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In this paper we consider a two dimensional viscous sedimentation model which is a viscous Shallow-Water system coupled with a diffusive equation that describes the evolution of the bottom. For this model, we prove the stability of weak solutions for periodic domains and give some numerical experiments. We also discuss around various discharge quantity choices.

Introduction.

Phenomena related to sediment transport have a huge interest as they affect human life and earth morphology in a determinant way. Indeed, the geomorphological evolution of rivers under the effect of hydrodynamic transport of sediments constitutes a fundamental problem for rivers management, estimates of environmental risks and prevention of floods. The analysis of sediment transport is then important to predict and prevent natural disasters.

For this purpose, many physical and mathematical models are proposed in the literature in order to predict the bed evolution and the changes in water regime when such unsteady flows occur. Physical experiments are used in particular to calculate local scouring phenomena, such as the local erosion around bridge piers or the scour hole due to a jet issued from an underflow gate. However, when problems with large space or times scales have to be solved, a mathematical model is generally required. Among the mathematical models, the most often used is based on the Saint-Venant-Exner equations. This model, studied numerically in Refs. 10 and 19 for example, couples an hydrodynamic Saint-Venant (Shallow-Water) system to a morphodynamic bed-load transport sediment equation (similar to the one introduced in Ref. 21) as follows:

∂ t h + divq = 0, (1.1) 
∂ t q + div q ⊗ q h + 1 F r 2 h∇(h + z b ) = 0, (1.2) 
and ∂ t z b + ξdiv(q b (h, q)) = 0 (1.3) where F r is the Froude number (square root of the ratio between kinetic and gravitational energy), z b is the movable bed thickness, ξ = 1/(1ψ 0 ) with ψ 0 the porosity of the sediment layer and q b denotes the solid transport flux or sediment discharge. It depends on the height h of the fluid and the water discharge q = hu, where u is the velocity (see Fig. 1).

u(t, x): velocity For the solid transport flux q b , there exist several formulas in the literature: the Grass equation, [START_REF] Grass | Sediment transport by waves and currents[END_REF] the Meyer-Peter and Muller equation, [START_REF] Meyer-Peter | Formula for bed-load transport[END_REF] or the formulas of Fernández Luque and Van Beek, of Van Rijn, or of Nielsen [START_REF] Ferreiro | Development of post-process technics of hydrodynamics flux, modelization of sediment transport problems and numerical simulation through finite volume technics[END_REF][START_REF] Savary | Transcritical transient flow over mobile beds, boundary conditions treatment in a two-layer shallow-water model[END_REF] . All of them are obtained using empirical methods. The most basic sediment model is the Grass equation, where the sediment movement begins at the same time as the fluid motion. In this case, the solid transport flux is given by

q b (h, q) = A g q h q h mg = A g |u| mg u, 0 ≤ m g ≤ 3, (1.4) 
where the constant A g includes the effects due to grain size and kinematic viscosity. However, system (1.1)- (1.3) does not take the viscosity into account. In the viscous case, we have to consider the viscous version of the Shallow-Water system. Several choices have been considered in the literature for the viscous term 14 : in Ref. 17, the author chooses the Laplacian and obtained an existence result, but this system is not energetically consistent. In Refs. 1 and 2, the viscous terms are div(h∇u) or div(hD(u)), which gives an energetically consistent system. In this case, the authors proved the existence of global weak solutions. The key point in those papers is to show that the structure of the diffusion term provides some extra regularity for the density thanks to a new mathematical entropy inequality named BD entropy. But note that the stability result is obtained using drag and turbulence terms or capillarity. Recently, keeping this choice of viscous terms but without any additional regularizing terms, Mellet and Vasseur 15 proved the stability of a class of barotropic compressible Navier-Stokes equations, which includes the case of the viscous energetically consistent Shallow-Water system. This paper also uses the new BD entropy with an extra key point which gives bounds on hu 2 in a better space than L ∞ (0, T ; L 1 (Ω)), thanks to new multipliers, namely |u| k u and u + u log(1 + |u| 2 ).

Let us recall now the existing results on the viscous sedimentation models, that are a viscous Shallow-Water system coupled with an evolution equation for the bottom. A recent work [START_REF] Toumbou | An existence theorem for a 2-D Coupled Sedimentation Shallow-Water Model[END_REF] has been done on a model that couples the Shallow-Water system studied by Orenga

∂ t h + div(hu) = 0 (1.5) ∂ t u + u • ∇u + 1 F r 2 ∇(h + z b ) -∆u = f, (1.6) 
with a Grass equation (1.4) satisfying

ξq b = hu. (1.7)
As the authors assume small variations of the free surface around a fixed level (z = cst), they replace h by -z b in (1.7). Then they follow the lines given by Ref. 17: thanks to a Brower fixed point on the finite dimensional problem, they get global existence results assuming the data to be small enough.

In this paper, we propose a new viscous sedimentation model, stable and energetically consistent. It consists in coupling a viscous Shallow-Water system with a sediment diffusive equation in a bounded domain with periodic boundary conditions, that is Ω = T 2 . More precisely, if we denote by ν the non-dimensional viscosity (ν = 2/Re, where Re is the Reynolds number) and A a positive constant, we consider the following system

∂ t h + div(hu) = 0, (1.8) ∂ t (hu) + div(hu ⊗ u) + h∇(h + z b ) F r 2 -νdiv(hD(u)) = 0, (1.9) 
∂ t z b + Adiv h|u| k u - ν 2 ∆z b = 0, (1.10) 
with the initial conditions

h| t=0 = h 0 ≥ 0, z b | t=0 = z b0 , hu| t=0 = m 0 , (1.11) 
where D(u) is the symmetric part of the gradient, D(u) = (∇u + t ∇u)/2, F r > 0 denotes the Froude number, k is a positive real number satisfying 0 < k < 1/2. The initial data are taken in such a way that

h 0 ∈ L 2 (Ω), z b0 ∈ L 2 (Ω), |q 0 | 2 h 0 ∈ L 1 (Ω), ∇ h 0 ∈ (L 2 (Ω)) 2 .
(1.12)

After stating the main results in Sec. 2, we establish, in Sec. 3 some energy and entropy relations that give us a priori estimates. These estimates are then used in Sec. 4 to prove the announced theorem. We also propose, in Sec. 5, two other models of sedimentation, inspired by the works mentioned above. More precisely, we first study the model considered in Ref. 21 but with the viscous Shallow-Water system (1.8)-(1.9) and, in a second part, we introduce one of the multipliers used by Mellet and Vasseur in the sediment equation. Lastly, we conclude, in Sec. 6, with numerical experiments on these new models.

Main results.

In this part, we first recall the definition that will be used in the following. We then give the main theorem of this paper that will be proved in Sec. 4.

Notion of weak solutions.

We shall say (h, q = hu, z b ) is a weak solution of ( 

√ hu ∈ L ∞ (0, T ; (L 2 (Ω)) 2 ), √ h∇u ∈ L 2 (0, T ; (L 2 (Ω)) 4 ), h 1/(k+2) u ∈ L ∞ (0, T ; (L k+2 (Ω)) 2 ), h + z b ∈ L ∞ (0, T ; L 2 (Ω)), ∇h + ∇z b ∈ L 2 (0, T ; (L 2 (Ω)) 2 ), ∇ √ h ∈ L ∞ (0, T ; (L 2 (Ω)) 2 ), h 1/k D(u) 2/k u ∈ L k (0, T ; (L k (Ω)) 2 ),
• h and z b are in C 0 (0, T ; H -s (Ω)) and hu is in C 0 0, T ; (H -s (Ω)) 2 for s large enough.

Main theorem.

The main result of this paper is the following:

Theorem 2.1. Let (h n , q n = h n u n , z bn ) be a sequence of weak solutions of (1.8)-(1.10) satisfying entropy inequalities (3.1), (3.4), with initial data

h n| t=0 = h n 0 (x), h n u n| t=0 = q n 0 (x) and z bn |t=0 = z n b0 (x),
where h n 0 , z n b0 and u n 0 verify

h n 0 ≥ 0, h n 0 → h 0 in L 1 (Ω), z n b0 → z b0 in L 1 (Ω), q n 0 → q 0 in L 1 (Ω), (2.1) 
and satisfy the following bounds:

Ω h n 0 |u n 0 | 2 2 + |h n 0 + z n b0 | 2 2 + h n 0 |u n 0 | k+2 k + 2 < C, Ω ∇ h n 0 2 < C and Ω |h n 0 | < C. (2.2)
Then, up to a subsequence, h n , q n and z bn converge strongly in C 0 (0, T ; L 2p/(2+p) (Ω)), C 0 (0, T ; W -1,2p/(2+p) (Ω)) and C 0 (0, T ; L 2p/(2+p) (Ω)) respectively to a weak solution of (1.8)-(1.10) satisfying entropy inequalities (3.1) and (3.4).

Energy estimates and BD entropy.

In this section, we give some energy and entropy inequalities. These relations will be used in Sec. 4 where we prove Theorem 2.1. But let us first recall the energy inequality in the inviscid case, for system (1.1)-(1.3).

The case without viscosity.

Lemma 3.1. Let (h, q, z b ) be a smooth solution of the system

∂ t h + divq = 0, ∂ t q + div (hu ⊗ u) + 1 F r 2 h∇(h + z b ) = 0, ∂ t z b + Adiv h|u| k u = 0.
Then the following identity holds:

1 2 d dt Ω h|u| 2 + A k + 2 d dt Ω h|u| k+2 + 1 2F r 2 d dt Ω |h + z b | 2 = 0.
The proof of this lemma will be included in the viscous case.

The viscous case.

From now on, we consider the viscous system (1.8)-(1.10).

Proposition 3.1. Let (h, q, z b ) be a smooth solution of (1.8)-(1.10). Then the following energy inequality holds:

1 2 d dt Ω h|u| 2 + 1 2F r 2 d dt Ω |z b + h| 2 + A k + 2 d dt Ω h|u| k+2 + ν 2F r 2 Ω ∇h • ∇z b + ν 2F r 2 Ω |∇z b | 2 + ν 4 Ω h ∇u + t ∇u 2 + 1 -2k 4 Aν Ω h ∇u + t ∇u 2 |u| k ≤ 0. (3.1)
Proof. We multiply Eq. (1.9) by u, and integrate on Ω. This gives, using (1.8):

Ω h∂ t u • u + Ω (hu • ∇)u • u + 1 F r 2 Ω h∇(h + z b ) • u -ν Ω div (hD(u)) • u = 0.
Now let us simplify each term:

• Ω h∂ t u • u + Ω (hu • ∇)u • u = 1 2 d dt Ω h|u| 2 , • Ω h∇(h + z b ) • u = Ω (h + z b ) ∂ t h = 1 2 d dt Ω h 2 + Ω z b ∂ t h , • Ω div (hD(u)) • u = - Ω hD(u) : ∇u = - 1 4 Ω h ∇u + t ∇u 2 .
Substituting all these terms, we get:

1 2 d dt Ω h|u| 2 + 1 2F r 2 d dt Ω h 2 + 1 F r 2 Ω z b ∂ t h + ν 4 Ω h ∇u + t ∇u 2 = 0. (3.2)
Contrary to the study of the classical Shallow Water system, we cannot make any assumption on the regularity of the bottom z b : we have to use the energy relations to get such properties. That is the reason why we are led to carry on the calculation. We multiply Eq. (1.9) by |u| k u and we integrate on Ω:

Ω h∂ t u • |u| k u + Ω (hu • ∇)u • |u| k u + 1 F r 2 Ω h∇(h + z b ) • |u| k u -ν Ω div (hD(u)) • |u| k u = 0.
Here again, we study separately each term:

• Ω h∂ t u • |u| k u + Ω (hu • ∇)u • |u| k u = 1 k + 2 d dt Ω h|u| k+2 , • 1 F r 2 Ω h∇(h + z b ) • |u| k u = - 1 F r 2 Ω (h + z b )div h|u| k u .
Then we use Eq. (1.10) to write:

1 F r 2 Ω h∇(h + z b ) • |u| k u = - ν 2AF r 2 Ω (h + z b )∆z b + 1 AF r 2 Ω (h + z b )∂ t z b = ν 2AF r 2 Ω ∇h • ∇z b + ν 2AF r 2 Ω |∇z b | 2 + 1 AF r 2 Ω h∂ t z b + 1 2AF r 2 d dt Ω z b 2 , • Ω div (hD(u)) • |u| k u = - 1 4 Ω h ∇u + t ∇u 2 |u| k -k Ω (hD(u)u • ∇) u • u|u| k-2 ,
and

Ω (hD(u)u • ∇) u • u|u| k-2 ≤ 2 Ω h|D(u)| 2 |u| k .
Gathering all these results, we are led to:

1 k + 2 d dt Ω h|u| k+2 + ν 2AF r 2 Ω ∇h • ∇z b + ν 2AF r 2 Ω |∇z b | 2 + 1 AF r 2 Ω h∂ t z b + 1 2AF r 2 d dt Ω z b 2 + 1 -2k 4 ν Ω h ∇u + t ∇u 2 |u| k ≤ 0. (3.3)
Now we multiply Eq. (3.3) by A and we add Eq. (3.2): we find the proclaimed inequality.

However, we still do not know the sign of the integral of ∇h • ∇z b . To get more information, we study the BD entropy. Proposition 3.2. For (h, q, z b ) solution of the model (1.8)-(1.10), we show the following relation:

1 2 d dt Ω h|u + ν∇ log h| 2 + 1 F r 2 d dt Ω |z b + h| 2 + 2A k + 2 d dt Ω h|u| k+2 + 1 2 d dt Ω h|u| 2 + ν F r 2 Ω |∇(h + z b )| 2 + ν 4 Ω h ∇u + t ∇u 2 + ν 4 Ω h ∇u -t ∇u 2 + 1 -2k 4 Aν Ω h ∇u + t ∇u 2 |u| k ≤ 0. (3.4)
The proof relies on the following lemma:

Lemma 3.2. If (h, q, z b ) is a solution of the model (1.8)-(1.
10), we have the equal-ity:

ν 2 2 d dt Ω h|∇ log h| 2 + ν F r 2 Ω |∇h| 2 = -ν d dt Ω u • ∇h + ν Ω h∇u : t ∇u - ν F r 2 Ω ∇h • ∇z b . (3.5)
Proof. If we derive the mass equation (1.8) with respect to x i and multiply it by h∂ i log h, when we compute the sum over i and integrate on Ω (see Ref. 1), we get:

1 2 d dt Ω h|∇log h| 2 + Ω h∇div u • ∇ log h + Ω h∇u : ∇ log h ⊗ ∇ log h = 0. (3.6)
This relation will be used in the following. We multiply the momentum equation (1.9) by (ν/2)∇ log h:

ν 2 Ω (∂ t u + (u • ∇)u) • ∇h + ν 2 2 Ω D(u) : ∇∇h - ∇h ⊗ ∇h h + ν 2F r 2 Ω |∇h| 2 = - ν 2F r 2 Ω ∇z b • ∇h.
We simplify this expression using the following relations:

Ω h∇u : ∇ log h ⊗ ∇ log h = Ω D(u) : ∇h ⊗ ∇h h , Ω D(u) : ∇∇h + Ω ∇div u • ∇h = 0,
and add Eq. (3.6) multiplied by ν 2 /2. We get:

ν 2 4 d dt Ω h|∇ log h| 2 + ν 2F r 2 Ω |∇h| 2 = - ν 2 Ω (∂ t u + (u • ∇)u) • ∇h - ν 2F r 2 Ω ∇z b • ∇h, = - ν 2 d dt Ω u • ∇h + ν 2 Ω h∇u : t ∇u - ν 2F r 2 Ω ∇z b • ∇h,
which ends the proof of Lemma 3.2.

Proof. We come back to the proof of Proposition 3.2. Equation (3.5) gives us:

1 2 d dt Ω h|u + ν∇ log h| 2 + ν F r 2 Ω |∇h| 2 = 1 2 d dt Ω h|u| 2 + ν Ω h∇u : t ∇u - ν F r 2 Ω ∇h • ∇z b .
We add to this equality the energy inequality (3.1) multiplied by 2:

1 2

d dt Ω h|u + ν∇ log h| 2 + 1 F r 2 d dt Ω |z b + h| 2 + 2A k + 2 d dt Ω h|u| k+2 + 1 2 d dt Ω h|u| 2 + ν F r 2 Ω |∇(h + z b )| 2 + ν 2 Ω h ∇u + t ∇u 2 + 1 -2k 4 Aν Ω h ∇u + t ∇u 2 |u| k ≤ ν Ω h∇u : t ∇u,
which proves the proposition.

We then know that our system is dissipative. In addition, we can give a priori estimates:

Corollary 3.1. If (h, q, z b ) is solution of the model (1.8)-(1.10), then, thanks to Proposition 3.2, we have: √ hu L ∞ (0,T ;(L 2 (Ω)) 2 ) ≤ c ∈ R + , ∇ √ h L ∞ (0,T ;(L 2 (Ω)) 2 ) ≤ c, z b + h L ∞ (0,T ;L 2 (Ω)) ≤ c, √ h|u| (k+2)/2 L ∞ (0,T ;(L 2 (Ω)) 2 ) ≤ c, ∇(h + z b ) L 2 (0,T ;(L 2 (Ω)) 2 ) ≤ c, √ h∇u L 2 (0,T ;(L 2 (Ω)) 2 ) ≤ c, √ hD(u) |u| k/2 L 2 (0,T ;(L 2 (Ω)) 2 ) ≤ c.

Convergence theorem.

This section is devoted to the proof of Theorem 2.1, in four steps. Thanks to the previous estimates, we show the convergence of the different terms that compose the equation.

First step: Convergence of the sequences

√ h n n≥1 √ h n n≥1 √ h n n≥1 , (h n ) n≥1 (h n ) n≥1 (h n ) n≥1 and (z bn ) n≥1 (z bn ) n≥1 (z bn ) n≥1 .
First, we give the spaces in which ( √ h n ) n is bounded. If we integrate the mass equation, we directly get (

√ h n ) n in L ∞ (0, T ; L 2 (Ω)). Corollary 3.1 gives us ∇ √ h L ∞ (0,T ;(L 2 (Ω)) 2 )
≤ c, so we obtain:

( h n ) n is bounded in L ∞ (0, T ; H 1 (Ω)). (4.1)
Moreover, thanks to the mass equation again, we have the following equality:

∂ t h n = 1 2 h n div u n -div h n u n , which gives that (∂ t √ h n ) n is bounded in L 2 (0, T ; H -1 (Ω)
). Applying Aubin-Simon lemma, we can extract a subsequence, still denoted (h n ) n≥1 , such that √ h n strongly converges to √ h in C 0 (0, T ; L 2 (Ω)). Let us study now the subsequence (h n ) n . According to the property (4.1) and Sobolev embeddings, we know that, for all finite p, (

√ h n ) n is bounded in L ∞ (0, T ; L p (Ω)).
In the following, we will assume p ≥ 4 in order to simplify our expressions and ensure that (

h n ) n is in L ∞ (0, T ; L 2 (Ω)). The equality ∇h n = 2 √ h n ∇ √ h n enables us to bound the sequence (∇h n ) n in L ∞ (0, T ; (L 2p/(2+p) (Ω)) 2 ) and consequently the sequence (h n ) n is bounded in L ∞ (0, T ; W 1,2p/(2+p) (Ω)).
Moreover, we have some properties on the time derivative of h n ; actually the mass equation reads:

∂ t h n = -div(h n u n ). Splitting the product h n u n into h n u n = √ h n √ h n u n , we get (h n u n ) n in L ∞ (0, T ; (L 2p/(2+p) (Ω)) 2 ) and (∂ t h n ) n in L ∞ (0, T ; W -1,2p/(2+p) (Ω)).
Thanks to Aubin-Simon lemma again, we find:

h n → h in C 0 (0, T ; L 2p/(2+p) (Ω)).
Last, we consider the bottom term (z bn ) n : with Corollary 3.1 and the bound on

( √ h n ) n in L ∞ (0, T ; L p (Ω)), we know that the sequence (∇z bn ) n is bounded in L 2 (0, T ; (L 2p/(2+p) (Ω)) 2 ), which gives (z bn ) n is bounded in L ∞ (0, T ; W 1,2p/(2+p) (Ω)).
For the time derivative of z bn , we restart from Eq. (1.10). We have just shown that (∆z bn ) n is in L ∞ (0, T ; W -1,2p/(2+p) (Ω)). Let us come to the divergence term:

h n |u n | k u n = h (1-k)/2 n h 1/2 n |u n | k h 1/2 n u n (4.2)
where

• h (1-k)/2 n n is bounded in L ∞ (0, T ; L p/(1-k) (Ω)), • h 1/2 n |u n | k n is bounded in L ∞ (0, T ; L 2/k (Ω)), • h 1/2 n u n n is bounded in L ∞ (0, T ; (L 2 (Ω)) 2 ), that is to say (h n |u n | k u n ) n is bounded in L ∞ (0, T ; (L 2p/(2-2k+kp+p) (Ω)) 2
). As 0 < k < 1/2 and we assumed p ≥ 4, it leads us to:

(h n |u n | k u n ) n is bounded in L ∞ (0, T ; L 4p/(2+3p) (Ω)).
Since in our case 4p/(2 + 3p) ≤ 2p/(2 + p), we obtain:

(∂ t z bn ) n is bounded in L ∞ (0, T ; W -1,4p/(2+3p) (Ω)).
As we have the relations

W 1,2p/(2+p) (Ω) ⊂⊂ L 2p/(2+p) (Ω) ⊂ W -1,4p/(2+3p) (Ω),
with Aubin-Simon lemma we are able to assert that z bn strongly converges to z b in C 0 (0, T ; L 2p/(2+p) (Ω)).

Second step: Convergence of the water discharge

(q n ) n≥1 = (h n u n ) n≥1 (q n ) n≥1 = (h n u n ) n≥1 (q n ) n≥1 = (h n u n ) n≥1 .
In the previous part, we proved that the sequence (

h n u n ) n is bounded in L ∞ (0, T ; (L 2p/(2+p) (Ω)) 2 )
where p is an integer greater than four. Writing the gra-dient as follow:

∇(h n u n ) = 2 h n u n ∇ h n + h n h n ∇u n ,
since the first term is in L ∞ (0, T ; L 1 (Ω)) and the second one belongs to L 2 (0, T ; L 2p/(2+p) (Ω)), we have:

(h n u n ) n bounded in L 2 (0, T ; W 1,1 (Ω)).
Moreover, the momentum equation (1.9) enables us to write the time derivative of the water discharge:

∂ t (h n u n ) = -div(h n u n ⊗ u n ) - 1 F r 2 h n ∇(h n + z bn ) + ν div (h n D(u n )) .
We then study each term:

• div(h n u n ⊗ u n ) = div √ h n u n ⊗ √ h n u n which is in L ∞ (0, T ; W -1,1 (Ω)), • as h n is in L ∞ (0, T ; W 1,2p/(2+p) (Ω)), it is also in L ∞ (0, T ; L p (Ω)
) and we can write the following relation:

h n ∇(h n + z bn ) is in L 2 (0, T ; L 2p/(2+p) (Ω)) ⊂ L 2 (0, T ; W -1,2p/(2+p) (Ω)),
• remark that

h k ∇u k = ∇(h k u k ) -u k ⊗ ∇h k = ∇ h k h k u k -2 h k u k ∇ h k ; (4.3)
we know that the first term is in L ∞ (0, T ; W -1,2p/(2+p) (Ω)) and the second one in L ∞ (0, T ; L 1 (Ω)). So we have h n D(u n ) bounded in L 2 (0, T ; W -1,2p/(2+p) (Ω)).

Finally, note that these three terms are included in L 2 (0, T ; W -2,2p/(2+p) (Ω)), which means that ∂ t (h n u n ) is also in this space for all n ≥ 1.

Then, applying Aubin-Simon lemma, we obtain:

(h n u n ) n strongly converges to q in C 0 (0, T ; W -1,2p/(2+p) (Ω)).

Third step: Convergence of

√ h n u n n≥1 √ h n u n n≥1 √ h n u n n≥1 .
The product √ h n u n is nothing but the ratio q n / √ h n . For this term, we also want to prove a strong convergence. Compared with Ref. 15, the bound on √ hu (k+2)/2 simplifies the computation.

Before studying the convergence, let us develop some properties of the limit water discharge. We know that (q n / √ h n ) n is bounded in L ∞ (0, T ; L 2 (Ω)); consequently Fatou lemma reads:

Ω lim inf q 2 n h n ≤ lim inf Ω q 2 n h n < +∞.
In particular, q(t, x) is equal to zero for almost every x where h(t, x) vanishes. Then, we can define the limit velocity taking u(t, x) = q(t, x)/h(t, x) if h(t, x) = 0 or else u(t, x) = 0. So we have a link between the limits q(t, x) = h(t, x)u(t, x) and:

Ω q 2 h = Ω h|u| 2 < +∞.
Moreover, we can use Fatou lemma again to write

Ω h|u| k+2 ≤ Ω lim inf h n |u n | k+2 ≤ lim inf Ω h n |u n | k+2 ,
which gives √ h|u| (k+2)/2 in L 2 (0, T ; L 2 (Ω)). As (q n ) n and (h n ) n converge almost everywhere, the sequence of √ h n u n = q n / √ h n converges almost everywhere to √ hu = q/ √ h when h does not vanish. Moreover, for all M positive, ( √ h n u n 1 1 1 |un|≤M ) n converges almost everywhere to √ hu1 1 1 |u≤M (still assuming that h does not vanish). If h vanishes, we can write √ h n u n 1 1 1 |un|≤M ≤ M √ h n and then have convergence towards zero. Then, almost everywhere, we obtain the convergence of ( √ h n u n 1 1 1 |un|≤M ) n . Finally, let us consider the following norm:

Ω h k u k - √ hu 2 ≤ Ω h k u k 1 1 1 |u k |≤M - √ hu1 1 1 |u|≤M + h k u k 1 1 1 |u k |>M + √ hu1 1 1 |u|>M 2 ≤ 3 Ω h k u k 1 1 1 |u k |≤M - √ hu1 1 1 |u|≤M 2 + 3 Ω h k u k 1 1 1 |u k |>M 2 +3 Ω √ hu1 1 1 |u|>M 2 . Since ( √ h n ) n is in L ∞ (0, T ; L p (Ω)), ( √ h n u n 1 1 1 |un|≤M
) n is bounded in this space. So, as we have seen previously, the first integral tends to zero. Let us study the other two terms:

Ω h n u n 1 1 1 |un|>M 2 ≤ 1 M k Ω h n |u n | k+2 ≤ c M k , Ω √ Hu1 1 1 |u|>M 2 ≤ 1 M k Ω h|u| k+2 ≤ c ′ M k ,
for all M > 0. When M tends to the infinity, our two integrals tend to zero. Then ( h n u n ) n strongly converges to √ hu in L 2 (0, T ; L 2 (Ω)). Concerning the diffusion term, (∇(h n u n )) n converges to ∇(hu) in the sense of the distributions, in (D ′ ((0, T ) × Ω)) [START_REF] Bresch | On the compressible Navier-Stokes equations with density dependent viscosities in bounded domains[END_REF] . Since the sequence (∇ √ h n ) n weakly converges in L 2 (0, T ;(L 2 (Ω)) [START_REF] Bresch | On the existence of global weak solutions to the Navier-Stokes equations for viscous compressible and heat conducting fluids[END_REF] ) and ( √ h n u n ) n strongly converges in this space, then (u n ⊗∇h n ) n weakly converges in L 1 (0, T ; (L 1 (Ω)) [START_REF] Bresch | On the compressible Navier-Stokes equations with density dependent viscosities in bounded domains[END_REF] ). So, using the relation (4.3) to write the product h n ∇u n , we have (h n ∇u n ) n that converges to h∇u in (D ′ ((0, T ) × Ω)) [START_REF] Bresch | On the compressible Navier-Stokes equations with density dependent viscosities in bounded domains[END_REF] . This gives the convergence of the complete diffusion term.

From Corollary 3.1, we know that (∇(h n + z bn )) n weakly converges to ∇(h + b) in L 2 (0, T ; (L 2 (Ω)) 2 ). In addition, the sequence (h n ) n strongly converges in C 0 (0, T ; L 2p/(2+p) (Ω)) so the product weakly converges to h∇(h

+ z b ) in L 2 (0, T ; (L p/(1+p) (Ω)) 2 ).
The last term is the term of solid transport flux: (h

(1-k)/2 n ) n strongly con- verges to h (1-k)/2 in C 0 (0, T ; L 2/(1-k) (Ω)) and ( √ h n u n ) n strongly converges to √ hu in L 2 (0, T ; (L 2 (Ω)) 2 ). Moreover, (h k/2 n |u n | k ) n strongly converges to h k/2 |u| k in L 2/k (0, T ; L 2/k (Ω)). Using Eq. (4.2), we obtain that the sequence (h n |u n | k u n ) n strongly converges to h|u| k u in the space L 2/(k+1) (0, T ; (L 1 (Ω)) 2 ).
This ends the proof of Theorem 2.1.

5.

Others sediment discharge choices.

Model coming from those studied above.

Let us consider the bed-load transport model

∂ t z b + div(hu) = 0. (5.1)
This model of sediment has been studied in Ref. 21 but, in this paper, the Shallow-Water system is taken as in Ref. 17, that is to say the viscous term is a Laplacian.

Here, we couple Eq. (5.1) with the Shallow-Water system used above, given by (1.8)-(1.9). We prove that this model can be studied as an usual Shallow-Water system. Indeed, combining (1.8) and (5.1) we get

∂ t (z b -h) = 0,
and, by an integration with respect to t, we obtain

z b (t, x) = h(t, x) -z b0 (x) + h 0 (x). Setting b(x) = h 0 (x) -z b0 (x), the expression of z b becomes z b (x, t) = h(x, t) -b(x). (5.2)
If we replace z b by this value in (1.9), we get:

∂ t (hu) + div(hu ⊗ u) + h∇(2h -b(x)) F r 2 -Adiv(hD(u)) = 0. (5.3)
Hence, the problem becomes no-coupled, which means we can determine h using Eqs. (1.8) and ( 5.3) and then use the relation (5.2) to deduce the value of z b , since b is given. The Shallow-Water system (1.8)-( 5.3) is studied in Ref. 5 where the authors proved an existence result, under the assumption b ≥ c > 0 and some assumptions on the regularity.

Another viscous sediment transport.

We propose here another viscous system. More precisely, we consider the Shallow-Water system

∂ t h + div(hu) = 0 (5.4) ∂ t (hu) + div(hu ⊗ u) + h∇(h + z b ) F r 2 -νdiv(hD(u)) = 0 (5.5)
with the bed-load equation

∂ t z b + Adiv hu 1 + log(1 + |u| 2 ) - ν 2 ∆z b = 0. (5.6)
As mentioned in the Introduction, we have modified the sediment equation. We deal here with the term u + log(1 + |u| 2 )u used in Ref. 15 to obtain a better bound on hu 2 . As for the previous model, multiplying the diffusion term by u + log(1 + |u| 2 )u gives some terms which are controllable. We get the existence of dissipative energy for this system.

Lemma 5.1. Let (h, q, z b ) be a smooth solution of (5.4) -(5.6). The following estimate holds 1 2

d dt Ω h|u| 2 + A d dt Ω h 1 + |u| 2 2 log(1 + |u| 2 ) + 1 2F r 2 d dt Ω |z b + h| 2 +ν(1 -3A) Ω h(D(u) : D(u)) + ν 2F r 2 Ω ∇h • ∇z b +Aν Ω h(D(u) : D(u)) log(1 + |u| 2 ) + ν 2F r 2 Ω |∇z b | 2 ≤ 0.
(5.7)

Lemma 5.2. Let (h, q, z b ) be a smooth solution of (5.4) -(5.6). We have

1 2 d dt Ω h|u + ν log h| 2 + A d dt Ω h 1 + |u| 2 2 log(1 + |u| 2 ) + 1 2F r 2 d dt Ω |z b + h| 2 + Aν Ω h(D(u) : D(u)) + ν Ω h(W (u) : W (u)) +Aν Ω h(D(u) : D(u)) log(1 + |u| 2 ) + ν F r 2 Ω |∇h| 2 + ν 2F r 2 Ω |∇z b | 2 + 3ν 2F r 2 Ω ∇h • ∇z b ≤ 4Aν Ω h(D(u) : D(u)) (5.8) 
where W (u) is the skew-symmetric part of the gradient:

W (u) = ∇u -t ∇u 2 .
As in Sec. 3, if we sum the two estimates (5.7) and (5.8), we deduce some bounds on h, u and z b with the condition 0 < A < 1/6. These bounds allow us to prove the stability of the system (5.4)-(5.6).

6. Numerical experiments.

6.1. Numerical scheme.

The proposed model can be written under the structure of a 2D hyperbolic system with non-conservative terms plus the diffusion terms:

∂ t W + div(F (W )) + B 1 (W )∂ x W + B 2 (W )∂ y W -ν div(D(W )) = 0,
where

W =     h hu 1 hu 2 z b     , F = (F 1 , F 2 ), with F 1 (W ) =     h u 1 hu 2 1 + h 2 /(2F r 2 ) hu 1 u 2 Ah|u| k u 1     , F 2 (W ) =     h u 2 hu 1 u 2 hu 2 2 + h 2 /(2F r 2 ) Ah|u| k u 2     , B 1 (W ) =     0 0 0 0 0 0 0 h/F r 2 0 0 0 0 0 0 0 0     , B 2 (W ) =     0 0 0 0 0 0 0 0 0 0 0 h/F r 2 0 0 0 0     and D(W ) = hD(u) ∇z b /2 .
The discretization of the model has been done with a high order finite volume method for the hyperbolic system and a centered second order discretization of the diffusion terms.

The following notation is considered (see Fig. 2): We decompose the spatial domain in a mesh of cells, finite volumes, V i ⊂ R 2 for i = 1, . . . , N V . The area of the volume V i is denoted by |V i | and the center of the cell by x i . We consider that V i is a closed polygon and the boundary of V i is defined by the union of the segments E ij , where E ij is the common edge between the volumes V i and V j . The normal unit vector to E ij pointing towards V j is denoted by η ij . The length of the segment

E ij is |E ij |. The middle point of E ij is c ij . By b ij we denote the baricenter of V ij ,
where V ij is the triangle defined by E ij and x i . Its area is denoted by

|V ij |. K i is the set of indexes j such that V j is a neighbor of V i .
We use a second-order finite volume method for 2D non-conservative hyperbolic systems, [START_REF] Castro | High order extensions of Roe schemes for two dimensional nonconservative hyperbolic systems[END_REF] with a second order state reconstruction operator [START_REF] Castro | Two-dimensional sediment transport models in Shallow Water equations[END_REF][START_REF] Ferreiro | Development of post-process technics of hydrodynamics flux, modelization of sediment transport problems and numerical simulation through finite volume technics[END_REF] .

By W i (t) we denote the average value of W (x, t) over the volume V i . And we consider a state reconstruction operator over each volume P i (x, t), x ∈ V i , (P i (x, t) ≈ W (x, t) ∀x ∈ V i ); concretely we use a MUSCL second-order reconstruction operator [START_REF] Castro | Two-dimensional sediment transport models in Shallow Water equations[END_REF] . We denote W + ij (t) = P j (c ij , t) and W - ij (t) = P i (c ij , t).

V V E c x i ij ij b ij η ij V j i ij

Fig. 2. Finite volume mesh

We obtain the following numerical scheme,

W ′ i (t) = - 1 |V i | j∈Ki |E ij | G ij -B ij (W + ij -W - ij ) + j∈Ki |V ij | B 1 (P i (b ij ))∂ x P i (b ij ) + B 2 (P i (b ij ))∂ y P i (b ij ) + j∈Ki |E ij |D ij η ij ,
where

G ij = G(W - ij (t), W + ij (t), η ij
) is a numerical flux function, for example for Roe method [START_REF] Parés | On the well-balance property of Roe's method for nonconservative hyperbolic systems. Applications to shallow-water systems[END_REF] :

G(U, V, η) = F η (V ) + F η (U ) 2 - 1 2 |A η (U, V )|(V -U )
where

F η = F 1 η 1 + F 2 η 2 . |A η (U, V )| is the absolute value of matrix A η (U, V ) and A η (U, V ) = A η (U, V ) + B 1 ( U + V 2 )η 1 + B 2 ( U + V 2 )η 2 ,
where A η (U, V ) verifies

F η (V ) -F η (U ) = A η (U, V )(V -U ).
Moreover,

B ij = (B 1 η ij,1 + B 2 η ij,2 ) W + ij + W - ij 2 .
By D ij we denote a second order approximation of D(W (c ij )). The MUSCL operator reconstruction 7,10 uses a second-order approximation of the derivatives of the vector of unknowns, so the same computations can be used to define D ij . The discretization in time is done with a second order TVD Runge-Kutta method 20 .

Numerical test.

In this subsection we perform a test where we study the evolution of a sand conical dune in a channel. We compare the results for models defined by (1.8)-(1.9) and one of the considered sediment transport models:

(1) Grass model, given by (1.4), ( 2) the first proposed model, defined by (1.10). In what follows we denote it by MS1, (3) the last proposed model (5.6), denoted by MS2.

First, in this section, we study the results obtained with model MS1, with and without viscosity and for two different values of the constant of interaction between the fluid and the sediment. After we compare it with Grass model and model MS2.

In this test the sediment layer is deformed gradually towards a star shape, expanding along time with a certain angle [START_REF] Castro | Two-dimensional sediment transport models in Shallow Water equations[END_REF][START_REF] Ferreiro | Development of post-process technics of hydrodynamics flux, modelization of sediment transport problems and numerical simulation through finite volume technics[END_REF][START_REF] Hudson | Numerical technics for morphodynamic modelling[END_REF] .

De Vriend 8,9 determined a formula that relates the solid transport formula of the model with the spread angle.

Consider a given transport equation defined by

∂ t z b + ∂ x S x + ∂ y S y = 0 (6.1)
where the solid transport discharges S x , S y verifies

S x = u 1 u tot S tot , S y = u 2 u tot S tot ,
where u tot = |u|, and u = (u 1 , u 2 ). We denote by α the expansion angle of spread.

Under the hypothesis of a weak interaction between the fluid and the sediment layer, De Vriend 8,9 deduces that the angle of spread can be approximated by the following formula

tan α = 3 T u √ 3 9 T u -8 T h , (6.2) 
where

T u = u tot S tot ∂S tot ∂u tot -1, T h = h S tot ∂S tot ∂h -1.
The proposed model MS1, defined by (1.8)-(1.10), without viscosity, corresponds to set

S tot = A h |u| k+1 = A h u k+1 tot . So, ∂S tot ∂u tot = A h (k + 1) u k tot , ∂S tot ∂h = A u k+1 tot .
Then, )). Applying (6.2), we also obtain for this model α = 30 o . Remark 6.1. Observe that for model MS1 we obtain that the angle of spread is independent of the value of k because S tot is not independent of h. Otherwise, if S tot is independent of h, we obtain ∂ h S tot = 0, then

T u = A h (k + 1) u k+1 tot S tot -1 = k, T h = A h u k+1 tot S tot -1 = 0. k 0.
T h = -1, thus tan α = 3 k √ 3 9 k √ 3 + 8 .
If we omit in our model the dependency of h we obtain the solid transport formula defined by

S tot = A|u| k+1 ,
and this definition of S tot corresponds to the definition obtained for Grass model (1.4). Nevertheless we remark that in our model the dependency of S tot with respect to h is crucial for the proof of the theoretical results. We present in Table 1 the different values obtained for α in function of different values of k for Grass model. The angle of spread of Grass model converge to 30 o with respect to k. That is, the angle of spread predicted for the proposed model (1.8)-(1.10) is the limit angle for Grass model.

The classical value of k used with Grass model is k = 2 (see for example Ref. 12), corresponding to α = 21.78 o . We observe in the numerical results that this angle corresponds to the angle of spread of internal level curves of the sand dune.

For the definition of the constant of interaction between the fluid and the sediment, A, observe that it depends on the porosity of the sediment layer,

A = ξ Ā, ξ = 1 1 -ψ 0
where ψ 0 is the porosity. In this test we consider ψ 0 = 0.4 and two different values of Ā: Ā = 0.001 and Ā = 0.01. For Ā = 0.001 corresponding to a very weak interaction between the fluid and the sediment we simulate until t = 360000 s. For Ā = 0.01, that can be considered as the limit of a weak interaction, we simulate until t = 36000 s.

We use an explicit finite volume method, then we impose a CFL condition. We set for this test the CFL condition to 0.8. We use a mesh of 7600 control volumes of edge type (see Fig. 3(a)). We impose a discharge q = (10, 0) and sediment layer thickness z b = 0.1 in boundary-line corresponding to x = 0 and free condition boundary-line corresponding to x = 1000. At lateral walls we impose sliding condition q • η = 0, if by η we denote the outward normal vector. Initial conditions are (see Fig. 3), h(x, y, 0) = 10.1z b (x, y, 0), q x (x, y, 0) = 10, q y (x, y, 0) = 0; and the initial sediment layer is a sand dune with a conical form,

z b (x, y, 0) =    0.1 + sin 2 π(x -300) 200 sin 2 π(y -400) 200 if 300 ≤ x ≤ 500, 400 ≤ y ≤ 600, 0.1 otherwise.
In Fig. 4 we present the evolution of the sand dune for Ā = 0.001. We superpose the level curves for t = 0, t = 180000 and t = 360000 s. Figure 4 In Fig. 5 we present the evolution of the sand dune for Ā = 0.01. We superpose the level cuves for t = 0, t = 18000 and t = 36000 s. Figure 5 We observe that for Ā = 0.001, when the interaction is weaker than for Ā = 0.01, the analytical solution corresponding to the spread angle of 30 o is better captured. This observation corresponds with the hypothesis under which De Vriend deduces formula (6.2); a weak interaction between the fluid and the sediment. By comparing the solutions for the model with and without viscosity, we observe that in both cases, Ā = 0.001 and Ā = 0.01, the angle of spread is slightly smaller in the case of the model with viscosity.

As we mentioned previously, Grass model is usually used with k = 2. In this case we obtain α = 21.78 o . We can observe in Figs. 4 and5 that the line corresponding to α = 21.78 o reproduces the angle of spread of an internal level curve (it is also better captured for Ā = 0.001 than for Ā = 0.01).

The results presented in Fig. 6 correspond to Ā = 0.01, without viscosity. In Fig. 6(a) we present the results obtained with Grass model, we observe that effectively the angle of spread approximates the predicted angle of α = 21.78 o (discontinuous line).

In Fig. 6(b) we study the angle of spread of model MS2. In this case the times of the superposed level curves correspond to t = 0, t = 7000 and t = 14000 s. We also observe that the predicted theoretical angle of spread for this model (α = 30 o ) is also well approximated.

Finally, by comparing Figs. 
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 1 Fig. 1. Sediment and water heights
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 4 Fourth step: Convergence of the diffusion terms, the pressure and the solid transport flux.

  Fig. 3. Initial condition.

  (a) corresponds to the model without viscosity and Fig. 4(b) to the model with viscosity.

  (a) correspond to the model without viscosity and Fig. 5(b) to the model with viscosity. In these figures the continuous black line correspond with an angle of 30 o and the black dashed line with 21.78 o .

Fig. 4 .

 4 Fig. 4. MS1. Spread angle, Ā = 0.001

  5(a), 6(a) and 6(b), corresponding to set Ā = 0.01 in three cases, we can observe that: (i) Model MS1 and Grass model have different angles of spread. But the time evolution obtained with both models are nearly the same (see Fig. 7(a)). In both cases, Figs. 5(a) and 6(a) the final time is the same.

Fig. 5 .Fig. 6 .

 56 Fig. 5. MS1. Spread angle, Ā = 0.01

Fig. 7 .

 7 Fig. 7. Comparison of the level curves

Table 1 .

 1 16.99 o 21.78 o 24 o 25.28 o 26.11 o 27.93 o Values of α for different values of k for Grass model We obtain that the angle of spread is independent of the definition of the parameter k; α = 30 o for all values of k. For the numerical results presented in this section we have set k = 0.25.

	25	1	2	3	4	5	10
	α 7.22 o Then,		tan α =	√ 3 3		

Model MS2 correspond to S tot = qhu tot (1 + log(1 + u 2 tot
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