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Primary decomposable subspaces of k[t] and Right ideals of the first Weyl algebra A 1 (k) in characteristic zero

In the classification of right ideals A 1 := k[t, ∂] the first Weyl algebra over a field k , R. Cannings and M.P. Holland established in [3, Theorem 0.5] a bijective correspondence between primary decomposable subspaces of R = k[t] and right ideals I of A 1 := k[t, ∂] the first Weyl algebra over k which have non-trivial intersection with k[t]:

Γ : V -→ D(R, V ) , Γ -1 : I -→ I ⋆ 1
This theorem is a very important step in this study, after Stafford's theorem [START_REF] Stafford | Endomorphisms of Right Ideals of The Weyl Algebra[END_REF]Lemma 4.2]. However, the theorem had been established only when the field k is an algebraically closed and of characteristic zero.

In this paper we define notion of primary decomposable subspaces of k[t] when k is any field of characteristic zero, particulary for Q, R, and we show that R. Cannings and M.P. Holland's correspondence theorem holds. Thus right ideals of A 1 (Q), A 1 (R),.. are also described by this theorem. It is well known that A 1 is an integral domain, two-sided noetherian and since the characteristic of k is zero, A 1 is hereditary (see [START_REF] Smith | Differential Operators on an affine Curves[END_REF]). In particular, A 1 has a quotient divison ring, denoted by Q 1 . For any right (resp: left ) submodule of Q 1 , M * the dual as A 1 -module will be identified with the set {u ∈ Q

1 : uM ⊂ A 1 } (resp:{u ∈ Q 1 : Mu ⊂ A 1 }) when M is finitely generated (see [1]). Q 1 contains the subrings D = k(t)[∂] and B = k(∂)[t]. The elements of D are k-linear endomorphisms of k(t). Precisely, if d = a n ∂ n + • • +a 1 ∂ + a 0 where a i ∈ k(t) and h ∈ k(t), then d(h) := a n h (n) + • • +a 1 h (1) + a 0 h
where h (i) denotes the i-th derivative of h and a i h (i) is a product in k(t). One checks that:

(dd ′ )(h) = d(d ′ (h)) for d, d ′ ∈ k(t)[∂] , h ∈ k(t)
For V and W two vector subspaces of k(t), we set :

D(V, W ) := {d ∈ k(t)[∂] : d(V ) ⊂ W } D(V, W ) is called the set of differential operators from V to W . Notice that D(R, V ) is an A 1 right submodule of Q 1 and D(V, R) is an A 1 left submodule of Q 1 . If V ⊆ R, one notes that D(R, V ) is a right ideal of A 1 . When V = R, then D(R, R) = A 1 .
If I is a right ideal of A 1 , we set

I ⋆ 1 := {d(1), d ∈ I} Clearly, I ⋆ 1 is a vector subspace of k[t] and I ⊆ D(R, I ⋆ 1). Inclusion A 1 ⊂ k(∂)[t] and A 1 ⊂ k(t)[∂]
show that it can be defined on A 1 two notions of degree: the degree associated to "t" and the degree associated to "∂". Naturally, those degree notions extend to Q 1 .

Stafford's theorem

Let I be a non-zero right ideal of A 1 . By J. T. Stafford in [1, Lemma 4.2], there exist x, e ∈ Q 1 such that:

(i) xI ⊂ A 1 and xI ∩ k[t] = {0} , (ii) eI ⊂ A 1 and eI ∩ k[∂] = {0}
By (i) one sees that any non-zero right ideal I of A 1 is isomorphic to another ideal I ′ such that I ′ ∩ k[t] = {0}, which means that I ′ has non-trivial intersection with k[t]. We denote I t the set of right ideals I of A 1 the first Weyl algebra over k such that

I ∩ k[t] = {0}
Stafford's theorem is the first step in the classification of right ideals of the first Weyl algebra A 1 .

The bijective correspondence theorem

Let c be an algebraically closed field of characteristic zero. Cannings and Holland have defined primary decomposable subspace V of c[t] as finite intersections of primary subspaces which are vector subspaces of c[t] containing a power of a maximal ideal m of c[t]. Since c is an algebraically closed field, maximal ideals of c[t] are generated by one polynomial of degree one:

m = (t -λ)c[t]. So, a vector subspace V of c[t] is primary decomposable if: V = n i=1 V i
where each V i contains a power of a maximal ideal m i of c[t].

They have established the nice well-known bijective correspondence between primary decomposable subspaces of c[t] and I t by:

Γ : V -→ D(R, V ) , Γ -1 : I -→ I ⋆ 1 Since V = n i=1 V i and m i =< (t -λ i ) r i >⊆ V i , one has (t -λ 1 ) r 1 • • • (t -λ n ) rn k[t] ⊆ V . So, easily one sees that (t -λ 1 ) r 1 • • • (t -λ n ) rn k[t] ⊆ D(R, V ) ∩ c[t]
However it is not clear that I ⋆ 1 must be a primary decomposable subspace of c[t].

Cannings and Holland's theorem use the following result, which holds even if the field is just of characteristic zero: Lemma 1 : Let I ∈ I t and V = I ⋆ 1. One has:

I = D(R, V ) and I * = D(V, R).
For the proof of Cannings and Holland's theorem one can see [START_REF] Cannings | Right Ideals of Rings of Differential Operators[END_REF].

We note that, since

< (t-λ i ) r i >⊆ V i , for any s in the ring c+(t-λ i ) r i c[t], one has : s • V i ⊆ V i
It is this remark which will allow us to give general definition of primary decomposable subspaces of k[t] for any field k of characteristic zero, not necessarily algebraically closed.

Primary decomposable subspaces of k[t]

Here we give a general definition of primary decomposable subspaces of k[t] when k is any field of characteristic zero not necessarily algebraically closed and we keep the bijective correspondence of Cannings and Holland.

Definitions and examples

•-Definitions Let b, h ∈ R = k[t] and V a k-subspace of k[t]. We set: O(b) = {a ∈ R : a ′ ∈ bR} and O(b, h) = {a ∈ R : a ′ + ah ∈ bR}
where a ′ denotes the formal derivative of a.

S(V ) = {a ∈ R : aV ⊆ V } and C(R, V ) = {a ∈ R : aR ⊆ V } Clearly O(b) and S(V ) are k-subalgebras of k[t]. If b = 0, the Krull dimension of O(b) is dim K (O(b)) = 1. The set C(R, V ) is an ideal of R contained in both S(V ) and V . • A k-vector subspace V of k[t] is said to be primary decomposable if S(V ) contains a k-subalgebra O(b), with b = 0. •-Examples • Easily one sees that O(b) ⊆ S(O(b, h)) and C(R, O(b, h)) = C(R, O(b)), in particular O(b, h
) is a primary decomposable subspace when b = 0.

Following lemmas and corollary show that classical primary decomposable subspaces are primary decomposable in the new way.

Lemma 2 : Let k be a field of characteristic zero and λ 1 , ..,λ n finite distinct elements of k.

Suppose that V 1 , ..,V n are k-vector subspaces k[t], each V i contains (t -λ i ) r i k[t] for some r i ∈ N * . Then O((t -λ 1 ) r 1 -1 • • • (t -λ n ) rn-1 ) ⊆ S( n i=1 V i ) Proof: : One has O((t -λ i ) r i -1 ) = k + (t -λ i ) r i k[t] and O((t -λ i ) r i -1 • •(t -λ n ) rn-1 ) = n i=1 O((t -λ i ) r i -1 )
An immediate consequence of this lemma is:

Corollary 3 : In the above hypothesis of lemma 2, let V = n i=1 V i . If q ∈ C(R, V ), then O(q) ⊆ S(V ). Proof:: First one notes that if q ∈ pk[t], then O(q) ⊆ O(p). Let b = (t -λ 1 ) r 1 • •(t -λ n ) rn .
In the above hypothesis, one has

C(R, V ) = n i=1 C(R, V i ) = n i=1 (t -λ i ) r i k[t] = ( n i=1 (t -λ i ) r i )k[t] = bk[t] Since b ∈ (t -λ 1 ) r 1 -1 • •(t -λ n ) rn-1 k[t] = b 0 k[t], one has O(b 0 )V i ⊆ V i for all i, so O(b 0 ) ⊆ S(V ) and O(q) ⊆ O(b) ⊆ O(b 0 ) • An opposite-example:
Suppose the field k is of characteristic zero and one can find q ∈ k[t] such that: q is irreducible and deg(q) ≥ 2. Then the vector subspace V = k + qk[t] is not primary decomposable.

Classical properties of primary decomposable subspaces

Here we prove that when the field k is algebraically closed of characteristic zero, those two definitions are the same.

Lemma 4 : Let k be an algebraically closed field of characteristic zero and V be a k-vector subspace of k[t] such that S(V ) contains a k-subalgebra O(b) where b = 0. Then V is a finite intersections of subspaces which contains a power of a maximal ideal of k[t].

Proof: Since k is algebraically closed field and b = 0, one can suppose b = (tλ 1 )

r 1 • •(t -λ n ) rn . Let b * = (t -λ 1 ) • •(t -λ n ). One has O(b) = n i=1 (k + (t -λ i ) r i +1 R) If we suppose that V is not contained in any ideal of R, one has V.R = R. Clearly bb * R = n i=1 (t -λ i ) r i +1 R ⊂ O(b) so bb * R = (bb * )(RV ) = (bb * R)V = bb * R ⊂ V (1)
. One also has

O(b) ∩ (t -λ i )R = O(b) ∩ (t -λ j )R for all i = j
in particular one has

O(b) = [O(b) ∩ (t -λ i )R] r i +1 + [O k (b) ∩ (t -λ j )R] r j +1 (2)
With ( 1) and ( 2) one gets inductively:

V = n i=1 (V + (t -λ i ) r i +1 R) ♦
One also obtains usual properties of primary decomposable subspaces.

Lemma 5 : Let k be a field of characteristic zero, V and W be primary decomposable subspaces of k[t]

(1) then V + W and V ∩ W are primary decomposable subspaces.

(2) If q ∈ k(t) such that qV ⊆ k[t], then qV is a primary decomposable subspace.

Proof: One notes that O(ab) ⊆ O(a) ∩ O(b) for all a, b ∈ k[t].
Let us recall basic properties on the subspace O(a, h).

Lemma 6 : (1) O(a) ⊆ S(O(a, h)) (2) C(R, O(a)) = C(R, O(a, h)) (3) a 2 k[t] ⊂ O(a) ∩ O(a, h) (4) D(R, O(a, h)) = A 1 ∩ (∂ + h) -1 aA 1 (5) the subspace O(a, h) is not contained in any proper ideal of R. (6) For all q ∈ O(a, h) such that hcf (q, a) = 1, one has O(a, h) = qO(a) + C(R, O(a))
Proof: One obtains (1), ( 2), ( 3), (4) by a straightforward calculation. Suppose O(a, h) ⊆ gk[t]. Then D(R, O(a, h)) ⊆ gA 1 , and applying the k-

automorphism σ ∈ Aut k (A 1 ) such that σ(t) = t and σ(∂) = ∂-h, one obtains D(R, O(a)) ⊆ gA 1 . Clearly the element f = ∂ -1 a∂ m+1 where deg t (a) = m belongs to D(R, O(a)) = A 1 ∩ ∂ -1 aA 1 .
When one writes f in extension, one gets exactly -1) m m! must belong to gR. Hence g ∈ k ⋆ and one gets (5).

f = a∂ m + a m-1 ∂ m-1 + • • +a 1 ∂ + (-1) m m! Since f ∈ gA 1 , (
Let q be an element of O(a, h) such that hcf (q, a) = 1. One has also hcf (q, a 2 ) = 1, and by Bezout theorem there exist u, v ∈ k[t] such that: Since q is chosen in O(a, h), one has p ′ + ph ∈ aR. Then q(up) ′ ∈ aR, and at the end, because of hcf (q, a) = 1, it follows that (up) ′ ∈ aR. Now, up ∈ O(a) and ( * * ) shows that p ∈ qO(a) + C(R, O(a)).

uq + va 2 = 1 ( * ) The inclusion qO(a) + C(R, O(a)) ⊆ O(a, h) is clear since q ∈ O(a, h
Proposition 7 : Let k be a field of characteristic zero and V a k-vector subspace of k[t] such that S(V ) contains a k-subalgebra O(b). Then

D(R, V ) ⋆ 1 = V Proof : • Suppose V = O(b). One has D(R, O(b)) = A 1 ∩ ∂ -1 bA 1 . Suppose b = β 0 + β 1 t + • • +β m t m , β m = 0. Then f = ∂ -1 b∂ m+1 ∈ A 1 ∩ ∂ -1 bA 1 . Let us show that f (R) = O(b). For an integer 0 ≤ p ≤ m, one has: ∂ -1 t p ∂ m+1 = (t∂ -1) • (t∂ -2) • • • (t∂ -p)∂ m-p
and so

f = β 0 ∂ m + m p=1 β p (t∂ -1) • (t∂ -2) • • • (t∂ -p)∂ m-p
In particular one sees that:

(1)

f (1) = β m (-1) m m! = 0 (2) f (t j ) = 0 if 1 ≤ j < m (3) f (t m ) = β 0 m! (4) deg(f (t j )) = j when j ≥ m + 1 It follows that dim R f (R) = m = dim R O(b) and since f (R) ⊆ O(b), one gets f (R) = O(b) •• Suppose that O(b) ⊆ S(V ). One has V O(b) = V and then [V D(R, O(b))] ⋆ 1 = V [D(R, O(b)) ⋆ 1] = V O(b) = V By lemma 1 the equality V D(R, O(b)) = D(R, V ) holds, so D(R, V ) ⋆ 1 = V .
Next theorem is the main result of this paper.

Theorem 8 : Let k be a field of characteristic zero and V a k-vector subspace of k[t] such that: C(R, V ) = qk[t] with q = 0 and D(R, V ) ⋆ 1 = V . Then S(V ) contains some k-subalgebra O(b) with b = 0.

Proof: One has qk[t] ⊆ V , and there exist v 0 ,v 1 ,...,v m in V such that

V =< v 0 , v 1 , ••, v m > ⊕ qk[t] where < v 0 , v 1 , ••, v m > denotes the vector subspace of V generate by {v 0 , v 1 , ••, v m }. For each v i , there exist f i ∈ D(R, V ) such that f i (1) = v i . Let r = max{deg ∂ (f i ), 0 ≤ i ≤ m}, we prove that O(q r ) • V ⊆ V . Since the ideal qk[t] of R = k[t] is contained in V , we have only to prove that: O(q r ) • v i ⊆ V ∀0 ≤ i ≤ m
We need the following lemma 

Lemma 9 : Let d = a p ∂ p + • • +a 1 ∂ + a 0 ∈ A 1 (k) where p ∈ N , b ∈ k[t]
• v i = s • (f i (1)) = (s • f i )(1) = (f i • s + [f i , s])(1)
One has (f • s)(1) ∈ V , [f i , s](1) ∈ qk[t] , it follows that s • v i ∈ V and that ends the proof of theorem 8.

Next lemma justify the definition we gave for primary decomposable subspaces.

Lemma 10 : Let k be a field of characteristic zero and suppose there exist q an irreducible element of k[t] with deg(q) ≥ 2. If V = k + qk[t], then D(R, V ) = qA 1 . In particular V is not primary decomposable subspace.

Proof : Since q is irreducible, one shows by a straightforward calculation that the right ideal qA 1 is maximal. Clearly one has qA 1 ⊆ D(R, V ), and D(R, V ) = A 1 since 1 ∈ D(R, V ). So one has qA 1 = D(R, V ).

1 Cannings and Holland's theorem 1 . 1

 111 Weyl algebra in characteristic zero and differential operatorsLet k be a commutative field of characteristic zero andA 1 := A 1 (k) = k[t, ∂]where ∂, t are related by ∂t -t∂ = 1, be the first Weyl algebra over k.A 1 contains the subring R := k[t] and S := k[∂].

  ) and one has properties (1) and (2). Conversely let p ∈ O(a, h). Using ( * ), one gets p = (pu)q + a 2 pv ( * * )One notes that p(uq) = ppva 2 ∈ O(a, h), so (p(uq)) ′ + (p(uq))h ∈ aR. One has (p(uq)) ′ + (p(uq))h = p ′ (uq) + p(uq) ′ + p(uq)h = p(uq) ′ + uq(p ′ + ph).

  and s ∈ O(b p ) . Then [d, s] = d • ss • d ∈ bA 1 . Proof: One has [d, s] = [d 1 ∂, s] = [d 1 , s]∂ + d 1 [∂, s], where d 1 ∈ A 1 and d = d 1 ∂ + a 0 . By induction on the ∂-degree of d, one has [d 1 , s]∂ ∈ bA 1 . Since deg ∂ (d 1 ) = p -1, it is also clear that d 1 b p ∈ bA 1 . Finally [d, s] ∈ bA 1 .By lemma 9 above, one has f i • s ∈ D(R, V ) and [f i , s] ∈ qA 1 for each i.
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