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b Université Nanterre Paris Ouest, MODALX & LPMA
Rue de la république
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Résumé

This paper investigates the problem of selection and estimation in a high dimensional
regression-type model. We propose a procedure with no optimization called LOL, for Learning
Out of Leaders. LOL is an auto-driven algorithm with two thresholding steps. A first adaptive
thresholding helps to select leaders among the initial regressors in such a way to reduce the
dimensionality. Then a second thresholding follows the estimations and predictions performed by
linear regression on the leaders. Theoretical results are proved. As an estimation procedure, LOL
is optimal since the upper exponential bounds are achieved. Rates of convergence are provided
and show that LOL is also consistent as a selection procedure. An extensive computational
experiment is conducted to emphasize the practical good performances of LOL.

1 Introduction

The general linear model is considered in this paper, with a focus on cases where the number

p of regressors is large compared to the number n of the observations (although there is no such

restrictions). These type of models have lots of practical applications in many areas of science

and engineering including collaborative filtering, machine learning, control, remote sensing, and

computer vision just to name a few. Examples in statistical signal processing and nonparametric

estimation include the recovery of a continuous-time curve or surface from a finite number of noisy

samples. Other interesting fields of application are radiology and biomedical imaging when fewer

measurements about an image are available compared to the unknown number of pixels collected.

In biostatistics, high dimensional data frequently arise in genomics to study gene expression given

a huge number of initial genes and a relatively low number of observations.
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A considerable amount of work have been produced in this domain in the last years, which has

been a large source of inspiration for this paper. We have especially considered the algorithms co-

ming from the learning framework ([Barron et al., 2008], [Binev et al., 2005], [Binev et al., 2007a],

[Binev et al., 2007b]), as well as the extraordinary explosive domain of ℓ1 penalties (among many

others [Tibshirani, 1996], [Candes and Tao, 2007], [Bickel et al., 2007], [Bunea et al., 2007a],

[Bunea et al., 2007b], [Fan and Lv, 2008] and [Candès and Plan, 2008]. See also [Lounici, 2008] and

[Alquier and Hebiri, 2009] ).

The essential motivation of this work is to provide one of the simplest procedures which achieves,

in the same time, good performances. LOL algorithm (for Learning Out of Leaders) consists in a

two steps thresholding procedure. As we do not perform any optimization step, it is important

to address in which domains the procedure is competitive to more sophisticated algorithms and

especially to algorithms performing a one or two steps ℓ1 minimization. One of our aim is to

delimit where LOL is performant and where its simplicity induces a slight lack of efficiency from a

theoretical point of view as from a practical aspect.

Let us start by introducing the ideas of the emergence of LOL algorithm. This simple procedure

can be viewed as an ’explanation’ or as a ’cartoon’ of ℓ1 minimizations. It is well known that

when the regressors are exactly normalized and orthogonal, ℓ1 minimization corresponds to soft

thresholding which itself is close to hard thresholding. Hence, it is quite natural to expect that

thresholding should perform well, at least in cases not so far from these orthonormal conditions

which correspond, as noted below, to small coherence conditions. A tricky problem occurs when the

regressors are not orthonormal or when the number of regressors is large. Then, the minimum least

squares estimator has a non unique solution and is very unstable. This stays the main difficulty for

the ℓ1 minimizers or more generally for all methods based on sparsity assumptions. Moreover, this

is the part of the algorithms where the computation cost shows up. Obviously a simple thresholding

would not fit, but assuming some sparsity conditions, in this case, ensures that it is possible to

choose some regressors and exclude some others. LOL algorithm solves the difficult problem of the

choice of the regressors in a quite crude way by adaptively selecting N regressors which are the

most correlated to the target : this defines the first step thresholding of LOL, determining the N

leaders. The number N is chosen using a fine tuning depending on the coherence, and it has to

be emphasized that the choice is auto driven. In a second thresholding step, LOL regresses on the

previous leaders and thresholds the result to take into account the noise of the model.

Properties of LOL procedure are investigated through two different points of view : the pre-

diction problem and the estimation problem. More precisely, it is established that LOL procedure

has a prediction error which is going to zero in probability with exponential rates. These types of

2



results are often called Bahadur type efficiency. Although Bahadur efficiency of test and estimation

procedures goes back to the sixties (see [Bahadur, 1960]), it has seen recently a revival in learning

theory, where the rates of convergence (preferably exponential) of being at some fixed distance

of the target are investigated and compared to optimality. This is also the connection to learning

theory which guides here the choice to measure LOL performances as the mean of the empirical

quadratic distance between the observations and the predicted values. We also establish that LOL

procedure works quite well regarding the detection since the number of false negative as well as

false positive are going to zero in probability with pretty fast rates.

Of course, because of the simplicity of the method, some loss of efficiency can be expected

compare to more elaborate and costly procedures. But even when there is a loss, the limitations of

the procedure could be an interesting information on the ℓ1 minimizers themselves. From both a

theoretical and a practical point of view, when the coherence is small, LOL procedure is as powerful

as the best procedures. Also when there is a loss in the rate, a positive aspect of the method is

that the practitioner is informed of the possible instability since the coherence is provided by

the observations. An intensive calculation program is performed to show the advantages and the

limitations of LOL procedure in several practical aspects. In Section 6, the case where the regressors

are forming a random design matrix with i.i.d. entries is investigated. Different laws of the entries

are considered (Gaussian, Uniform, Bernoulli or Student laws) inducing specific coherence for the

design matrix. Several interesting features are discussed in this section. The impact of the sparsity

and the undetermination of the regression on LOL performances are studied. A comparison with

two others two-step procedures namely [Fan and Lv, 2008] and [Candès and Plan, 2008] is also

provided and shows the additional benefits brought by LOL. The most interesting conclusion being

that the practical results are even better and more comforting than the theoretical ones in the sense

that even when the coherence is pretty high, LOL procedure shows good performances.

The paper is organized as follows. In Section 2, the general model and the notations are pre-

sented. In Section 3, LOL procedure is detailed as other procedures with a ℓ1 optimization step ;

practical comparisons with other procedures are later discussed in Section 5. In Section 4, after sta-

ting the hypotheses needed in the model, theoretical results are established. Practical performances

of the LOL procedure are investigated in Section 6 and the proofs are detailed in Section ??.

2 Description of the models

In this part, the model of interest is presented with a focus on two specific cases : the random

matrices design and the functional regression.
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2.1 General model

A Gaussian (or sub-gaussian) high dimensional linear model is here considered and more preci-

sely data Y = (Y1, . . . , Yn)t are observed coming from the following regression model

Y = Φα + u + ε (1)

where the parameter α ∈ R
p is the unknown vector to be estimated and

– the vector ε = (ε1, . . . , εn)t is a (non observed) vector of random errors. It is assumed to be

independent Gaussian variables N(0, σ2) but essentially comparable results can be obtained

in the case of zero mean subgaussian errors (see the remark before Lemma ??).

– the vector u = (u1, . . . , un)t is a non observed vector of (possibly) random errors. Its amplitude

is assumed to be small. The differences between the two previously described ”errors” lies

in the fact that the εi’s are centered but unbounded and independent, while the ui’s are

only bounded. The importance of introducing these two types of errors becomes clear in the

functional regression example (see section 2.3).

– Φ is a n × p known matrix. This paper focuses on the interesting case where p >> n but

it is not necessary. We assume that Φ has normalized columns (or normalize them) in the

following sense :

1

n

n∑

i=1

Φ2
iℓ = 1, ∀ ℓ = 1 . . . , p. (2)

2.2 Coherence

The following Gram p × p matrix is

M :=
1

n
ΦtΦ.

The quantity

τn = sup
ℓ 6=m

|Mℓm| = sup
ℓ 6=m

| 1
n

n∑

i=1

ΦiℓΦim|

is called the coherence of the matrix M . This quantity is important because it induces a bound on

the size of the invertible matrices built with the columns of M . More precisely, fix 0 < ν < 1 and

let C be a subset of indices of {1, . . . , p} with cardinality m. Denote ΦC the matrix restricted to the

columns of Φ whose indices are in C. If 2τn ≤ ν, the associated Gram matrix

M(C) :=
1

n
Φt
CΦC
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is almost diagonal as soon as m is smaller than ⌊ν/τn⌋ in the sense that it satisfies the following so

called Restricted Isometry Property (RIP).

∀x ∈ R
m, ‖x‖2

l2(m)(1 − ν) ≤ xtM(C)x ≤ ‖x‖2
l2(m)(1 + ν), (3)

This proves in particular that the matrix M(C) is invertible.

2.3 Models of interest

Although these results apply in the general case, two typical cases of applications are especially

considered.

The first application concerns a random matrix Φ composed of n independent random vectors

of size p. The important role played by the distribution of these random vectors is detailed in the

simulation study, Section 6.

The second application is the learning (also called functional regression) framework

Yi = f(Xi) + εi, i = 1 . . . n (4)

where f is the functional parameter of interest to be estimated. The X ′
is are i.i.d. random variables

living in a compact domain of R
d. The errors ε′is, are i.i.d. standard Gaussian random variables

and independent of the X ′
is (or centered sub-gaussian variables). ρ denotes the common (unknown)

law of the (1 + d)−vectors Zi = (Xi, Yi)
′s.

To relate this framework to our model, let us consider a dictionary D of size p, of real functions

defined on R
d. Assume that f can be reasonably well approximated using the elements of the

dictionary which means that there exists a sequence {αg, g ∈ D} such that

f =
∑

g∈D

αgg + h

where h is hopefully small. Then the regression model becomes

Yi =
∑

g∈D

αgg(Xi) + h(Xi) + εi, i = 1, . . . , n

which coincides with the general model

Y = Φα + u + ε,

setting ui = h(Xi) for any i = 1, . . . , n and Φ being the matrix with general terms Φiℓ = gℓ(Xi)

(after choosing an enumeration of D). Again, the dictionary has to be normalized and (2) translates

here as
1

n

n∑

i=1

g2(Xi) = 1, ∀ g ∈ D.
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3 Estimation procedures

As explained in the introduction, the essential motivation of this work is to provide one of

the simplest procedures, finding its inspiration among a lot of works around the same theme.

First, the estimation of the unknown parameter α using LOL is described. The procedure has the

particularity to perform a selection method of the regressors in the same time. Next, a short review

on the procedures directly connected to LOL is proposed.

Once for all, the constant ν is fixed. This constant will obviously be related to the precision of

LOL main procedure (for instance ν = 1/2 can be taken as default value).

3.1 LOL Procedure

Once τn (or a bound for τn) is evaluated and N = ⌊ν/τn⌋ is computed, LOL procedure has

three successive steps : Find N leaders, Regress on the leaders, Threshold.

1. Find the leaders :

• For some constant T1 > 0, fix a threshold

λn(1) = T1

((
log p

n

)1/2

∨ τn

)
. (5)

• Compute the ’correlations’

Kℓ = | 1
n

n∑

i=1

ΦiℓYi|

and consider the ordered sequence K(1) ≥ K(2) ≥ . . . ≥ K(N) of the N largest, and the

associated set of indices K = {κ(1), κ(2), . . . , κ(N)}.
• The final set of the leaders is defined by the following set of columns Φℓ of the matrix Φ :

B = {Φℓ, ℓ ∈ K and Kℓ ≥ λn(1)}

and B denotes the set of their indices (which might of course be different from K). It is clear

from this construction that N appears as a bound for the number of leaders (equal to the

cardinal of B).

2. Regress on the leaders :

• Consider the pseudo-regression model :

Yi =
∑

ℓ∈B

Φiℓαℓ + ei

and define the extracted matrix ΦB by

(ΦB)ℓ, i = Φiℓ for any ℓ ∈ B and i ∈ {1, . . . , n}. (6)
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• Let α̂(B) = (α̂ℓ(B), ℓ ∈ B) be the minimum least square error in this model :

α̂(B) = Arg min
α=(αℓ)ℓ∈B

(
n∑

i=1

(Yi −
∑

ℓ∈B

Φiℓαℓ)
2

)
= (Φt

BΦB)−1Φt
B Y .

• Define the vector α̂ of R
p by

α̂ℓ :=

{
α̂ℓ(B) if ℓ ∈ B
0 if ℓ 6∈ B

3. Threshold :

For some constant T2 > 0, fix a threshold

λn(2) = T2

(
log n

n

)1/2

(7)

and threshold again the estimated coefficients to obtain the final predictor α̂∗ whose coordi-

nates are

α̂∗
ℓ = α̂ℓ I{|α̂ℓ| ≥ λn(2)}.

The selected regressors are then the columns of Φ whose indices belong to

L = {ℓ = 1, . . . , p, α̂ℓ
∗ 6= 0}

Notice that the formula (5) and (7) are the ’default’ values for the tuning sequences λn(1) and

λn(2) given for the procedure. However, the presentation as well as the theoretical results in sequel

are given for arbitrary sequences λn(1) and λn(2).

3.2 Several inspirations

Although it is impossible to be exhaustive in such a productive domain, some of the works

directly in relation to our construction are hereafter mentioned. We apologize in advance for all

the works that are not mentioned but still in connection. For a comprehensive overview, we refer

to [Fan and Lv, 2009].

In the context of the learning theory (second application), various methods are already been

proposed, including kernel methods and search within dictionaries. Let us especially mention

following works providing greedy algorithms [Barron et al., 2008], or adjusting tree algorithms

[Binev et al., 2005], [Binev et al., 2007a]. A one step algorithm rough version of LOL is given in

[Kerkyacharian and Picard, 2007] as well as in [Kerkyacharian et al., 2009] for the case p ≤ n.

[Bunea, 2009] also proposes an estimation procedure based on the lasso and derives a selection

procedure by keeping the non zero estimated coefficients.
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In the context of the linear regression (first application), several authors propose procedures

to solve the selection problem and the estimation problem in the case where the vector α has

only a small number of non zero components, and (often) when the design matrix Φ is compo-

sed of i.i.d. random vectors : see among many others [Tibshirani, 1996], [Candes and Tao, 2007],

[Bickel et al., 2007], [Bunea et al., 2007a] and [Bunea et al., 2007b].

We especially refer to the 2-steps procedures which are also commonly used. Apparently, as soon

as in 1959 such a procedure is already discussed (see [Satterthwaite, 1959]). In [Candes and Tao, 2007]

and [Candès and Plan, 2008], the leaders are selected with (respectively) the Danzig procedure and

the lasso procedure. Then, the estimated coefficients are obtained via a linear regression on the lea-

ders. Using an intensive simulation program, [Fan and Lv, 2008] show that it could be unfavorable

to use the procedures lasso or Danzig before the reduction of the dimension. They also provide a

search among leaders called Sure Independence Screening (SIS) procedure. This procedure is very

close to the one discussed in this paper : the leaders are the N = ⌊γnn⌋ columns of Φ with largest

correlations to the target variable Y (γn is a tuning sequence tending to zero). This step is followed

with a subsequent estimation procedure using Danzig or lasso. All these methods focus on the

complexity of the algorithms.

4 Main theoretical results

This section states the theoretical results of the procedure LOL. First, the assumptions on the

model are described. Next, the quantities allowing to measure the performances of the procedures

are defined. The consistency of LOL is shown using two different points of view : the prediction

problem and the estimation problem.

4.1 Sparsity conditions on the model

Recall that the model specifies a gaussian (or sub-gaussian) observation of the following form :

Y = Φα + u + ε. The following sparsity conditions are assumed. There exist S ≤ N and constants
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M, c1, ct, c′t, c0, such that the sequences {αℓ}ℓ≤p and {ui}i≤n satisfy the following conditions

sup
i=1,...,n

|ui| ≤ c1

(
S

n

)1/2

(8)

p∑

ℓ=1

|αℓ| ≤ M, (9)

# {ℓ ∈ {1, . . . , p}, |αℓ| ≥ λn(2)/2} ≤ S (10)

∑

(ℓ)>N

|α(ℓ)| ≤ ct

(
S

nτn

)1/2

(11)

∑

(ℓ)>N

|α(ℓ)|2 ≤ c′2t
S

n
(12)

p∑

ℓ=1

|αℓ|2 I{|αℓ| ≤ 2λn(1)} ≤ c2
0

S

n
(13)

Recall that (α(ℓ )) is the ordered sequence (for the modulus) |α(1)| ≥ |α(2)| ≥ . . . |α(p)|. For S,M > 0,

V (S,M) denotes the class of models of type (1) satisfying the sparsity conditions (9), (8), (10),

(11), (13).

A very important example of such a class occurs when all the coefficients of α are 0 except S

coefficients (with S ≤ N) with a modulus greater that λn(2)/2 but bounded : Spars(S,M) denotes

such a class.

The conditions (9)–(13) are also satisfied if the lq conditions are assumed, as in [Raskutti et al., 2009]

which provide upper and lower bounds. More precisely, for q ∈ (0, 1], define the lq-balls as the sets

Bq(M) := {α ∈ R
p,

p∑

j=1

|αj |q ≤ M q}. (14)

It is not difficult to prove that if α belongs to Bq(M) then (9)–(13) are verified for

S ≥ λn(2)−q ∨ nλn(1)2−q ∨ nτ (2−q)/q
n .

In particular, in order to compare our results to the lower bounds in [Raskutti et al., 2009], it is

important to verify that the conditions are verified for τn = O

(√
log p

n

)
and for the defaults values

for λn(1) and λn(2). In this precise case, this means that S/n has to be of order τ2−q
n .

In the context of the learning theory (second application), the sparsity conditions are required

on the target function f . The above assumptions are easily translated by replacing the condition

(8) by the following one :

‖h‖2
∞ ≤ c1

(
S

n

)1/2

.

The other conditions are quite usual in functional analysis and relate to Lorentz spaces.
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4.2 Measures of performances

First, let us define loss functions to measure the difference between the true value α ∈ R
p and

the result α̂∗ of LOL procedure. Denote Φi the i−th line of the matrix Φ and recall that the i−th

observation is given by the model

Yi = Φiα + ui + εi.

The predicted i−th observation is Ŷi = Φiα̂
∗. The empirical quadratic distance between the pre-

dicted observations and the expected value is here considered

d(α̂∗, α)2 =
1

n

n∑

i=1

(
Ŷi − EYi

)2
=

1

n

n∑

i=1

(
p∑

ℓ=1

(α̂∗
ℓ − αℓ)Φiℓ + ui

)2

. (15)

Notice that in the functional regression case, this error coincides with the L2 error with respect to

the empirical measure

ρ̂ =
1

n

∑
δXi

where δx denotes the Dirac measure at point x. Indeed, we get

d(α̂∗, α)2 =
1

n

n∑

i=1

(
f̂(Xi) − f(Xi)

)2
= ‖f̂ − f‖2

ρ̂.

With a slight abuse of notations, we also write the distance defined in (15) in the general model

d(α̂∗, α) := ‖
p∑

l=1

(α̂∗
ℓ − αℓ)Φ•ℓ + u•‖ρ̂

where Φ•ℓ is the ℓ−th row of Φ.

The first measure of performance under consideration is issued from the Bahadur efficiency of

test and estimation procedures and is defined for any tolerance η > 0 as

ACn(LOL, η) = P (d(α̂∗, α) > η) . (16)

Obviously, if the tolerance is low (smaller than a critical value ηn), this quantity is large. In the op-

posite, for η ≥ ηn, the quality of the procedure is given by the rate of convergence of ACn(LOL, η)

towards zero. Observe that the value of the critical value ηn is essential since it yields, as a conse-

quence, bounds for Ed(α̂∗, α) which is another (more standard) measure of performance of the

procedure.

More generally, in the learning framework, given priors Θ on the class of probability distributions

generating the observations, it has been defined in [DeVore et al., 2006] the accuracy confidence

function of the procedure f̂ :

ACn(Θ, f̂ , η) := sup
ρ∈Θ

ρ⊗n{‖f − f̂‖ρX
> η}. (17)
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This quantity measures a uniform confidence (over the class Θ) that the estimator f̂ is accurate to

the tolerance η. In most examples, there exist a phase transition and a critical value ηn depending

on n and Θ such that ACn(Θ, f̂ , η) decreases exponentially for any η > ηn. More precisely, in terms

of lower bound, it is proved in [DeVore et al., 2006]

inf
f̂

ACn(Θ, f̂ , η) ≥ C
√

N̄(Θ, η)e−cnη2

, (18)

where N̄(Θ, η) is the tight entropy analogue of the Sobolev covering numbers. The results in

[DeVore et al., 2006] are obtained in the learning framework ; however identical bounds can ea-

sily be obtained in the setting (1) of this paper, leading to ηn = O(
√

S/n).

If the focus is made on the case where α ∈ Spars(S,M), it could be interesting to adopt the

point of view of the ”detection” instead of the ”prediction”. Two quantities become then crucial

in view to measure the ”similarity” between the true value and its estimator. The number of False

Positive decisions (FP) and the number of False Negative decisions (FN) are given by

FP :=

p∑

ℓ=1

I{αℓ = 0}I{α̂∗
ℓ 6= 0} and FN :=

p∑

ℓ=1

I{αℓ 6= 0}I{α̂∗
ℓ = 0}.

In order to evaluate the performances of LOL selection procedure using these distances between α

and α̂, the quantity P (FP > pη) + P (FN > pη) for η ≥ 0 is studied. A selection procedure is said

consistent if P ( {ℓ, αℓ 6= 0} = {ℓ, α̂∗
ℓ 6= 0} ) is tending towards 1.

4.3 Performances of the procedure LOL

The performances of the LOL procedure are summarized in the following theorems. In Theorem

1, we establish that LOL procedure is a good procedure for estimation since the prediction error

is going to zero in probability with exponential rates. Indeed, the LOL estimator is optimal (up to

a logarithmic factor) in terms of the critical value ηn ∼
√

S/n, as well as in terms of exponential

rates if the coherence is small enough (see the discussion below). In Theorem 2, we establish that

LOL procedure works also quite well for detection since quantities FN and FP are going to zero

in probability with pretty fast rates.

Theorem 1. Let S,M > 0 and fix ν in ]0, 1[. Suppose p ≤ na, for some constant a > 0 and choose

the thresholds λn(1) and λn(2) such that

λn(1) ≥
(

T11

(
log p

n

)1/2

∨ T12 τn

)
and λn(2) ≤ λn(1)

11



for T11 = 16
√

2σ2/(1 + ν) and T12 = M
(

(1−ν)1/2

4 ∨ 4
√

2
)
. Then, the model is of class V (S,M)

defined above, there exist positive constants D and γ, such that

sup
V (S,M)

P (d(α̂∗, α) > η) ≤





4e−γnη2

for η2 ≥ D
(

S
n ∨ S| log τn|

n ∨ Sτ2
n

)
,

1 for η2 ≤ D
(

S
n ∨ S| log τn|

n ∨ Sτ2
n

) (19)

Observe that the result given in Theorem 1 is concerning LOL procedures associated with more

general thresholds than λn(1), λn(2) than those prescribed in (5) and (7). It is interesting to notice

the very few conditions on the threshold λn(2) (λn(2) ≤ λn(1) and Condition (10) relating to the

considered set of α’s ).

The constants D and γ are precisely given at the end of the proof of Theorem 1. For a sake of

completeness, precision on the constants is given. However, it is obvious that the constants provided

here are not optimal : for instance in the proof, in order to avoid unnecessary technicalities, most

of the events are divided as if they had equal importance, leading to constants which are each time

divided by 2. Obviously there is room for improvement at any of these stages.

An elementary consequence of Theorem 1 is the following corollary which details the behavior

of the expectation of d(α̂∗, α). Notice also that we did not give here explicite oracle inequalities,

which however could be derived from the proof of Theorem 1.

Corollary 1. For r ≥ 1 arbitrary, under the same assumptions as in Theorem 1, we get

sup
V (S,M)

Ed(α̂∗, α)r ≤ D′

(
S

n
∨ S| log τn|

n
∨ Sτ2

n

)r/2

for some positive constant D′.

Notice that in the case of the lq balls Bq(M) for q ∈ (0, 1]) (see (14)) and taking the defaults

values for λn(1) and λn(2), LOL procedure has optimal rates in the minimax sense (compare the

upper bound to the lower bounds in [Raskutti et al., 2009]) as soon as τn = O

(√
log p

n

)
.

Let us now focus on the selection point of view. As usual, an additional assumption is needed

on the non zero coefficients : they have to be large enough to be detected. Theorem 2 establishes

that LOL procedure is consistent as a selection procedure.

Theorem 2. Let k be a given positive number. Let S,M > 0 and fix ν in ]0, 1[. Suppose p ≤ na,

for some constant a > 0, choose λn(1) ≥ λn(2) and assume that the model is of class Spars(S,M)

described above, then

– False Positive : Assume that

min
ℓ=1,...,p

|αℓ|I{αℓ 6= 0} ≥ µn
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where µn satisfies

µn = T3

(
λn(2) ∨ τn

√
S

k
∨
√

S

nk
∨
√

S| log τn|
nk

)

where T3 is a constant large enough. Then there exists a constant c > 0 such that

P (FP > k) ≤ c exp{−c knλ2
n(2)}.

– False Negative : Choose the thresholds such that

λn(1) ≥
(

T11

(
log p

n

)1/2

∨ T12 τn

)

where the constants T11, T12 defined as in Theorem 1 and

λn(2) ≥ σ

(
32 c′1

√
c′ ∨ 256c1

(1 + ν)1/2

(1 − ν)1/2

) √
S

nk
.

There exists some constant c > 0 such that

P (FN > k) ≤ c exp{−c knλ2
n(2)}

As for Theorem 1, Theorem 2 states for general thresholds λn(1), λn(2) (which are valid for (5)

and (7) but also more widely). Observe that the choice of λn(2) is crucial from a detection point

of view. For the specific choices (5) and (7), we get

Corollary 2. Assume that

min
ℓ=1,...,p

|αℓ| I{αℓ 6= 0} ≥ O

(
log n√

n

)
.

Let S,M > 0 and fix ν in ]0, 1[. Suppose p ≤ na, for some constant a > 0 and assume that the

model is of class Spars(S,M) described above. The LOL procedure the specific choices (5) and (7)

satisfies

P (FN + FP > k) ≤ c′n−c′k.

for k larger than O(S/ log n).

Note that LOL procedure works better and better as S gets smaller, as it is confirmed by the

practical simulations.

13



5 Discussion and Comparisons

Comparison with other theoretical results in the literature are hereafter presented with a spe-

cific focus on domains where LOL is competitive to more sophisticated algorithms and where its

simplicity induces a slight lack of efficiency. To summarize, the great benefits of LOL is to produce

a very simple and auto driven algorithm with no optimization step, and with quite elementary

assumptions leading to optimal exponential rates.

5.1 Estimation bounds in learning theory

As mentioned in the previous section, LOL finds its inspiration in the learning framework,

especially in [Barron et al., 2008], [Binev et al., 2005], [Binev et al., 2007a],[Binev et al., 2007b]. In

all these papers, consistency results are obtained under fewer assumptions but with no exponential

bounds and a higher cost in implementation.

In the learning context, [Temlyakov, 2008] provides optimal critical value ηn as well as exponen-

tial bounds with fewer assumptions since there is no coherence restriction. However, the procedure

is very difficult to implement for large values of p and n (N -P hard).

5.2 Comparison with other penalization procedure and coherence conditions

Comparisons has to be conducted with various procedures affiliated to the Lasso or Danzig pro-

cedures for instance [Tibshirani, 1996], [Candes and Tao, 2007], [Bickel et al., 2007], [Bunea et al., 2007a],

[Bunea et al., 2007b]. First, the normalization needs to be stressed since it plays a crucial role. In

many papers, the model is Y = Xβ + ε and the columns of X are normalized. For comparison, our

model needs to be identified in the following way

X :=
Φ√
n

, β :=
√

nα.

Of course, each normalization brings its own benefit. Our choice has a natural interpretation in terms

of prediction in the functional learning model. However, it is interesting to notice that precisely

because of this normalization, the sparsity conditions on the function (model V (S,M)) are lighter

for LOL.

LOL estimation bounds are compared with the lower bounds produced in [DeVore et al., 2006],

LOL procedure gives optimal results when the coherence satisfies τn ≤ O(
√

log n/n). This is to be

compared with conditions of type τn ≤ O(S−1) (see for instance [Bickel et al., 2007], [Bunea et al., 2007a],

[Bunea et al., 2007b]) which are lighter except for large S, or τn ≤ O(1/ log p) in [Candès and Plan, 2008]

which is better. However, in these papers, there is generally additional assumptions

14



– either on the matrix X itself which generally are not possible to verify in practice. In the

opposite, notice that the coherence can always be calculated.

– or on the way X as well as the β coefficients are produced, namely all these values are in fact

random and independent. In our case, it can allow to less drastic coherence conditions. We

infer that conditions of type τn ≤ O(
√

S log n/n) could suffice in this case, but these precise

types of models are not the scope of this paper.

5.3 Selection properties

[Meinshausen and Buhlmann, 2006] show that the selection by lasso type algorithm is consistent

in graphical models, under assumptions that are tailored to models for which the vector (Y,Φ1, . . . ,Φp)

is gaussian. Basically, to establish the consistency property of the selection procedure, a minimal

size of the (non zero) coordinates of α is required : it is generally assumed that there exists some

sequence υn > 0 such that

min
ℓ∈I∗

|αℓ| ≥ O(υn). (20)

[Zhao and Yu, 2006] establish the consistency of selection for fixed design linear regression models,

assuming that Hypothesis (20) holds for υn = n−κ for some κ ∈ (0, 1/2). Under the same hypothesis,

[Fan and Lv, 2008] prove that Sure Independence Screening (SIS) is accurate in the sense that SIS

selects (with large probability) at least the regressors which have to be selected. They need to assume

that there exists some τ > 0 which is the indicator of the growth of the largest eigenvalue of the

variance matrix Σ of Φ defined by λmax(Σ) ≤ O(nτ ). The main advantage of [Fan and Lv, 2008]

is that their results are basically concerning a linear model in ultra high dimension p = exp(cnξ)

for constants c, ξ > 0 with the restriction ξ ∈ (0, 1 − 2κ). Practical inconvenient is that the tuning

sequence γn is not auto driven since it has to verify n1−2κ−τ −→ ∞. The selection procedure of

[Bunea, 2009] proposed in the learning framework is also shown to be consistent. Hypothesis (20)

is required for υn = S
√

log n/n imposing some restriction on S because υn is supposed to tend

to zero. Finally, [Candès and Plan, 2008] prove consistency results as soon as Hypothesis (20) is

satisfied for υn = 8σ
√

2 log p and if S ≤ O(p/[‖Φ‖2 log p]) (in a non asymptotical framework, for any

dimension p). When the selection procedure is derived from an estimation procedure, a coherence

restriction could be asked. In [Bunea, 2009] and [Bunea et al., 2007b], it is assumed in addition

that

sup
ℓ∈I∗, m6∈I∗

1

n

n∑

i=1

|ΦiℓΦim| ≤ O(S−1).

and an exponential bound (tending to zero) is established for P
(∑p

ℓ=1 |α̂ℓ − αℓ| >
√

S η
)

when

η ≥
√

S log p/n. In [Candès and Plan, 2008], if τn ≤ O(c/ log p) and again η ≥
√

S log p/n, it is
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proved that

P (d(α̂ℓ, αℓ) > η) ≤ 6p−2 log 2 − p−1(2π log p)−1/2.

[Temlyakov, 2008] provides optimal critical value ηn as well as exponential bounds with fewer

assumptions : there is no coherence restriction and the setting is the learning framework. In

[Fan and Lv, 2008], under some hypothesis of RIP type, the procedure SIS-D (SIS followed by

danzig) is asymptotically consistent

P

(
p∑

ℓ=1

(α̂SIS−D
ℓ − αℓ)

2 > S
√

log N

)
−→ 0

6 Practical results

In this section, an extensive computational experiment is conducted using LOL. The procedure

is dedicated to find sparse solutions of linear models assuming that the target variable Y is a linear

combination of only S predictors among p. The performances of LOL procedure are studied over

various ranges of level of indeterminacy δ = 1 − n/p and over various ranges of sparsity rates

ρ = S/n (see [Maleki and Donoho, 2009]). The influence of the choice of the distribution family

for the design matrix is analyzed through the performances. LOL procedure is finally compared to

some others two-steps procedures described in Section 3.2.

6.1 Experimental design

The design matrix Φ has p i.i.d. columns of size n. Different distributions are studied : Gaussian,

Uniform, Bernoulli, or Student laws. It is important to notice that this choice of laws yields different

values of the coherence τn and then different behaviors of the procedure. Each column vector of

Φ is normalized to have unit norms. Given Φ, the target observations are Y = Φα + ε for ε i.i.d.

variables with a normal distribution N(0, σε), σε chosen such that the signal over noise ratio is

close to 2. The vector α is built as follows : all coordinates are zero except S non zero coordinates

with αℓ = (−1)b|z| where b is drawn from a Bernoulli distribution with parameter 0.5 and z from

a N(2, 1) (see [Fan and Lv, 2008]).

To evaluate the quality of the prediction, the relative l2 error EY is computed on the target Y

and the relative quadratic error Eα is computed on the α coefficients

EY = ‖Y − Ỹ ‖2
2/‖Y ‖2

2 and Eα = ‖α − α̂‖2
2/‖α‖2

2.

The sparsity S is estimated by the cardinal of L = {ℓ = 1, . . . , p, α̂∗ 6= 0} where α̂∗ is the LOL

estimator. The number of False Positive and of False Negative as defined in Section 4.2 are also

16



computed. All these quantities are estimated by averaging the results obtained over K = 200

replications of the experiment.

6.2 Algorithm

Let us explain how to determine in a really adaptive way the thresholds λn(1) and λn(2). These

are critical values quite hard to tune practically since they depend on inaccessible constants (see the

theoretical results). Since the first threshold λn(1) is used to select the candidates to the regression,

the aim is to split the set of ’correlations’ {Kℓ, ℓ = 1, . . . , p}, in two clusters in such a way to pick

up the regression candidates in one group. Here, the sparsity assumption is used : some predictors

are more correlated to the target Y than some others associated to a weak correlation value,

close to zero. This remark implies that the distribution of correlations (in absolute value) should be

distributed in two clusters : one for the leaders (high correlations) and one for the others (very small

correlations). The frontier between the clusters is adaptively computed by minimizing the deviance

of the absolute value correlations for two classes as described in [Kerkyacharian et al., 2009].

The same procedure is used to threshold adaptively the estimated coefficients α̂ℓ obtained by

linear regression on the leaders. Indeed, notice that the distribution of the α̂ℓ provides two clusters :

one cluster associated to the largest coefficients (in absolute value) corresponding to the non zero

coefficients and one cluster composed of coefficients closed to zero, which should not be involved

in the model. The frontier between the two clusters, which defines λn(2), is again computed by

minimizing the deviance between the two classes of regression coefficients.

Finally, an improvement for LOL is proposed. It seems more appropriate to perform a second

regression using the final set L of selected predictors involved in the model : the estimators of the

(non zero) coefficients should be more accurate. This updating procedure is denoted LOL+ in the

sequel.

6.3 Results with random gaussian design matrices

First, the design matrix Φ is defined with i.i.d. gaussian variables. The computed coherence

is also τn = 0.33 (see Figure 5). As we are interested in quantifying LOL performance in an

overwhelming majority of cases, we study the impact of the level of indeterminacy δ from 0 to 0.9

by 0.05 step and the impact of the the sparsity rate ρ from 0.01 to 0.16 by 20 steps. p = 1000 is

chosen and for specific studies n = 250.

Influence of the indeterminacy level : Figure 1 studies LOL prediction and estimation

performances when the indeterminacy level is varying (p = 1000, n varying). Both errors EY

and Eα continuously increase with the indeterminacy δ, as the number of available observations
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decreases compared to the number of variables. For a given value of δ, EY decreases as the sparsity

does. For δ ≤ 0.75 (n ≥ 0.25p), the prediction error is weak, below 5%. In this case, the estimation

error on the coefficients is less than 10%. When the number of available observations is at least

higher than half of the number of potential predictors (δ < 0.5), the prediction and the estimation

errors are negligible : LOL performances are in this case exceptionally good. For a given number of

observations and potential predictors, the prediction is more accurate as the sparsity rate decreases.

For a fixed number observations, regarding the joint values of both indeterminacy and sparsity

parameters, the errors tends to be null as δ and/or ρ decrease.

Influence of the sparsity rate : Figure 2 illustrates LOL prediction and estimation perfor-

mances when the sparsity rate is varying. For small values of sparsity rate (ρ ≤ 5%), both prediction

and estimation errors are very good (less than 5%). For an extreme level of sparsity (ρ ≤ 2%), the

performances are, as expected, excellent. As observed before, for a given sparsity rate value, the

performances are improved as the indeterminacy decreases.

Estimator of the Sparsity S : Figure 3 shows the estimated sparsity as a function of the

effective sparsity S. For weak sparsity values (ρ ≤ 5%), LOL procedure is excellent because it

estimates exactly (with no error) the sparsity S and that for all studied indeterminacy levels.

As the sparsity increases, LOL procedure tends to underestimate the parameter S. For a given

sparsity value, the underestimation becomes weaker as the indeterminacy level δ decreases. This

observation is detailed in Table 1 where the False Positive and False Negative numbers are computed

for different values of sparsity. Two different cases of indeterminacy are presented (δ = 0.75, 0.5).

For each indeterminacy level, we observe that False Negative and False Positive numbers increase

with S both in mean and variability. As the indeterminacy level decreases from δ = 0.75 to δ = 0.5,

meaning that more observations are available relatively to the number of potential predictors, the

detection of True Positive is improved.

Estimator of the coefficients : Figure 4 presents the improvements provided by LOL+

compared to LOL as a function of sparsity rate for the prediction error. For all indeterminacy and

sparsity values, the prediction error decreases using LOL+ procedure instead of LOL. Improvements

are stronger as both sparsity rate and indeterminacy level increase. The prediction improvements are

observed as ρ increases given all studied indeterminacy levels δ. Obviously, the estimated sparsity

in the same for both procedures LOL and LOL+ (see Table 1).

6.4 Impact of the variable distribution in the design matrix

This section investigates the impact of the law of the regressor variables. Eight different distri-

butions are studied : Gaussian (N(0, 1)), Uniform (U [−1, 1]), Bernoulli (B{−1,+1}) and Student
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(T (m) with m ∈ {5, 4, 3, 2, 1}). The column of the design matrix Φ are empirically normalized.

Figure 5 shows the empirical density of the coherence τn computed for each law. Similar distri-

butions are observed for Gaussian, Uniform or Bernoulli laws with a mode of the coherence equal to

τn = 0.30. For Student’s families, a shift of the mode of the empirical distributions can be observed

from left to right equaled to 0.36 for T (5), 0.47 for T(4), 0.68 for T(3), 0.92 for T(2) to 0.99 for T(1).

Figure 6 studies the estimation of S as a function of the sparsity rate ρ for those distributions. All

the curves, except the one for the Student law T(1), are confounded and show similar evolution as

the one observed for gaussian predictors (see Figure 3 for δ = 0.25). LOL provides similar results for

Gaussian, Uniform, Bernoulli, or Student laws, T(m) with m large enough. It is amazing to observe

that the procedure works fine even when the empirical coherence of the distribution τn reaches

large values closed to 0.99. But LOL procedure does not work fine for heavy tailed variables as for

T (1).

Figure 7 shows the coherence of the matrix restricted to the N leaders. This ”restricted” cohe-

rence is much lower than the coherence computed on all the predictors. For the Student T (1) law,

τn = 0.99 (see Figure 5) while the coherence computed just on the leaders is 0.3 (see Figure 7 by

instance for S = 10). LOL procedure provides also good results even when the global coherence

approaches 1 : it seems that the practical results are much more optimistic (although they do show

some deterioration under high coherence). Conclusions would be that it could be interesting to find

new measures of collinearity to best reflect the performances of the method. This is true in general,

for all the methods concerned with high dimension.

Table 2 shows the false detections FP and FN estimated for different distributions and values

of sparsity S. For a given distribution, they increase with sparsity. This increment is stronger for

distributions with high coherence. For a given sparsity number S, False Positive and False Negative

increase as the coherence τn does. LOL tends to underestimate the number of non-zero coefficients.

The underestimation is stronger as the coherence of the predictors increases.

6.5 Comparison with other two-steps procedures

In this part, the performances of LOL and LOL+ are compared with the performances of two

two-step procedures. The first one referred as SIS-Lasso is coming from [Fan and Lv, 2008] : the

selection step called SIS is followed by the Lasso procedure. The second one, called Lasso-Reg,

is proposed in [Candès and Plan, 2008]. First, the Lasso algorithm performs the selection of the

leaders and then the coefficients are estimated by regression.

The performances of the four procedures (LOL, LOL+, SIS-Lasso, Lasso-Reg) are studied over a

large range of sparsity rates in order to merge previous results already presented in [Fan and Lv, 2008]
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and [Candès and Plan, 2008]. In this section, the sparsity S varies from 5 to 50 in 10 steps and the

number of initial predictors is p = 1000. This experimental design let us analyze extreme sparsity

values (0.02 ≤ ρ ≤ 0.05) (as in [Fan and Lv, 2008]) as values as large as 1/log(p) (ρ = 0.20) (as

in [Candès and Plan, 2008]). For the Lasso procedures, the regularization parameter is chosen by

crossvalidation.

Figure 8 presents the prediction error for the different design matrices distributions presented

in the previous section. For extreme sparsity levels, ρ < 5%, all the procedures performs extremely

well. For middle sparsity levels (5% ≤ ρ ≤ 15%), the Lasso-Reg performs better than the others

ones, as the design matrix is defined with Gaussian, Uniform, Bernoulli or Student distributions

(m = 4, 5). For this range of sparsity levels, the Lasso-Reg procedure seems to be more efficient to

select the leaders than the SIS-Lasso and the LOL procedures. For largest values of the sparsity

level ρ ≥ 0.15, it appears that SIS-Lasso and LOL are better than Lasso-Reg. A phase transition

can be observed for the Lasso-Reg procedure as described in [Maleki and Donoho, 2009]. As the

coherence of the design matrix increases, the phase transition appears sooner for smallest ρ values.

The performances of the SIS-Lasso and LOL are globally similar. Note that LOL+ procedure

improves continuously the performances compared to LOL and SIS-Lasso.
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Fig. 1 – X−axis : indeterminacy level δ, Y −axis : Prediction error (left) and estimation error
(right). S = 10 (solid line-red) ; S = 12 (dot dash line-blue) ; S = 15 (dashed line -green) ; S = 20
(dot line-black).
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Fig. 2 – X−axis : sparsity rate ρ, Y −axis : Prediction error (left) and estimation error (right).
δ = 0.4 (dot line-black) ; δ = 0.7 (dot dash line-blue) ; δ = 0.75 (solid line-red) ; δ = 0.875, (dashed
line-green).
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Fig. 3 – LOL Sparsity Estimation (ρ : bottom, left ; S : right, top). δ = 0.875 (dashed line-green) ;
δ = 0.75 (solid line-red) ; δ = 0.7 (dot dash line-blue) ; δ = 0.4 (dot line-black). The columns of Φ
are Gaussian of size n = 250.

δ S (ρ) TP FN FP

0.5 5 4.98 (0.14) 0.00 (0.00) 0.00 (0.00)
0.5 10 9.88 (0.35) 0.03 (0.18) 0.00 (0.00)
0.5 15 14.54 (0.66) 0.24 (0.47) 0.01 (0.09)
0.5 20 18.78 (1.04) 0.76 (0.88) 0.03 (0.17)
0.5 25 22.74 (1.42) 1.67 (1.26) 0.07 (0.25)

0.75 5 4.98 (0.12) 0.00 (0.00) 0.00 (0.00)
0.75 10 9.90 (0.32) 0.04 (0.19) 0.00 (0.00)
0.75 15 14.57 (0.56) 0.30 (0.51) 0.01 (0.12)
0.75 20 18.77 (0.95) 1.03 (0.89) 0.05 (0.24)
0.75 25 21.94 (1.91) 2.81 (1.90) 0.19 (0.48)

Tab. 1 – Detection, n = 250. The columns of Φ are i.i.d. gaussian. True Positive, False positive
and False negative. Means over K = 200 replications, variances into the brackets.
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Fig. 4 – Error. X−axis : sparsity rate ρ. Y −axis : Prediction errors for LOL (dot lines) and LOL+
(solid lines). δ = 0.4 (blue color) ; δ = 0.75 (red color) ; δ = 0.875 (green color). The columns of Φ
are Gaussian of size n = 250.

S G U B T(5) T(4) T(3) T(2) T(1)
5 FP 0.00 (0.0) 0.00 (0.0) 0.00 (0.0) 0.00 (0.0) 0.00 (0.0) 0.00 (0.0) 0.00 (0.0) 0.01 (0.2)

FN 0.00 (0.0) 0.00 (0.0) 0.00 (0.0) 0.00 (0.0) 0.00 (0.0) 0.00 (0.0) 0.00 (0.0) 0.01 (0.1)
10 FP 0.01 (0.1) 0.00 (0.0) 0.00 (0.0) 0.00 (0.0) 0.00 (0.0) 0.01 (0.1) 0.01 (0.1) 0.19 (0.8)

FN 0.04 (0.2) 0.05 (0.2) 0.05 (0.2) 0.06 (0.3) 0.04 (0.2) 0.06 (0.2) 0.04 (0.2) 0.16 (0.8)
15 FP 0.03 (0.2) 0.02 (0.1) 0.02 (0.1) 0.03 (0.2) 0.01 (0.1) 0.03 (0.2) 0.11 (0.4) 1.08 (1.9)

FN 0.41 (0.6) 0.35 (0.6) 0.36 (0.6) 0.31 (0.6) 0.30 (0.5) 0.34 (0.6) 0.35 (0.6) 0.56 (1.3)
20 FP 0.09 (0.3) 0.07 (0.3) 0.08 (0.3) 0.07 (0.3) 0.14 (0.4) 0.08 (0.3) 0.39 (0.6) 1.91 (2.2)

FN 1.26 (1.0) 1.26 (1.1) 1.25 (1.0) 1.24 (1.0) 1.37 (1.1) 1.25 (1.0) 1.26 (1.2) 1.59 (2.8)
25 FP 0.19 (0.4) 0.10 (0.3) 0.17 (0.4) 0.17 (0.4) 0.21 (0.5) 0.23 (0.6) 0.53 (0.7) 3.92 (2.7)

FN 2.78 (1.5) 2.93 (1.8) 2.61 (1.7) 2.69 (1.8) 2.84 (1.7) 2.75 (1.8) 2.92 (1.9) 4.12 (3.9)
30 FP 0.39 (0.8) 0.42 (0.9) 0.39 (0.6) 0.34 (0.6) 0.36 (0.7) 0.41 (0.7) 0.83 (1.0) 4.69 (2.7)

FN 5.90 (2.9) 6.05 (3.0) 5.45 (2.5) 5.93 (2.8) 5.29 (2.8) 5.42 (2.7) 5.47 (3.0) 8.76 (7.4)
35 FP 0.70 (1.5) 0.61 (1.0) 0.78 (1.3) 0.68 (1.1) 0.63 (1.0) 0.84 (1.7) 1.02 (1.3) 5.71 (3.0)

FN 9.44 (3.7) 9.19 (3.9) 9.54 (3.6) 9.63 (4.3) 10.02 (4.0) 9.73 (4.1) 10.01 (3.9) 14.77 (8.6)
40 FP 1.24 (1.5) 1.21 (1.5) 1.18 (1.4) 1.06 (1.5) 1.15 (1.5) 1.31 (1.7) 1.60 (2.1) 6.24 (3.0)

FN 14.73 (4.5) 14.98 (4.8) 14.72 (5.0) 15.15 (4.6) 14.56 (4.9) 15.53 (4.3) 15.34 (5.1) 21.70 (9.0)

Tab. 2 – False Detection, n = 250, p = 1000. First line : Common law of the columns of Φ. First
column : Sparsity S. First lines : False positive, Second lines : False negative. Means over K = 200
replications, variances into the brackets.
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Fig. 5 – n = 250, p = 1000. Empirical densities of the coherence. The columns of Φ are Gaussian
(solid line-red) ; uniform (solid line-blue) ; Bernoulli (solid line-green) ; Student 5, 4, 3, 2, 1 black
lines from left to right.

27



0 5 10 15 20 25 30 35 40

0

5

10

15

20

25

30

35

40

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

Fig. 6 – LOL Sparsity estimation for different families of laws for the predictors. Gauss (solid
line-red) ; Uniform (solid line-blue) ; Bernoulli : (solid line-green) ; T(1-5) (black-lines). n = 250,
p = 1000. (K = 200)
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Fig. 7 – Coherence computed for the N selected Leaders. Gauss (solid line-red) ; Uniform (solid
line-blue) ; Bernoulli : (solid line-green) ; T(1) (dot line-black). n = 250, p = 1000. (K = 200)
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Fig. 8 – X-axis : Sparsity rate. Y-Axis : Prediction error for different design matrices. LOL (red
solid line), LOL+ (red dotted lines), SIS −Lasso (green solid lines), and Lasso−Reg (blue solid
line). n = 250, p = 1000. (K = 200)
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