It follows that

∀X ∈ k−1, [ρ(X)E,F ] = [X, [E,F ]] = [X,H] = X

and the bracket [p1, p−2] ⊂ k−1 is well defined.

∀Y ∈ k1, [ρ(Y )F,E] = [Y, [F,E]] = −[Y,H] = Y

and the bracket [p−1, p2] ⊂ k1 is well defined.

∀X ∈ k−1, p ∈ p0, [ρ(X)E, p] = [[X,E], p] = [X, [E, p]] − [E, [X, p]] = [ρ(X)p,E] ∈ [p−1, p2]

and the bracket [p1, p0] ⊂ k1 is well defined.

∀Y ∈ k1, p ∈ p0, [ρ(Y )F, p] = [[Y,F ], p] = [Y, [F, p]] − [F, [Y, p]] = [ρ(Y )p, F ] ∈ [p1, p−2]

and the bracket [p−1, p0] ⊂ k−1 is well defined.

For X ∈ k−1, Y ∈ k1,

[ρ(X)E, ρ(Y )F ] = [X, [E, ρ(Y )F ]] − [E, ρ(X)ρ(Y )F ]

= [X, [E, ρ(Y )F ]] − [E, ρ([X,Y ])F ]

= −[X,Y ] + α([X,Y ])H ∈ k0

and the bracket [p1, p−1] ⊂ k0 is well defined.

∀X,X ′ ∈ k−1, [ρ(X)E, ρ(X ′)E] = [X, [E, ρ(X ′)E]] − [E, ρ(X)ρ(X ′)E] = 0,

then [p1, p1] = 0.

∀Y, Y ′ ∈ k1, [ρ(Y )F, ρ(Y ′)F ] = [Y, [F, ρ(Y ′)F ]] − [F, ρ(Y )ρ(Y ′)F ] = 0,

then [p−1, p−1] = 0.

The bracket [p0, p0] is then well determined. In fact, for p, p′ ∈ p0, as the restriction of

ρ to k0 is injective, we define X0 = [p0, p
′
0] as the unique element of k0 such that ρ(X0)

satisfies :

ρ(X0)E = 0, ρ(X0)F = 0 and ρ(X0)φ = −[[φ, p0], p
′
0] − [p0, [φ, p

′
0]] ∀φ ∈ p−1 ∪ p1

and its restriction to p0 is then determined because p0 is generated by the brackets

[X, p] with X ∈ k−1, p ∈ p1, and in this case we have

ρ(X0)([X, p]) = −[[X, p],X0] = −[[X, p], [p0, p
′
0]] = −[[X, p], p0], p

′
0] − [p0, [[X, p], p

′
0 ]]

= [[[p0,X], p], p′0] + [[X, [p0, p]], p
′
0] + [p0, [[p

′
0,X], p]] + [p0, [X, [p

′
0, p]]]

∈ [[[p0, k−1], p1], p0] + [[k−1, [p0, p1]], p0] + [p0, [[p0, k−1], p1]] + [p0, [k−1, [p0, p1]]]

⊂ [[p−1, p1], p0] + [[k−1, k1], p0] + [p0, [p−1, p1]] + [p0, [k−1, k1]]

⊂ [k0, p0] + [k0, p0] + [p0, k0] + [p0, k0] ⊂ [k0, p0] ⊂ p0.
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Let the vector space g = k + p be equipped with the bracket defined by

[X + p,X ′ + p′] = [X,X ′]k + [p, p′] + ρ(X)p′ − ρ(X ′)p (X,X ′ ∈ k, p, p′ ∈ p).

It remains to prove that the Jacobi identity holds. In fact, as k is a Lie algebra and ρ

is a representation of k in p, then it is clear that for X,Y,Z ∈ k,

[X, [Y,Z]] = [X, [Y,Z]k]k = [[X,Y ]k, Z]k + [X, [Y,Z]k]k = [[X,Y ], Z] + [X, [Y,Z]]

and for X,Y ∈ k, p ∈ p,

[X, [Y, p]] = dκ(X)dκ(Y )p = dκ([X,Y ]k)p+ dκ(Y )dκ(X)p = [[X,Y ]k, p] + [Y, [X, p]].

By an other side, the Lie bracket has been defined such that for X ∈ k, p, p′ ∈ p,

[X, [p, p′]] = [[X, p], p′] + [p, [X, p′]].

It remains just to establish the identity

[p”, [p, p′]] = [[p”, p], p′] + [p, [p”, p′]] ∀p, p′, p” ∈ p (*)

We prove this identity step by step. Notice first that we can suppose p” = E.

In the cases (p, p′ ∈ p2), (p ∈ p2, p
′ ∈ p1), (p ∈ p2, p

′ ∈ p0), (p ∈ p2, p
′ ∈ p−1), (p ∈

p2, p
′ ∈ p−2), (p, p

′ ∈ p1), (p ∈ p1, p
′ ∈ p0), (p, p

′ ∈ p0), the identity (*) is trivial.

If p ∈ p1, p
′ ∈ p−1 then p = ρ(X)E et p′ = ρ(X ′)F with X ∈ k−1 and X ′ ∈ k1, then

[E, [p, p′]] = [E, [X ′,X]] − α([X ′,X])[E,H]

= ρ([X ′,X])E − 2α([X ′,X])E

= −α([X ′,X])E

and as [[E, p], p′] = 0 and [p, [E, p′]] = [p,−X ′] = ρ(X ′)dκ(X)E = ρ([X ′,X])E =

−α([X ′,X])E, the identity (*) is satisfied.

If p ∈ p1, p
′ ∈ p−2 then p = ρ(X)E with X ∈ k−1 and p′ = F , then [E, [p, p′]] =

[E,X] = −ρ(X)E, [[E, p], p′ ] = 0, [p, [E, p′]] = [p,H] = −[H, p] = −ρ(X)E, then (*) is

satisfied.

If p ∈ p0, p
′ ∈ p−1 then p′ = ρ(X ′)F with X ′ ∈ k1, then

[E, [p, p′]] = [E, [p, ρ(X ′)F ]] = [E, [X ′, [p, F ]] − [[X ′, p], F ]]

= [E, [−ρ(X ′)p, F ]] = −[ρ(X ′)p, [E,F ]] = ρ(X ′)p

and [[E, p], p′ ] = 0 and [p, [E, p′]] = [p, [E, ρ(X ′)F ]] = [X ′, p] = ρ(X ′)p, then (*) is

satisfied.

If p ∈ p0, p
′ ∈ p−2 then p′ = F and [E, [p, p′]] = 0, [[E, p], p′] = 0 and [p, [E, p′]] =

−[p,H] = 0, then (*) is satisfied.

If p, p′ ∈ p−1 then p = ρ(X)F , p′ = ρ(X ′)F with X,X ′ ∈ k1 and [E, [p, p′]] = 0, then

[[E, p], p′] = [[E, ρ(X)F ], ρ(X ′)F ] = ρ(X)ρ(X ′)F

and
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[p, [E, p′ ]] = [ρ(X)F, [E, ρ(X ′)F ]] = −ρ(X ′)ρ(X)F

and, as [X,X ′] = 0, then (*) is satisfied.

If p ∈ p−1, p
′ ∈ p−2 then p = ρ(Y )F with Y ∈ k1 and p′ = F , then [E, [p, p′]] = 0,

[[E, p], p′] = [[E, ρ(Y )F ], F ] = −[Y,F ] = −ρ(Y )F

and

[p, [E, p′ ]] = [ρ(Y )F, [E,F ]] = −[ρ(Y )F,H] = −ρ(Y )F

and (*) is satisfied.

If p, p′ ∈ p−2 then p = p′ = F , then

[E, [p, p′]] = 0, [[E, p], p′ ] = [H,F ] = −2F and [p, [E, p′]] = [p,H] = −[F,H] = −2F

and (*) is satisfied. �

.

Proposition. (E,F,H) is an sl2-triple in g :

[H,E] = 2E , [H,F ] = −2F , [E,F ] = H.

ad(H) has eigenvalues −2,−1, 0, 1, 2 with respective eigenspaces g−2, g−1, g0, g1, g2

where

g−2 = p−2, g−1 = k−1 + p−1, g0 = k0 + p0, g1 = k1 + p1, g2 = p2.

The Lie algebra g is 5-graded :

g = g−2 + g−1 + g0 + g1 + g2, [gi, gj ] ⊂ gi+j

such that

g0 = [g−2, g2] + [g−1, g1].

Moreover, the map τ : g → g defined by

τ(X + p) = σXσ + κ(σ)p (X ∈ k, p ∈ p)

is an involution of the Lie algebra g such that τ(gi) = g−i.

g will be called the Lie algebra associated to the pair (V,Q).

Theorem 2. g is a simple complex Lie algebra.

Proof. Let I 6= {0} be an ideal of g. For T ∈ g, we write T = Tk + Tp with

Tk ∈ k, Tp ∈ p. We consider

Ip = {p ∈ p | ∃T ∈ I, Tp = p}.

Ip is a a non trivial ρ(U(k))-submodule of p, then equal to p. In fact, if Ip = {0} then

I ⊂ k and then, for each X ∈ I and p ∈ p, [X, p] = 0, which means ρ(X) = 0 and then

, as ρ is injective (lemma 3), X = 0. We deduce that Ip 6= {0}. Now, let be X ∈ k and

p ∈ Ip, then there exists T ∈ I tel que Tp = p. Let be T = Tk + p ∈ k + p, then

[X,T ] = [X,Tk] + [X, p] = [X,Tk] + ρ(X)p

and as [X,T ] ∈ I , then [X, p] = ρ(X)p ∈ Ip. Finally, as , p is a simple ρ(U(k))-module

then Ip = p.
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It follows that there exist T ∈ I and T ′ ∈ I such that Tp = E and T ′
p = F . We denote

by T = Tk +E and T ′ = T ′
k +F and with respect to the decomposition k = k−1 + k0 + k1

we write

Tk = T−1 + T0 + T1 and T ′
k = T ′

−1 + T ′
0 + T ′

1.

Then

[H,T ] = −T−1 + T1 + 2E ∈ I and [H,T ′] = −T ′
−1 + T ′

1 − 2F ∈ I.

It follows that

S = T + [H,T ] = 2T1 + T0 + 3E ∈ I and S′ = T ′ + [H,T ′] = 2T ′
1 + T ′

0 − F ∈ I

[H,S] = 2T1 + 6E ∈ I and [H,S′] = 2T ′
1 + 2F ∈ I

[H,S] − S = −T0 + 3E ∈ I and [H,S′] − S′ = −T0 + 3F ∈ I

and finally

[H, [H,S] − S] = 6E ∈ I and [H, [H,S′] − S′] = −6F ∈ I

then

E ∈ I, F ∈ I,H ∈ I.

We deduce that for i 6= 0, gi ⊂ I. Moreover, as p = ρ(U(k))E, then p ⊂ I and in

particular p0 ⊂ I. At last, k0 = [k−1, k1] ⊂ I, and I = g. �

Theorem 3.

dimg = 4dim(V ) + 2 + dimk0 + dimp0.

Moreover, if hk is a Cartan subalgebra of k0 which contain H, and if

ap = {p ∈ p | [X, p] = 0 ∀X ∈ hk}

then h := hk + ap is a Cartan subalgebra of g and

rank(g) = rank(k0) + dim(ap).

Proof. k1, k−1 are isomorphic to V . Moreover, p1 is generated by the first order partial

derivatives of Q, p0 is generated by the second order partial derivatives of Q and p−1,

which is genrated by the order 3 partial derivatives of Q, is equal to the space of linear

forms on V . Then p1 and p−1 are isomorphic to V . As p2 = C.Q et p−2 = C.1, the

dimension of g is then given by

dimg = 4dim(V ) + 2 + dimk0 + dimp0.

Moreover, if hk is a Cartan subalgebra of k containing H, it is a Cartan subalgebra of

k0 and the subspace of p, defined by

ap = {p ∈ p | [X, p] = 0 ∀X ∈ hk}

is contained in p0, and is Abelian. It follows that the subalgebra of g given by h :=

hk + ap is a Cartan subalgebra of g and rank(g) = rank(k0) + dim(ap). �
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Cartan-Adapted Real Forms

Let k̃R be the conformal Lie algebra of Euclidean real form J of the Jordan algebra V .

Then k̃R is a real form of k. Notice that H ∈ k̃R.

The Cartan involution of k̃R is given by θ : k̃R → k̃R,X 7→ −σXσ, and the Cartan

decomposition of k̃R writes k̃R = k̃+
R

+ k̃−
R

, with

k̃+
R

= {X ∈ k̃R | σXσ = −X} and k̃−
R

= {X ∈ k̃R | σXσ = X}.

The compact real form kR of k is then given by kR = k̃+
R

+ ĩk−
R
. Notice that σHσ(z) =

d
dt t=0

σ(exp(−t)σ(z)) = d
dt t=0

exp(t)z = −Hz, then σHσ = −H and H ∈ kR.

Proposition. Let ck be the conjugation of k with respect to kR. It is given by ck(X) =

−σX̄σ, where X 7→ X̄ is the conjugation of k with respect to k̃R. Moreover ck(kj) = kj .

Proof. Let X ∈ kR, then X = X1 + iX2 with X1 ∈ k̃+
R

and X2 ∈ k̃−
R

. Then −σX̄σ =

−σX̄1σ + iσX̄2σ = X1 + iX2 = X. For X ∈ kj , [H, ck(X)] = ck([H,X]) = jck(X). �

We denote by u the compact real form of g. It follows that

g = u + iu and kR = k ∩ u.

We put pR = p ∩ iu then the real Lie subalgebra of g defined by gR = kR + pR is a real

form of g. Its Cartan decomposition is just kR + pR. The Cartan signature of gR is

then given by

sc = dim(p) − dim(k) = dim(p0) − dim(k0) + 2.

The real form gR = kR + pR will be called the Cartan-Adapted real form of the Lie

algebra g = k + p associated to the pair (V,Q). (cf. table 1 for the classification)

Corollary. The symmetric pair (g, k) is non Hermitian.

Proof. It is a consequence of the fact that the decomposition g = k + p is the com-

plexification of the Cartan decomposition of g and the fact that p is a simple k-module.

�

Remark. It is possible to see the statement of theorem 1 as a special case of con-

structions of Lie algebras by Allison and Faulkner, using the Cayley-Dickson process

to associate a 5-graded simple Lie algebra to some structurable algebra W , that is

W = k0 + p0 in our terminology (cf. [A-F]).
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(Table 1)

The classification of the simple complex Lie algebras associated to the pair (V,Q) where

V is a semisimple Jordan algebra of rank ≤ 4 and Q is a degree 4 semi-inavariant can

be obtained by considering all the possible cases for V =
s∑

i=1

Vi and Q =
s∏

i=1

∆ki

i where

ki ∈ N∗ and ∆i is the polynomial determinant of the simple Jordan algebra Vi. For

each case, we determine the dimension and the rank of g, and the Cartan signature of

the real form gR.

We obtain by this construction process all the simple real Lie algebras which intersect

the minimal nilpotent complex adjoint orbit (cf.[B.]).

V Q k g kR gR

C z4 sl(2,C) sl(3,C) su(2) sl(3,R)

Cp−2 ∆(z)2 so(p,C) sl(p,C) so(p,R) sl(p,R)

C⊕2 z2w2 sl(2,C)⊕2 so(6,C) su(2)⊕2 so(3, 3)

C⊕3 z2uv sl(2,C)⊕3 so(7,C) so(3)⊕3 so(3, 4)

C⊕4 zuvw sl(2,C)⊕4 so(8,C) so(3)⊕4 so(4, 4)

Cp−2 + C ∆(z)w so(p,C) + sl(2,C) so(p+ 3,C) so(p) + so(3) so(p, 3)

Cp−2 + C⊕2 ∆(z)uv so(p,C) + sl(2,C)⊕2 so(p + 4,C) so(p) + so(3)⊕2 so(p, 4)

Cp−2 + Cq−2 ∆(z)∆(w) so(p,C) + so(q,C) so(p + q,C) so(p) + so(q) so(p, q)

Sym(4,C) det(z) sp(8,C) E6 sp(8) E6(6)

M(4,C) det(z) sl(8,C) E7 su(8) E7(7)

Asym(8,C) det(z) so(16,C) E8 so(16) E8(8)

Sym(3,C) + C det(z)w sp(6,C) + sl(2,C) f4 sp(6) + su(2) F4(4)

M(3,C) + C det(z)w sl(6,C) + sl(2,C) E6 su(6) + su(2) E6(2)

Asym(6,C) + C det(z)w so(12,C) + sl(2,C) E7 so(12) + su(2) E7(−5)

Herm(3,O)C + C det(z)w E7 + sl(2,C) E8 Ec
7 + su(2) E8(−24)

C⊕2 z3w sl(2,C)⊕2 G2 so(3)⊕2 G2(2)

where p, q ≥ 5.
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About the minimal nilpotent orbit

Let G be a connected complex Lie group with Lie algebra g. Then, the adjoint group

Gad of g is given by Gad = G/Z(G). Denote by GadR the connected subgroup of Gad

with Lie algebra gR, Kad the connected subgroup of Gad with Lie algebra k, and by

KadR the maximal compact subgroup of both gR and Kad with Lie algebra kR. It is well

known, by the Kostant Sekiguchi correspondance (cf. [S.]), that there is a bijection

between the set of nilpotent Kad-orbits in p and the set of nilpotent GadR-orbits in

gR. Moreover, if Omin is the minimal nilpotent adjoint orbit in g, then, as g is non

Hermitian, Omin ∩ p is equal to the Kad-orbit of the highest weight vector in p and

Omin ∩ gR is the corresponding orbit in gR by the Sekiguchi bijection.

As E is the highest weight vector of the adjoint action of k in p. Then

Op := Omin ∩ p = KadE.

Now, following the terminology of Sekiguchi (cf. [S.]), the sl2-triple (H,E,F ) is normal

for the symmetric pair (g, k), that means H ∈ k, E, F ∈ p. But the conditions of strict

normality, i.e. H ∈ ikR, E+F ∈ pR, i(E−F ) ∈ pR (which are equivalent to θ̃(H) = −H

and θ̃(E) = −F where θ̃ is the Cartan involution of g) are not satisfied (because

H ∈ kR ⊂ u). However, by a lemma of Sekiguchi (cf.[S.]), there exists k0 ∈ Kad such

that the the normal sl2-triple (k0.H, k0.E, k0.F ) is also strictly normal. Then, the real

nilpotent orbit in gR associated to the orbit Kad.E in p by the Sekiguchi bijection is

given by

OR := Omin ∩ gR = GadR.(k0[
1
2 (E + F + iH)]).

A theorem of M. Vergne (cf. [V.]) gives a canonical KadR-equivariant diffeomorphism

(the Vergne-Kronheimer diffeomorphism) from OR onto Op. (a kind of generalization

of the realisation of T ∗Rn = R2n as Cn.)

In our context, where K is the conformal group and K̃(2) the meta-conformal group,

it is natural to consider the K-orbit Ξ = κ(K).E or the K̃(2)-orbit Ξ̃(2) = κ̃(K̃(2)).E.

As the groups K (resp. K̃(2)) and Kad (with same Lie algebra k) are very closer (they

may be equal or one may be a 2-fold covering of the other), and as the stabilizer of E

in K (resp. K̃(2)) is equal to L′ oσNσ, where L′ is the kernel of the character χ (resp.

χ̃), then these orbits are finite order coverings of the minimal orbit Omin ∩ p.
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Application to Representation Theory

Theorem 4. Let G̃R be the connected and simply connected Lie group with Lie alge-

bra gR. Assume that (π,H) is a unitary representation of KR such that its differential

dπ extends to an irreducible representation ρ̃ of g in the space HKR of KR-finite vec-

tors. Assume that the operators ρ̃(p) are antisymmetric for p ∈ p. Then there exists a

unique unitary irreducible representation π̃ of G̃R such that dπ̃ = ρ̃.

Proof. In fact, by the Nelson criterion, it is enough to prove that ρ̃(L) is essentially

self-adjoint for the Laplacian L of gR. Let’s consider a basis {X1, . . . ,Xk} of kR and a

basis {p1, . . . , pl} of pR. As gR = kR + pR is the Cartan decomposition of gR, then the

Laplacian and the Casimir operators of gR are respectively given by

L = X2
1 + . . . +X2

k + p2
1 + . . . + p2

l

and

C = X2
1 + . . .+X2

k − p2
1 − . . . − p2

l .

It follows that L = 2(X2
1 + . . . +X2

k) − C and ρ̃(L) = 2ρ̃(X2
1 + . . . +X2

k) − ρ̃(C).

As ρ̃(X2
1 + . . . + X2

k) = dπ(X2
1 + . . . + X2

k) and as π is a unitary representation of

KR, then the image ρ̃(X2
1 + . . . +X2

k) of the Laplacian of kR is essentially self-adjoint.

Moreover, ρ̃(C) is scalar, because the dimension of HKR being countable, then the

commutant of ρ̃, which is a division algebra over C has a countable dimension too, and

then is equal to C.

It follows that ρ̃(L) is essentially self-adjoint and that ρ̃ integrates to a unitary repre-

sentation of G̃R. �
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The case of degree 2 semi-invariant

Suppose that E = Q has degree 2. Then χ(ht) = e−t and H defines a graduation on

p given by

p = p−1 + p0 + p1

with p−1 = C.F, p1 = C.E and p0 ' V is generated by the first order partial derivatives

of Q. We consider the vector space g = k + p and, as in the preceding sections, we can

prove the following :

Theorem 5. There exists on g a unique Lie algebra structure such that

(S1) [X,X ′] = [X,X ′]k̃ ∀X,X ′ ∈ k

(S2) [X, p] = ρ(X)p ∀X ∈ k, p ∈ p

(S3) [E,F ] = H.

g, endowed with this structure, is a simple 3-graded Lie algebra.

Moreover

dimg = 3dim(V ) + 2 + dim(k0)

and, if hk is a Cartan subalgebra of k0 which contains H, and if

ap = {p ∈ p | [X, p] = 0 ∀X ∈ hk}

then h := hk + ap is a Cartan subalgebra of g and

rank(g) = rank(k0) + dim(ap).

Moreover, if kR is the compact real form of k and u is the compact real form of g, then

g = u + iũ is the Cartan decomposition of g̃ and lR = u ∩ k. Moreover, if we denote by

pR = p ∩ iu, then the real Lie subalgebra of g defined by gR = kR + pR is a real form of

g. Its Cartan decomposition is just lR + pR. The Cartan signature of gR is then given

by

sc = dim(p) − dim(k) = 2 − dim(k0) − dim(V ).

The real form gR = kR + pR will be called the Cartan-Adapted real form of the Lie

algebra g = k + p associated to the pair (V,Q). The symmetric pair (g, k) is non

Hermitian (cf. table 2 for the classification).

(Table 2)

V Q k g kR gR

C z2 sl(2,C) so(4,C) su(2) so(3, 1)

C
p−2 ∆(z) so(p,C) so(p+ 1,C) so(p) so(p, 1)

C + C zw sl(2,C) + sl(2,C) so(5,C) su(2) + su(2) so(4, 1)

where p ≥ 5.
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Analogy with the Hermitian case

Now, let V be a semi-simple Jordan algebra with rank r, Q semi-invariant of degree

2r and we denote L the structure group of V given by

L := {g ∈ GL(V ) | ∃γ(g) ∈ C,Q(gz) = γ(g)Q(z)}.

Let p be the complex vector space generated by the polynomials Q(z− a) with a ∈ V .

As in the part I, if there exists a character χ of L such that

Q(l.z) = χ(l)2Q(z)

then the conformal group K of V acts on p by the representation κ and if the character

χ does not exist, then we consider the action in p given by the representation κ̃ of the

meta-conformal group associated to the semi-invariant Q. We denote by ρ = dκ = dκ̃.

In particular, L acts in p by the restriction of κ and for X ∈ l = Lie(L),

(ρ(X)p)(z) = d
dt t=0

γ(exp( 1
2 tX))p(exp(−tX)z).

In this case, if ht ∈ K◦ is the dilation of V : ht.z = e−tz and H ∈ k◦ the corresponding

infinitesimal element, then χ(ht) = e−rt and H defines a graduation of p given by

p = p−r + p−r+1 + . . . + p0 + . . . + pr−1 + pr

with

pj = {p ∈ p | ρ(H)p = jp}

pj is the set of homogeneous polynomials of degree j + r in p and in particular,

p−r = C, pr = C.Q, p−r+1 ' pr−1 ' V .

We denote by V+ = p−r+1,V
− = pr−1. They are two simple l-modules. Denote by

V = V+ + V− and then we consider the complex vector space defined by g̃ = l + V .

Theorem 6. There exists on g̃ a Lie algebra structure such that

(S1) [X,X ′] = [X,X ′]k̃ ∀X,X ′ ∈ l

(S2) [X, p] = ρ(X)p ∀X ∈ l, p ∈ V .

g̃, endowed with this structure, is a simple 3-graded Lie algebra.

Moreover

dimg = 2dim(V ) + dim(l)

and, if hk is a Cartan subalgebra of l, then it is a Cartan subalgebra of g̃ and rank(g̃) =

rank(k̃).

Proof. In fact, as for each p ∈ pr−1 and for each p′ ∈ p−r+1, there exists a unique

X ∈ k−1 and a unique X ′ ∈ k1 such that p = ρ(X)F and p′ = ρ(X ′)E (where

F = 1 and E = Q), then we define [p, p′] = [X,X ′] ∈ l. Also, for p1 = ρ(X1)E and

p2 = ρ(X2)E (with X1,X2 ∈ k−1), we define the bracket as [p1, p2] = [X1,X2] = 0

and for p′1 = ρ(X ′
1)F and p′2 = ρ(X ′

2)F (with X ′
1,X

′
2 ∈ k1), we define the bracket as

[p′1, p
′
2] = [X ′

1,X
′
2] = 0. It becomes then easy to show that the Jacobi identity holds

and that g̃ is isomorphic to the conformal Lie algebra of V . �

Moreover, denote by lR the compact real form of l and by ũ the compact real form of

g̃. Then g̃ = ũ + iũ is the Cartan decomposition of g̃ and lR = ũ ∩ l. Moreover, if we
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denote by VR = V ∩ iũ, then the real Lie subalgebra of g̃ defined by g̃R = lR + VR is a

real form of g̃. Its Cartan decomposition is just lR + VR. The Cartan signature of g̃R

is then given by

sc = dim(V) − dim(l) = 2dim(V ) − dim(l).

The real form g̃R = lR + VR will be called the Cartan-Adapted real form of the Lie

algebra g̃ = l + V associated to the pair (V,Q). (cf. table 3 for the classification)

Corollary. The real forms g̃R are of Hermitian type.

Proof. It is a consequence of the fact that the decomposition g̃ = l + V is the com-

plexification of the Cartan decomposition of g̃R and the fact that V is a sum of two

irreducible representations, V+ and V− of l. �

(Table 3)

V Q l g̃ lR g̃R

C z2 C sl(2,C) iR sl(2,R)

Cp−2 ∆(z)2 so(p − 2,C) + C so(p,C) so(p − 2) + iR so(p− 2, 2)

Sym(r,C) det(z)2 sl(r,C) + C sp(r,C) su(r) + iR sp(r,R)

M(r,C) det(z)2 sl(r,C)⊕2 + C
⊕2 sl(2r,C) su(r)⊕2 + iR⊕2 sl(2r,R)

Asym(2r,C) det(z) sl(2r,C) + C so(4r,C) so(2r) so∗(4r)

Herm(3,O)C det(z)2 E6(C)C E7(C) E6(R) + iR E7(−25)

where p ≥ 5.
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