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The paper first recalls the Blahut Arimoto algorithm for computing the capacity of arbitrary discrete memoryless channels, as an example of an iterative algorithm working with probability density estimates. Then, a geometrical interpretation of this algorithm based on projections onto linear and exponential families of probabilities is provided. Finally, this understanding allows also to propose to write the Blahut-Arimoto algorithm, as a true proximal point algorithm. it is shown that the corresponding version has an improved convergence rate, compared to the initial algorithm, as well as in comparison with other improved versions.

INTRODUCTION

In 1972, R. Blahut and S. Arimoto [START_REF] Arimoto | An algorithm for computing the capacity of arbitrary discrete memoryless channels[END_REF][START_REF] Blahut | Computation of channel capacity and ratedistortion functions[END_REF] received the Information Theory Paper Award for their Transactions Papers on how to compute numerically the capacity of memoryless channels with finite input and output alphabets.

The Blahut-Arimoto algorithm was recently extended to channels with memory and finite input alphabets and state spaces [START_REF] Dupuis | Arimoto-Blahut algorithms for computing channel capacity and rate-distortion with sideinformation[END_REF].

Recently, an algorithm was proposed for computing the capacity of memoryless channels with continuous input and/or output alphabets where the Blahut-Arimoto algorithm is not directly applied [START_REF] Dauwels | On graphical models for communications and machine learning: Algorithms, bounds, and analog implementation[END_REF].

In [START_REF] Csiszár | Information geometry and alternating minimization procedure[END_REF], information geometric interpretation of the Blahut-Arimoto algorithm in terms of alternating information projection was provided. Based on this last approach, Matz [START_REF] Matz | Information geometric formulation and interpretation of accelerated Blahut-Arimoto-Type algorithms[END_REF] proposed a modified Blahut-Arimoto algorithm that converges significantly faster than the standard one. The algorithm proposed by Matz is based on an approximation of a proximal point algorithm. Instead, we propose a true proximal point reformulation that permits to accelerate the convergence speed compared to the classical Blahut-Arimoto algorithm and also to the approach in [START_REF] Matz | Information geometric formulation and interpretation of accelerated Blahut-Arimoto-Type algorithms[END_REF].

Our contributions regarding capacity computation for discrete memoryless channels (DMCs) in this paper are:

• Geometrical interpretation of Blahut-Arimoto algorithm in terms of projection onto linear and exponential families of probability.

• True proximal point interpretation.

• Improvement of the convergence rate based on the proximal point formulation.
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TOOLS

Kullback-Leibler divergence and Mutual Information

The Kullback-Leibler divergence (KLD) [START_REF] Cover | Elements of Information Theory[END_REF][START_REF] Gallager | Information Theory and Reliable Communication[END_REF] is defined for two probability distributions p = {p(x), x ∈ X} and q = {q(x), x ∈ X} of a discrete random variable X taking their values x in a discrete set X by:

D(p||q) = X x∈X p(x) log p(x) q(x)
The KLD(also called relative entropy) has some of the properties of a metric: D(p||q) is always non-negative, and is zero if and only if p = q. However, it is not a true distance between distributions since it is not symmetric (D(p||q) = D(q||p)) and does not satisfy the triangle inequality in general. Nonetheless, it is often useful to think of relative entropy as a distance between distributions. The channel capacity is given by: 

I(X,Y)

Where the mutual information of the two discrete random variables X and Y is given by :

I(X,Y) = Ep{D(p(y|x)||p(y))}

Linear and exponential families of probability

A linear family of probability is defined as [START_REF] Csiszár | Information geometry and alternating minimization procedure[END_REF] : ∀f1, f2, . . . , fK ∈ X and ∀α1, α2, . . . , αK

L = {p : Ep(fi(x)) = αi, 1 ≤ i ≤ K}
The expected value Ep(fi(x)) of the random variable x with respect to the distribution p(x) is restricted to αi. A linear family of probability is characterized by {fi(x)} 1≤i≤K and {αi} 1≤i≤K .

The vector α = [α1, . . . , α k ] serves as a coordinate system in the manifold of the linear family. These4 coordinates are called "mixture coordinates". An exponential family [START_REF] Csiszár | Information geometry and alternating minimization procedure[END_REF] of discrete probability distributions p(x) on an alphabet X is the set

E = {p : p(x) = Q(x) exp P K i=1 (θ i f i (x)) P x (Q(x) exp P K i=1 (θ i f i (x))) }
The exponential family E is completely defined by fi(x) and Q(x) and parameterized by θi. The distribution Q(x) is itself an element of the exponential family. Any element of E could play the role of Q(x), but if it is necessary to emphasize the dependence of E on Q(x), we will write EQ.

BLAHUT-ARIMOTO-TYPE ALGORITHM

The original Blahut-Arimoto algorithm

Let consider the case of a discrete memoryless channel with input symbol X taking its values in the set {x0, . . . , xM } and output symbol Y taking its values in the set {y0, . . . , yN }. This channel is defined by its transition probabilities channel matrix Q as

[Q]ij = Q i|j = P r(Y = yi|X = xj).
We also define pj = P r(X = xj) and qi = P r(Y = yi).

The mutual information is given by:

I(X,Y) = I(p,Q) = M X j=0 N X i=0 pjQ i|j log Q i|j qi = M X j=0 pjD(Qj||q)
And the channel capacity by:

C = max p I(p, Q)
By solving this maximization problem and taking into consideration the normalization condition:

P x p(x) = 1, we find: pj = p j exp(D(P (Y |X=x j )||P (Y ))) P j p j [exp(D(P (Y |X=x j )||P (Y )))]
Hence, the Classical Blahut-Arimoto algorithm [START_REF] Arimoto | An algorithm for computing the capacity of arbitrary discrete memoryless channels[END_REF][START_REF] Blahut | Computation of channel capacity and ratedistortion functions[END_REF] is an iterative procedure:

p (k+1) (x) = p (k) (x) exp(D k x ) P M x p (k) (x) exp(D k x ) (1) 
with

D k x = D(p(Y = y|X = x)||p(Y = y (k) )).

Geometrical Interpretation of Blahut-Arimoto Algorithm

The Blahut-Arimoto algorithm in (1) can be recalculated as a minimization problem:

8 < : minp D(p(x)||p (k) (x)) s.c I (k) (p(x)) = α s.c P x p(x) = 1
where

I (k) (p(x)) = Ep{D(p(y|x)||p k (y)
)} is the current capacity estimate at the iteration k and α is related to the Lagrangian multiplier of this minimization problem.

The Lagrangian corresponding to this minimization problem can be written as follow:

L = D(p(x)||p (k) (x)) -λ1(I (k) (p(x)) -α) -λ2( P x p(x) -1) ∂L ∂p(x) = 0 ⇒ log(p(x)) + 1 -log(p (k) (x)) -λ1D k x -λ2 = 0 and p(x) = p (k) (x) exp(λ2 -1) exp(λ1D k
x ) Taking into consideration the normalization constraint, we can easily obtain that exp(λ2 -1) =

1 P x p (k) (x) exp(λ 1 D k x ) and p (k+1) (x) = p (k) (x) exp(λ 1 D k x ) P x p (k) (x) exp(λ 1 D k x )
In the following, we will see that this parameter λ1 is a step size parameter which, for convenient values, can accelerate the convergence speed of the classical Blahut-Arimoto algorithm in which λ1 = 1. So the Blahut-Arimoto Algorithm can be interpreted as the projection of p (k) (x) onto a linear family of probability L at the point p (k+1) (x) where L is defined by f1

(x) = D k x = D(p(y/x)||p (k) (y)) and α k 1 such as Ep(D k x ) = α k 1 .
By choosing increasing α k 1 , we would ensure that the mutual information increases from one iteration to the other (I (k+1) (p(x)) ≥ I (k) (p(x))). However, this quantity is only implicitly defined in the algorithm and an appropriate choice is not available.In the following, we show that this problem will be solved based on a proximal point interpretation that ensures that the mutual information increases during iterations.

Note that this linear family of probability is changing from one iteration to the other. On the other hand, the Blahut-Arimoto algorithm can be interpreted as the projection of a probability density function (pdf) onto an exponential family of probability E defined by

Q(x) = p (k) (x), f (k) 1 (x) = D k
x and parametrized with θ

(k) 1
at the point p (k+1) (x). To do this, we should solve this problem:

( min θ D(R(x)||p(x, θ)) p(x, θ) = Q(x)exp(θf 1 (x) P x Q(x)exp(θf 1 (x))
where R(x) is a certain pdf. We try now to find some interesting characteristics of R(x). To do this, let solve the minimization problem given above.

P x ∂(R(x) log p(x)) ∂θ = 0 with log p(x, θ) = log Q(x) + θf1(x) -log( P x Q(x) exp(θf1(x))) So P x R(x)f1(x) - P x R(x) P x Q(x)f 1 (x) exp(θf 1 (x)) P x Q(x) exp(θf 1 (x)) = 0 Hence P x R(x)f1(x) - P x Q(x)f 1 (x) exp(θf 1 (x)) P x Q(x) exp(θf 1 (x)) P x R(x) = 0 lead- ing to P x (R(x) -p(x, θ))f1(x) = 0 having that P x R(x) = 1 and p(x, θ) = Q(x) exp(θf 1 (x)) P x Q(x) exp(θf 1 (x)) .
We obtain

P

x (R(x)p (k+1) (x))D k x = 0 Which can be reformulated as

I(R, Q) = ER(D k x ) = E (k+1) p (D k x ) = I(p (k+1) (x), Q) ≥ I(p (k) (x))
Hence the Blahut-Arimoto algorithm can be interpreted as the projection of pdfs R(x) with higher mutual information than I(p (k) (x)) onto an exponential family E defined by Q

(x) = p (k) (x), f (k) 1 (x) = D k
x and parameterized by θ

(k) 1
= 1/λ k at the point p (k+1) (x). Note that this exponential family is also changing from iteration to another since Q(x) and f (k) 1 (x) depends on the iteration. Here again, an appropriate choice of the parameter for increasing convergence rate is difficult, because of the implicit definition of the family. Thus, a proximal point interpretation maximizing explicitly the mutual information is considered with a given penalty term.

Proximal point interpretation of B.A. and amelioration in terms of convergence speed

Following the results above, and based on a proximal point interpretation, we can solve the problem stated by the implicit definition of the families. In fact, we propose a clear equivalence with a true proximal point interpretation, in which all constants are explicitly defined, thus allowing to propose convergence rate improvement. It is easily shown that the Blahut-Arimoto algorithm is equivalent to

p (k+1) (x) = arg max p {I (k) (p(x)) -D(p(x)||p (k) (x))} (2) 
In fact, by deriving this expression over p(x) and set it equal to zero, we find exactly the iterative expression of the Blahut-Arimoto algorithm.

But till now we cannot say that the Blahut-Arimoto algorithm can be interpreted as a proximal point method since the cost function I (k) (p(x)) depends on the iterations, just like the families were depending on the iterations. In fact, a true proximal point algorithm can be written for a maximization problem [START_REF] Vige | Proximal-point algorithm for minimizing quadratic functions[END_REF] as follow :

θ (k+1) = arg max θ {ξ(θ) -β k θ -θ (k) 2 } (3)
in which ξ(θ), the cost function to be maximized, is independent from the iterations, θθ (k) 2 is a penalty term which ensures that the update θ (k+1) remains in the vicinity of θ (k) and β k is a sequence of positive parameters. In [START_REF] Rockafellar | Monotone operators and the proximal point algorithm[END_REF], Rockafellar showed that superlinear convergence of this method is obtained when the sequence β k converges towards zero.

The definition of the proximal point algorithm in ( 3) can be generalized to a wide range of penalty terms leading to this general formulation:

θ (k+1) = arg max θ {ξ(θ) -β k f (θ, θ (k) )}
where f (θ, θ (k) ) is always non negative and f (θ (k) , θ (k) ) = 0. The mutual information I(p(x)) can be expressed as:

I(p(x)) = I (k) (p(x)) -D(q(y)||q (k) (y)) (4) 
Introducing ( 4) in ( 2) leads to

p (k+1) (x) = arg maxp{I(p(x)) -(D(p(x)||p (k) (x)) -D(q(y)||q (k) (y)))}
This new formulation establishes a clear link with the definition of the capacity based on the mutual information. However, for a true proximal pint formulation, we need show that:

D(p(x)||p (k) (x)) -D(q(y)||q (k) (y)) ≥ 0
with equality iff p(x) = p (k) (x) and q(y) = q (k) (y) in order to prove that the Blahut-Arimoto is a proximal point algorithm. The penalty term D(p(x)||p (k) (x))-D(q(y)||q (k) (y)) can be rewritten as E p(x,y) [log p(x) P

x p(y|x)p (k) (x) p (k) (x) P

x p(y|x)p(x) ]. We can also write according to Jensen's inequality [START_REF] Cover | Elements of Information Theory[END_REF] :

E (p(x,y) [-log p (k) (x) P x p(y|x)p(x) p(x) P x p(y|x)p (k) (x) ] (5) 
≥ -log( X y X x p(x, y)) = 0 (6) 
This proves that the Blahut-Arimoto algorithm can be interpreted as a true proximal point method where the cost function is the true mutual information and the penalty term reads

D(p(x)||p (k) (x)) -D(q(y)||q (k) (y))
The corresponding proximal point algorithm reads:

p (k+1) (x) = arg max p(x) n I(p(x)) -λ k (D(p(x)||p (k) (x))) -D(q(y)||q (k) (y))} o (7) 
where λ k is the step size introduced in order to accelerate the convergence rate of the classical Blahut-Arimoto algorithm. By deriving this function

I(p(x)) -λ k (D(p(x)||p (k) (x)) -D(q(y)||q (k) (y)))
and set it equal to zero we find:

p (k+1) (x) = p (k) (x) exp n P y p(y|x) log q(y) q (k) (y) -1 λ k + 1 λ k P y p(y|x) log p(y|x) q(y) o
Here, it is important to note that we can obtain the classical case by simply replacing λ k by 1.

Moreover, we can also obtain the approach proposed by Matz [START_REF] Matz | Information geometric formulation and interpretation of accelerated Blahut-Arimoto-Type algorithms[END_REF] by intuitively replacing the probability distribution q(y) in the right hand of the equation by the same distribution calculated at the previous iteration (q (k) (y)). Namely:

p (k+1) (x) = p (k) (x) exp n P y p(y|x) log q (k) (y) q (k) (y) -1 λ k + 1 λ k P y p(y|x) log p(y|x) q (k) (y)
o

After normalization, we get p (k+1) (x) = p (k) (x) exp(D k x /λ k ) which is the expression of Matz's approach. This is globally similar to the One-Step-Late algorithm suggested by Green [START_REF] Green | On use of the EM algorithm for penelized likelihood estimation[END_REF] We conclude that Matz's approach is based on an approximation of the proximal point method, but what is lost in comparison with the true proximal point method is the guarantee that the method converges, since convergence conditions must be reviewed again. We can write according to [START_REF] Cover | Elements of Information Theory[END_REF]:

I(p (k+1) (x)) - λ k (D(p (k+1) (x)||p (k) (x)) -D(q (k+1) (y)||q (k) (y))) ≥ I(p (k) (x)) -λ k (D(p (k) (x)||p (k) (x)) -D(q (k) (y)||q (k) (y))) Hence I(p (k+1) (x)) ≥ I(p (k) (x)) + λ k (D(p (k+1) (x)||p (k) (x)) -D(q (k+1) (y)||q (k) (y)))
To ensure the increasing of the mutual information during iterations, we must have:

I(p (k+1) (x)) ≥ I(p (k) (x))
So that λ k (D(p (k+1) (x)||p (k) (x)) -D(q (k+1) (y)||q (k) (y))) ≥ 0 which is true, from (5) for every λ k ≥ 0 which is not true in the approach proposed by Matz. In our method, we choose λ k such that:

max λ k λ k (D(p (k+1) (x)||p (k) (x)) -D(q (k+1) (y)||q (k) (y)))
in which p (k+1) (x) and q (k+1) (y) depend on λ k . This ensures that the difference between I(p (k+1) (x)) and I(p (k) (x)) is as maximum as possible from one iteration to the other one. Note that this maximization problem is solved by the conjuguate gradient method which gives the most convenient value of the step size λ k comparing to the approach proposed by Matz. Note that, in terms of algorithmic complexity, the updated value of λ k in each iteration requires: (N+M+1) divisions and (N+M) multiplications in Matz's approach. (2N+M+1) divisions, (2N+M+2) multiplications and 2 additions in our case based on the proximal point method. Hence, our method requires less than twice operations per iteration compared to the approach proposed by Matz, however, it converges faster (as we can see in the simulation results showed below, the iteration number is divided by two in the worst case). A compromise must be established depending on our interests.

SIMULATION RESULTS

First, we test the 3 versions of the Blahut-Arimoto iterative algorithm on a Discrete Binary Symmetric Channel (DBSC) defined by the transition matrix :

Q =  0.7 0.2 0.1 0.1 0.2 0.7 ff 
The results (fig. 2) show that the channel capacity is achieved after 20 iterations in the classical case, 7 iterations in Matz's approach and 4 iterations in our case (with a precision of 10 -11 ).

Fig. 2. Comparision between the 3 approaches in the case of a DBSC channel

A second example intends to characterize better the efficiency of our method in comparison with the one by Matz. In order to do so we need a higher dimension problem. We have chosen the discretization of some continuous Gaussian Bernouilli-Gaussian channel in order to form a transition channel matrix Q with higher dimensions. Such a channel is defined as follows : 

y k = x k + b k + γ k

CONCLUSIONS

We have proposed geometrical interpretations and improvements on the Blahut-Arimoto (BA) algorithm for computing the capacity of discrete memoryless channels (DMC). Based on the true proximal point approach and solving the maximization problem with the conjugate gradient method, we have accelerated the convergence rate of this iterative algorithm compared to the aproach proposed by Matz which is based on an approximation of the proximal point method. We are currently investigating the use of similar techniques for improving the convergence rate of other iterative algorithms. 
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 1 Fig. 1. Channel model

) with σ 2 b ≪ σ 2 g

 22 where • b ∼ N (0, σ 2 b ) • γ k = e k g k with e : Bernouilli(p) sequence • g ∼ N (0, σ 2 gHencey k = x k + n k with p(n k ) = (1p)N (0, σ 2 b ) + pN (0, σ 2 b + σ 2 g )The output y k has been discretized on 40 values, and the input x k on 10 values. The results plotted on (fig.3) for parameters (p = 0.3, σ b = 0.01, σg = 1) show the acceleration of the Blahut-Arimoto algorithm from 14 iterations in Matz's approach to 7 iterations in our method.
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 3 Fig. 3. Comparision between the 2 approaches in the case of a Gaussian Bernouilli-Gaussian channel