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Abstract The design of reliable navigation and control sys-achieve autonomously advanced flight behaviours by using
tems for Unmanned Aerial Vehicles (UAVs) based only onvision.
visual cues and inertial data has many unsolved challengi

problems, ranging from hardware and software developme eywords Visual navigation adaptive control rotorcraft

AV - visual odometry visual servoing

to pure control-theoretical issues. This paper addresses these

issues by developing and implementing an adaptive visiong | . uction

based autopilot for navigation and control of small and mini
rotorcraft UAVs. The proposed autopilot includes a Visual
Odometer (VO) for navigation in GPS-denied environments Terrain following -~
and a nonlinear control system for flight control and tar- e

get tracking. The VO estimates the rotorcraft ego-motion .
by identifying and tracking visual features in the environ-
ment, using a single camera mounted on-board the vehicle :
The VO has been augmented by an adaptive mechanism thg Vertical landing

fuses optic flow and inertial measurements to determine the _
range and to recover the 3D position and velocity of the ve- %(‘t

hicle. The adaptive VO pose estimates are then exploited -

by a nonlinear hierarchical controller for achieving various
navigational tasks such as take-off, landing, hovering, tra-
jectory tracking, target tracking, etc. Furthermore, the as-
ymptotic stability of the entire closed-loop system has been
established using systems in cascade and adaptive contrc
theories. Experimental flight test data over various ranges of
the flight envelope illustrate that the proposed vision-based
autopilot performs well and allows a mini rotorcraft UAV to
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Recently, there is a growing interest in developing fully Vision has also been applied to recover UAVs pose with re-
autonomous UAVs and Micro Air Vehicles (MAVs) for mili- spect to some artificial marks like the work presented in [2].
tary and civil applications. The design of sensing, navigatiorBome researchers have also developed vision systems that
and control systems is a crucial step in the development afan estimate the UAV attitude by detecting the horizon line
such autonomous flying machines. Paosition, altitude and or{9].
entation measurements are usually sufficient for the control The use of vision for autonomous landing has been ac-
of UAVs operating at high altitudes. Therefore, conventionatively researched. In the BEAR project at the university of
avionics that include GPS and IMU provide the required in-California Berkeley, a vision system that uses multiple view
formation for flight control and waypoint navigation. On the geometry has been developed to land an autonomous he-
other hand, mini and micro UAVs are designed to operate dicopter on a moving deck [38]. In [34], the authors pro-
low altitudes in cluttered environments. To achieve realistiqgposed a vision-based strategy that allows the AVATAR he-
missions in such complex environments, the flight controlleticopter to land on a slowly moving helipad with known
requires precise estimation of both the vehicle pose and itshape. Stereo vision is also used to detect safe landing area
surrounding environment. Among many sensors for enviand to achieve soft landing [18], [44].
ronment mapping and obstacles detection, ultrasonic sen- There are also some applications of vision for UAVs si-
sors, Laser Range Finder (LRF), radar and vision have disnultaneous localization and map building (visual SLAM)
tinct advantages when applied to UAVsS. For medium-sizd27], [6], [26].

UAVs such as the RMAX helicopter, LRF is widely used  Computer vision is also used as the primary sensor for
for obstacles avoidance [35]. We are however, interested iabjects detection and tracking like for windows tracking [30],
enabling mini UAVs and MAVs to achieve advanced flight [32], moving target tracking [19], road following [8], etc.
behaviors in cluttered environments. The limited payload of Most of previous techniques rely on the reconstruction
these small platforms precludes the use of conventional amaf the vehicle’s state vector which is then used in the con-
standard sensors. Therefore, small cameras, which are availel loop. It is also important to note that most reported ex-
able today at low-cost, are attractive sensors for mini UAVerimental results have been obtained using helicopters that
flying near the ground in hazardous environments. Indeedyeigh several kilograms.

vision provides a viable and useful solution to sensing on Recently, many researchers have been interested in using
UAVs because cameras are too light to fit the limited payimage motion or optic flow for UAVs control and navigation
load capabilities of MAVs. Furthermore, visual sensors aravithout recovering the explicit motion of the vehicle. These
passive and contain rich information about the vehicle motechniques are inspired from insects like honeybees and flies
tion and the environment structure. Unlike GPS, which doesvhich rely heavily on optic flow for navigation and flight
not work in the shadow of satellite visibility, vision works in control [42], [43].

a cluttered urban environment or even in indoor spaces. Barrows [5] designed a VLSI optic flow sensor for use
in a MAV, which was tested on a small glider, and later ap-
plied for altitude control of a small aircraft [13]. Ruffier
and Franceschini [33] developed an optic flow-based au-
topilot to control a tethered 100-g helicopter. In later work

Although computer vision has many benefits for UAVs con—[37]’ another vision-based _system was use_d for speed con-
trol and guidance, it presents many challenges too. IndeeHc’l and lateral obstacle avoidance. Another interesting work

the design of reliable and real-time vision algorithms is ahas been done by Zuifery and Floreano [45] who have devel-

complex problem. Moreover, synthesizing robust flight con-Oped 30-g and 10-g microflyers that can avoid walls using

trollers that are based on visual cues is another challengg.pt'c flow. A combined optic flow and stereo-based navi-

Despite these challenging issues, promising results have bedgfion Zys;embhas tieig |mp(Ijemented on tge AVEA‘TAR hzh-
obtained using computer vision for aerial vehicles controffOPter by Hrabaet al.[16] to demonstrate obstacles avoid-

and navigation. Potential applications of computer visiorAN'C€ 1N an urban environment. In [7], Chatlal. designed

for UAVs include pose estimation, landing, objects detection_and implemented an optic flow-based system for UAVs land-

and tracking, mapping and localization, obstacles avoidancd!9- Inrecent work, Ga_rratt and Chahl [11] andUCted exper
etc. iments on a Eagle helicopter and used optic flow and GPS

In several UAVS projects, vision is used as a method tovelo_cny for height estimation, terrain following and lateral
. ) . motion control.

sense the aircraft ego-motion. Stereo visual odometers for

relative position estimation were implemented in the CMU  While most of reviewed works have been done using

helicopter [3] and the USC's robatic helicopter. In [21] andfixed-wing UAVs or small-scale helicopters, little experi-

[20], structure from motion approach has been applied tanental results have been reported on vision-based control

recover the ego-motion of autonomous micro air vehiclesof mini rotorcraft UAVs that weigh less than one kilogram

1.1 Related work on visual aerial navigation



like the quadrotor helicopter. Most existing works on visualits asymptotic stability and robustness even in the presence
servoing of mini quadrotor UAVs have focused on basic staef estimation errors in the visual odometer.

bilization or hovering [2], [10], [14] and indoor flights in The remainder of this paper is organized as follows. Sec-
structured environments [45], [1], [15]. tion 2 describes the vision algorithm and its implementation.
In Section 3, we explain the mathematical basis of the adap-
tive visual odometer and discuss how range and UAV motion
can be estimated by accurately fusing optic flow with IMU
data. The design of a nonlinear flight controller is presented

In this paper, we present an embedded autopilot which usél'g Section 4, follrc])we? bfy the ;ta(tj)lhty anal)(;as Olf the clpseld-
information extracted from real-time images for navigation oop system. The platform hardware and real-time imple-

and flight control. Our objective in this research is to ex-mentation of the vision and control algorithms are described

tend previous findings on vision-based navigation in ordel" Section 5. Expenmenta! result§ fora quadrotor MAV_ are
to allow mini rotorcraft UAVS to navigate within unknown presented and discussed in Section 6. Finally, we provide in

indoor and outdoor environments and to achieve more ad2cction 7 some conclusions and a summary of the obtained

vanced flight behaviors like trajectory tracking, precise hov—reSUItS‘

ering, vertical landing, target tracking, etc. Furthermore, the

system is needed to meet the payload requirements of minia-

ture rotorcraft that weigh less than 1 kg. In order to reactf Vision algorithm for features tracking and image

this goal, we have dealt with both theoretical and practicamotlon Integration

aspects of vision-based control of UAVs. Indeed, we havel_h in obiecti f this visi lqorithm |
designed and implemented a vision-based autopilot that in- € main o Je_ct|ve ot this vision algorithm s to extract
seful information, from the video of an on-board camera,

cludes a real-time vision algorithm for features tracking and’

image motion integration, an adaptive visual odometer fopbout thﬁ ,MAV .mot|on andl its en\gronmhent. The profposed
range and motion estimation, and a hierarchical nonlinegfPProach Is an mcremepta proce ure that relies on features
tracking in order to provide visual measurements about the

aircraft velocity and its position relative to its initial loca-

1.2 Description of the proposed vision-based autopilot

controller for guidance and 3D flight control.

Functionally, the vision algorithm computes in real-time
optic flow, tracks visual features and estimates the travelleHo™
flight distance in terms of total image displacement (in pix-
els). These visual measurements are then fused with IMU ) )
data in order to overcome the non-desired rotation effect<-1 Features selection and tracking

Indeed, it is difficult to sense UAV translation with vision The tracki laorith ists of a L Kanade (LK
alone since image displacements also occur with aircraft ro- e tracking algorithm consists of a Lucas-Kanade (LK)

tation (translation-rotation ambiguity). Another ambiguity istra_cker Wh'Ch. is based on.gradlent-based optic flow compu-
\%atlon. In our implementation, we have used the OpenCV li-

the scale factor or the unknown range that can not be estj- that contains efficient impl tati fthe Shi-T .
mated from visual measurements alone. This ambiguity i ;gryl a .;?n :unse ljc:centlmp emlentg on Od the - O.rgaIS'
resolved by exploiting the adaptive control tools to identify Jalgori m forgood teatures selection and the pyramida
. LK [29] algorithm for features tracking.
the scale factor or range from optic flow and accelerometers . ) »
The outputs of this algorithm are the positidrgt), yi (t))

data. The real aircraft position, velocity and height are thenf h ked f i the | ; We h iaht
recovered. These estimates are then, used byamultipurpo%et e tracked features in the image frame. We have slightly

nonlinear controller for autonomous 3D flight control. modified that_ algorithm in order to provi_de also estimates
Although previous works have shown that visual cuesabom the optic flow at each feature location.

can lead to an autonomous flight, our work has extended

this finding in a number of areas. The proposed autopilot is

based on only two lightweight sensors, a small single camé-2 EStimation of the rotorcraft pseudo-motion

era and a low-cost IMU without using GPS. A major nov-A ision svstem can estimate rotorcraft pseudo-mdt
elty in our work is that we have demonstrated the possibil- VIS| y ' bseu ioy:

) o . . tracking stationary objects (features) in the surrounding en-
ity and feasibility of recovering the range and aircraft mo- . ¢ Feat displaced i tive i
tion from optic flow and IMU data, thereby leading to ad- vironment. Features are displaced in consecutive Images as

vanced flight behaviors. Unlike other works, our system ha%:fa rotorcraft moves. In the prewqus subsection, we have
been implemented and demonstrated outdoors and indoo ggfly dgsgrlbed an effective algorithm for a.c.curately mea-

using a miniature unstable rotorcraft that weighs less than- "9 this image displacement (feature position and feature
700 grams. A final new contribution of this work is that we 1 pgeydo-motion means here, motion in the image frame which is
have developed a 3D flight nonlinear controller and provedxpressed in pixels.




velocity or optic flow). There are many approaches for in-  In the beginning, about 20 features are selected in some
terpretating these visual estimates in order to extract usefgiiven 50 x 50 image area that can be considered as a "tar-
information for navigation. The traditional approach, knownget template” which is initially chosen at the image center.
as the Structure-From-Motion (SFM) problem consists in reThese features are then tracked in the successive images, and
covering both the camera ego-motion and scene structutbe position of the "target template" is simply computed by
using correspondences of tracked features [20] or computeeking the mean of the tracked features position. The "target
optic flow [21]. Another approach, inspired from biology, template" velocity or optic flow is also calculated by taking
uses directly optic flow for reactive navigation without anythe mean of the tracked features velocity. As the rotorcraft
reconstruction of the motion and structure. moves, older features leave the Field Of View (FOV) and
new features enter the FOV. Therefore, an effective mecha-
nism is required to deal with features disappearance and ap-

_ @ pearance and to continue motion estimation. The proposed
1mage arca approach consists in selecting a new set of features under
template the following conditions:
A
( select 20 features ) o Target template is at the image bordevhen the target
Iyl template is about to go out of view causing features dis-
v (onyn) appearance, a new target template is chosen at the image
track features and _ center and new features are selected in this template.
compute OF In order to provide a pseudo position estimate relative
(OFx1,0Fy1) (x1,y1) to the initial MAV location, a displacement offset is in-
{OFxn,OFyn) vy {(inyn) cremented and added to the new template position mea-
fuse features position sured in the image frame.
and velocity o Features dispersionin an ideal tracking, the geometric
. (OFx OFY)l (ximg, ying) configuration of tracked features should be almost con-
;Ze”;’cf)’ft’lg’f:p’” stant. However, because of large attitude changes, poor
0 matches and erroneous correspondences due to image
increment with the template position noise, features may be scattered, dispersed and go out
current posttion (s yf".’”") in the of the template. To overcome this problem, we compute
3?°umulated it D lmag%' e the variance of features position and re-select new fea-
isplacement [pixels] total image . . )
optic flow | displacement tures in the same template when this variance exceeds
(ing, ying)+ D some threshold.
| Kalman filter | o Unreliable feature correspondencaturing real-time ex-
total periments, we have noticed that from time to time there
dis;”‘,’ce[me”’ Y are false feature correspondences which are mainly due
..f’ff..s{_ send data to the to image quality and video transmission. We have thus,
optic flow|___onboard FCC implemented a simple strategy which consists in reject-
[pixels’s] l ing feature matches when the difference between the pre-
display image and vious and actual position (or optic flow) exceeds some
feafures in the GCS threshold. This simple strategy turned out to be very ef-
|— fective in practice and it improved significantly the per-

formance of the the visual odometer.

o Arbitrary target selection by the operator at the ground
control station (GCS)the developed GCS software al-
lows the operator to chose any target or area in the image

Here, we propose another approach which consists in  py just clicking on the desired location. Consequently,

tracking few features in a small image area and integrating ey features are selected in that area which is then tracked
over space and time these measurements in order to provide qyer time.

one robust estimate about optic flow and the total image dis-

placement. The approach is motivated by the fact that only The obtained visual measurements are filtered and sent
few useful and reliable measurements will be processed byrough WiFi to the onboard Flight Control Computer (FCC)
the onboard flight computer, thereby reducing the computawshere further processing is performed. More precisely, six
tion time. Figure 2 shows the main steps of our vision algodata are sent to the FCC: the two components of optic flow
rithm. (%, y)[pixels/s]; the target template positidRimg, Yimg) [pixelg

Fig. 2 Block diagram of the real-time vision algorithm.



in the image frame; and the two components of the total dis3 Adaptive visual odometer for range and UAV motion
placementx,y)|pixelq. estimation

This section presents an adaptive visual odometer that can
estimate the true MAV position iim] and velocity in[m/s|
using the visual estimates;, yt,%,Y:) and accelerometers

Image displacements occur with rotorcraft translation andn€asurements. Furthermore, the proposed odometer allows
orientation. Therefore, in order to sense aircraft translatiofP "ecover the range, which is used for height control when
which is essential for flight control, rotation effects must bethe camera is looking downwards or obstacles avoidance for
eliminated from the measured image displacement and oy other camera orientation.

tic flow. Furthermore, this translation-rotation ambiguity is

more significant in rotorcraft UAVs since the vehicle transla- . _ .

tion is a direct result of its attitude change. To overcome this-1 Mathematical formulation of the adaptive visual

problem and compensate the rotational components of Olg_dometer

tic flow and image displacement, onboard IMU data (Euler

Here, we show theoretically that it is possible to recover the
angles(8, ¢) and angular rate da are used. ' . . . .
gles(6,9) g (@, wy, wy)) range and the real UAV motion using only visual informa-

tion from a single camera and accelerometers data.
{Xt =x— (—f tand) Let us write the relation between the available visual

2.3 Rotation effects compensation

(1)  measuremenis, y;[pixeld, %, ¥t [ pixels/s]) and the state vari-
ables(X,Y,Z[m|, Vi, W, V,[m/g]) expressed in the inertial frame.
If the camera is looking downwards, then we can write:

yi =y—(f tang)

and
2 2 Xt f X
. . XimgYi + X =17
X =X—( |mgfy|mga& - f Img%‘i‘Yimng) 5 (3)
(2 w="~Fs
f2 + yizm XimgYi z
VR g, _ Nimgyimg =
B=y—(—— F Wy~ XimgQy) and
wheref is the camera focal lengttx:, yi) and(%;, t) are the % = f\ﬁ +Ximg\é
translational components of image displacement and opti 6 5 (4)
flow, respectively. Vi = ffy +yimg22

For effective compensation of the image displacement
caused by rotation, the latency problem between the IMU It is clear from the above equations that if the razge
measurements and visual estimates should be addressed. finene equivalent to height) can be estimated then the true
experimental tests, we have identified a time-delay of abou¥ AV position and velocity can be recovered using equations
0.25sbetween the IMU and visual data. This delay is mainly(3) and (4). As a first step, we propose a real-time identi-
due to the fact that images are processed at the ground sfieation algorithm that will estimate the ran@eunder the
tion and the visual data are sent back to the embedded micréellowing assumptions:
processor for further processing. To overcome this problem
we applied a low-pass filter to the IMU data to filter the mea-
surements from noise but also to introdud@ 26s delay in
the IMU data. By using this simple strategy, the filtered (or
delayed) IMU measurements were almost identical to vision
estimates during pure rotation movements, thereby resulting In order to satisfy the first assumption, a static pressure
in effective compensation of rotation effects (see Figure 6).sensor was added to the platform for enhancing the vertical

At this stage, we have visual informatid®;, v, %, t) motion estimation and control. However, this sensor does
about the rotorcraft position and velocity which are expressetbt provide height above the ground objects or relative dis-
in terms of incremented image displacemenfgixeld and  tances to the perceived objects. Like GPS, it indicates the
optic flow in [pixels/s. The true UAV position and velocity height with respect to the sea level, and when calibrated it
can not be directly deduced because of the range ambigaan estimate the height with respect to the initial point. We
ity. Indeed, the translational image displacement depends amould like to highlight that pressure sensor is very light (few
both aircraft translation and relative distance (range) to thgrams), cheep (few dollars) and works in indoor and outdoor
perceived objects. environments. Thus, it can be easily integrated into MAV

1. The height changes are small4& cstandV; ~ 0) when
applying the identifier.

2. The terrain or relief is smooth such that it can be decom-
posed into flat segments.



and combined with vision to improve the control of vertical —
motion.

By considering the previous assumptions, equation (4)
becomes:

— (5)
Vi ! ay
ytgf—zy thfi

where(ay, ay) are the MAV linear accelerations expressed in —
the inertial frame.

Many types of on-line parameter estimation techniques
can be applied to estimai® using the derivatives of optic
flow and linear accelerations (see equation (5)). Our odome-
teris based on the Recursive-Least-Squares (RLS) algorithm

RLS with projectionin many practical problems where

b represents the physical parameters of a plant, we may
have some a priori knowledge like the upper and/or lower
boundgbmax bmin)- Thus, we have modified the RLS al-
gorithm to constrain the estimates search, thereby result-
ing in the following advantages: 1) speed-up the conver-
gence, 2) reduce large transients, and 3) avoid some sin-
gular cases liké = 0 which is very important for control
design.

RLS with dead-zon¢he principal idea behind the dead-
zone is to monitor the size of the estimation error and
adapt only when the estimation error is large relative
to the modelling error or disturbance. This means that
adaptation or identification process is switched off when
the normalized estimation erremis small.

which presents many advantages for our application.
More details about robust RLS algorithms including their

stability analysis can be found in [17] and the references
3.2 Generalities on the Recursive-Least-Squares algorithntherein.

The choice of this method is essentially motivated by the o ] ]
fact that it is easy to implement and appropriate for real3-3 Application of RLS algorithm to range (height)
time applications. In addition, it is robust with respect to&Stimation

noise and it has been widely used in parameter estimation i“ let | bust RLS algorithm t iimate th
a recursive and nonrecursive form mainly for discrete-timeh O'Wht; .ussapgl)y adrot ust # i algonthm bo es ;.mated €
systems [17], [12], [4], [28]. eig in (5). In a deterministic cas&, can be estimate

. . using one of the following SISO subsystenis = f 2" or
The RLS method is simple to apply in the case wher . . . .z .
'S SImp PPy ! WheTGy f % An interesting solution could consist in esti-

the unknown parameters appear in a linear form, such as int =
: P . [?p mating Z for each SISO subsystem and then, fuse the two
the linear parametric model:

obtained estimate&;, Z,) in a favorable manner. For more
robustness against noise and external disturbances, we have
applied the RLS algorithm with projection and dead-zone in

whereb' is a constant vector which contains the unknownOrder to estimat.él,Zz from available measuremerits, a),

parameters anfy, y) are the available output and input sig- (t-ay), respectively. The two estimates;, Z,) have then

nals. been fused using a weighted averaging method where the
The RLS algorithm formula are obtained by minimizing Weights depend on thersistency Excitatio(PE) property

some cost function and its expression is as follows [17]:  Of €ach signag;, i = x,y. This idea can be mathematically
described as follows:

y=b'y

b=Pey (W1Z1 +WoZp) if wi+Wp #0
P:BP—PMP P(0) = R 2= wrwy TR TR 7
m -’ ©6) Zi_1 otherwise
m=1+y"y . . .
. where the weight§w;,w,) are functions of thé’E condi-
_y®)—bTy(t) tion.
e In order to apply the RLS method to estimaten (5),

e need to write the preceding system in the following lin-
ear parametric formy = b' y, and then the application of the
modified robust RLS algorithm becomes straightforward. This

In our implementation, we have used a robust version otan be done using the following formula:
the standard RLS algorithm that includes:

The stability properties of the RLS algorithm depend on th
value of the forgetting factgB.

Sk ™ f

— RLS with forgetting factorequation (6) has been mod- = (s+A1)’ i= (s+ Al)’bl -7
ified to avoid an unbounded growth of he gain matrix SY ay f ®)

P(t) when the forgetting factgB > 0. “ra) BT (s+)\2)’b2 =z



Where(sj/\ 3 and( 7] are fist-order low-pass filters, which 3.4 Fusion of visual estimates, inertial and pressure sensor
are used to avoid dlrect signals differentiation. data

Theorem 1 For i = 1,2, the modified RLS algorithm with This last step of the visual odometer consists in fusing the
projection and dead-zone, applied to system (5) and (8)V1su@ estimateX,V,Z, Vi, V), inertial dataay, ay, a;) and

guarantees the following properties, [17]: pressure sensor measuremezysin order to improve the
. odometer accuracy and robustness, reduce the noise and es-
(@) bi, bi € Z (bounded). timate the vertical velocity,. The data fusion is performed

(b) bmin <bj(t) <bmax, Vt >0, wherebmyin >0andbmax>0  using alinear Kalman filter with choosirt¥, Y, Z,Vy, iy, Vz)

are a priori known lower and upper bounds of the para- as a state vectofX, Y, Z, Zys, Vk,Vy) as a measurement vec-

meterb (projection principle). tor and(ay, ay, &;) as an input vector. The implementation of
(c) limi_o bl( ) = by whereb is a positive constant. such Kalman filter is straightforward and thus further details
(d) If y € %, andy; is PE, then the estimath converges are omitted here.

exponentially to its true valdeb.

Rigorous and detailed proof of this theorem can be found i N Nonlinear 3D flight controller design and stability
any book on identification techniques such as [17].

Since the two esUmate{bl,bz) satlsfy the propemes in  This section presents the design of a nonlinear flight con-
Theorem 1, it is then trivial to show th# = i 2o = 7bL troller and the analysis of the closed-loop system stability.

andZ in (7) are positive and satisfy also the properues (a)- The objective is to design an effective and practical con-
(d) listed in Theorem 1. Once the heighis identified, the  troller that considers plant system nonlinearities and cou-

aircraft horizontal position vectdiX, Y) and velocity vector pling, but also the characteristics and specificities of the adap-
(Vi,Vy) can be recovered using (3) and (5): tive visual odometer estimates. Furthermore, the controller

is required to guarantee good flight performance and robust-

RN _s% _ ) ness even in the presence of identification errors.
b f X 5 X
X— &~ =& ¢
V=22 g b f 9
b Foan (9) _ _
g NN 4.1 Rotorcraft dynamics modelling
s_ 1 YT b
b

Letus denote by = (X,Y,Z), 0 = (Wi, W, Vz), N = (9, 6,1),
Proposition 1 The adaptive observer (9) is stable and the1 = (¢, 6, §) the position, translational velocity, orientation
convergence of the state variable®, {, 2,V Vy) is guar- and angular rate vectors, respectively. Therefore, the dynam-

anteed. Furthermore, if thRE property is satisfied, then the ics of arotorcraft UAV such as the quadrotor helicopter, used
identification errors()N( =X X, ...V}, =V, — Vi) converge in this research, can be represented by the following mathe-
to zero. B matical model [31], [22]:

In fact, the observer stability is a direct consequence off & = EURQ —g&
the parameter identifier (RLS algorithm) stability. Indeed, m L. - (12)
the obtained position and velocity estimates satisfy the fol-\ M(m)71 +C(n,m)n =¥(n)"t

lowing properties: whereu s the total thrustr is the torque vectoR and¥ are

- SinceB(t) € [Brmin, bmaxy — b, then, from (9) we deduce the rotation and Euler matrices, respectively. The pseudo in-
that ertial matrixM is defined ad/(n) = W(n)TJW(r]) andCis

. _ given byC(n,7) =W(n)TIW(n)—W(n)TskW(n)n)I¥(n).
(X,Y,Z,VX,Vy) — (X,Y,Z,Vx,Vy) b/b (20)

— Furthermore, ifay, ay) satisfy thePE property, then, 4.2 Flight controller design

{b~—~> ?~:>~b —0 (11)  Control design for rotorcraft UAVs is already a challeng-
(X,Y,Z,Vx,Vy) — (0,0,0,0,0) ing task, especially when it comes to deal with unknown

2 In the presence of external disturbandires b converges ex- pgrameters.and state variables estimation. errors. To cope
ponentially to the residual seff /|Bi| < C(p0'+d—)}7'whered s the with these issues, we have proposed a hl_erarchlcal flight
disturbance upper boundjs a positive constant angh characterizes ~controller that exploits the structural properties of rotorcraft
the dead-zone. UAVs model given by (12). Our objective is to develop a 3D
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flight controller that performs well in practidas well asin  Indeed, X = (E —&,0 —ug)" Wherege = ()A(,\A(,Z)T and

theOl’y‘. 0 == (Vx,Vy,Vz)T.

. To reach this goal, we have separated thg aircraft model Although A, andA, are Hurwitz, the asymptotic stabil-

mto two conpected subsystems by Qecouphng the transleh-y of the closed-loop system can not be directly deduced

tional dynamlcs (outer-loop) aqd rotational dynamics ('nnerbecause of the interconnection tedix, na,e;) and the

Ioop)..The time-scale .sep.aratlon betW(_aen the two SuF’sy%'dometer estimation errors. The asymptotic stability of the

tems is made by.con3|der|ng the following transformr;1t|onsc|osed_Ioop system and its robustness with respettfong, en)

(or change of variables): are analyzed in the next subsection.

T=J¥(n)T+¥C(n,mn
1 (13) ) ili

= EUR(%, 64, Yg)€3 — ges 4.3 Closed-loop system stability and robustness

wheref is a new torque vectoy is an intermediary force BY substituting (15) into (14), the closed-loop system dy-

vector and(q, 6, W) are desired roll, pitch and yaw an- namics become

gles. X =Ax —BiKyX +A(X.€)

By defining the tracking errorg = (§ — &, U —ug)" € e=Ae
R® ande= (n —ng,N —Nq)" € RS, replacingn by ng +e _ _ -
in (12) and considering (13), the system (12) can be writted this section, the stability of the closed-loop system (16)

(16)

in the following form [25], [23]: is established, considering the interconnection taifg, )
and errors in the state vector estimation.
X =AxX +Bi(u—&)+ lu H(ng,€ey) If the visual odometer estimat¢&, 0) converge to their
— L,_/ (14) true valuesifo estimation errorg then the tracking errgy
f(XH-da) A(u.ng.en) will becomey and system (16) can be written as follows:
e= Age+By(T — q) X = (A1 —BiKy) X +A(X,6) = AyX +A(X,€) an
whereH (nqg,e;) = (0,0,0,hy, hy, h,)T is a nonlinear inter- e=Ace

connection term. The matricég € R6%6 B; ¢ R6*3 A, €

R6*6 andB,  RS*? are defined in [23]. Even for this simplified system it is difficult to prove the sta-

bility property because of the complex interconnection term
The rotorcraft control problem is thus, formulated as theA (x,e). However, a detailed demonstration of the stability

control of two cascaded subsystems which are coupled bgroperty for system (17) can be fount in our previous papers

a nonlinear termA(u, ng,e,). Some techniques have been [25], [24].

proposed in the literature to control systems in cascade [40], This paper extends the previous results by proving the

[36]. Here, we use partially passivation design to synthesizetability property of system (16) even in the presence of

two stabilizing feedbacks = a(X,&q), T = B(e,flq) such  identification and estimation errors (i.éd,— b # b and

that the tracking erroréy,e) are asymptotically stable for (&,0) = (&,v)b/bwhich means thag # x).

all initial conditions. The idea is to considaru, ng4,€,) as

a disturbance on thg-subsystem which must be driven to

zero, and stabilize independently theande-subsystems.

First, let us express the tracking error
X = (& —&4,0 —vq)" as afunction of the original tracking

errory = (& — &4, — vg)T:

Since thex-subsystem without the coupling(.) and b b b _
the e-subsystem in (14) are linear, we can use simple lineaf = (=& — &, =0 — Ug)T = =X + —— (&4, 0q4) " (18)
controllers such as PD or PID. Therefore, we synthesize two b b b
control laws So, the outer-loop dynamics in (16) become:
H= R+, Ky € B s X AN B+ T G0 T) B9
T = —Kee+ g, Ke € R¥® b b—b

= (A1 — =B1K,) X ———B1K, (&4, Uq)T +A (b, x, €19
such that the matrice’, = A; — B1Ky and (A b 1K) X b 1K (&, V) (b.x.e(19)

Ae= Az - BoKe are Hurwitz. o Ay £(b,&4,0q)
It is important to note that the contral(X) is com-
puted using the estimates of the adaptive visual odomet

Now, the closed-loop system (16) can be expressed in the
efrc)llowing form:
3 Itis easy to implement and guarantees good flight performance. {

X =Ayx+e(b,&,09) +A(D,x.0)
e=Ae

4 It considers system nonlinearities/coupling and guarantees the st

N (20)
bility of the closed-loop system
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The termg(B, &4,Uq) is mainly due to the parameter estimatethe interconnection term. It is clear from (19) thabif- b,
errorb — b (height estimation error). Indeed,bfconverges Ehe systeny = Ay x + £(b, &g, gd) will be GAS. Indeed, for
to its true valueb, thene will converge to zero. b — b, we havee(.) — 0 andA, — Ay, which is Hurwitz.

: , Consequently, the inequalities (21) hold.
A h 40], the cl -l -
ccording to Sontag’s theorem [40], the closed-loop sys Now, let us analyze the stability of the-subsystem in

20) is Globally A icall I A i
tem (20) is Globally symptotically Stable (GAS) provided the presence of parameter estimate errors,h.es, b # b.

that th ter-l ¥ = A " he i - ~
at the outer-loopx xX +€(b,2q,U9)" and the inner So, in the following, we will show that the tera(b, &, Ug)

loop "&= A" are GAS and the trajectoridg (t),e(t)) are . bounded. th A — A _bB.K. is Hurwi dth
bounded. One of the major tools usually used to show th& Pounde ot em.a” x = A1 = Bily Is Hurwitz an the
boundedness of connected system trajectories is the Input acking errorx(t). is bounded. Furtherr_nore,lw_e will prove
to-State-Stability (ISS) property [40]. The ISS property ist atthe assumption A2. of Theorem 2 'S_ Sat'?f'ed'_

a strong condition which is often difficult to verify. For the Let us reCAa” the exprebssE:on of the |dent|f!cat|9n error-
system (20), the complexity is due to the interconnectiorfelated terme(b, &q, ug) = — > Ble(fd’U_d)T' Sinceb(t) €
term A(b, x, ). Consequently, we propose a theorem thatPmin, Pmax (see Theorem 1) and the desired trajectories
guarantees the GAS of the connected system (20) providedd(t) Va(t)) are bounded, then it is trivial to deduce that
that the interconnection term (b, x,€) satisfies some re- £(.) is also bounded. Then, there exists a positive consttant

laxed conditions. such thad = [[&(.)/[e.
We recall that the matrid; — B1K, is Hurwitz and the

Theorem 2 If the following three conditions hold, then all term% is positive and bounded. Due to the structure of the
the solutionsy(t) ande(t) of (20) are bounded. matricesA; andBy, then it is easy to show that the matrix

~ o . Q . . _
Al. The equilibrium poine = 0is GAS and Locally Expo- Ax - A1 . 5B1Kx 15 also Hurwitz. Therefore, the subsys
nentially Stable (LES). tem x = Ay x +£(b, Ed,ud) is equivalent to the following

. N o ) differential equationyy — Ay x = £(t). The solution of the
A2. There exist a positive semi-definite radially “”boundedpreceding differential equation is:

functionV () and positive constantg andc; such that
for [|x[| > c1

X(t) = x(0)eMt & /Ot M t=Tg(r)dr (23)

ov . °
o~ <
Gy X +(6.80,00)] <0

21) From equation (23), we can show that after a finite time T,
ov
— <

| ax X1 < c2V(x)

we obtain

. iy IXx®OI<le®) <dvt>T (24)
A3. There exist a positive constantand one class¥# func-

tion y(.), differentiable ae = 0, such that This means that given any initial conditign(0), the tra-

> cs= |AD. x. o) < y(lle 22 jectoriesx(t) of the subsystemy = Axx+£(6, &q,0q) "
IXll = cs = llatb,x, &)l < wllel) lix] (22) converge exponentially to a bounded ball with a radius
If in addition, x = Ay x + £(b, &4, ug) is GAS, then the equi- Hence, inequalities (21) hold fdji || > c; = d.

librium point (X, €) = (0,0) is GAS. e A3.A(.) growth restriction:Now, let us analyze if the in-

The proof of Theorem 2 is done in [22]. terconnection ternd\(.) satisfies the growth condition (22).
By recalling (14), we have

Proposition 2 The closed-loop system (20) is stable and the 1
tracking error x is bounded. Furthermore, i(t) converges ||A(X,e)|| = =[u(X)||IH(X,e)| (25)
to b then, the equilibrium pointx,e) = (0,0) is GAS. m

Proof: In order to prove the stability of the closed-loop sys—Where

tem (16) or (20), we need to prove that #esubsystem, the .
X-subsystem and the coupling teehf.) satisfy the condi- | IH(X. )l =/hg+hg+hZ
tions Al, A2 and A3 respectively.

U] =Ml (%) + gesl| = my /2 + 12 + (i + 9)2
e Al. e-subsystem stabilitySince the matriXdq is Hurwitz, (26)
then, thee-subsystem (inner-loop) is GES which is stronger

than the GAS property. Lemma 1 Assume thatthe desired trajectorigg(t), ug(t))

e A2. x-subsystem stabilitjwe are interested here, in the and their time-derivatives are bounded. Then, there exist
stability of the subsystery = Ay x + €(b, &y, 0q) without  positive constants, k; andk; such that the collective thrust
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u(x) and the coupling ternH (X,e) satisfy the following 5.1 Description of the aerial robotic platform
properties:
Our testbed is based on a quadrotor vehicle which is man-
u(x)| < {k1||f(||a for | X[ >r ufactured by theAscending Technologies Gmldempany
T | kar,  for x| < (27)  (Germany). The original kit includes the airframe, four brush-
less motors, four propellers and some electronics for manual
flight. The vehicle is 53 cm rotor-tip to rotor-tip and weighs
The proof of Lemma 1 is given in [22]. 400 grams including battery. It has a 300-g payload and an
) ) ) endurance of approximately 22 minutes without payload and
Recalling (25) and (27), the interconnection tefff) 1 minutes with full payload. The original electronics of the
verifies AscTech quadrotor were kept but its attitude controller has
been disabled except internal gyros feedback control which
is running at 1 kHz.
. In order to demonstrate vision-based autonomous flight,
Substituting (18) into (28) and recalling thatnd(£4,Ua) e have fitted the quadrotor helicopter with an embedded

H(X, &)l < kalle]

. kik N .
laG.e)l < = ZllellIXIl. for %] > r (28)

are bounded, then one can write autopilot, which is designed and built by the authors. As
A kiko b—b T shown in Figure 3, the hardware components that make up
I A(b,x,€e)[ = [lA(X.e)] < 7” el = X b (Edvud) I the basic flight avionics of our platform include a small micro-
kko kiko) (ks + kg controller fromGumstix Inc.the MNAV100CA sensor from
< = llell(kallx Il +kallx1) < ( )(m ) lellllx]l  (29) Crossbow Incand a vision system froRange Video Inc
for || x| > 1, ks = =2 andkg is the upper bound of - Gumstix micro-controllerthe Gumstix micro-controller is

b b (k1) (ka-+kz) . a light-weight and powerful computing unit that is very ap-
_” 5 (S a) " By'def|n|ng'y(||e||) oom ”eHJ which propriate for our needs and micro UAVs applications in gen-
is a class#" function, the interconnection terdd(b,X.€)  era|. Indeed, it weighs only 8 grams and has a 400-MHz
satisfies the growth restriction (22),Athat S CPU with 16-MB flash memory and 64-MB SDRAM mem-
A(b, x,e) < y(llel)llx[l for [[x[| = c3 = max(=*, 1). ory. Two expansion boardsgnsole-stand wifistix) have
been mounted on the Gumstix motherboard, thereby pro-
Finally, the stability of the closed-loop system (20) andy;iging two RS-232 ports and WiFi communication with the
the boundedness of trajectorigg(t), &(t)) are direct conse- ¢, The total weight of the obtained Linux-running com-
quences of Theorem 2. Furthermore, if #AE property is  pyter is about 30 grams including interface card, WiFi mod-
satisfied, then the estlmatét) converges exponentially t0 ,je and antenna.
the true valué. Therefore, the_(.su_bsyste_m is GAS, thereby The Gumstix-based Flight Control Computer (FCC) per-
ensuring the GAS of the equilibrium poifx, e) = (0,0). forms sensor data acquisition and fusion, implements vision

These theoretical results are very interesting because th@jd control algorithms and generates the required control
state that the aircraft position and velocity can be accuratelf?Puts (thrust, pitching torque, rolling torque and yawing
recovered and controlled using only visual cues and IMUOrque).
data. Furthermore, in the presence of significant external dis- avrR micro-controller-this auxiliary micro-controller has
turbances that may probably induce bounded errors in thg,y main tasks:
parameter estimate (height sinceb = f/Z) the stability
of the connected closed-loop system holds and the positiod- It reads the control inputs from the main FCC and en-
tracking errors remain within a small bounded region (see codes theminto a PPM signal which is then used to drive
equation (24)). The tracking errors can be significantly re- the vehicle motors.
duced by exciting the systerPE property) in order to im- 2. It implements the flight termination system which con-

prove the estimation of the unknown paraméter height. sists in achieving an emergency landing when some hard-
ware or software problem occurs (see [25] for more de-

tails).

5 Aerial robotic platform and software implementation
- MNAV sensorThe MNAV100CA sensor is manufactured

The proposed adaptive vision-based autopilot was impleby Crossbowand designed for miniature ground and air ve-
mented on a quadrotor MAV platform that we have devel-hicles. It includes a digital IMU, a ublox GPS receiver and
oped atChiba University This section provides information a pressure sensor in one compact sensor. It is a low-cost
about the air vehicle, its avionics and real-time architecture(1500 USD) and light-weight (35 grams without GPS an-
and the implementation of vision and control algorithms. tenna) sensor, with a low power consumption, making it
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Fig. 3 Avionics architecture of our aerial robotic system (GPS is used here for comparison only).

ideal for mini and micro UAVs applications. The IMU out- munication with the onboard FCC for receiving and decod-
puts raw data from 3 accelerometers, 3 gyrometers and ig flight data (telemetry), and sending visual estimates and
magnetometers at the rate of 50 Hz to the FCC. The GP8ther navigation commands to the onboard FCC. The com-
data are updated at 4 Hz and the static pressure sensor measnication program use®cketandUDP protocol. The sec-
surements are provided at a rate of 50 Hz. All these sensand thread is also running at 5 Hz and implements the GCS
data are sent to the FCC through an RS-232 serial link.  interface that allows to display flight data in real-time and to
send flight commands by clicking on the appropriate buttons

) \ﬁtsmr): fsrysr:;elz?m;or t\hf:z F:;g]icith V\I/edhavenusid Ian |mertr?|r:g as shown in Figure 5. The third and last thread implements
syste omrangevidednat Includes an anajog camera y, . g .« part of the vision algorithm which is described in

(KX-171), a 1.'3 GHz Wweless video transmitter, a hight g.amSFction 2. This vision algorithm runs at 12 Hz and exploits
antenna, a video receiver and a grabber card. The choice 0

this vision system was based primarily on range (about fome functions of the OpenCV library.

km) and frequency (to avoid interferences with the 2.4 GHz

of the WiFi module). The framegrabber is used to digitize- The embedded softwartiie adaptive visual odometer de-
individual frames from the analog video signal coming fromscribed in Section 3 and the flight controller presented in
the onboard imaging system. This enables frame acquisitioBection 4 are implemented on t@eimstixFCC using multi-

at speeds up to 25 frames/s to obtain images of 320 x 24hread programming. Other navigation algorithms for sensor
pixels resolution. data acquisition and fusion are implemented in the onboard
FCC. In total, the embedded software is composed of six
different threads that are running at different frequencies: 1)
thread 1 for communication with the GCS (10Hz); 2) thread
2 for sensor data acquisition (50Hz); 3) thread 3 for atti-

The developed real-time software can be divided into twdUde estimation (50Hz); 4) thread 4 for GPS-INS fusion and

main parts, the ground control station software and the enposition estimation (10Hz); 5) thread 5 that implements the

bedded navigation and control algorithms. Figure 4 i”us_adaptive visual odometer (10Hz); 6) guidance and control

trates the interaction between the different algorithms an@!90rithms (50Hz). Figure 4 shows the different programs
systems. - The Ground Control Station (GCS) software: that are running on the GCS laptop and the onboard micro-

the GCS software is implemented on a standard laptop ugontroller.

ing C++, MFC, OpenGL and OpenCYV libraries. It includes  The values of the nonlinear controller gains are shown
three different threads that are running at different frequenin Table 1. The parameters of the RLS algorithm used for
cies. The first thread runs at 5 Hz and handles wireless confreight estimation are chosen as follg@/= 0.4, P(0) = 5,

5.2 Implementation of the real-time software
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Fig. 5 The interactive interface of the ground control station during vision-based autonomous hovering.

| parameter| value || parameter]| value | ter estimates for position, height and velocity feedback. GPS
kk'[i’":zig’ (;)'062 kk?‘P’tip@ gz measurements are recorded during flights and plotted here
kdzkoyly 0.8 kdz:kdee 1 for comparison only. It is important to note that GPS data
kp; 0.8 kpy 3 can not be considered as th@und-truthsince we are using
Kiz 0.03 Kiy 0.05 a low-cost GPS with:2m accuracy for horizontal position
kd, L kay 0.2 and+5merror for height.

Table 1 Control system gains

Pmax= 1000Q Zmjn = 0.5m, Zmax=20m, dead—zone=0.1, 6.1 Static tests for rotation effects compensation and height
A1=2A2=0.1,7Z(0) =0.5m. estimation

These static tests aim at demonstrating the effectiveness of
the approach (1)-(2) for compensating the rotational com-

. - . onent of optic flow and image displacement using IMU
The performance of the adaptive vision-based autopilot Wa%ata We also analyze the performance of the adaptive visual
demonstrated in real flights using the quadrotor MAV de- ’ y P P

scribed in Section 5. We have performed various indoor ané?acgﬁtser for height estimation using optic flow and accel-

outdoor flight tests under autonomous control for take-off, ) .

landing, hovering, trajectory tracking, stationary and mov- 'We have conducted two static tests under dlﬁ‘ergnt con-
ing target tracking. All the outdoor flight tests, described ind't'on? Intest A we have moved the MAV by hand in the
this Section, have been conducted at the play-ground of thfgll_owmg sequence. 1) vertical movement fron_1 Om .to 1m
Chiba University Campus which was not prepared in anyhe!ght; 2) horizontal movement along_the X-axis atdn‘fer_ent
way for flight experiments. As it can be seen in Figure 5 andm'ghts (1m, 0.5m, 1my); 3) pure rotational movement (pitch

flight videos, the field is almost homogenous without richmovement); and 4) vertical landing. tB_S‘t B we .have re-
texture peated almost the same maneuvers with two differences: 1)

the MAV is moved along the X-axis (zig zag) when per-
Remark 1For the experimental flight tests, described in thisforming vertical landing; 2) a small fan or ventilator is used
Section, the flight controller used the adaptive visual odometo simulate wind.

6 Experimental results of vision-based flights
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Fig. 6 Static tests showing rotation effects compensation and comparison of pressure sensor and visual odometer for height estimation.

For both tests, we have plotted in Figure 6, the total im-achieving stationary flights in natural environments with poor
age displacement and OF computed by the vision algorithrtexture. The MAV is tasked to take-off autonomously, to
(blue line), the rotational image motion obtained from IMU hover at a desired altitude of 5m and then to achieve a verti-
data (red line), and the resulted translational image motional auto-landing.
after compensation (black line). We can clearly see in Figure  As shown in Figure 7, this task was achieved success-
6 that rotation effects are effectively cancelled. fully with good performance. Indeed, the MAV maintained

Concerning height estimation by the pressure sensor artp 3P Position with good accuracy-2 m maximum error)

the adaptive visual odometer, several remarks can be madbSing the adaptive visual odometer estimates. The small er-
rors in position control are mainly due to wind which was

- The pre(sjs_ure sensp_r WOI’kS' vzell '3 good weather Cond'ébout3.5m/s during the flight test. We can also see on Fig-
tions and Itis sensitive to wind and temperature. ure 7 that reference height trajectories are tracked accurately

— The adaptive visual odometer is able to estimate the heigab:tl m maximum error) during take-off, hovering and land-
when the translational OF is not very small. '

) ing phases. The inner-loop controller performs also well and

— Compared tq the pressure sensor, the visual odometﬁracks the reference angles.

takes some time to converge .to the 'Frue value when the We conclude from this test that all the components of the

MAV experiences vertical motion (height changes). proposed vision-based autopilot (vision algorithm, adaptive
These tests prove the feasibility and possibility of estimatingjisual odometer, nonlinear controller) perform stably and
the height using optic flow and IMU data. For more I’ObUSt-robusﬂy despite the textureless environment.
ness and accuracy, the height estimate used in flight tests is \/jdeo clips of autonomous vision-based hovering can be
obtained by fusing the odometer measurement, the pressu@nd at:

sensor data and INS using a linear Kalman filter. http://jp.youtube.com/watch?v=918BXtbrDQM&feature=channel_page

6.2 Outdoor autonomous hovering with automatic take-off

and landing 6.3 Indoor autonomous flight

The objective of this experiment is to check the robustnesshis indoor flight test demonstrates the ability of our MAV,
and accuracy of the developed vision-based autopilot foequipped with the developed vision-based autopilot, to achieve
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Fig. 7 Outdoor autonomous hovering with automatic takeoff and landing using the visual odometer.

fully autonomous indoor flight using information extracted the image center. However, the developed GCS and embed-
from optic flow. This test has been conductedakyo Big ded softwares allow to choose this target-template at any lo-
Sightduring an international exhibition. cation of the image by just selecting the desired area/object
] ) ] on the image. This flight test consists in exploiting this use-
Remark 2In this test, optic flow and motion parameters werg| characteristic to achieve an accurate hovering above some

computed using the vision algorithm presented in our previgesignated ground target and to perform a precise auto-landing
ous paper [21]. onit.

Since the floor is homogeneous without any texture, we  The rotorcraft was put on a small box of about 50cm x
have put some objects on the ground to provide some texl0cm which is used as a target. The take-off procedure is
ture for optic flow computation (see Figure 8). The task wadaunched from the GCS and the target is selected when it
similar to the one described above, that is take-off, hoverappeared in the camera FOV (about 1m height during take-
ing and automatic landing. The exception or difference her@ff). When the MAV reached the desired height of 10m,
is that during autonomous hovering, we have switched tét performed an accurate hovering by detecting the target
manual flight for several seconds and then switched backnd keeping it at the image center (see Figure 10). Finally,
to autonomous flight. The objective of this maneuver was téhe auto-landing procedure is activated and the MAV exe-
show to the audience (visitors) that the rotorcraft is naturallyeuted descent flight while controlling its horizontal position
unstable and the vision-control system plays the main role itP keep the target at the image center. The MAV landed at
stabilizing the vehicle. 25 cm from the target, but it can be seen from the video that

As it can be seen in Figure 8 and Figure 9, the rotorcrafthe MAV was exactly on the target at 30 cm height and then

achieved autonomously the required task with good perfolanded just near the target. This is due to very large image
mance. displacements when the MAV is at few centimeters from the

A video clip of this flight test can be found at: target or ground. One approach to solve this problem could
http://jp.youtube.com/watch?v=Zt2WisDjUY 0&feature=channel_pagecONsist in deactivating the visual odometer and decrement-
ing the thrust when the aircraft is under some height (50cm

for example).

6.4 Automatic take-off, accurate hovering and precise Figure 11 shows the obtained MAV trajectories (posi-
auto-landing on some arbitrary target tion, height, velocity, orientation). The relative horizontal
position between the MAV and the target was regulated to
As described in Section 2, the image area where optic flowero with about:0.5m maximum error. The height is also
and image displacement are computed is initially chosen astimated and controlled accurately. The MAV was very sta-
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Fig. 9 MAV position and height trajectories of indoor autonomous flight using optic flow.

ble even at 10m height. Indeed, as shown in Figure 11, the Figure 13(a) shows the tracked target on an image cap-
horizontal velocities, pitch and roll angles are stabilized andured by the onboard camera and displayed at the GCS. We

kept very small. can also see in Figure 13(b) the rotorcraft tracking the mov-
The good performance of this flight test can be checkedng target.
by seeing the associated video clip at: Video clip of this flight test is available at:

http://jp.youtube.com/watch?v=rbmsivw5luk&feature=channel_page http://jp.youtube.com/watch?v=60bHavVvJyk&feature=channel_page

6.5 Tracking a moving ground target with automatic 6.6 Velocity-based control for trajectory tracking using
take-off and auto-landing vision

Here, we explore the possibility of our vision-control systemThis flight test involves a velocity control scheme. It aims
to track a ground moving target. For this experiment, weat evaluating and demonstrating the ability of the MAV to
have used a small cart (see Figure 13) as a target and placgehieve hovering flight and velocity trajectory tracking by
it at about 20m from the GCS. relying on velocities computed from optic flow without po-
First, the MAV performed automatic take-off from the sition feedback. After automatic take-off, the MAV is tasked
target and hovered above the target (6m height) for nearlio hover and then to achieve autonomous translational flight
100 s. Then, the target is continuously moved towards thbey tracking some reference trajectories, sentin real-time from
GCS by pulling some wire attached to the target. The conthe GCS. The commands for this test were: take-off, fly left,
trol objective is thus, to keep the moving target at the imagetop, fly forward, stop, fly right, stop, fly backward, stop,
center by controlling the relative position between the MAV hover, land.
and the target to zero. From Figure 14, the rotorcraft can be seen to clearly re-
Figure 12 shows that the target is accurately tracked evespond to commands and to track reference velocity trajecto-
when it is moving. The GPS ground-track on the first graptries. Although the closed-loop control of horizontal position
shows that the MAV flied about 20m (which correspondsis not used in this test, the MAV seems to track also the po-
also to target movement) while controlling the relative po-sition reference trajectories with small drifts. In fact, the po-
sition between the MAV and the target to zero witim  sition reference trajectories are obtained by integrating over
maximum error during tracking. time the velocity reference trajectories.
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Fig. 12 Application of the vision-based autopilot for ground moving target tracking.

Despite the poor texture (see Figure 15), the vision al-  This flight behavior is very useful and needed for many
gorithm and adaptive visual odometer were able to trackeal-world applications where GPS signal is not available.
features, compute optic flow and recover the MAV motionindeed, autonomous velocity control is sufficient to achieve
parameters. many realistic tasks by just sending high-level commands.

When doing these tests, the GPS signal was not avail- A video clip of this flight test and other tests can be
able because of some technical problem of the GPS antenf@und at:
connector. http://jp.youtube.com/watch?v=2p12GjZzjt4&feature=channel_page
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Fig. 16 Reference position trajectories tracking using visual odometer estimates.

6.7 Position-based control for trajectory tracking using altitude of 6m, 12m-sideward flight and 16m-forward flight,
visual estimates simultaneous backward and sideward flight to return to the
starting point. The height is then, reduced to 3m and small

In this experiment, both position and velocity estimates areoI Isplacement commands are gien

used by the controller to track arbitrary position and veloc-
ity trajectories, pre-programmed in the onboard FCC or sents In fact, height is reduced to 3m to avoid damaging the platform in

by the operator from the GCS. The reference trajectoriegase where the MAV crashes because of empty battery (there was no
shown in Figure 16, consist in vertical climb (take-off) to an charged battery for this test).
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Fig. 10 Rotorcraft during vision-based autonomous hovering above a
stationary target.

larget =Tt

s
the target

(b)

Fig. 13 (a) onboard image showing the detection and tracking of a
moving target; (b) MAV tracking the moving target.

(@) (b)

Fig. 15 Autonomous vision-based translational flight. (a) onboard im-
age showing features tracking in a textureless environment; (b) rotor-

Fig. 8 Indoor fully autonomous flight using optic flow. Demonstration craft during vision-based trajectory tracking.

at Tokyo Big Sighfor an international exhibition.

6.8 GPS-based waypoint navigation and comparison with
the visual odometer estimates

The obtained results, shown in Figure 16 are very satisi this last test, we have performed waypoint navigation us-
factory. Indeed, the reference position, height, velocity andng GPS data for horizontal movement control and adaptive
attitude trajectories are well tracked. The MAV was stablevisual odometer estimates for height control. A set of four

along the flight course.

waypoints were chosen by just clicking the desired locations
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Fig. 17 GPS waypoint navigation and comparison with the visual odometer estimates.

on the 2D map of the GCS interface (see Figure 5). Theur results have shown that positioning accuracy to within a
MAV should then, pass the assigned waypoints in a givetiew percent of measured ground truth is possible, over dis-
sequence. The objective of this test is to compare the GPt&nces of about hundred meters. However, the performance
and the visual odometer for estimating the horizontal poof the VO is expected to degrade for longer flight distances
sition during waypoint navigation. The obtained results aredue to the accumulation of unbounded errors. Furthermore,
shown in Figure 17. the poor texture of some terrain surfaces leads to poorer per-
One can see that the reference trajectories are trackédrmance since VO is an exteroceptive sensing method that
and the mission is accomplished. It is also important to noteelies on features tracking.
that during this translational flight, the adaptive visual odome- To enable accurate and robust long range navigation with
ter was able to estimate the MAV position or the travelledVO, this latter can be combined with other terrain relative
flight distance despite the textureless environment. Theragravigation techniques like landmarks recognition. An in-
fore, vision-based waypoint navigation is possible by thderesting approach could consist in performing landmarks
current system when combined with some landmarks recognatching and recognition in a moment-to-moment fashion
nition algorithm. (or periodically) to estimate the absolute position, and inte-
grating the flight path between landmarks to estimate the rel-
_ i ative position. Therefore, computation of distance flown is
6.9 Discussion re-commenced whenever a prominent landmark is encoun-

The reported results over different fliaht narios testi tered. Re-setting the VO at each landmark facilitates accu-

?h epg et_ esults ode b (te © fgth sdce all osd es ,fyrate long-range navigation by preventing excessive accumu-
on e etiectiveness and robusiness ot the developed VISIOfL;,, of odometric errors. Indeed, some animals like bees
based autopilot. However, the proposed system can be fur-

: . N seem to use landmark-based cues as well as visual path in-

ther improved especially the adaptive visual odometer. Her%egration to navigate to a goal [41]

we discuss briefly the ma?n weaknesses of the p_roposed V" In this paper, we have concentrated on the VO for esti-

sual odomete_r ar_1d some |deas_ o e_lddress th(_ase ISSUES. mating the vehicle’s position relative to some known loca-
Inaccuracies in position estimation are mainly due to tWOtion like the initial location or recognized landmark.

factors, estimation errors error growing in long range navi-

gation and identification errors in the adaptive process. - Range estimation errors in the adaptive proceBse

- Growing estimation errors in Visual Odometry (VO): VO visual odometer presented here requires an approximate mea-
pose estimates are produced by tracking visual features sure of height above the ground. A RLS algorithm has been
the environment and integrating or accumulating their im-used to estimate the height by fusing the derivatives of optic
age displacement. Although VO is an incremental procesdlow and IMU accelerations data. This process suffers from
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the general well-known drawbacks of identification algo-recognition and vision-based obstacle avoidance. This should
rithms like noise and poor input-output signals (non-excitecenable visual odometry to operate in long range and goal-
system). During real-time experiments, we have noticed pelriented navigation. We are also implementing a modified
formance degradation in height estimation by the RLS algoversion of the system which operates in real-time on-board
rithm when the rotorcraft is hovering or flying at very low the MAV.

speeds. In this case, input and output signals are small com-
pared to the noise level and do not contain sufficient infor-

mation to estimate the height. As stated in Section 2, thiﬁeferences

is related to the persistent excitation (PE) property which is
not satisfied in this case. 1.
This issue has been handled by switching off the adap-
tation process when the input and output signals are small
(stationary or slow flights). In this case, height estimate is
primary provided by the pressure sensor as a propagation
of previous estimates using a kinematic Kalman filter. Al-
though the obtained results are satisfactory, range estima-
tion process can be further improved by exciting the system
(small lateral oscillations or zig-zag flight) from time to time
and/or using more robust identification algorithms. 4

7 Conclusion

In this paper, we have presented a vision-based autopilof-
which is designed for miniature UAVs and MAVs flying at
low altitudes. The developed system is based on a downward,
looking camera and relies heavily on visual cues to achieve
various navigation tasks in unknown environments. Unlike
some existing bio-inspired flight controllers which are usu-
ally used for reactive navigation, the proposed vision-base
autopilot extends optic flow-based control capabilities to com-
plex navigational tasks such as accurate hovering, arbitrary
trajectory tracking, stationary and moving target tracking,
etc. These capabilities are mainly due to the incorporate
adaptive visual odometer that allows the estimation of the
height and the recovery of the rotorcraft position and veloc-

ity. A practical nonlinear control system is also designed andO0.

used for flight control. The combined visual odometer and
flight controller result in an effective autopilot that is easy
to implement while guaranteeing the asymptotic stability of
the entire closed-loop system.

The experimental flight tests, performed indoors and out-
doors under realistic conditions, have shown the good per:
formance of the proposed adaptive vision-control system.

Indeed, experimental results over various ranges of the flights.

envelope illustrate that the proposed vision-based autopi-
lot allowed a small quadrotor MAV to achieve automatic

take-off, accurate hovering, precise auto-landing, trajectory,
tracking and moving target detection and tracking. These re-
sults demonstrate that visual odometry can enable UAVs and

MAVs to navigate in unknown environments where globallS:

localization is impossible.
As future work, we plan to combine the visual odome-
ter with other navigation algorithms, including landmarks
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