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ABSTRACT. In maintenance field, prognostic is recognized as a key feature as the prediction of 
the remaining useful life of a system allows avoiding inopportune maintenance spending. 
Assuming that it can be difficult to provide models for that purpose, artificial neural 
networks appear to be well suited. In this paper, an approach combining a Recurrent Radial 
Basis Function network (RRBF) and a proportional integral derivative controller (PID) is 
proposed in order to improve the accuracy of predictions. The PID controller attempts to 
correct the error between the real process variable and the neural network predictions. The 
approach and its performances are illustrated by using two classical prediction benchmarks: 
the Mackey–Glass chaotic time series and the Box–Jenkins furnace data. 

RÉSUMÉ. Le processus de pronostic est considéré comme clef dans les stratégies de 
maintenance : l'estimation du temps résiduel avant défaillance permet d'éviter des dépenses 
de maintenance inutiles. Il peut cependant être difficile d'établir des modèles formels de 
pronostic, et les réseaux de neurones s'avèrent ainsi bien adaptés pour supporter l'étape de 
prédiction. Dans ce papier, une approche combinant un réseau de neurones récurrent à 
fonctions de base radiales (RRBF) et un régulateur proportionnel intégral dérivé (PID) est 
proposée. Le PID vise la correction de la sortie du RRBF et permet ainsi d'améliorer la 
précision des prédictions. L'approche est illustrée sur deux benchmarks classiques de 
prédiction : la série temporelle chaotique de Mackey-Glass et la série dite de Box-Jenkins. 
KEYWORDS: Maintenance, prognostic, error of prediction, neural network, RRBF, PID. 
MOTS-CLÉS : Maintenance, pronostic, erreur de prédiction, réseau de neurones, RRBF, PID. 
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1. Introduction 

The high costs in maintaining complex equipments make necessary to enhance 
maintenance support systems and traditional concepts like preventive and corrective 
strategies are progressively completed by new ones like predictive and proactive 
maintenance (Muller et al., 2008). Thereby, prognostic is nowadays considered as a 
key feature in maintenance strategies as the estimation remaining useful life of a 
system allows avoiding inopportune spending. 

A central problem can be pointed out: the accuracy of a prognostic system is 
related to its ability to approximate and predict the degradation of the equipment: 
starting from a "current situation", a prognostic tool must be able to forecast the 
"future possible situations". From the research point of view, many developments 
exist to support these prognostic or forecasting activities ((De Gooijer et al., 2006), 
(Jardine et al. 2006), (Vachtsevanos et al. 2006)). However, choosing an efficient 
technique depends on classical constraints that limit the applicability of the tools: 
available data-knowledge-experiences, dynamic and complexity of the system, 
implementation requirements (precision, computation time, etc.), available 
monitoring devices... Also, it can be difficult to provide effective models of dynamic 
systems including the inherent uncertainty of prognostic. That said, developments of 
this paper are founded on the following two complementary assumptions. 1) On one 
hand, real systems increase in complexity and their behaviour is often non-linear, 
which makes harder a modelling step, even impossible. 2) On the other hand, in 
many cases, it is not too costly to equip dynamic systems with sensors, which allows 
gathering real data online. According to all this, artificial neural networks (ANN) 
appear to be very promising prognostic tools: they learn from examples and attempt 
to capture the subtle relationship among data. They are computationally effective 
techniques and are thereby well suited for practical problems, where it is easier to 
gather data than to formalize the behaviour of the system being studied. Actual 
developments confirm the interest of using ANNs in forecasting applications (Zhang 
et al., 1998). 

In this context, the purpose of the work is to propose an ANN as a predictive tool 
for prognostic purpose and to improve its prediction accuracy. More precisely, the 
approach combines a Recurrent Radial Basis Function network (RRBF) and a 
proportional integral derivative controller (PID). The PID controller attempts to 
correct the error between the real process and the neural network predictions. 

The paper is organized in three main parts. First, the concept of "prognostic" is 
clarified and replaced within maintenance strategies, and the relationship between 
prognostic and prediction is also explained; the efficiency of a prognostic system is 
highly dependent on its ability to perform "good" predictions. Then, the use of 
artificial neural networks for prognostic is justified and the ways of building such 
models are briefly discussed. Following that, the RRBF is proposed for prognostic. 
In the third part, a combination of this tool with a PID controller is developed to 
perform accurate predictions and the whole is illustrated on benchmark problems. 
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2. Prognostic framework and prediction 

2.1. From maintenance to prognostic 

Maintenance activity combines different methods, tools and techniques to reduce 
costs while increasing reliability, availability and security of equipments. Thus, one 
usually speaks about fault detection, failures diagnosis, and response development 
(choice and scheduling of preventive/corrective actions). Briefly, these steps 
correspond to the need, firstly, of "perceiving" phenomena, secondly, of 
"understanding" them, and finally, of "acting" consequently. However, rather than 
understanding a phenomenon which has just appeared like a failure (a posteriori
comprehension), it is convenient to "anticipate" its manifestation in order to take 
adequate actions as soon as possible. This is what can be defined as the "prognostic 
process" and which the object of this paper is. 

Industrials show a growing interest in prognostic which becomes a major 
research framework; see recent papers dedicated to condition-based maintenance  
((Jardine et al., 2006)). The relative positioning of detection, diagnosis, prognostic 
and decision / scheduling in the maintenance framework is schematized in Fig. 1a. 
From the phenomenological point of view, the complementarities of detection, 
diagnosis and prognostic can be explained as follows (see Fig. 1b): 1) detection aims 
at identifying the functioning mode of the system, i.e., its current state, 2) assuming 
that a failure occurred, diagnosis enables to isolate and identify the component that 
has ceased to operate (past propagation: from effects to causes), 3) prognostic deals 
with the prediction of the future(s) state(s) of the system (future propagation: from 
causes to effects). 
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Figure 1. Prognostic within maintenance strategies 

2.2. From prognostic to prediction 

Although there are some divergences in literature, prognostic can be defined as 
proposed by the International Organization for Standardization: "prognostic is the 
estimation of time to failure and risk for one or more existing and future failure 
modes" (ISO 13381-1, 2004). Prognostic is also a process whose objective is to 
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predict the remaining useful life (RUL) before a failure occurs given the current 
machine condition and past operation profile (Jardine et al., 2006). Two salient 
aspects of prognostic appear (Dragomir et al. 2007): (1) prognostic is mostly 
assimilated to a prediction process (a future situation must be caught), (2) prognostic 
is based on the failure notion, which implies that it is associated with a limit of 
acceptability (the predicted situation must be assessed with regard to a referential). 

A central problem can be pointed out: the accuracy of a prognostic system is 
related to its ability to approximate and predict the degradation of an equipment; the 
prediction phase is a critical one. A look at prognostic metrics enables to point it out. 

2.3. Prognostic metrics 

There is no general agreement as to an appropriate and acceptable set of metrics 
that can be employed in prognostic applications, and researchers and maintenance 
practitioners are still working on this (Vachtsevanos et al., 2006). Various measures 
emerge however from literature and are presented hereafter. As for any industrial 
task, prognostic can be evaluated at least in two ways: 

– the main objective of prognostic is to provide the efficient information that 
enables the underlying decision process, i.e., the choice of maintenance actions. 
Thus, a first set of metrics are those that quantify the risks incurred by the monitored 
system. This kind of metrics can be called the prognostic measures, 

– assuming that prognostic is in essence an uncertain process, it is useful to be 
able to judge from its "quality" in order to imagine more suitable actions. In this 
way, prognostic system performance measures can be constructed. 

2.3.1. Prognostic measures 

As mentioned earlier, the main prognostic measure pursued is the predicted time 
to failure (TTF), also called the remaining useful life (RUL). In addition, a 
confidence measure can be built to indicate the degree of certitude of the future 
predicted failure time. By extension, and considering that practitioners can be 
interested on assessing the system with regard to any performance limit, RUL and 
confidence can be generalized: in Fig. 2a, TTxx refers to the remaining time to 
overpass the performance limit Perf/xx, and Conf/xxT is the confidence with which 
can be taken the asset TTxx > T. 

2.3.2. Prognostic system performance measures 

The timeliness of the predicted time to failure (TTF) is the relative position of 
the probability density function (pdf) of the prediction model along the time axis 
with respect to the occurrence of the failure event. This measure evolves as more 
data are available and reveals the expected time to perform preventive actions 
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(Vachtsevanos et al., 2006) (see Fig. 2b). According to (Goebel et al., 2005), one 
needs to define two different boundaries for the maximum acceptable late and early 
predictions. Accuracy measures the closeness of the predicted value to the actual 
one. It has an exponential form and is as higher as the error between the predicted 
value of TTF and the real one is smaller. Precision reveals how close predictions are 
grouped or clustered together and is a measure of the narrowness of the interval in 
which the remaining life falls. Precision follows from the variance of the predicted 
results for many experiments. Complementarity of accuracy and precision is 
illustrated in Fig. 2c. 
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Figure 2. Some prognostic metrics 

2.4. Perform good predictions: a critical issue 

All prognostic metrics follow from the notion of "prediction": prognostic 
measures are themselves specific prediction measures and prognostic system 
performance measures can be seen as a way to asses the performances of the 
prediction in terms that can be interpreted by practitioners. As a synthesis, one 
should pay a particular attention to this prediction issue when choosing and adapting 
a prognostic tool. This aspect is developed in next sections. 
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3. The RRBF as a prediction tool for prognostic purpose 

3.1. Prediction / forecasting approaches overview 

According to some authors, the methods presented in this section are sometimes 
labelled as "prognostic techniques". However, most of them refer to what, in this 
paper, is called "prediction / forecasting". That said, the aim of this part is not to 
dress an exhaustive overview of prediction techniques but to explain the orientations 
of works that are taken. 

Various prognostic approaches have been developed ranging in fidelity from 
simple historical failure rate models to high-fidelity physics-based models. These 
methods can be associated with one of the following two approaches, namely model-
based and data-driven. 

Model-based methods assume that an accurate mathematical model for the 
analyzed system / phenomenon can be constructed. The main advantage of these 
approaches is their ability to incorporate physical understanding of monitored 
system. Moreover, if the understanding of the system / phenomenon improves, the 
model can be adapted to increase its accuracy and to address subtle performance 
problems. But, this closed relation with a mathematical model may also be a strong 
weakness: it can be difficult, even impossible to catch the system's behaviour. 

Data-driven approaches use real data (like on-line gathered with sensors or 
operator measures) to approximate and track features revealing the degradation of 
components and to forecast the global behaviour of a system. Indeed, in many 
applications, measured input/output data is the major source for a deeper 
understanding of the system degradation. Data-driven approaches can be divided 
into two categories: statistical techniques (statistical methods, linear and quadratic 
discriminators, partial least squares, etc.), and artificial intelligence techniques 
(neural networks, fuzzy systems, decision trees, etc.). The strength of data-driven 
techniques is their ability to capture subtle relationships among the data even if the 
underlying relationships are unknown or hard to describe (by a learning process). 

3.2. Neural Networks – a fitted forecasting technique 

Real systems are complex and their behaviour is often non linear, non stationary. 
These considerations make harder a modelling step, even impossible. Yet, a 
prediction computational tool must deal with it. Moreover, monitoring systems have 
evolved and it is now quite easy to online gather data. According to all this, data-
driven approaches have been increasingly applied to prediction problems in general 
and to machine prognostic in particular. More precisely, research works emphasize 
on the interest of using artificial neural networks for prediction (Mandic et al., 
2001). 
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Artificial neural networks (ANNs) are a special case of adaptive networks that 
have been extensively explored in literature because of the following aspects. ANNs 
can perform nonlinear modelling without a priori knowledge: they are able to learn 
complex relationships among "inputs and outputs". Moreover, from the 
computational point of view, ANNs are quick processes. 

ANNs have two typical connection architectures depending on the type of time 
representation (Elman, 1990): in feedforward networks (like the multi layers 
perceptron MLP or the radial basis function network RBF) time is represented as an 
external mechanism, whereas recurrent networks (like the Elman architecture or the 
recurrent radial basis function network RRBF) are able to treat time dimension 
without any external mechanism. Both have been employed in system behaviour 
forecasting. 

One of the first successful application of ANNs in forecasting is reported by 
Lapedes and Farber (1987) who designed a feedforward ANN that can accurately 
mimic a chaotic series (Zhang et al., 1998). In general, feedforward ANNs (MLP, 
RBF) trained with the backpropagation algorithm have been found to perform better 
than classical autoregressive models for the trend prediction of non linear time 
series. 

In order to explicitly take into account the time in forecasting tools, backward 
networks architectures were also developed. These recurrent neural networks are 
fundamentally different from feedforward architectures in the sense that they not 
only operate on an input space but also on an internal state space. (Mandic et al., 
2001) provides a good overview of these networks. Recurrent ANNs were compared 
with some of the well known methods for the prediction of non-linear time series. 
The results indicated that RNNs have a better forecasting performance than the 
classical methods and are even better than the feedforward type ANNs. 

In this paper, the recurrent radial basis function network (RRBF) proposed by 
(Zemouri et al., 2003) is presented as a candidate for prognostic purpose. 

3.3. RBF and Recurrent RBF networks 

3.3.1. The Radial Basis Function network 

The Radial Basis Function network (RBF) is a two layers feedforward network 
with an architecture similar to that of the two-layer Multi Layer Perceptron MLP 
(see Fig. 3.a). 

The distance between an input vector and a prototype vector determines the 
activation of the hidden layer with the nonlinearity provided by the basis functions. 
Nodes in the output layer usually perform an ordinary linear weighted sum of these 
activations. 
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Mathematically, the network output for linear output nodes is expressed as 
follows: 

1

( )
M

k kj j j
j

y w φ
=

= −� x u [1] 

where x  is the input vector with elements ix  (with i is the dimension of the input 
vector), ju  is the vector determining the centre of the basis function jφ  with 

elements jiu  and kjw  are the final layer weights. The Gaussian basis function (.)jφ
provides the nonlinearity of the neural network. 

Training a RBF with linear outputs is very fast and is accomplished through two 
stages: 

– the first stage is unsupervised and accomplished by obtaining cluster centres of 
the training set input vectors. A popular method for that purpose is k-means
clustering, 

– the second stage consists in solving a set of linear equations, the solution of 
which can be obtained by a matrix inversion technique such as singular value 
decomposition or least squares method. 
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Figure 3. Radial Basis Function and Recurrent Radial Basis Function networks 

3.3.2. The Recurrent Radial Basis Function network 

The Recurrent RBF neural network considers time as an internal representation 
(Fig. 3.b). The dynamic aspect is obtained by the use of an additional self-connection 
to the input neurons with a sigmoid activation function. The RRBF network can thus 
take into account a certain past of the input signal. 
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Every neuron of the input layer gives a summation at the instant t  between its 
input ix  and its previous output weighted by a self-connection iiw . The output of its 
activation function is: 

( ) ( 1) ( )i ii i ia t w t x tξ= − + , ( )( ) ( )i it f a tξ =  [2] 

where ( )ia t  and ( )i tξ  represent respectively the neuron activation and its output 
at the instant t , and f  is the sigmoid activation function defined as 

( ) ( ) ( )1 exp( ) 1 exp( )f x kx kx= − − + − . 

4. Combining a RRBF and a PID controller for prognostic purpose 

4.1. Principle 

RRBF appears to be a good candidate for prediction in prognostic applications. 
Nevertheless, one can improve its prediction accuracy by combining it with a 
proportional integral derivative controller (PID). Consider the prediction structure 
proposed in Fig. 4 to explain the principle of this procedure. 

This prediction structure (let call it the RRBFError) is composed of a RRBF whose 
output is, for an horizon of prediction 1t = : 

( )
1

ˆ '( 1) ( )
M

kj j j
j

x t w φ
=

+ = −� x u [3] 

At any time t , the error of prediction of this RRBF can be expressed as 
ˆ( ) ( ) '( )t x t x tε = −  where ( )x t  represents the real system output, and ˆ '( )x t  the neural 

network predicted output. The aim of the PID is to apply a corrective action on this 
error. The output of the global prediction structure RRBFError is then defined as:  

0

( )ˆ ˆ( 1) '( 1) ( ) ( )
t

p i d
tx t x t K t K K

t
εε ε τ τ ∂+ = + + + ∂ +
∂�  [5] 

where, pK , iK , dK  are the proportional, integral and derivate gains of the PID. 
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Figure 4. The RRBFError structure for time series prediction 

4.2. Data benchmarks and simulation conditions 

Two real experimental data sets have been used to test the prediction 
performances of the RRBFError structure with regards to the classical RRBF network. 
In both cases, the aim of the predictions is to approximate a phenomenon by learning 
data gathered from the system. The first data set is the chaotic Mackey-Glass time 
series data (Glass et al., 1988). This time series is a benchmark problem extensively 
used: it's a non periodic and non convergent time series. Considering our final 
applicative objective (the prognostic of failures), to be capable to carry out 
predictions on such a signal is of good omen: real systems are complex and have 
generally a nonstationary and non-linear behaviour, what makes difficult a modelling 
phase. Tests on this time series aim at predicting future values y(t+n) by using past 
values. The second benchmark is that of Box–Jenkins furnace data (Box et al., 
1970). There are originally 296 data samples {y(t), u(t)}, from t=1 to t=296. From 
the real process, CO2 concentration is considered as the output of the model y(t), and 
gas flow rate as the input u(t). Tests on this time series aim at predicting future 
values y(t+n) by using {y(t), u(t)} values as inputs. 

The same training and testing data sets were used to train and test both models 
RRBF and RRBFError. For both benchmarks, 50 samples were used for training. 
Predictions were made from "t+1" to "t+10" by increments of 1 (in order to measure 
the stability of results in time). Predictions were performed with two past inputs at a 
step time "t" and "t-1" (Fig. 4). The prediction performance was assessed by using 
the mean square error (MSE). 
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All data have been normalized by range [-1,+1]. With both data sets, the initial 
tests attempted to find the best RRBF and RRBFError model when evaluated with the 
corresponding test sets. In every case, the two neural models have been created with 
varying numbers of basis functions from 2 to 50 nodes. The basis width parameter 
was fixed to 1. The PID parameters (Kp, Ki, Kd) were varied from 0 to a maximum of 
1 by increments of 0.1. While it is appreciated that values used for this scaling 
variable are extremes, these values have been chosen to encapsulate all possibilities. 

4.3. Results and discussion 

Results in Table 1 as well as Fig. 5 show the best overall MSEs obtained for 
Makey-Glass and Box–Jenkins data sets. For all tests, best results are obtained with 
the integrator parameter Ki=0. This can be explained by the summation done by the 
integrator that gives an increasing prediction error at each step. 

Horizon 
of 
prediction 
(t+n) 

Neural 
Network 

No. 
nodes 

Kp Ki Kd MSE test set 

RRBF 4 - - - 1.1234558e-002t+1 RRBFError 7 1 0 0.9 4.2470656e-005
RRBF 4 - - - 3.1526859e-002t+2 RRBFError 7 1 0 0.9 1.6468035e-003
RRBF 2 - - - 4.6262829e-002t+3 RRBFError 6 1 0 0.9 8.1336288e-003
RRBF 2 - - - 6.4874782e-002t+4 RRBFError 2 0.7 0 0.9 2.1463932e-002
RRBF 2 - - - 8.5773478e-002t+5 RRBFError 2 0.6 0 0.9 3.9283539e-002
RRBF 2 - - - 1.0730872e-001t+6 RRBFError 2 0.5 0 1 5.8869717e-002
RRBF 2 - - - 1.2790076e-001t+7 RRBFError 2 0.5 0 1 8.2871004e-002
RRBF 2 - - - 1.4617843e-001t+8 RRBFError 2 0.3 0 1 1.0340636e-001
RRBF 2 - - - 1.6111025e-001t+9 RRBFError 2 0.3 0 1 1.2357237e-001
RRBF 2 - - - 1.7209771e-001t+10 RRBFError 2 0.1 0 1 1.3818208e-001

Mackey-Glass results
No. 
nodes 

Kp Ki Kd MSE test set 

16 - - - 9.2346585e-003
10 0.8 0 0.5 2.4931081e-003
12 - - - 2.0891934e-002
9 0.5 0 1 1.3293116e-002
15 - - - 2.1827862e-002
31 0.7 0 0.5 1.8546084e-002
27 - - - 1.9543758e-002
16 0.2 0 0.2 2.1365814e-002
5 - - - 2.5234884e-002
6 0.8 0 0.9 2.1704984e-002
4 - - - 4.2036604e-002
7 0.4 0 0.1 3.7381127e-002
7 - - - 7.7557329e-002
6 0.5 0 0 7.5398560e-002
7 - - - 1.2138848e-001
4 0.3 0 0 1.1880591e-001
7 - - - 1.7708602e-001
8 0.5 0 0 1.5360799e-001
7 - - - 2.1988363e-001
5 0.6 0 0 1.7519635e-001

Box-Jenkins results
Horizon 
of 
prediction 
(t+n) 

Neural 
Network 

No. 
nodes 

Kp Ki Kd MSE test set 

RRBF 4 - - - 1.1234558e-002t+1 RRBFError 7 1 0 0.9 4.2470656e-005
RRBF 4 - - - 3.1526859e-002t+2 RRBFError 7 1 0 0.9 1.6468035e-003
RRBF 2 - - - 4.6262829e-002t+3 RRBFError 6 1 0 0.9 8.1336288e-003
RRBF 2 - - - 6.4874782e-002t+4 RRBFError 2 0.7 0 0.9 2.1463932e-002
RRBF 2 - - - 8.5773478e-002t+5 RRBFError 2 0.6 0 0.9 3.9283539e-002
RRBF 2 - - - 1.0730872e-001t+6 RRBFError 2 0.5 0 1 5.8869717e-002
RRBF 2 - - - 1.2790076e-001t+7 RRBFError 2 0.5 0 1 8.2871004e-002
RRBF 2 - - - 1.4617843e-001t+8 RRBFError 2 0.3 0 1 1.0340636e-001
RRBF 2 - - - 1.6111025e-001t+9 RRBFError 2 0.3 0 1 1.2357237e-001
RRBF 2 - - - 1.7209771e-001t+10 RRBFError 2 0.1 0 1 1.3818208e-001

Mackey-Glass results
No. 
nodes 

Kp Ki Kd MSE test set 

16 - - - 9.2346585e-003
10 0.8 0 0.5 2.4931081e-003
12 - - - 2.0891934e-002
9 0.5 0 1 1.3293116e-002
15 - - - 2.1827862e-002
31 0.7 0 0.5 1.8546084e-002
27 - - - 1.9543758e-002
16 0.2 0 0.2 2.1365814e-002
5 - - - 2.5234884e-002
6 0.8 0 0.9 2.1704984e-002
4 - - - 4.2036604e-002
7 0.4 0 0.1 3.7381127e-002
7 - - - 7.7557329e-002
6 0.5 0 0 7.5398560e-002
7 - - - 1.2138848e-001
4 0.3 0 0 1.1880591e-001
7 - - - 1.7708602e-001
8 0.5 0 0 1.5360799e-001
7 - - - 2.1988363e-001
5 0.6 0 0 1.7519635e-001

Box-Jenkins results

Table 1. Simulation results – bests MSEs obtained 

Fig. 6 presents the MSE for different number of k centres of the Gaussian nodes 
at "t+1". According to this figure, the classical RRBF network appears to be much 
more sensitive than the RRBFError structure: this last has quite the same MSE for 
any k. Thus, the training process is easier and faster with the RRBFError that is less 
dependent on the random initialization of the k-centres than the RRBF model. It 
appears that the use of a PID allows avoiding the overtraining problem which occurs 
when the number of hidden neurons becomes greater than 25 for the Mackey-Glass 
time series data, and 15 for the Box–Jenkins furnace data. This interesting 
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relationship between the PID and the training problem will be studied in a closer 
manner in future research and will be hopefully formalized in interesting results.

Fig. 7 shows the prediction results obtained with the best model for each ANN 
for some prediction horizon (as presented in Table 1) on Mackey-Glass data. It is 
obvious that the prediction performances of the RRBF are highly improved with the 
proportional-derivative controller (PD controller). For the other benchmark tests (on 
Box-Jenkins), the prediction results obtained with the RRBFError are also better than 
those obtained with the RRBF network (but the figure is not included here). 
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Figure 5. Bests MSEs obtained for both benchmarks at different prediction horizon 
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Figure 6. MSE with regards to the number of k centres at "t+1" 
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Figure 7. Mackey-Glass results for different horizons of prediction

5. Conclusions 

In maintenance field, prognostic is recognized as a key feature as the estimation 
of the remaining useful life of an equipment allows avoiding inopportune 
maintenance spending. However, it can be difficult to define and implement an 
adequate and efficient prognostic tool that includes the inherent uncertainty of the 
prognostic process. Indeed, an important task of prognostic is that of prediction. In 
this context, the purpose of the work reported in this paper is to point out an accurate 
prediction technique and to propose a way to improve its prediction performances. 

The concept of "prognostic" has been positioned within the maintenance 
strategies in order to point out the importance of the prediction phase in prognostic. 
According to the global requirements that can be expected from a forecasting tool, 
the neural network RRBF has been presented as a candidate to support this activity. 
An improvement of this neural network has also been proposed by combining it with 
a proportional integral derivative controller (PID). The PID controller attempts to 
correct the error between the real process variable and the neural network 
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predictions. Various simulations have been led with two benchmarks problems. 
Results show that the proposed prediction structure enables the forecasting to be a 
more robust task, without increasing complexity of treatments. The whole is of good 
omen for prognostic purpose. 

Additional tests should be made to evaluate the performances of the proposed 
prediction structure in terms of prognostic (accuracy, precision). More investigation 
should also be led to study others ways to control the prediction error (for example 
with sophisticated nonlinear control approaches like fuzzy or neuro-controllers). 
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