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In the classification of right ideals A; := kl[t,d] the first Weyl algebra
over a field k£ , R. Cannings and M.P. Holland established in [3, Theorem
0.5] a bijective correspondence between primary decomposable subspaces of
R = k[t] and right ideals I of A; := k[t, ] the first Weyl algebra over k which

have non-trivial intersection with kl[t]:

I:V+—DRV), " :I[+——1Tx1

This theorem is a very important step in this study, after Stafford’s theorem
[1, Lemma 4.2]. However, the theorem had been established only when the
field k is an algebraically closed and of characteristic zero.

In this paper we define notion of primary decomposable subspaces of klt]
when £ is any field of characteristic zero, particulary for @, R, and we show
that R. Cannings and M.P. Holland’s correspondence theorem holds. Thus
right ideals of A;(Q), A;(R),.. are also described by this theorem.



1  Cannings and Holland’s theorem

1.1 Weyl algebra in characteristic zero and differential
operators

Let k be a commutative field of characteristic zero and A; := A;(k) = k[t, 0]
where 0,1t are related by 0t — t0 = 1, be the first Weyl algebra over k.

A; contains the subring R := k[t] and S := k[0)]. It is well known that A,
is an integral domain, two-sided noetherian and since the characteristic of &
is zero, A; is hereditary (see [2]). In particular, A; has a quotient divison
ring, denoted by @;. For any right (resp: left ) submodule of @1, M* the
dual as Aj;-module will be identified with the set {u € @y : uM C A}
(resp:{u € Q1 : Mu C A;}) when M is finitely generated (see [1]).

()1 contains the subrings D = k(¢)[0] and B = k(9)[t]. The elements of
D are k-linear endomorphisms of k(t). Precisely, if d = a,,0" + - - +a10 + ag
where a; € k(t) and h € k(t), then

d(h) = a,h™ + - +a,hY + agh

where h(") denotes the i-th derivative of h and a;h¥) is a product in k(t). One
checks that:

(dd")(h) = d(d'(h)) for d,d € k(t)[0] , h € k(t)
For V and W two vector subspaces of k(t), we set :
DWV,W):={de k()0 :dV)cC W}

D(V,W) is called the set of differential operators from V' to W.

Notice that D(R, V) is an A; right submodule of @); and D(V, R) is an
A; left submodule of Q. If V' C R, one notes that D(R, V) is a right ideal
of A;. When V = R, then D(R, R) = A;.

If I is a right ideal of Ay, we set

[1:={d(1),de I}

Clearly, I x 1 is a vector subspace of k[t] and I C D(R, I x1).

Inclusion A; C k(0)[t] and A; C k(t)[0] show that it can be defined on A,
two notions of degree: the degree associated to ”t” and the degree associated
to 70”. Naturally, those degree notions extend to ).
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1.2 Stafford’s theorem

Let I be a non-zero right ideal of A;. By J. T. Stafford in [1, Lemma 4.2],
there exist z,e € (J; such that:

(i) «I C Ay and xI Nk[t] # {0} , (#) el C Ay and el NE[D] # {0}

By (i) one sees that any non-zero right ideal I of A; is isomorphic to
another ideal I’ such that I'Nk[t] # {0}, which means that I” has non-trivial
intersection with k[t]. We denote Z; the set of right ideals I of A; the first
Weyl algebra over k such that I N k[t] # {0}

Stafford’s theorem is the first step in the classification of right ideals of
the first Weyl algebra A;.

1.3 The bijective correspondence theorem

Let ¢ be an algebraically closed field of characteristic zero. Cannings and
Holland have defined primary decomposable subspace V' of ¢[t] as finite in-
tersections of primary subspaces which are vector subspaces of ¢[t] contain-
ing a power of a maximal ideal m of ¢[t]. Since ¢ is an algebraically closed
field, maximal ideals of c[t] are generated by one polynomial of degree one:
m = (t — \)c[t]. So, a vector subspace V of c[t] is primary decomposable if:

where each V; contains a power of a maximal ideal m; of c[t].
They have established the nice well-known bijective correspondence be-
tween primary decomposable subspaces of ¢[t] and Z; by:

I:V+—=DRV), " :[+——Tx1
Since V = ﬂ% and m; =< (t — \;)" >C V,
i=1
one has (t — A\y)™ -+ (t — \,)™k[t] C V. So, easily one sees that
(t =)™ (t = X)) ™k[t] S D(R, V) N c[t]

However it is not clear that I x 1 must be a primary decomposable subspace
of c[t].



Cannings and Holland’s theorem use the following result, which holds
even if the field is just of characteristic zero:

Lemma 1: Let [ € 7, and V = I x 1. One has:
I =D(R,V) and I* = D(V,R).

For the proof of Cannings and Holland’s theorem one can see [3].

We note that, since < (t—2X\;)" >C V;, for any s in the ring c+(t—\;)"c[t],
one has :
s-ViCVi

It is this remark which will allow us to give general definition of primary
decomposable subspaces of k[t] for any field k of characteristic zero, not
necessarily algebraically closed.

2 Primary decomposable subspaces of k[t]

Here we give a general definition of primary decomposable subspaces of k|t]
when £ is any field of characteristic zero not necessarily algebraically closed
and we keep the bijective correspondence of Cannings and Holland.

2.1 Definitions and examples

o-_Definitions
Let b,h € R = k[t] and V' a k-subspace of k[t]. We set:
O(b)={a€e R:d €bR} and O(b,h)={a € R:d +ah € bR}
where @' denotes the formal derivative of a.
S(V)y={ae R:aV CV} and C(R,V)={a€ R:aRCV}

Clearly O(b) and S(V') are k-subalgebras of k[t]. If b # 0, the Krull dimension
of O(b) is dimg(O(b)) = 1. The set C(R,V) is an ideal of R contained in
both S(V) and V .

e A k-vector subspace V' of k[t] is said to be primary decomposable if
S(V) contains a k-subalgebra O(b), with b # 0.
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o- Examples
o Easily one sees that O(b) C S(O(b,h)) and C(R,O(b,h)) = C(R,O(D)),
in particular O(b, h) is a primary decomposable subspace when b # 0.

Following lemmas and corollary show that classical primary decomposable
subspaces are primary decomposable in the new way.

Lemma 2: Let k be a field of characteristic zero and \q, ...\, finite
distinct elements of k. Suppose that V; , ...V, are k-vector subspaces klt],
each V; contains (t — \;)"k[t] for some r; € N*. Then

Ot =M™+ (1= ) ﬁm

i=1

Proof: : One has O((t — \)" 1) =k + (t — \)"k[t

O((t _ )\i)nfl . ( rn 1 ﬂO 7‘171

An immediate consequence of this lemma is:

Corollary 3: In the above hypothesis of lemma 2, let

V:ﬁVi
i=1

_If g e C(R,V), then O(q) C S(V).

Proof:: First one notes that if ¢ € pk[t], then O(q) C O(p). Let b =
(t—A)™ - -(t = A\p)"™.
In the above hypothesis, one has

n n

C(R,V)=(CR,V;) =t = \)"k[t] = (] [t = \)")k[t] = bklt]

i=1 i=1 i=1
Since b € (t — A\)" 1 -(t — \,)" 7 k[t] = bok[t], one has O(by)V; C V; for all
1, SO

O(bo) € S(V) and O(q) € O(b) € O(bo)

o An opposite-example:

Suppose the field & is of characteristic zero and one can find ¢ € k[t] such
that: ¢ is irreducible and deg(q) > 2. Then the vector subspace V' = k+ qk|t]
is not primary decomposable.



2.2 Classical properties of primary decomposable sub-
spaces

Here we prove that when the field & is algebraically closed of characteristic
zero, those two definitions are the same.

Lemma 4: Let k be an algebraically closed field of characteristic zero
and V' be a k-vector subspace of k[t] such that S(V') contains a k-subalgebra
O(b) where b # 0. Then V is a finite intersections of subspaces which contains
a power of a maximal ideal of k[t].

Proof: Since k£ is algebraically closed field and b # 0, one can suppose

b= (t—A)™-(t—A,)™. Let b* = (t — A1) - -(t — \,). One has

n

O®) =k + (t—X)""'R)

i=1

If we suppose that V' is not contained in any ideal of R, one has V.R = R.
Clearly

bb*R = ﬁ(t —N)"TR C O(b)
i=1
so bb*R = (bb*)(RV) = (bb*R)V = bb*R C V (1). One also has
ob)N(t—XN)R#Ob)N(t—Aj)R for all i # j
in particular one has
O(b) = [0(b) N (t = M)R]"™ + [0k (D) N (t = AR (2)

With (1) and (2) one gets inductively:

n

V=V+@t-x)""R) O

i=1
One also obtains usual properties of primary decomposable subspaces.

Lemma 5: Let k be a field of characteristic zero, V' and W be primary
decomposable subspaces of k[t]
(1) then V + W and V N are primary decomposable subspaces.
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(2) If ¢ € Ek(t) such that ¢V C k[t], then ¢V is a primary decomposable
subspace.

Proof: One notes that O(ab) C O(a) N O(b) for all a, b € klt].

Let us recall basic properties on the subspace O(a, h).

Lemma 6 :

(1) O(a) C S(O(a, 1)

(2) ( O(a)) = C(R,0(a, h))

(3) a®kft] € O(a) N O(a, h)

(4) D(R,0(a,h)) = A; N (0 + h)tad,

(5) the subspace O(a, h) is not contained in any proper ideal of R.
(6) For all ¢ € O(a, h) such that hcf(q,a) = 1, one has

O(a,h) = qO(a) + C(R,O(a))

Proof: One obtains (1), (2), (3), (4) by a straightforward calculation.

Suppose O(a, h) C gk[t]. Then D(R, O(a,h)) C gA;, and applying the k-
automorphism o € Auty(A;) such that o(t) =t and 0(9) = d—h, one obtains
D(R,0(a)) C gA;. Clearly the element f = 0~ 'ad™"" where deg;(a) = m
belongs to D(R,O(a)) = A; N O 'aA;. When one writes f in extension, one
gets exactly

f=ad™ + ay_ 10"+ +a,0 + (—=1)"m!

Since f € gA;, (—1)™m! must belong to gR. Hence g € k* and one gets (5).
Let ¢ be an element of O(a,h) such that hcf(g,a) = 1. One has also
hef(q,a?) =1, and by Bezout theorem there exist u, v € k[t] such that:

ug+va® =1 (%)

The inclusion ¢O(a) + C(R,O(a)) € O(a,h) is clear since ¢ € O(a, h) and
one has properties (1) and (2). Conversely let p € O(a,h). Using (%), one
gets

p=(pu)g+a’pu  (+)
One notes that p(ug) = p—pva® € O(a, h), so (p(uq))’+ (p(ugq))h € aR. One
has (p(uq))" + (p(ug))h = p'(uq) + p(uq)’ + p(ug)h = p(uq)’ + uq(p’ + ph).



Since ¢ is chosen in O(a, h), one has p’ + ph € aR. Then g(up) € aR,
and at the end, because of hcf(q,a) = 1, it follows that (up)’ € aR. Now,
up € O(a) and (*x) shows that p € ¢O(a) + C(R, O(a)).

Proposition 7: Let k be a field of characteristic zero and V' a k-vector
subspace of k[t] such that S(V') contains a k-subalgebra O(b). Then

DR, V)x1=V

Proof :

e Suppose V = O(b). One has D(R,0(b)) = A; N O 'bA;.

Suppose b = By + Bit + - - +8ut™ , B # 0. Then f = 07 1bo™+! €
A1 NO7DA;. Let us show that f(R) = O(b). For an integer 0 < p < m, one

has:
OO = (0 — 1) - (t0 = 2) - -+ (tD — p)I™
and so N
f=50" + Zﬁp(ta 1) (4D —2) - - - (1) — p)IP
In particular one sees that
(1) f(1) = Bn(=1)"m! # 0
(2) f#)=0if 1<j<m
(3) f(t™) = Bom!
(4) deg(f(t)) = j when j >m +1
It follows that
dim——=m = dimi
f(R) O(b)

and since f(R) C O(b), one gets f(R) = O(b)
ee Suppose that O(b) C S(V). One has VO(b) = V and then

[VD(R,0(b)] x1 = V[D(R,0(b)) x1] = VO(b) =V

By lemma 1 the equality VD(R, O(b)) = D(R, V') holds, so
DR, V)x1=V.

Next theorem is the main result of this paper.

Theorem 8: Let k be a field of characteristic zero and V' a k-vector
subspace of k[t] such that: C'(R,V) = ¢k[t] with ¢ # 0 and D(R,V)*1 =V
. Then S(V') contains some k-subalgebra O(b) with b # 0.
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Proof: One has ¢k[t] C V| and there exist vg,v1,...,05, in V' such that
V =< g, v1,, U, > D qklt]

where < vg, vy, -+, Uy, > denotes the vector subspace of V generate by {vg, vy, -, Uy}
For each v;, there exist f; € D(R,V) such that f;(1) = v;. Let r =
max{degs(f;), 0 <i < m}, we prove that O(¢") -V C V.
Since the ideal gk[t] of R = klt] is contained in V', we have only to prove
that:
O) v CV Y0<i<m

We need the following lemma

Lemma 9: Let d = a,0” + - - +a10 + ap € A;(k) where p € N | b € k[t]
and s € O(b”) . Then [d,s] =d-s—s-d € bA;.

Proof: One has [d, s] = [d10, s| = [d1, s]0 + di[0, s], where d; € A; and
d = d10 + ap. By induction on the 0-degree of d, one has [d;,s]0 € bA;.
Since degp(dy) = p — 1, it is also clear that dib” € bA;. Finally [d, s] € bA;.

By lemma 9 above, one has f; - s € D(R,V) and [f;, s] € ¢A; for each i.

s-v;=s-(fi(1) = (s fi)(1) = (fi- s+ [fi,s])(1)

One has (f -s)(1) € V, [fi,s](1) € qgk[t] , it follows that s-v; € V and that
ends the proof of theorem 8.

Next lemma justify the definition we gave for primary decomposable sub-
spaces.

Lemma 10: Let k be a field of characteristic zero and suppose there
exist ¢ an irreducible element of k[t] with deg(q) > 2. If V' = k + ¢k[t], then
D(R,V) = qA;. In particular V is not primary decomposable subspace.

Proof : Since ¢ is irreducible, one shows by a straightforward calculation
that the right ideal gA; is maximal. Clearly one has gA; C D(R,V), and
D(R,V) # Ay since 1 € D(R, V). So one has ¢A; = D(R, V).
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