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Abstract The design of reliable navigation and control sys-
tems for Unmanned Aerial Vehicles (UAVs) based only on
visual cues and inertial data has many unsolved challenging
problems, ranging from hardware and software development
to pure control-theoretical issues. This paper addresses these
issues by developing and implementing an adaptive vision-
based autopilot for navigation and control of small and mini
rotorcraft UAVs. The proposed autopilot includes a Visual
Odometer (VO) for navigation in GPS-denied environments
and a nonlinear control system for flight control and tar-
get tracking. The VO estimates the rotorcraft ego-motion
by identifying and tracking visual features in the environ-
ment, using a single camera mounted on-board the vehicle.
The VO has been augmented by an adaptive mechanism that
fuses optic flow and inertial measurements to determine the
range and to recover the 3D position and velocity of the ve-
hicle. The adaptive VO pose estimates are then exploited
by a nonlinear hierarchical controller for achieving various
navigational tasks such as take-off, landing, hovering, tra-
jectory tracking, target tracking, etc. Furthermore, the as-
ymptotic stability of the entire closed-loop system has been
established using systems in cascade and adaptive control
theories. Experimental flight test data over various ranges of
the flight envelope illustrate that the proposed vision-based
autopilot performs well and allows a mini rotorcraft UAV to
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achieve autonomously advanced flight behaviours by using
vision.
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UAV · visual odometry· visual servoing

1 Introduction
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Fig. 1 Visual navigation and control of small rotorcraft UAVs using
vision.
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Recently, there is a growing interest in developing fully
autonomous UAVs and Micro Air Vehicles (MAVs) for mili-
tary and civil applications. The design of sensing, navigation
and control systems is a crucial step in the development of
such autonomous flying machines. Position, altitude and ori-
entation measurements are usually sufficient for the control
of UAVs operating at high altitudes. Therefore, conventional
avionics that include GPS and IMU provide the required in-
formation for flight control and waypoint navigation. On the
other hand, mini and micro UAVs are designed to operate at
low altitudes in cluttered environments. To achieve realistic
missions in such complex environments, the flight controller
requires precise estimation of both the vehicle pose and its
surrounding environment. Among many sensors for envi-
ronment mapping and obstacles detection, ultrasonic sen-
sors, Laser Range Finder (LRF), radar and vision have dis-
tinct advantages when applied to UAVs. For medium-size
UAVs such as the RMAX helicopter, LRF is widely used
for obstacles avoidance [35]. We are however, interested in
enabling mini UAVs and MAVs to achieve advanced flight
behaviors in cluttered environments. The limited payload of
these small platforms precludes the use of conventional and
standard sensors. Therefore, small cameras, which are avail-
able today at low-cost, are attractive sensors for mini UAVs
flying near the ground in hazardous environments. Indeed,
vision provides a viable and useful solution to sensing on
UAVs because cameras are too light to fit the limited pay-
load capabilities of MAVs. Furthermore, visual sensors are
passive and contain rich information about the vehicle mo-
tion and the environment structure. Unlike GPS, which does
not work in the shadow of satellite visibility, vision works in
a cluttered urban environment or even in indoor spaces.

1.1 Related work on visual aerial navigation

Although computer vision has many benefits for UAVs con-
trol and guidance, it presents many challenges too. Indeed,
the design of reliable and real-time vision algorithms is a
complex problem. Moreover, synthesizing robust flight con-
trollers that are based on visual cues is another challenge.
Despite these challenging issues, promising results have been
obtained using computer vision for aerial vehicles control
and navigation. Potential applications of computer vision
for UAVs include pose estimation, landing, objects detection
and tracking, mapping and localization, obstacles avoidance,
etc.

In several UAVs projects, vision is used as a method to
sense the aircraft ego-motion. Stereo visual odometers for
relative position estimation were implemented in the CMU
helicopter [3] and the USC’s robotic helicopter. In [21] and
[20], structure from motion approach has been applied to
recover the ego-motion of autonomous micro air vehicles.

Vision has also been applied to recover UAVs pose with re-
spect to some artificial marks like the work presented in [2].
Some researchers have also developed vision systems that
can estimate the UAV attitude by detecting the horizon line
[9].

The use of vision for autonomous landing has been ac-
tively researched. In the BEAR project at the university of
California Berkeley, a vision system that uses multiple view
geometry has been developed to land an autonomous he-
licopter on a moving deck [38]. In [34], the authors pro-
posed a vision-based strategy that allows the AVATAR he-
licopter to land on a slowly moving helipad with known
shape. Stereo vision is also used to detect safe landing area
and to achieve soft landing [18], [44].

There are also some applications of vision for UAVs si-
multaneous localization and map building (visual SLAM)
[27], [6], [26].

Computer vision is also used as the primary sensor for
objects detection and tracking like for windows tracking [30],
[32], moving target tracking [19], road following [8], etc.

Most of previous techniques rely on the reconstruction
of the vehicle’s state vector which is then used in the con-
trol loop. It is also important to note that most reported ex-
perimental results have been obtained using helicopters that
weigh several kilograms.

Recently, many researchers have been interested in using
image motion or optic flow for UAVs control and navigation
without recovering the explicit motion of the vehicle. These
techniques are inspired from insects like honeybees and flies
which rely heavily on optic flow for navigation and flight
control [42], [43].

Barrows [5] designed a VLSI optic flow sensor for use
in a MAV, which was tested on a small glider, and later ap-
plied for altitude control of a small aircraft [13]. Ruffier
and Franceschini [33] developed an optic flow-based au-
topilot to control a tethered 100-g helicopter. In later work
[37], another vision-based system was used for speed con-
trol and lateral obstacle avoidance. Another interesting work
has been done by Zuffery and Floreano [45] who have devel-
oped 30-g and 10-g microflyers that can avoid walls using
optic flow. A combined optic flow and stereo-based navi-
gation system has been implemented on the AVATAR heli-
copter by Hrabaret al. [16] to demonstrate obstacles avoid-
ance in an urban environment. In [7], Chahlet al. designed
and implemented an optic flow-based system for UAVs land-
ing. In recent work, Garratt and Chahl [11] conducted exper-
iments on a Eagle helicopter and used optic flow and GPS
velocity for height estimation, terrain following and lateral
motion control.

While most of reviewed works have been done using
fixed-wing UAVs or small-scale helicopters, little experi-
mental results have been reported on vision-based control
of mini rotorcraft UAVs that weigh less than one kilogram
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like the quadrotor helicopter. Most existing works on visual
servoing of mini quadrotor UAVs have focused on basic sta-
bilization or hovering [2], [10], [14] and indoor flights in
structured environments [45], [1], [15].

1.2 Description of the proposed vision-based autopilot

In this paper, we present an embedded autopilot which uses
information extracted from real-time images for navigation
and flight control. Our objective in this research is to ex-
tend previous findings on vision-based navigation in order
to allow mini rotorcraft UAVs to navigate within unknown
indoor and outdoor environments and to achieve more ad-
vanced flight behaviors like trajectory tracking, precise hov-
ering, vertical landing, target tracking, etc. Furthermore, the
system is needed to meet the payload requirements of minia-
ture rotorcraft that weigh less than 1 kg. In order to reach
this goal, we have dealt with both theoretical and practical
aspects of vision-based control of UAVs. Indeed, we have
designed and implemented a vision-based autopilot that in-
cludes a real-time vision algorithm for features tracking and
image motion integration, an adaptive visual odometer for
range and motion estimation, and a hierarchical nonlinear
controller for guidance and 3D flight control.

Functionally, the vision algorithm computes in real-time
optic flow, tracks visual features and estimates the travelled
flight distance in terms of total image displacement (in pix-
els). These visual measurements are then fused with IMU
data in order to overcome the non-desired rotation effects.
Indeed, it is difficult to sense UAV translation with vision
alone since image displacements also occur with aircraft ro-
tation (translation-rotation ambiguity). Another ambiguity is
the scale factor or the unknown range that can not be esti-
mated from visual measurements alone. This ambiguity is
resolved by exploiting the adaptive control tools to identify
the scale factor or range from optic flow and accelerometers
data. The real aircraft position, velocity and height are then
recovered. These estimates are then, used by a multipurpose
nonlinear controller for autonomous 3D flight control.

Although previous works have shown that visual cues
can lead to an autonomous flight, our work has extended
this finding in a number of areas. The proposed autopilot is
based on only two lightweight sensors, a small single cam-
era and a low-cost IMU without using GPS. A major nov-
elty in our work is that we have demonstrated the possibil-
ity and feasibility of recovering the range and aircraft mo-
tion from optic flow and IMU data, thereby leading to ad-
vanced flight behaviors. Unlike other works, our system has
been implemented and demonstrated outdoors and indoors
using a miniature unstable rotorcraft that weighs less than
700 grams. A final new contribution of this work is that we
have developed a 3D flight nonlinear controller and proved

its asymptotic stability and robustness even in the presence
of estimation errors in the visual odometer.

The remainder of this paper is organized as follows. Sec-
tion 2 describes the vision algorithm and its implementation.
In Section 3, we explain the mathematical basis of the adap-
tive visual odometer and discuss how range and UAV motion
can be estimated by accurately fusing optic flow with IMU
data. The design of a nonlinear flight controller is presented
in Section 4, followed by the stability analysis of the closed-
loop system. The platform hardware and real-time imple-
mentation of the vision and control algorithms are described
in Section 5. Experimental results for a quadrotor MAV are
presented and discussed in Section 6. Finally, we provide in
Section 7 some conclusions and a summary of the obtained
results.

2 Vision algorithm for features tracking and image
motion integration

The main objective of this vision algorithm is to extract
useful information, from the video of an on-board camera,
about the MAV motion and its environment. The proposed
approach is an incremental procedure that relies on features
tracking in order to provide visual measurements about the
aircraft velocity and its position relative to its initial loca-
tion.

2.1 Features selection and tracking

The tracking algorithm consists of a Lucas-Kanade (LK)
tracker which is based on gradient-based optic flow compu-
tation. In our implementation, we have used the OpenCV li-
brary that contains efficient implementation of the Shi-Tomasi
[39] algorithm for good features selection and the pyramidal
LK [29] algorithm for features tracking.

The outputs of this algorithm are the positions(xi(t),yi(t))
of the tracked features in the image frame. We have slightly
modified that algorithm in order to provide also estimates
about the optic flow at each feature location.

2.2 Estimation of the rotorcraft pseudo-motion

A vision system can estimate rotorcraft pseudo-motion1 by
tracking stationary objects (features) in the surrounding en-
vironment. Features are displaced in consecutive images as
the rotorcraft moves. In the previous subsection, we have
briefly described an effective algorithm for accurately mea-
suring this image displacement (feature position and feature

1 Pseudo-motion means here, motion in the image frame which is
expressed in pixels.
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velocity or optic flow). There are many approaches for in-
terpretating these visual estimates in order to extract useful
information for navigation. The traditional approach, known
as the Structure-From-Motion (SFM) problem consists in re-
covering both the camera ego-motion and scene structure
using correspondences of tracked features [20] or computed
optic flow [21]. Another approach, inspired from biology,
uses directly optic flow for reactive navigation without any
reconstruction of the motion and structure.

choose an 
image area

select 20 features

track features and 
compute OF

fuse features position 
and velocity

if

Kalman filter

send data to the 
onboard FCC

display image and 
features in the GCS

accumulated features 
displacement [pixels]

template position 
(ximg, yimg) in the 
image frame

total image 
displacement

+

increment with the 
current position

onboard part 
of the vision 

algoritm

re-initialize in 
the next step

total 
displacement 

[pixels]  
& 

optic flow 
[pixels/s]

template

(x1,y1)
.
(xn,yn)

(OFx1,OFy1)
.
(OFxn,OFyn)

(x1,y1)
.
(xn,yn)

(OFx, OFy) (ximg, yimg)

. . . . .

. . . . .. . . . .

optic flow

D

(ximg, yimg)+ D

Fig. 2 Block diagram of the real-time vision algorithm.

Here, we propose another approach which consists in
tracking few features in a small image area and integrating
over space and time these measurements in order to provide
one robust estimate about optic flow and the total image dis-
placement. The approach is motivated by the fact that only
few useful and reliable measurements will be processed by
the onboard flight computer, thereby reducing the computa-
tion time. Figure 2 shows the main steps of our vision algo-
rithm.

In the beginning, about 20 features are selected in some
given 50× 50 image area that can be considered as a "tar-
get template" which is initially chosen at the image center.
These features are then tracked in the successive images, and
the position of the "target template" is simply computed by
taking the mean of the tracked features position. The "target
template" velocity or optic flow is also calculated by taking
the mean of the tracked features velocity. As the rotorcraft
moves, older features leave the Field Of View (FOV) and
new features enter the FOV. Therefore, an effective mecha-
nism is required to deal with features disappearance and ap-
pearance and to continue motion estimation. The proposed
approach consists in selecting a new set of features under
the following conditions:

¦ Target template is at the image border:when the target
template is about to go out of view causing features dis-
appearance, a new target template is chosen at the image
center and new features are selected in this template.
In order to provide a pseudo position estimate relative
to the initial MAV location, a displacement offset is in-
cremented and added to the new template position mea-
sured in the image frame.

¦ Features dispersion:in an ideal tracking, the geometric
configuration of tracked features should be almost con-
stant. However, because of large attitude changes, poor
matches and erroneous correspondences due to image
noise, features may be scattered, dispersed and go out
of the template. To overcome this problem, we compute
the variance of features position and re-select new fea-
tures in the same template when this variance exceeds
some threshold.

¦ Unreliable feature correspondences:during real-time ex-
periments, we have noticed that from time to time there
are false feature correspondences which are mainly due
to image quality and video transmission. We have thus,
implemented a simple strategy which consists in reject-
ing feature matches when the difference between the pre-
vious and actual position (or optic flow) exceeds some
threshold. This simple strategy turned out to be very ef-
fective in practice and it improved significantly the per-
formance of the the visual odometer.

¦ Arbitrary target selection by the operator at the ground
control station (GCS):the developed GCS software al-
lows the operator to chose any target or area in the image
by just clicking on the desired location. Consequently,
new features are selected in that area which is then tracked
over time.

The obtained visual measurements are filtered and sent
through WiFi to the onboard Flight Control Computer (FCC)
where further processing is performed. More precisely, six
data are sent to the FCC: the two components of optic flow
(ẋ, ẏ)[pixels/s]; the target template position(ximg,yimg)[pixels]
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in the image frame; and the two components of the total dis-
placement(x,y)[pixels].

2.3 Rotation effects compensation

Image displacements occur with rotorcraft translation and
orientation. Therefore, in order to sense aircraft translation
which is essential for flight control, rotation effects must be
eliminated from the measured image displacement and op-
tic flow. Furthermore, this translation-rotation ambiguity is
more significant in rotorcraft UAVs since the vehicle transla-
tion is a direct result of its attitude change. To overcome this
problem and compensate the rotational components of op-
tic flow and image displacement, onboard IMU data (Euler
angles(θ ,φ) and angular rate data(ωx,ωy,ωz)) are used.

{
xt = x− (− f tanθ)

yt = y− ( f tanφ)
(1)

and




ẋt = ẋ− (
ximgyimg

f
ωx−

f 2 +x2
img

f
ωy +yimgωz)

ẏt = ẏ− (
f 2 +y2

img

f
ωx− ximgyimg

f
ωy−ximgωz)

(2)

wheref is the camera focal length,(xt ,yt) and(ẋt , ẏt) are the
translational components of image displacement and optic
flow, respectively.

For effective compensation of the image displacement
caused by rotation, the latency problem between the IMU
measurements and visual estimates should be addressed. From
experimental tests, we have identified a time-delay of about
0.25sbetween the IMU and visual data. This delay is mainly
due to the fact that images are processed at the ground sta-
tion and the visual data are sent back to the embedded micro-
processor for further processing. To overcome this problem,
we applied a low-pass filter to the IMU data to filter the mea-
surements from noise but also to introduce a0.25s delay in
the IMU data. By using this simple strategy, the filtered (or
delayed) IMU measurements were almost identical to vision
estimates during pure rotation movements, thereby resulting
in effective compensation of rotation effects (see Figure 6).

At this stage, we have visual information(xt ,yt , ẋt , ẏt)
about the rotorcraft position and velocity which are expressed
in terms of incremented image displacement in[pixels] and
optic flow in [pixels/s]. The true UAV position and velocity
can not be directly deduced because of the range ambigu-
ity. Indeed, the translational image displacement depends on
both aircraft translation and relative distance (range) to the
perceived objects.

3 Adaptive visual odometer for range and UAV motion
estimation

This section presents an adaptive visual odometer that can
estimate the true MAV position in[m] and velocity in[m/s]
using the visual estimates(xt ,yt , ẋt , ẏt) and accelerometers
measurements. Furthermore, the proposed odometer allows
to recover the range, which is used for height control when
the camera is looking downwards or obstacles avoidance for
any other camera orientation.

3.1 Mathematical formulation of the adaptive visual
odometer

Here, we show theoretically that it is possible to recover the
range and the real UAV motion using only visual informa-
tion from a single camera and accelerometers data.

Let us write the relation between the available visual
measurements(xt ,yt [pixels], ẋt , ẏt [pixels/s]) and the state vari-
ables(X,Y,Z[m],Vx,Vy,Vz[m/s]) expressed in the inertial frame.
If the camera is looking downwards, then we can write:




xt = f
X
Z

yt = f
Y
Z

(3)

and




ẋt = f
Vx

Z
+ximg

Vz

Z

ẏt = f
Vy

Z
+yimg

Vz

Z

(4)

It is clear from the above equations that if the rangeZ
(here equivalent to height) can be estimated then the true
MAV position and velocity can be recovered using equations
(3) and (4). As a first step, we propose a real-time identi-
fication algorithm that will estimate the rangeZ under the
following assumptions:

1. The height changes are small (Z≈ cst andVz≈ 0) when
applying the identifier.

2. The terrain or relief is smooth such that it can be decom-
posed into flat segments.

In order to satisfy the first assumption, a static pressure
sensor was added to the platform for enhancing the vertical
motion estimation and control. However, this sensor does
not provide height above the ground objects or relative dis-
tances to the perceived objects. Like GPS, it indicates the
height with respect to the sea level, and when calibrated it
can estimate the height with respect to the initial point. We
would like to highlight that pressure sensor is very light (few
grams), cheep (few dollars) and works in indoor and outdoor
environments. Thus, it can be easily integrated into MAV
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and combined with vision to improve the control of vertical
motion.

By considering the previous assumptions, equation (4)
becomes:




ẋt w f
Vx

Z

ẏt w f
Vy

Z

=⇒





ẍt w f
ax

Z

ÿt w f
ay

Z

(5)

where(ax,ay) are the MAV linear accelerations expressed in
the inertial frame.

Many types of on-line parameter estimation techniques
can be applied to estimateZ using the derivatives of optic
flow and linear accelerations (see equation (5)). Our odome-
ter is based on the Recursive-Least-Squares (RLS) algorithm
which presents many advantages for our application.

3.2 Generalities on the Recursive-Least-Squares algorithm

The choice of this method is essentially motivated by the
fact that it is easy to implement and appropriate for real-
time applications. In addition, it is robust with respect to
noise and it has been widely used in parameter estimation in
a recursive and nonrecursive form mainly for discrete-time
systems [17], [12], [4], [28].

The RLS method is simple to apply in the case where
the unknown parameters appear in a linear form, such as in
the linear parametric model:

y = bTγ

wherebT is a constant vector which contains the unknown
parameters and(y,γ) are the available output and input sig-
nals.

The RLS algorithm formula are obtained by minimizing
some cost function and its expression is as follows [17]:

˙̂b = P ε γ

Ṗ = βP−P
γγT

m2 P, P(0) = P0

m2 = 1+ γTγ

ε =
y(t)− b̂Tγ(t)

m2

(6)

The stability properties of the RLS algorithm depend on the
value of the forgetting factorβ .

In our implementation, we have used a robust version of
the standard RLS algorithm that includes:

– RLS with forgetting factor: equation (6) has been mod-
ified to avoid an unbounded growth of he gain matrix
P(t) when the forgetting factorβ > 0.

– RLS with projection: in many practical problems where
b represents the physical parameters of a plant, we may
have some a priori knowledge like the upper and/or lower
bounds(bmax,bmin). Thus, we have modified the RLS al-
gorithm to constrain the estimates search, thereby result-
ing in the following advantages: 1) speed-up the conver-
gence, 2) reduce large transients, and 3) avoid some sin-
gular cases likêb= 0 which is very important for control
design.

– RLS with dead-zone: the principal idea behind the dead-
zone is to monitor the size of the estimation error and
adapt only when the estimation error is large relative
to the modelling error or disturbance. This means that
adaptation or identification process is switched off when
the normalized estimation errorεm is small.

More details about robust RLS algorithms including their
stability analysis can be found in [17] and the references
therein.

3.3 Application of RLS algorithm to range (height)
estimation

Now, let us apply a robust RLS algorithm to estimate the
heightZ in (5). In a deterministic case,Z can be estimated
using one of the following SISO subsystems "ẍt = f ax

Z " or
"ÿt = f ay

Z ". An interesting solution could consist in esti-
matingZ for each SISO subsystem and then, fuse the two
obtained estimates(Ẑ1, Ẑ2) in a favorable manner. For more
robustness against noise and external disturbances, we have
applied the RLS algorithm with projection and dead-zone in
order to estimatêZ1, Ẑ2 from available measurements(ẋt ,ax),
(ẏt ,ay), respectively. The two estimates(Ẑ1, Ẑ2) have then
been fused using a weighted averaging method where the
weights depend on thePersistency Excitation(PE) property
of each signalai , i = x,y. This idea can be mathematically
described as follows:

Ẑ =





1
w1 +w2

(w1Ẑ1 +w2Ẑ2) if w1 +w2 6= 0

Ẑt−1 otherwise
(7)

where the weights(w1,w2) are functions of thePE condi-
tion.

In order to apply the RLS method to estimateZ in (5),
we need to write the preceding system in the following lin-
ear parametric form:y= bTγ , and then the application of the
modified robust RLS algorithm becomes straightforward. This
can be done using the following formula:




y1 =
sẋt

(s+λ1)
, γ1 =

ax

(s+λ1)
,b1 =

f
Z

y2 =
sẏt

(s+λ2)
, γ2 =

ay

(s+λ2)
,b2 =

f
Z

(8)
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where 1
(s+λ1) and 1

(s+λ2)
are fist-order low-pass filters, which

are used to avoid direct signals differentiation.

Theorem 1 For i = 1,2, the modified RLS algorithm with
projection and dead-zone, applied to system (5) and (8),
guarantees the following properties, [17]:

(a) b̂i ,
˙̂bi ∈ L∞ (bounded).

(b) bmin≤ b̂i(t)≤ bmax, ∀t ≥ 0, wherebmin > 0 andbmax> 0
are a priori known lower and upper bounds of the para-
meterb (projection principle).

(c) limt→∞ b̂i(t) = b̄i whereb̄i is a positive constant.
(d) If γi ∈L∞ and γi is PE, then the estimatêb converges

exponentially to its true value2 b.

Rigorous and detailed proof of this theorem can be found in
any book on identification techniques such as [17].

Since the two estimates(b̂1, b̂2) satisfy the properties in
Theorem 1, it is then trivial to show thatẐ1 = f

b̂1
, Ẑ2 = f

b̂2

andẐ in (7) are positive and satisfy also the properties (a)-
(d) listed in Theorem 1. Once the heightZ is identified, the
aircraft horizontal position vector(X,Y) and velocity vector
(Vx,Vy) can be recovered using (3) and (5):





X̂ =
xt

b̂
= Ẑ

xt

f

Ŷ =
yt

b̂
= Ẑ

yt

f

Ẑ =
f

b̂

and





V̂x =
ẋt

b̂
= Ẑ

ẋt

f

V̂y =
ẏt

b̂
= Ẑ

ẏt

f

(9)

Proposition 1 The adaptive observer (9) is stable and the
convergence of the state variables (X̂,Ŷ, Ẑ,V̂x,V̂y) is guar-
anteed. Furthermore, if thePEproperty is satisfied, then the
identification errors(X̃ = X− X̂, ... Ṽy = Vy−V̂y) converge
to zero.

In fact, the observer stability is a direct consequence of
the parameter identifier (RLS algorithm) stability. Indeed,
the obtained position and velocity estimates satisfy the fol-
lowing properties:

– Sinceb̂(t) ∈ [bmin,bmax]→ b̄, then, from (9) we deduce
that

(X̂,Ŷ, Ẑ,V̂x,V̂y)−→ (X,Y,Z,Vx,Vy) b/b̄ (10)

– Furthermore, if(ax,ay) satisfy thePE property, then,

{
b̂−→ b =⇒ b̃−→ 0

(X̃,Ỹ, Z̃,Ṽx,Ṽy)−→ (0,0,0,0,0)
(11)

2 In the presence of external disturbances,b̃i = b− b̂i converges ex-
ponentially to the residual set:{b̃i/|b̃i | ≤ c(ρ0 + d̄)}, whered̄ is the
disturbance upper bound,c is a positive constant andρ0 characterizes
the dead-zone.

3.4 Fusion of visual estimates, inertial and pressure sensor
data

This last step of the visual odometer consists in fusing the
visual estimates(X̂,Ŷ, Ẑ,V̂x,V̂y), inertial data(ax,ay,az) and
pressure sensor measurementsZps in order to improve the
odometer accuracy and robustness, reduce the noise and es-
timate the vertical velocityVz. The data fusion is performed
using a linear Kalman filter with choosing(X,Y,Z,Vx,Vy,Vz)
as a state vector,(X̂,Ŷ, Ẑ,Zps,V̂x,V̂y) as a measurement vec-
tor and(ax,ay,az) as an input vector. The implementation of
such Kalman filter is straightforward and thus further details
are omitted here.

4 Nonlinear 3D flight controller design and stability

This section presents the design of a nonlinear flight con-
troller and the analysis of the closed-loop system stability.
The objective is to design an effective and practical con-
troller that considers plant system nonlinearities and cou-
pling, but also the characteristics and specificities of the adap-
tive visual odometer estimates. Furthermore, the controller
is required to guarantee good flight performance and robust-
ness even in the presence of identification errors.

4.1 Rotorcraft dynamics modelling

Let us denote byξ =(X,Y,Z), υ =(Vx,Vy,Vz), η =(φ ,θ ,ψ),
η̇ = (φ̇ , θ̇ , ψ̇) the position, translational velocity, orientation
and angular rate vectors, respectively. Therefore, the dynam-
ics of a rotorcraft UAV such as the quadrotor helicopter, used
in this research, can be represented by the following mathe-
matical model [31], [22]:





ξ̈ =
1
m

uRe3−ge3

M(η)η̈ +C(η , η̇)η̇ = Ψ(η)Tτ
(12)

whereu is the total thrust,τ is the torque vector,RandΨ are
the rotation and Euler matrices, respectively. The pseudo in-
ertial matrixM is defined asM(η) =Ψ(η)TJΨ(η), andC is
given byC(η , η̇)=Ψ(η)TJΨ̇(η)−Ψ(η)Tsk(Ψ(η)η̇)JΨ(η).

4.2 Flight controller design

Control design for rotorcraft UAVs is already a challeng-
ing task, especially when it comes to deal with unknown
parameters and state variables estimation errors. To cope
with these issues, we have proposed a hierarchical flight
controller that exploits the structural properties of rotorcraft
UAVs model given by (12). Our objective is to develop a 3D
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flight controller that performs well in practice3 as well as in
theory4.

To reach this goal, we have separated the aircraft model
into two connected subsystems by decoupling the transla-
tional dynamics (outer-loop) and rotational dynamics (inner-
loop). The time-scale separation between the two subsys-
tems is made by considering the following transformations
(or change of variables):

τ = JΨ(η)τ̃ +Ψ−1C(η , η̇)η̇

µ =
1
m

uR(φd,θd,ψd)e3−ge3

(13)

whereτ̃ is a new torque vector,µ is an intermediary force
vector and(φd,θd,ψd) are desired roll, pitch and yaw an-
gles.

By defining the tracking errorsχ = (ξ −ξd,υ−υd)T ∈
R6 ande= (η −ηd, η̇ − η̇d)T ∈ R6, replacingη by ηd +e
in (12) and considering (13), the system (12) can be written
in the following form [25], [23]:




χ̇ = A1χ +B1(µ− ξ̈d)︸ ︷︷ ︸
f (χ,µ ,ξ̈d)

+
1
m

u H(ηd,eη)
︸ ︷︷ ︸

∆(u,ηd,eη )

ė= A2e+B2(τ̃− η̈d)

(14)

whereH(ηd,eη) = (0,0,0,hx,hy,hz)T is a nonlinear inter-
connection term. The matricesA1 ∈ R6×6,B1 ∈ R6×3,A2 ∈
R6×6 andB2 ∈ R6×3 are defined in [23].

The rotorcraft control problem is thus, formulated as the
control of two cascaded subsystems which are coupled by
a nonlinear term∆(u,ηd,eη). Some techniques have been
proposed in the literature to control systems in cascade [40],
[36]. Here, we use partially passivation design to synthesize
two stabilizing feedbacksµ = α(χ̂ , ξ̈d), τ̃ = β (e, η̈d) such
that the tracking errors(χ ,e) are asymptotically stable for
all initial conditions. The idea is to consider∆(u,ηd,eη) as
a disturbance on theχ-subsystem which must be driven to
zero, and stabilize independently theχ- ande-subsystems.

Since theχ-subsystem without the coupling∆(.) and
thee-subsystem in (14) are linear, we can use simple linear
controllers such as PD or PID. Therefore, we synthesize two
control laws
{

µ =−Kχ χ̂ + ξ̈d, Kχ ∈ R3×6

τ̃ =−Kee+ η̈d, Ke∈ R3×6
(15)

such that the matricesAχ = A1−B1Kχ and
Ae = A2−B2Ke are Hurwitz.

It is important to note that the controlµ(χ̂) is com-
puted using the estimates of the adaptive visual odometer.

3 It is easy to implement and guarantees good flight performance.
4 It considers system nonlinearities/coupling and guarantees the sta-

bility of the closed-loop system

Indeed,χ̂ = (ξ̂ − ξd, υ̂ − υd)T where ξ̂ = (X̂,Ŷ, Ẑ)T and
υ̂ = (V̂x,V̂y,V̂z)T .

AlthoughAχ andAe are Hurwitz, the asymptotic stabil-
ity of the closed-loop system can not be directly deduced
because of the interconnection term∆(χ̂,ηd,eη) and the
odometer estimation errors. The asymptotic stability of the
closed-loop system and its robustness with respect to∆(χ̂,ηd,eη)
are analyzed in the next subsection.

4.3 Closed-loop system stability and robustness

By substituting (15) into (14), the closed-loop system dy-
namics become{

χ̇ = A1χ−B1Kχ χ̂ +∆(χ̂ ,e)

ė= Aee
(16)

In this section, the stability of the closed-loop system (16)
is established, considering the interconnection term∆(χ̂ ,e)
and errors in the state vector estimation.

If the visual odometer estimates(ξ̂ , υ̂) converge to their
true values (no estimation errors), then the tracking error̂χ
will becomeχ and system (16) can be written as follows:
{

χ̇ = (A1−B1Kχ)χ +∆(χ,e) = Aχ χ +∆(χ,e)

ė= Aee
(17)

Even for this simplified system it is difficult to prove the sta-
bility property because of the complex interconnection term
∆(χ ,e). However, a detailed demonstration of the stability
property for system (17) can be fount in our previous papers
[25], [24].

This paper extends the previous results by proving the
stability property of system (16) even in the presence of
identification and estimation errors (i.e.,b̂ −→ b̄ 6= b and
(ξ̂ , υ̂) = (ξ ,υ)b/b̂ which means that̂χ 6= χ).

First, let us express the tracking error
χ̂ = (ξ̂ −ξd, υ̂−υd)T as a function of the original tracking
errorχ = (ξ −ξd,υ−υd)T :

χ̂ = (
b

b̂
ξ −ξd,

b

b̂
υ−υd)T =

b

b̂
χ +

b− b̂

b̂
(ξd,υd)T (18)

So, the outer-loop dynamics in (16) become:

χ̇ = A1χ−B1Kχ [
b

b̂
χ +

b− b̂

b̂
(ξd,υd)T ]+∆(b̂,χ,e)

= (A1− b

b̂
B1Kχ)

︸ ︷︷ ︸
Âχ

χ−b− b̂

b̂
B1Kχ(ξd,υd)T

︸ ︷︷ ︸
ε(b̂,ξd,υd)

+∆(b̂,χ ,e)(19)

Now, the closed-loop system (16) can be expressed in the
following form:
{

χ̇ = Âχ χ + ε(b̂,ξd,υd)+∆(b̂,χ ,e)

ė= Aee
(20)
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The termε(b̂,ξd,υd) is mainly due to the parameter estimate
errorb− b̂ (height estimation error). Indeed, ifb̂ converges
to its true valueb, thenε will converge to zero.

According to Sontag’s theorem [40], the closed-loop sys-
tem (20) is Globally Asymptotically Stable (GAS) provided
that the outer-loop "̇χ = Âχ χ + ε(b̂,zd,υd)" and the inner-
loop "ė= Aee" are GAS and the trajectories(χ(t),e(t)) are
bounded. One of the major tools usually used to show the
boundedness of connected system trajectories is the Input-
to-State-Stability (ISS) property [40]. The ISS property is
a strong condition which is often difficult to verify. For the
system (20), the complexity is due to the interconnection
term ∆(b̂,χ ,e). Consequently, we propose a theorem that
guarantees the GAS of the connected system (20) provided
that the interconnection term∆(b̂,χ,e) satisfies some re-
laxed conditions.

Theorem 2 If the following three conditions hold, then all
the solutionsχ(t) ande(t) of (20) are bounded.

A1. The equilibrium pointe= 0 is GAS and Locally Expo-
nentially Stable (LES).

A2. There exist a positive semi-definite radially unbounded
functionV(χ) and positive constantsc1 andc2 such that
for ‖χ‖ ≥ c1





∂V
∂ χ

[Âχ χ + ε(b̂,ξd,υd)]≤ 0

‖∂V
∂ χ

‖‖χ‖ ≤ c2V(χ)
(21)

A3. There exist a positive constantc3 and one class-K func-
tion γ(.), differentiable ate= 0, such that

‖χ‖ ≥ c3 ⇒‖∆(b̂,χ,e)‖ ≤ γ(‖e‖) ‖χ‖ (22)

If in addition, χ̇ = Âχ χ +ε(b̂,ξd,υd) is GAS, then the equi-
librium point (χ ,e) = (0,0) is GAS.

The proof of Theorem 2 is done in [22].

Proposition 2 The closed-loop system (20) is stable and the
tracking errorχ is bounded. Furthermore, if̂b(t) converges
to b then, the equilibrium point(χ ,e) = (0,0) is GAS.

Proof: In order to prove the stability of the closed-loop sys-
tem (16) or (20), we need to prove that thee-subsystem, the
χ-subsystem and the coupling term∆(.) satisfy the condi-
tions A1, A2 and A3 respectively.

• A1.e-subsystem stability:Since the matrixAe is Hurwitz,
then, thee-subsystem (inner-loop) is GES which is stronger
than the GAS property.

• A2. χ-subsystem stability:We are interested here, in the
stability of the subsysteṁχ = Âχ χ + ε(b̂,ξd,υd) without

the interconnection term. It is clear from (19) that ifb̂→ b,
the systemχ̇ = Âχ χ + ε(b̂,ξd,υd) will be GAS. Indeed, for
b̂→ b, we haveε(.)→ 0 andÂχ → Aχ , which is Hurwitz.
Consequently, the inequalities (21) hold.

Now, let us analyze the stability of theχ-subsystem in
the presence of parameter estimate errors, i.e.,b̂→ b̄ 6= b.
So, in the following, we will show that the termε(b̂,ξd,υd)
is bounded, the matrix̂Aχ = A1− b

b̂
B1Kχ is Hurwitz and the

tracking errorχ(t) is bounded. Furthermore, we will prove
that the assumption A2. of Theorem 2 is satisfied.

Let us recall the expression of the identification error-
related termε(b̂,ξd,υd)=−b−b̂

b̂
B1Kχ(ξd,υd)T . Sinceb̂(t)∈

[bmin,bmax] (see Theorem 1) and the desired trajectories
(ξd(t),υd(t)) are bounded, then it is trivial to deduce that
ε(.) is also bounded. Then, there exists a positive constantd
such thatd = ‖ε(.)‖∞.

We recall that the matrixA1−B1Kχ is Hurwitz and the
term b

b̂
is positive and bounded. Due to the structure of the

matricesA1 andB1, then it is easy to show that the matrix
Âχ = A1− b

b̂
B1Kχ is also Hurwitz. Therefore, the subsys-

tem χ̇ = Âχ χ + ε(b̂,ξd,υd) is equivalent to the following
differential equation:χ̇ − Âχ χ = ε(t). The solution of the
preceding differential equation is:

χ(t) = χ(0)eÂχ t +
∫ t

0
eÂχ (t−τ)ε(τ)dτ (23)

From equation (23), we can show that after a finite time T,
we obtain

‖χ(t)‖ ≤ ‖ε(t)‖ ≤ d,∀t ≥ T (24)

This means that given any initial conditionχ(0), the tra-
jectoriesχ(t) of the subsystem "̇χ = Âχ χ + ε(b̂,ξd,υd) "
converge exponentially to a bounded ball with a radiusd.
Hence, inequalities (21) hold for‖χ‖ ≥ c2 , d.

• A3. ∆(.) growth restriction:Now, let us analyze if the in-
terconnection term∆(.) satisfies the growth condition (22).
By recalling (14), we have

‖∆(χ̂,e)‖=
1
m
|u(χ̂)|‖H(χ̂ ,e)‖ (25)

where




‖H(χ̂ ,e)‖=

√
h2

x +h2
y +h2

z

|u(χ̂)|= m‖µ(χ̂)+ge3‖= m
√

µ2
x + µ2

y +(µz+g)2

(26)

Lemma 1 Assume that the desired trajectories(ξd(t),υd(t))
and their time-derivatives are bounded. Then, there exist
positive constantsr, k1 andk2 such that the collective thrust
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u(χ̂) and the coupling termH(χ̂ ,e) satisfy the following
properties:




|u(χ)| ≤

{
k1‖χ̂‖, for ‖χ̂‖ ≥ r

k1r, for ‖χ̂‖< r

‖H(χ̂ ,e)‖ ≤ k2‖e‖
(27)

The proof of Lemma 1 is given in [22].

Recalling (25) and (27), the interconnection term∆(.)
verifies

‖∆(χ̂,e)‖ ≤ k1k2

m
‖e‖‖χ̂‖, for ‖χ̂‖ ≥ r (28)

Substituting (18) into (28) and recalling thatb̂ and(ξd,υd)
are bounded, then one can write

‖ ∆(b̂,χ ,e)‖= ‖∆(χ̂ ,e)‖ ≤ k1k2

m
‖e‖‖b

b̂
χ +

b− b̂

b̂
(ξd,υd)T‖

≤ k1k2

m
‖e‖(k3‖χ‖+k4‖χ‖)≤ (k1k2)(k3 +k4)

m
‖e‖‖χ‖ (29)

for ‖χ‖ ≥ 1, k3 = b
bmin

andk4 is the upper bound of

‖b−b̂
b̂

(ξd,υd)T‖. By definingγ(‖e‖)= (k1k2)(k3+k4)
m ‖e‖, which

is a class-K function, the interconnection term∆(b̂,χ,e)
satisfies the growth restriction (22), that is,
∆(b̂,χ,e)≤ γ(‖e‖)‖χ‖ for ‖χ‖ ≥ c3 , max( r−k4

k3
,1).

Finally, the stability of the closed-loop system (20) and
the boundedness of trajectories(χ(t),e(t)) are direct conse-
quences of Theorem 2. Furthermore, if thePE property is
satisfied, then the estimateb̂(t) converges exponentially to
the true valueb. Therefore, theχ-subsystem is GAS, thereby
ensuring the GAS of the equilibrium point(χ ,e) = (0,0).

These theoretical results are very interesting because they
state that the aircraft position and velocity can be accurately
recovered and controlled using only visual cues and IMU
data. Furthermore, in the presence of significant external dis-
turbances that may probably induce bounded errors in the
parameter estimatêb (height sinceb̂ = f/Ẑ), the stability
of the connected closed-loop system holds and the position
tracking errors remain within a small bounded region (see
equation (24)). The tracking errors can be significantly re-
duced by exciting the system (PE property) in order to im-
prove the estimation of the unknown parameterb or height.

5 Aerial robotic platform and software implementation

The proposed adaptive vision-based autopilot was imple-
mented on a quadrotor MAV platform that we have devel-
oped atChiba University. This section provides information
about the air vehicle, its avionics and real-time architecture,
and the implementation of vision and control algorithms.

5.1 Description of the aerial robotic platform

Our testbed is based on a quadrotor vehicle which is man-
ufactured by theAscending Technologies GmbHcompany
(Germany). The original kit includes the airframe, four brush-
less motors, four propellers and some electronics for manual
flight. The vehicle is 53 cm rotor-tip to rotor-tip and weighs
400 grams including battery. It has a 300-g payload and an
endurance of approximately 22 minutes without payload and
12 minutes with full payload. The original electronics of the
AscTech quadrotor were kept but its attitude controller has
been disabled except internal gyros feedback control which
is running at 1 kHz.

In order to demonstrate vision-based autonomous flight,
we have fitted the quadrotor helicopter with an embedded
autopilot, which is designed and built by the authors. As
shown in Figure 3, the hardware components that make up
the basic flight avionics of our platform include a small micro-
controller fromGumstix Inc., the MNAV100CA sensor from
Crossbow Inc.and a vision system fromRange Video Inc.

- Gumstix micro-controller:the Gumstix micro-controller is
a light-weight and powerful computing unit that is very ap-
propriate for our needs and micro UAVs applications in gen-
eral. Indeed, it weighs only 8 grams and has a 400-MHz
CPU with 16-MB flash memory and 64-MB SDRAM mem-
ory. Two expansion boards (console-stand wifistix) have
been mounted on the Gumstix motherboard, thereby pro-
viding two RS-232 ports and WiFi communication with the
GCS. The total weight of the obtained Linux-running com-
puter is about 30 grams including interface card, WiFi mod-
ule and antenna.

The Gumstix-based Flight Control Computer (FCC) per-
forms sensor data acquisition and fusion, implements vision
and control algorithms and generates the required control
inputs (thrust, pitching torque, rolling torque and yawing
torque).

- AVR micro-controller:this auxiliary micro-controller has
two main tasks:

1. It reads the control inputs from the main FCC and en-
codes them into a PPM signal which is then used to drive
the vehicle motors.

2. It implements the flight termination system which con-
sists in achieving an emergency landing when some hard-
ware or software problem occurs (see [25] for more de-
tails).

- MNAV sensor:The MNAV100CA sensor is manufactured
by Crossbowand designed for miniature ground and air ve-
hicles. It includes a digital IMU, a ublox GPS receiver and
a pressure sensor in one compact sensor. It is a low-cost
(1500 USD) and light-weight (35 grams without GPS an-
tenna) sensor, with a low power consumption, making it
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Fig. 3 Avionics architecture of our aerial robotic system (GPS is used here for comparison only).

ideal for mini and micro UAVs applications. The IMU out-
puts raw data from 3 accelerometers, 3 gyrometers and 3
magnetometers at the rate of 50 Hz to the FCC. The GPS
data are updated at 4 Hz and the static pressure sensor mea-
surements are provided at a rate of 50 Hz. All these sensor
data are sent to the FCC through an RS-232 serial link.

- Vision system:for this project, we have used an imaging
system fromRangeVideothat includes an analog camera
(KX-171), a 1.3 GHz wireless video transmitter, a hight gain
antenna, a video receiver and a grabber card. The choice of
this vision system was based primarily on range (about 1
km) and frequency (to avoid interferences with the 2.4 GHz
of the WiFi module). The framegrabber is used to digitize
individual frames from the analog video signal coming from
the onboard imaging system. This enables frame acquisition
at speeds up to 25 frames/s to obtain images of 320 x 240
pixels resolution.

5.2 Implementation of the real-time software

The developed real-time software can be divided into two
main parts, the ground control station software and the em-
bedded navigation and control algorithms. Figure 4 illus-
trates the interaction between the different algorithms and
systems. - The Ground Control Station (GCS) software:
the GCS software is implemented on a standard laptop us-
ing C++, MFC, OpenGL and OpenCV libraries. It includes
three different threads that are running at different frequen-
cies. The first thread runs at 5 Hz and handles wireless com-

munication with the onboard FCC for receiving and decod-
ing flight data (telemetry), and sending visual estimates and
other navigation commands to the onboard FCC. The com-
munication program usessocketandUDPprotocol. The sec-
ond thread is also running at 5 Hz and implements the GCS
interface that allows to display flight data in real-time and to
send flight commands by clicking on the appropriate buttons
as shown in Figure 5. The third and last thread implements
the first part of the vision algorithm which is described in
Section 2. This vision algorithm runs at 12 Hz and exploits
some functions of the OpenCV library.

- The embedded software:the adaptive visual odometer de-
scribed in Section 3 and the flight controller presented in
Section 4 are implemented on theGumstixFCC using multi-
thread programming. Other navigation algorithms for sensor
data acquisition and fusion are implemented in the onboard
FCC. In total, the embedded software is composed of six
different threads that are running at different frequencies: 1)
thread 1 for communication with the GCS (10Hz); 2) thread
2 for sensor data acquisition (50Hz); 3) thread 3 for atti-
tude estimation (50Hz); 4) thread 4 for GPS-INS fusion and
position estimation (10Hz); 5) thread 5 that implements the
adaptive visual odometer (10Hz); 6) guidance and control
algorithms (50Hz). Figure 4 shows the different programs
that are running on the GCS laptop and the onboard micro-
controller.

The values of the nonlinear controller gains are shown
in Table 1. The parameters of the RLS algorithm used for
height estimation are chosen as follow:β = 0.4, P(0) = 5,
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Fig. 5 The interactive interface of the ground control station during vision-based autonomous hovering.

parameter value parameter value
kpx,kpy 0.6 kpφ ,kpθ 28
kix,kiy 0.02 kiφ ,kiθ 0.5
kdx,kdy 0.8 kdφ ,kdθ 1

kpz 0.8 kpψ 3
kiz 0.03 kiψ 0.05
kdz 1 kdψ 0.2

Table 1 Control system gains

Pmax= 10000, Zmin = 0.5m, Zmax= 20m, dead−zone= 0.1,
λ1 = λ2 = 0.1, Z(0) = 0.5m.

6 Experimental results of vision-based flights

The performance of the adaptive vision-based autopilot was
demonstrated in real flights using the quadrotor MAV de-
scribed in Section 5. We have performed various indoor and
outdoor flight tests under autonomous control for take-off,
landing, hovering, trajectory tracking, stationary and mov-
ing target tracking. All the outdoor flight tests, described in
this Section, have been conducted at the play-ground of the
Chiba University Campus which was not prepared in any
way for flight experiments. As it can be seen in Figure 5 and
flight videos, the field is almost homogenous without rich
texture.

Remark 1For the experimental flight tests, described in this
Section, the flight controller used the adaptive visual odome-

ter estimates for position, height and velocity feedback. GPS
measurements are recorded during flights and plotted here
for comparison only. It is important to note that GPS data
can not be considered as theground-truthsince we are using
a low-cost GPS with±2m accuracy for horizontal position
and±5merror for height.

6.1 Static tests for rotation effects compensation and height
estimation

These static tests aim at demonstrating the effectiveness of
the approach (1)-(2) for compensating the rotational com-
ponent of optic flow and image displacement using IMU
data. We also analyze the performance of the adaptive visual
odometer for height estimation using optic flow and accel-
erations.

We have conducted two static tests under different con-
ditions. In test A, we have moved the MAV by hand in the
following sequence: 1) vertical movement from 0 m to 1 m
height; 2) horizontal movement along the X-axis at different
heights (1m, 0.5m, 1m); 3) pure rotational movement (pitch
movement); and 4) vertical landing. Intest B, we have re-
peated almost the same maneuvers with two differences: 1)
the MAV is moved along the X-axis (zig zag) when per-
forming vertical landing; 2) a small fan or ventilator is used
to simulate wind.
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Fig. 6 Static tests showing rotation effects compensation and comparison of pressure sensor and visual odometer for height estimation.

For both tests, we have plotted in Figure 6, the total im-
age displacement and OF computed by the vision algorithm
(blue line), the rotational image motion obtained from IMU
data (red line), and the resulted translational image motion
after compensation (black line). We can clearly see in Figure
6 that rotation effects are effectively cancelled.

Concerning height estimation by the pressure sensor and
the adaptive visual odometer, several remarks can be made.

– The pressure sensor works well in good weather condi-
tions and it is sensitive to wind and temperature.

– The adaptive visual odometer is able to estimate the height
when the translational OF is not very small.

– Compared to the pressure sensor, the visual odometer
takes some time to converge to the true value when the
MAV experiences vertical motion (height changes).

These tests prove the feasibility and possibility of estimating
the height using optic flow and IMU data. For more robust-
ness and accuracy, the height estimate used in flight tests is
obtained by fusing the odometer measurement, the pressure
sensor data and INS using a linear Kalman filter.

6.2 Outdoor autonomous hovering with automatic take-off
and landing

The objective of this experiment is to check the robustness
and accuracy of the developed vision-based autopilot for

achieving stationary flights in natural environments with poor
texture. The MAV is tasked to take-off autonomously, to
hover at a desired altitude of 5m and then to achieve a verti-
cal auto-landing.

As shown in Figure 7, this task was achieved success-
fully with good performance. Indeed, the MAV maintained
its 3D position with good accuracy (±2 m maximum error)
using the adaptive visual odometer estimates. The small er-
rors in position control are mainly due to wind which was
about3.5m/s during the flight test. We can also see on Fig-
ure 7 that reference height trajectories are tracked accurately
(±1 m maximum error) during take-off, hovering and land-
ing phases. The inner-loop controller performs also well and
tracks the reference angles.

We conclude from this test that all the components of the
proposed vision-based autopilot (vision algorithm, adaptive
visual odometer, nonlinear controller) perform stably and
robustly despite the textureless environment.

Video clips of autonomous vision-based hovering can be
found at:
http://jp.youtube.com/watch?v=9I8BXtbrDQM&feature=channel_page

6.3 Indoor autonomous flight

This indoor flight test demonstrates the ability of our MAV,
equipped with the developed vision-based autopilot, to achieve
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Fig. 7 Outdoor autonomous hovering with automatic takeoff and landing using the visual odometer.

fully autonomous indoor flight using information extracted
from optic flow. This test has been conducted atTokyo Big
Sightduring an international exhibition.

Remark 2In this test, optic flow and motion parameters were
computed using the vision algorithm presented in our previ-
ous paper [21].

Since the floor is homogeneous without any texture, we
have put some objects on the ground to provide some tex-
ture for optic flow computation (see Figure 8). The task was
similar to the one described above, that is take-off, hover-
ing and automatic landing. The exception or difference here
is that during autonomous hovering, we have switched to
manual flight for several seconds and then switched back
to autonomous flight. The objective of this maneuver was to
show to the audience (visitors) that the rotorcraft is naturally
unstable and the vision-control system plays the main role in
stabilizing the vehicle.

As it can be seen in Figure 8 and Figure 9, the rotorcraft
achieved autonomously the required task with good perfor-
mance.

A video clip of this flight test can be found at:
http://jp.youtube.com/watch?v=Zt2WisDjUY0&feature=channel_page

6.4 Automatic take-off, accurate hovering and precise
auto-landing on some arbitrary target

As described in Section 2, the image area where optic flow
and image displacement are computed is initially chosen at

the image center. However, the developed GCS and embed-
ded softwares allow to choose this target-template at any lo-
cation of the image by just selecting the desired area/object
on the image. This flight test consists in exploiting this use-
ful characteristic to achieve an accurate hovering above some
designated ground target and to perform a precise auto-landing
on it.

The rotorcraft was put on a small box of about 50cm x
70cm which is used as a target. The take-off procedure is
launched from the GCS and the target is selected when it
appeared in the camera FOV (about 1m height during take-
off). When the MAV reached the desired height of 10m,
it performed an accurate hovering by detecting the target
and keeping it at the image center (see Figure 10). Finally,
the auto-landing procedure is activated and the MAV exe-
cuted descent flight while controlling its horizontal position
to keep the target at the image center. The MAV landed at
25 cm from the target, but it can be seen from the video that
the MAV was exactly on the target at 30 cm height and then
landed just near the target. This is due to very large image
displacements when the MAV is at few centimeters from the
target or ground. One approach to solve this problem could
consist in deactivating the visual odometer and decrement-
ing the thrust when the aircraft is under some height (50cm
for example).

Figure 11 shows the obtained MAV trajectories (posi-
tion, height, velocity, orientation). The relative horizontal
position between the MAV and the target was regulated to
zero with about±0.5m maximum error. The height is also
estimated and controlled accurately. The MAV was very sta-
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Fig. 9 MAV position and height trajectories of indoor autonomous flight using optic flow.

ble even at 10m height. Indeed, as shown in Figure 11, the
horizontal velocities, pitch and roll angles are stabilized and
kept very small.

The good performance of this flight test can be checked
by seeing the associated video clip at:
http://jp.youtube.com/watch?v=rbmsivw5luk&feature=channel_page

6.5 Tracking a moving ground target with automatic
take-off and auto-landing

Here, we explore the possibility of our vision-control system
to track a ground moving target. For this experiment, we
have used a small cart (see Figure 13) as a target and placed
it at about 20m from the GCS.

First, the MAV performed automatic take-off from the
target and hovered above the target (6m height) for nearly
100 s. Then, the target is continuously moved towards the
GCS by pulling some wire attached to the target. The con-
trol objective is thus, to keep the moving target at the image
center by controlling the relative position between the MAV
and the target to zero.

Figure 12 shows that the target is accurately tracked even
when it is moving. The GPS ground-track on the first graph
shows that the MAV flied about 20m (which corresponds
also to target movement) while controlling the relative po-
sition between the MAV and the target to zero with±1m
maximum error during tracking.

Figure 13(a) shows the tracked target on an image cap-
tured by the onboard camera and displayed at the GCS. We
can also see in Figure 13(b) the rotorcraft tracking the mov-
ing target.

Video clip of this flight test is available at:
http://jp.youtube.com/watch?v=6obHavVvJyk&feature=channel_page

6.6 Velocity-based control for trajectory tracking using
vision

This flight test involves a velocity control scheme. It aims
at evaluating and demonstrating the ability of the MAV to
achieve hovering flight and velocity trajectory tracking by
relying on velocities computed from optic flow without po-
sition feedback. After automatic take-off, the MAV is tasked
to hover and then to achieve autonomous translational flight
by tracking some reference trajectories, sent in real-time from
the GCS. The commands for this test were: take-off, fly left,
stop, fly forward, stop, fly right, stop, fly backward, stop,
hover, land.

From Figure 14, the rotorcraft can be seen to clearly re-
spond to commands and to track reference velocity trajecto-
ries. Although the closed-loop control of horizontal position
is not used in this test, the MAV seems to track also the po-
sition reference trajectories with small drifts. In fact, the po-
sition reference trajectories are obtained by integrating over
time the velocity reference trajectories.
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Fig. 11 Accurate hovering and precise auto-landing on some designated ground target.
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Fig. 12 Application of the vision-based autopilot for ground moving target tracking.

Despite the poor texture (see Figure 15), the vision al-
gorithm and adaptive visual odometer were able to track
features, compute optic flow and recover the MAV motion
parameters.

When doing these tests, the GPS signal was not avail-
able because of some technical problem of the GPS antenna
connector.

This flight behavior is very useful and needed for many
real-world applications where GPS signal is not available.
Indeed, autonomous velocity control is sufficient to achieve
many realistic tasks by just sending high-level commands.

A video clip of this flight test and other tests can be
found at:
http://jp.youtube.com/watch?v=Zp12GjZzjt4&feature=channel_page
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Fig. 14 Reference velocity trajectories tracking using optic flow.
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Fig. 16 Reference position trajectories tracking using visual odometer estimates.

6.7 Position-based control for trajectory tracking using
visual estimates

In this experiment, both position and velocity estimates are
used by the controller to track arbitrary position and veloc-
ity trajectories, pre-programmed in the onboard FCC or sent
by the operator from the GCS. The reference trajectories,
shown in Figure 16, consist in vertical climb (take-off) to an

altitude of 6m, 12m-sideward flight and 16m-forward flight,
simultaneous backward and sideward flight to return to the
starting point. The height is then, reduced to 3m and small
displacement commands are given5.

5 In fact, height is reduced to 3m to avoid damaging the platform in
case where the MAV crashes because of empty battery (there was no
charged battery for this test).
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Fig. 8 Indoor fully autonomous flight using optic flow. Demonstration
atTokyo Big Sightfor an international exhibition.

The obtained results, shown in Figure 16 are very satis-
factory. Indeed, the reference position, height, velocity and
attitude trajectories are well tracked. The MAV was stable
along the flight course.

Fig. 10 Rotorcraft during vision-based autonomous hovering above a
stationary target.

(a) (b)

target

wire to move 
the target

Fig. 13 (a) onboard image showing the detection and tracking of a
moving target; (b) MAV tracking the moving target.

(a) (b)

Fig. 15 Autonomous vision-based translational flight. (a) onboard im-
age showing features tracking in a textureless environment; (b) rotor-
craft during vision-based trajectory tracking.

6.8 GPS-based waypoint navigation and comparison with
the visual odometer estimates

In this last test, we have performed waypoint navigation us-
ing GPS data for horizontal movement control and adaptive
visual odometer estimates for height control. A set of four
waypoints were chosen by just clicking the desired locations
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Fig. 17 GPS waypoint navigation and comparison with the visual odometer estimates.

on the 2D map of the GCS interface (see Figure 5). The
MAV should then, pass the assigned waypoints in a given
sequence. The objective of this test is to compare the GPS
and the visual odometer for estimating the horizontal po-
sition during waypoint navigation. The obtained results are
shown in Figure 17.

One can see that the reference trajectories are tracked
and the mission is accomplished. It is also important to note
that during this translational flight, the adaptive visual odome-
ter was able to estimate the MAV position or the travelled
flight distance despite the textureless environment. There-
fore, vision-based waypoint navigation is possible by the
current system when combined with some landmarks recog-
nition algorithm.

6.9 Discussion

The reported results over different flight scenarios testify
on the effectiveness and robustness of the developed vision-
based autopilot. However, the proposed system can be fur-
ther improved especially the adaptive visual odometer. Here,
we discuss briefly the main weaknesses of the proposed vi-
sual odometer and some ideas to address these issues.

Inaccuracies in position estimation are mainly due to two
factors, estimation errors error growing in long range navi-
gation and identification errors in the adaptive process.

- Growing estimation errors in Visual Odometry (VO): VO
pose estimates are produced by tracking visual features in
the environment and integrating or accumulating their im-
age displacement. Although VO is an incremental process,

our results have shown that positioning accuracy to within a
few percent of measured ground truth is possible, over dis-
tances of about hundred meters. However, the performance
of the VO is expected to degrade for longer flight distances
due to the accumulation of unbounded errors. Furthermore,
the poor texture of some terrain surfaces leads to poorer per-
formance since VO is an exteroceptive sensing method that
relies on features tracking.

To enable accurate and robust long range navigation with
VO, this latter can be combined with other terrain relative
navigation techniques like landmarks recognition. An in-
teresting approach could consist in performing landmarks
matching and recognition in a moment-to-moment fashion
(or periodically) to estimate the absolute position, and inte-
grating the flight path between landmarks to estimate the rel-
ative position. Therefore, computation of distance flown is
re-commenced whenever a prominent landmark is encoun-
tered. Re-setting the VO at each landmark facilitates accu-
rate long-range navigation by preventing excessive accumu-
lation of odometric errors. Indeed, some animals like bees
seem to use landmark-based cues as well as visual path in-
tegration to navigate to a goal [41].

In this paper, we have concentrated on the VO for esti-
mating the vehicle’s position relative to some known loca-
tion like the initial location or recognized landmark.

- Range estimation errors in the adaptive process:The
visual odometer presented here requires an approximate mea-
sure of height above the ground. A RLS algorithm has been
used to estimate the height by fusing the derivatives of optic
flow and IMU accelerations data. This process suffers from
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the general well-known drawbacks of identification algo-
rithms like noise and poor input-output signals (non-excited
system). During real-time experiments, we have noticed per-
formance degradation in height estimation by the RLS algo-
rithm when the rotorcraft is hovering or flying at very low
speeds. In this case, input and output signals are small com-
pared to the noise level and do not contain sufficient infor-
mation to estimate the height. As stated in Section 2, this
is related to the persistent excitation (PE) property which is
not satisfied in this case.

This issue has been handled by switching off the adap-
tation process when the input and output signals are small
(stationary or slow flights). In this case, height estimate is
primary provided by the pressure sensor as a propagation
of previous estimates using a kinematic Kalman filter. Al-
though the obtained results are satisfactory, range estima-
tion process can be further improved by exciting the system
(small lateral oscillations or zig-zag flight) from time to time
and/or using more robust identification algorithms.

7 Conclusion

In this paper, we have presented a vision-based autopilot
which is designed for miniature UAVs and MAVs flying at
low altitudes. The developed system is based on a downward-
looking camera and relies heavily on visual cues to achieve
various navigation tasks in unknown environments. Unlike
some existing bio-inspired flight controllers which are usu-
ally used for reactive navigation, the proposed vision-based
autopilot extends optic flow-based control capabilities to com-
plex navigational tasks such as accurate hovering, arbitrary
trajectory tracking, stationary and moving target tracking,
etc. These capabilities are mainly due to the incorporated
adaptive visual odometer that allows the estimation of the
height and the recovery of the rotorcraft position and veloc-
ity. A practical nonlinear control system is also designed and
used for flight control. The combined visual odometer and
flight controller result in an effective autopilot that is easy
to implement while guaranteeing the asymptotic stability of
the entire closed-loop system.

The experimental flight tests, performed indoors and out-
doors under realistic conditions, have shown the good per-
formance of the proposed adaptive vision-control system.
Indeed, experimental results over various ranges of the flight
envelope illustrate that the proposed vision-based autopi-
lot allowed a small quadrotor MAV to achieve automatic
take-off, accurate hovering, precise auto-landing, trajectory
tracking and moving target detection and tracking. These re-
sults demonstrate that visual odometry can enable UAVs and
MAVs to navigate in unknown environments where global
localization is impossible.

As future work, we plan to combine the visual odome-
ter with other navigation algorithms, including landmarks

recognition and vision-based obstacle avoidance. This should
enable visual odometry to operate in long range and goal-
oriented navigation. We are also implementing a modified
version of the system which operates in real-time on-board
the MAV.
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