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ABSTRACT

The paper first recalls the Blahut Arimoto algorithm for computing
the capacity of arbitrary discrete memoryless channels, asan exam-
ple of an iterative algorithm working with probability density esti-
mates. Then, a geometrical interpretation of this algorithm based
on projections onto linear and exponential families of probabilities
is provided. Finally, this understanding allows also to propose to
write the Blahut-Arimoto algorithm, as a true proximal point algo-
rithm. it is shown that the corresponding version has an improved
convergence rate, compared to the initial algorithm, as well as in
comparison with other improved versions.

Index Terms— Iterative algorithm, Blahut-Arimoto algorithm,
Geometrical interpretation, Convergence speed, Proximalpoint method.

1. INTRODUCTION

In 1972, R. Blahut and S. Arimoto[1, 2] received the Information
Theory Paper Award for their Transactions Papers on how to com-
pute numerically the capacity of memoryless channels withfinite
input and output alphabets.

The Blahut-Arimoto algorithm was recently extended to chan-
nels with memory and finite input alphabets and state spaces[3].

Recently, an algorithm was proposed for computing the capacity
of memoryless channels withcontinuousinput and/or output alpha-
bets where the Blahut-Arimoto algorithm is not directly applied [4].

In [5], information geometric interpretation of the Blahut-Arimoto
algorithm in terms of alternating information projection was pro-
vided. Based on this last approach, Matz[6] proposed a modified
Blahut-Arimoto algorithm that converges significantly faster than
the standard one.
The algorithm proposed by Matz is based on an approximation of
a proximal point algorithm. Instead, we propose a true proximal
point reformulation that permits to accelerate the convergence speed
compared to the classical Blahut-Arimoto algorithm and also to the
approach in[6].

Our contributions regarding capacity computation for discrete
memoryless channels (DMCs) in this paper are:

• Geometrical interpretation of Blahut-Arimoto algorithm in
terms of projection onto linear and exponential families of
probability.

• True proximal point interpretation.

• Improvement of the convergence rate based on the proximal
point formulation.

Thanks to Newcom++ WPR4 for funding.

2. TOOLS

2.1. Kullback-Leibler divergence and Mutual Information

The Kullback-Leibler divergence (KLD)[7, 8] is defined for two
probability distributionsp = {p(x), x ∈ X} andq = {q(x), x ∈ X}
of a discrete random variableX taking their valuesx in a discrete set
X by:

D(p||q) =
X

x∈X

p(x) log
p(x)
q(x)

The KLD(also called relative entropy) has some of the properties of
a metric:D(p||q) is always non-negative, and is zero if and only if
p = q. However, it is not a true distance between distributions since
it is not symmetric (D(p||q) 6= D(q||p)) and does not satisfy the
triangle inequality in general. Nonetheless, it is often useful to think
of relative entropy as a distance between distributions.
The channel capacity is given by:

Fig. 1. Channel model

C = max
p(x)

I(X,Y)

Where the mutual information of the two discrete random variables
X andY is given by :

I(X,Y) = Ep{D(p(y|x)||p(y))}

2.2. Linear and exponential families of probability

A linear family of probability is defined as[5] :
∀f1, f2, . . . , fK ∈ X and∀α1, α2, . . . , αK

L = {p : Ep(fi(x)) = αi, 1 ≤ i ≤ K}

The expected valueEp(fi(x)) of the random variable x with respect
to the distributionp(x) is restricted toαi. A linear family of proba-
bility is characterized by{fi(x)}1≤i≤K and{αi}1≤i≤K .
The vectorα = [α1, . . . , αk] serves as a coordinate system in the
manifold of the linear family. These4 coordinates are called ”mix-
ture coordinates”.

An exponential family[5] of discrete probability distributions
p(x) on an alphabetX is the set

E = {p : p(x) =
Q(x) exp

PK
i=1(θifi(x))

P

x(Q(x) exp
P

K
i=1(θifi(x)))

}



The exponential familyE is completely defined byfi(x) andQ(x)
and parameterized byθi.
The distributionQ(x) is itself an element of the exponential family.
Any element ofE could play the role of Q(x), but if it is necessary
to emphasize the dependence ofE onQ(x), we will write EQ.

3. BLAHUT-ARIMOTO-TYPE ALGORITHM

3.1. The original Blahut-Arimoto algorithm

Let consider the case of a discrete memoryless channel with input
symbol X taking its values in the set{x0, . . . , xM} and output sym-
bol Y taking its values in the set{y0, . . . , yN}. This channel is
defined by its transition probabilities channel matrix Q as[Q]ij =
Qi|j = Pr(Y = yi|X = xj). We also definepj = Pr(X = xj)
andqi = Pr(Y = yi).

The mutual information is given by:

I(X,Y) = I(p,Q) =

M
X

j=0

N
X

i=0

pjQi|j log
Qi|j

qi

=

M
X

j=0

pjD(Qj ||q)

And the channel capacity by:

C = max
p

I(p,Q)

By solving this maximization problem and taking into consider-
ation the normalization condition:

P

x
p(x) = 1, we find:

pj =
pj exp(D(P (Y |X=xj)||P (Y )))

P

j pj [exp(D(P (Y |X=xj)||P (Y )))]

Hence, the Classical Blahut-Arimoto algorithm [1, 2] is an iterative
procedure:

p(k+1)(x) =
p(k)(x) exp(Dk

x)
PM

x
p(k)(x) exp(Dk

x)
(1)

with Dk
x = D(p(Y = y|X = x)||p(Y = y(k))).

3.2. Geometrical Interpretation of Blahut-Arimoto Algori thm

The Blahut-Arimoto algorithm in (1) can be recalculated as amini-
mization problem:

8

<

:

minp D(p(x)||p(k)(x))

s.c I(k)(p(x)) = α
s.c

P

x
p(x) = 1

whereI(k)(p(x)) = Ep{D(p(y|x)||pk(y))} is the current capacity
estimate at the iterationk andα is related to the Lagrangian multi-
plier of this minimization problem.
The Lagrangian corresponding to this minimization problemcan be
written as follow:

L = D(p(x)||p(k)(x)) − λ1(I
(k)(p(x))− α) − λ2(

P

x
p(x) − 1)

∂L

∂p(x)
= 0 ⇒ log(p(x)) + 1− log(p(k)(x))− λ1D

k
x −λ2 = 0 and

p(x) = p(k)(x) exp(λ2 − 1) exp(λ1D
k
x)

Taking into consideration the normalization constraint, we can easily
obtain thatexp(λ2 − 1) = 1

P

x p(k)(x) exp(λ1Dk
x)

andp(k+1)(x) =

p(k)(x) exp(λ1Dk
x)

P

x p(k)(x) exp(λ1Dk
x)

In the following, we will see that this parameterλ1 is a step size pa-
rameter which, for convenient values, can accelerate the convergence

speed of the classical Blahut-Arimoto algorithm in whichλ1 = 1.
So the Blahut-Arimoto Algorithm can be interpreted as the projec-
tion of p(k)(x) onto a linear family of probabilityL at the point
p(k+1)(x) whereL is defined byf1(x) = Dk

x = D(p(y/x)||p(k)(y))
andαk

1 such asEp(D
k
x) = αk

1 .
By choosing increasingαk

1 , we would ensure that the mutual in-
formation increases from one iteration to the other (I(k+1)(p(x)) ≥

I(k)(p(x))). However, this quantity is only implicitly defined in the
algorithm and an appropriate choice is not available.In thefollowing,
we show that this problem will be solved based on a proximal point
interpretation that ensures that the mutual information increases dur-
ing iterations.

Note that this linear family of probability is changing fromone
iteration to the other.
On the other hand, the Blahut-Arimoto algorithm can be interpreted
as the projection of a probability density function (pdf) onto an expo-
nential family of probabilityE defined byQ(x) = p(k)(x), f (k)

1 (x) =

Dk
x and parametrized withθ(k)

1 at the pointp(k+1)(x).
To do this, we should solve this problem:

(

min
θ

D(R(x)||p(x, θ))

p(x, θ) = Q(x)exp(θf1(x)
P

x Q(x)exp(θf1(x))

whereR(x) is a certain pdf. We try now to find some interest-
ing characteristics ofR(x). To do this, let solve the minimization
problem given above.

P

x

∂(R(x) log p(x))
∂θ

= 0 with log p(x, θ) =
log Q(x) + θf1(x) − log(

P

x
Q(x) exp(θf1(x)))

So
P

x
R(x)f1(x) −

P

x R(x)
P

x Q(x)f1(x) exp(θf1(x))
P

x Q(x) exp(θf1(x))
= 0

Hence
P

x R(x)f1(x) −
P

x Q(x)f1(x) exp(θf1(x))
P

x Q(x) exp(θf1(x))

P

x R(x) = 0 lead-

ing to
P

x
(R(x)− p(x, θ))f1(x) = 0 having that

P

x
R(x) = 1

andp(x, θ) = Q(x) exp(θf1(x))
P

x Q(x) exp(θf1(x))
.

We obtain
P

x(R(x) − p(k+1)(x))Dk
x = 0

Which can be reformulated as

I(R,Q) = ER(Dk
x) = E

(k+1)
p (Dk

x) = I(p(k+1)(x), Q) ≥

I(p(k)(x))

Hence the Blahut-Arimoto algorithm can be interpreted as the pro-
jection of pdfsR(x) with higher mutual information thanI(p(k)(x))

onto an exponential familyE defined byQ(x) = p(k)(x), f (k)
1 (x) =

Dk
x and parameterized byθ(k)

1 = 1/λk at the pointp(k+1)(x). Note
that this exponential family is also changing from iteration to another
since Q(x) andf (k)

1 (x) depends on the iteration. Here again, an ap-
propriate choice of the parameter for increasing convergence rate is
difficult, because of the implicit definition of the family. Thus, a
proximal point interpretation maximizing explicitly the mutual in-
formation is considered with a given penalty term.

3.3. Proximal point interpretation of B.A. and amelioration in
terms of convergence speed

Following the results above, and based on a proximal point inter-
pretation, we can solve the problem stated by the implicit definition
of the families. In fact, we propose a clear equivalence witha true
proximal point interpretation, in which all constants are explicitly
defined, thus allowing to propose convergence rate improvement. It
is easily shown that the Blahut-Arimoto algorithm is equivalent to

p(k+1)(x) = arg max
p

{I(k)(p(x))− D(p(x)||p(k)(x))} (2)



In fact, by deriving this expression overp(x) and set it equal to zero,
we find exactly the iterative expression of the Blahut-Arimoto algo-
rithm.

But till now we cannot say that the Blahut-Arimoto algorithm
can be interpreted as a proximal point method since the cost func-
tion I(k)(p(x)) depends on the iterations, just like the families were
depending on the iterations. In fact, a true proximal point algorithm
can be written for a maximization problem[9] as follow :

θ(k+1) = arg max
θ

{ξ(θ) − βk‖θ − θ(k)‖2} (3)

in which ξ(θ), the cost function to be maximized, is independent
from the iterations,‖θ − θ(k)‖2 is a penalty term which ensures that
the updateθ(k+1) remains in the vicinity ofθ(k) andβk is a sequence
of positive parameters. In [10], Rockafellar showed that superlinear
convergence of this method is obtained when the sequenceβk con-
verges towards zero.
The definition of the proximal point algorithm in (3) can be general-
ized to a wide range of penalty terms leading to this general formu-
lation:

θ(k+1) = arg max
θ

{ξ(θ) − βkf(θ, θ(k))}

wheref(θ, θ(k)) is always non negative andf(θ(k), θ(k)) = 0.
The mutual informationI(p(x)) can be expressed as:

I(p(x)) = I(k)(p(x))− D(q(y)||q(k)(y)) (4)

Introducing (4) in (2) leads to
p(k+1)(x) =

arg maxp{I(p(x))− (D(p(x)||p(k)(x)) − D(q(y)||q(k)(y)))}

This new formulation establishes a clear link with the definition of
the capacity based on the mutual information. However, for atrue
proximal pint formulation, we need to show that:

D(p(x)||p(k)(x)) − D(q(y)||q(k)(y)) ≥ 0

with equality iff p(x) = p(k)(x) and q(y) = q(k)(y) in order to
prove that the Blahut-Arimoto is a proximal point algorithm.
The penalty termD(p(x)||p(k)(x))−D(q(y)||q(k)(y)) can be rewrit-

ten asEp(x,y)[log
p(x)

P

x̃ p(y|x̃)p(k)(x̃)

p(k)(x)
P

x̃ p(y|x̃)p(x̃)
].

We can also write according to Jensen’s inequality[7] :

E(p(x,y)[− log
p(k)(x)

P

x̃
p(y|x̃)p(x̃)

p(x)
P

x̃
p(y|x̃)p(k)(x̃)

] (5)

≥ − log(
X

y

X

x

p(x, y)) = 0 (6)

This proves that the Blahut-Arimoto algorithm can be interpreted
as a true proximal point method where the cost function is thetrue
mutual information and the penalty term reads

D(p(x)||p(k)(x)) − D(q(y)||q(k)(y))

The corresponding proximal point algorithm reads:

p(k+1)(x) = arg maxp(x)

n

I(p(x))− λk(D(p(x)||p(k)(x)))

−D(q(y)||q(k)(y))}
o

(7)
whereλk is the step size introduced in order to accelerate the con-
vergence rate of the classical Blahut-Arimoto algorithm.
By deriving this function

I(p(x))− λk(D(p(x)||p(k)(x)) − D(q(y)||q(k)(y)))

and set it equal to zero we find:

p(k+1)(x) = p(k)(x) exp
n

P

y
p(y|x) log q(y)

q(k)(y)
− 1

λk

+ 1
λk

P

y p(y|x) log p(y|x)
q(y)

o

Here, it is important to note that we can obtain the classicalcase by
simply replacingλk by 1.
Moreover, we can also obtain the approach proposed by Matz [6]
by intuitively replacing the probability distributionq(y) in the right
hand of the equation by the same distribution calculated at the pre-
vious iteration (q(k)(y)). Namely:

p(k+1)(x) = p(k)(x) exp
n

P

y
p(y|x) log q(k)(y)

q(k)(y)
− 1

λk

+ 1
λk

P

y p(y|x) log p(y|x)

q(k)(y)

o

After normalization, we getp(k+1)(x) = p(k)(x) exp(Dk
x/λk) which

is the expression of Matz’s approach. This is globally similar to the
One-Step-Late algorithm suggested by Green[11]

We conclude that Matz’s approach is based on an approximation of
the proximal point method, but what is lost in comparison with the
true proximal point method is the guarantee that the method con-
verges, since convergence conditions must be reviewed again.
We can write according to (7):

I(p(k+1)(x)) −

λk(D(p(k+1)(x)||p(k)(x)) − D(q(k+1)(y)||q(k)(y))) ≥

I(p(k)(x)) − λk(D(p(k)(x)||p(k)(x)) − D(q(k)(y)||q(k)(y)))

Hence

I(p(k+1)(x)) ≥

I(p(k)(x))+λk(D(p(k+1)(x)||p(k)(x)) − D(q(k+1)(y)||q(k)(y)))

To ensure the increasing of the mutual information during iterations,
we must have:

I(p(k+1)(x)) ≥ I(p(k)(x))

So thatλk(D(p(k+1)(x)||p(k)(x)) − D(q(k+1)(y)||q(k)(y))) ≥ 0
which is true, from (5) for everyλk ≥ 0 which is not true in the
approach proposed by Matz. In our method, we chooseλk such
that:

maxλk
λk(D(p(k+1)(x)||p(k)(x)) − D(q(k+1)(y)||q(k)(y)))

in whichp(k+1)(x) andq(k+1)(y) depend onλk.
This ensures that the difference betweenI(p(k+1)(x)) andI(p(k)(x))
is as maximum as possible from one iteration to the other one.Note
that this maximization problem is solved by the conjuguate gradient
method which gives the most convenient value of the step sizeλk

comparing to the approach proposed by Matz.
Note that, in terms of algorithmic complexity, the updated value of
λk in each iteration requires:
(N+M+1) divisions and (N+M) multiplications in Matz’s approach.
(2N+M+1) divisions, (2N+M+2) multiplications and 2 additions in
our case based on the proximal point method.
Hence, our method requires less than twice operations per iteration
compared to the approach proposed by Matz, however, it converges
faster (as we can see in the simulation results showed below,the it-
eration number is divided by two in the worst case). A compromise
must be established depending on our interests.



4. SIMULATION RESULTS

First, we test the 3 versions of the Blahut-Arimoto iterative algorithm
on a Discrete Binary Symmetric Channel (DBSC) defined by the
transition matrix :

Q =



0.7 0.2 0.1
0.1 0.2 0.7

ff

The results (fig.2) show that the channel capacity is achieved after 20
iterations in the classical case, 7 iterations in Matz’s approach and 4
iterations in our case (with a precision of10−11).

Fig. 2. Comparision between the 3 approaches in the case of a DBSC
channel

A second example intends to characterize better the efficiency of
our method in comparison with the one by Matz. In order to do sowe
need a higher dimension problem. We have chosen the discretization
of some continuous Gaussian Bernouilli-Gaussian channel in order
to form a transition channel matrix Q with higher dimensions. Such
a channel is defined as follows :

yk = xk + bk + γk

where

• b ∼ N (0, σ2
b )

• γk = ekgk with e : Bernouilli(p) sequence

• g ∼ N (0, σ2
g) with σ2

b ≪ σ2
g

Hence

yk = xk + nk

with

p(nk) = (1 − p)N (0, σ2
b ) + pN (0, σ2

b + σ2
g)

The outputyk has been discretized on40 values, and the inputxk

on 10 values. The results plotted on (fig.3) for parameters(p =
0.3, σb = 0.01, σg = 1) show the acceleration of the Blahut-Arimoto
algorithm from 14 iterations in Matz’s approach to 7 iterations in our
method.

5. CONCLUSIONS

We have proposed geometrical interpretations and improvements on
the Blahut-Arimoto (BA) algorithm for computing the capacity of
discrete memoryless channels (DMC). Based on the true proximal
point approach and solving the maximization problem with the con-
jugate gradient method, we have accelerated the convergence rate of
this iterative algorithm compared to the aproach proposed by Matz
which is based on an approximation of the proximal point method.
We are currently investigating the use of similar techniques for im-
proving the convergence rate of other iterative algorithms.

Fig. 3. Comparision between the 2 approaches in the case of a Gaussian
Bernouilli-Gaussian channel
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