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A BIJECTION FOR COVERED MAPS, OR A SHORTCUT

BETWEEN HARER-ZAGIER’S AND JACKSON’S FORMULAS.

OLIVIER BERNARDI 1 AND GUILLAUME CHAPUY 2

Abstract. We consider maps on orientable surfaces. A map is unicellular
if it has a single face. A covered map is a map with a marked unicellular
spanning submap. For a map of genus g, the unicellular submap can have any
genus in {0, 1, . . . , g}. Our main result is a bijection between covered maps
with n edges and genus g and pairs made of a plane tree with n edges and a
unicellular bipartite map of genus g with n + 1 edges.

In the planar case, the covered maps are maps with a marked spanning
tree (a.k.a. tree-rooted maps) and our bijection specializes into a construction

obtained by the first author in [3]. A strong connection subsists between
covered maps and tree-rooted maps in genus 1 (because a covered map is
either a tree-rooted map or the dual of a tree-rooted map) and we thereby
obtain a bijective explanation of a formula by Lehman and Walsh on the
number of tree-rooted maps of genus 1 [24]. A more surprising byproduct of
our bijection is an equivalence between an enumerative formula by Harer and
Zagier concerning unicellular maps of given genus and a similar formula by
Jackson concerning bipartite unicellular maps of given genus. The equivalence
is obtained by observing that covered maps can be seen as a shuffle of two
unicellular maps, hence that our bijection gives a relations between shuffles of
unicellular maps and bipartite unicellular maps.

We also show that the bijection of Bouttier, Di Francesco and Guitter [6]
(which generalizes a famous bijection by Schaeffer [30]) between bipartite maps
and so-called well-labelled mobiles can be described as a special case of our
bijection.

1. Introduction.

We consider maps on orientable compact surfaces of arbitrary genus. A map
is said unicellular if it has a single face as is the case for the map represented in
Figure 2. A covered map is a map together with a marked unicellular spanning
submap. A map of genus g have spanning submaps of any genus in {0 . . . , g}. In
particular, tree-rooted maps (maps with a marked spanning tree) are a special case
of covered map since a spanning tree is a spanning unicellular submap of genus 0.
A covered map of genus 2 having a unicellular spanning submap of genus 1 is rep-
resented in Figure 1(a). More details about maps and the genus of submaps are
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2 O. BERNARDI AND G. CHAPUY

given in Section 2.

Our main result is a bijection Ψ between covered maps of genus g with n edges
and pairs made of a plane tree with n edges and a bipartite unicellular map of genus
g with n+ 1 edges. The image of a covered map by the mapping Ψ is represented
in Figure 1(b). The bijection Ψ generalizes a construction by the first author [3]
between planar tree-rooted maps with n edges and pairs of plane trees with n and
n+ 1 edges respectively1.

Ψ

(b)(a)

Figure 1. (a) A covered map of genus 2 (the unicellular submap
of genus 1 is drawn in thick lines). (b) The image of the covered
map by the bijection Ψ is made of a bipartite unicellular map of
genus 2 and a plane tree.

It is an important observation that the dual of a planar tree-rooted map is a
planar tree-rooted map, that is to say, the dual of the edges not in the spanning tree
form a spanning tree of the dual map. Pushing this observation further, Mullin
showed that tree-rooted maps could be encoded by a shuffle of two trees (one rep-
resenting the spanning tree, the other representing the dual spanning tree), or more
precisely as a shuffle of two parenthesis systems encoding these trees [29]. Covered
maps generalize these properties: the dual of a covered map is a covered map and
covered maps can be encoded by shuffles of two unicellular maps (more details are
given in Section 3). We emphasize that our bijection Ψ (as the construction in [3])
is of very different nature: the result is a pair of unicellular maps of a fixed size
and not a shuffle.

Our bijection Ψ has the interesting property that it can be specialized in various
ways in order to obtain bijections for several important classes of maps. In partic-
ular, it is shown in [4] how to specialize the bijection Ψ in order to count certain
classes of triangulations and quadrangulations. Here we consider yet another spe-
cialization, namely, we will show that the bijection Ψ specializes into the bijection
by Bouttier, Di Francesco and Guitter [6] (for the planar case) and its general-
ization to higher genus surfaces by Chapuy, Marcus and Schaeffer [11, 9]. These
bijections which generalize a previous bijection by Schaeffer [30] are of fundamental
importance for studying the metric properties of random maps [12, 5, 8, 7, 26] and

1In [3], the tree with n + 1 edges was actually described as a non-crossing partition.
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for defining and analyzing their continuous limit, the Brownian map [25, 20, 22, 21].

The bijection Ψ has several enumerative corrolaries. The first corollaries concern
tree-rooted maps of genus 0 and 1. In [29], Mullin used the correspondence between
planar tree-rooted maps and shuffles of trees to prove that the number of planar
tree-rooted maps with n edges is the product of two consecutive Catalan numbers:

T0(n) = Cat(n)Cat(n+ 1), where Cat(n) =
(2n)!

n!(n+ 1)!
.(1)

and asked for a bijection between tree-rooted maps of size n and pairs of trees
of size n and n + 1 respectively. This is precisely what our bijection Ψ gives in
the planar case. This planar case was originally described in [3] as an answer to
Mullin’s question. It was also proved there that this specialization is isomorphic to
a previous recursive bijection by Cori, Dulucq and Viennot [13].

In [24], Lehman and Walsh gave an expression for the number of tree-rooted
map of genus 1 with n edges:

T1(n) = Cat(n)
(2n− 1)!

12(n− 1)!(n− 2)!
.(2)

Again, no bijective proof was known explaining this simple formula involving the
Catalan number (and it was also noted in [24] that no clear pattern emerged for
higher genera). Our bijection Ψ gives a bijective explanation to Formula (2) because
a duality argument shows that exactly half of the covered maps of genus 1 are tree-

rooted maps, and (2n−1)!
6(n−1)!(n−2)! is the number of bipartite maps of genus 1 with n+1

edges.
Another, more surprising, enumerative corollary of our bijection is a bijective

shortcut between two formulas concerning unicellular maps. In [16], Harer and
Zagier proved the following formulas concerning the number Ap(n) of unicellular
maps with n edges and p vertices (hence genus (n+ 1 − p)/2):

∑

p≥1

Ap(n)yp =
(2n)!

2nn!

∑

i≥1

2i−1

(

n

i− 1

)(

y

i

)

.(3)

The original proof of Harer and Zagier involved the computation of a matrix in-
tegral. Since then, a combinatorial interpretation was given by Lass [19], which
was further developed into fully bijective proof in [14]. An alternative bijective
approach to unicellular maps was recently given in [10]. A similar formula for the
number Bp,q(n) of bipartite unicellular maps with n edges, p white vertices and q
black vertices:

∑

p,q≥1

Bp,q(n+ 1)ypzq = (n+ 1)!
∑

i,j≥1

(

n

i− 1, j − 1

)(

y

i

)(

z

j

)

,(4)

was independently obtained by Jackson [17] and by Adrianov [1] by means of char-
acters computations. Bijective proofs were given in [31, 28]. We show that our
bijection Ψ establishes an equivalence between Formulas (3) and (4). Indeed, our
bijection gives a relation between the number of shuffles of unicellular maps and
the number of bipartite unicellular maps.

The paper is organized as follows. In Section 2, we recall some definitions about
maps. In Section 3, we show that covered maps can be seen as shuffles of unicellular
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maps. In Section 4, we define the bijection Ψ between covered maps with n edges
and pairs made of a plane tree with n edges and a bipartite unicellular map with
n+ 1 edges. In Section 5, we explore the enumerative corollaries of our bijection.
Section 6 contains the proofs of the bijectivity of Ψ. In Section 7, we give three
equivalent ways of describing pairs made of a plane tree and a bipartite unicellular
map and explicit the inverse mapping Ψ−1 for these different descriptions. In Sec-
tion 8, we use one of these descriptions in order to recover the bijection of Bouttier
et al. [6] as a specialization of Ψ. Lastly, in Section 9, we explore the properties of
the bijection Ψ with respect to duality.

2. Definitions

Maps. Maps can either be defined topologically (as graphs embedded in surfaces)
or combinatorially (in terms of permutations). We shall prove our results using
the combinatorial definition, but resort to the topological interpretation in order to
convey intuitions.

We start with the topological definition of maps. Our surfaces are 2-dimensional,
oriented, compact and without boundaries. A map is a connected graph embedded
in surface, considered up to homeomorphism. By embedded, one means drawn on
the surface in such a way that the edges do not intersect and the faces (connected
components of the complement of the graph) are simply connected. Loops and
multiple edges are allowed. The genus of the map is the genus of the underlying
surface and its size is its number of edges. A planar map is a map of genus 0. A
map is unicellular if it has a single face. For instance, the planar unicellular maps
are the plane trees. A map is bipartite if vertices can be colored in black and white
in such a way that every edge join a white vertex to a black vertex. We denote
by g(M) the genus of a map and by v(M), f(M), e(M) respectively its number of
vertices, faces and edges. The Euler formula relates these quantities by

v(M) − e(M) + f(M) = 2 − 2g(M).

By removing the midpoint of an edge, one obtains two half-edges. Two consecu-
tive half-edges around a vertex define a corner. A map is rooted if one half-edge
is distinguished as the root. The vertex incident to the root is called root-vertex.
In figures, the rooting will be indicated by an arrow pointing into the root-corner,
that is, the corner following the root in clockwise order around the root-vertex. For
instance, the root of the map in Figure 2 is the half-edge a1.

ā4

σ

a5a3

a1

ā3

ā5
a4

a2

ā1 φ

ā2

Figure 2. A unicellular map of genus 1.
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Maps can also be defined in terms of permutations acting on half-edges. To
obtain this equivalence, observe first that the embedding of a graph in a surface
defines a cyclic order (the counterclockwise order) of the half-edges around each
vertex. This gives in fact a one-to-one correspondence between maps and con-
nected graphs together with a cyclic order of the half-edges around each vertex
(see e.g. [27]). Equivalently, a map can be defined as a triple M = (H,σ, α) where
H is a finite set whose elements are called the half-edges, α is an involution of
H without fixed point, and σ is a permutation of H such that the group gen-
erated by σ and α acts transitively on H . This must be understood as follows:
each cycle of σ describes the counterclockwise order of the half-edges around one
vertex of the map, and each cycle of α describes an edge, that is, a pair of two
half-edges. The transitivity assumption simply translates the fact that the graph is
connected. Figure 2 shows the map M = (H,σ, α), where H = {a1, ā1, . . . , a5, ā5},
σ = (a1, ā2, a3)(ā1, a2, ā4)(ā3, a4, a5)(ā5) and α = (a1, ā1) · · · (a5, ā5).

For a map M = (H,σ, α), the permutation σ is called vertex-permutation, the
permutation α is called edge-permutation and the permutation φ = σα is called
face-permutation. The cycles of σ, α, phi are called vertices, edges and faces. Ob-
serve that the cycles of φ are indeed in bijection with the faces of the map in its
topological interpretation. Hence, the genus of M can be deduced from the number
of cycles of σ, α and φ by the Euler relation. We say that a half-edge is incident to
a vertex or a face if this edge belongs to the corresponding cycle. Again, a map is
rooted if one of the half-edges is distinguished as the root ; the incident vertex and
face are called root-vertex and root-face.

The correspondence between topological and combinatorial map is one-to-one if
combinatorial maps are considered up to isomorphism (or, relabelling). That is, two
maps (H,σ, α) and (H ′, σ′, α′) are considered the same if there exists a bijection
λ : H → H ′ such that σ′ = λσλ−1 and α′ = λαλ−1 (for rooted maps, we ask
furthermore that λ(r) = r′). In this article all maps will be rooted, and considered
up to isomorphism.

We call pseudo map a triple M = (H,σ, α) such that α is a fixed-point free
involution, but where the transitivity assumption (i.e. connectivity assumption) is
not required. This can be seen as a union of maps and we still call φ = σα the
face-permutation, as its cycles are indeed in correspondence with the faces of the
union of maps. Lastly, we consider the case where the set of half-edges H is empty
as a special case of rooted unicellular map (corresponding to the planar map with
one vertex and no edge) called empty map.

Submaps, covered maps and motion functions. For a permutation π on a
set H , we call restriction of π to a set S ⊆ H and denote by π|S the permutation
of S whose cycles are obtained from the cycles of π by erasing the elements not in
S. Observe that (π−1)|S = (π|S)−1 so that we shall not use parenthesis anymore
in these notations. It is sometime convenient to consider the restriction π|S as a
permutation on the whole set H acting as the identity on H \ S; we shall mention
this abuse of notations whenever necessary.
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A spanned map is a map with a marked subset of edges. In terms of permu-
tations, a spanned map is a pair (M,S), where S is a subset of half-edges stable
by the edge-permutation α. The submap defined by S, denoted M|S , is the pseudo
map (S, σ|S , α|S), where σ is the vertex-permutation of M . We underline that the
face-permutation φS = σ|Sα|S of the pseudo-map M|S is not equal to (σα)|S . Ob-
serve also that the genus of M|S can be less than the genus of M . For example,
Figure 1(a) represents a submap of genus 1 of a map of genus 2. A submap M|S

is connecting if it is a map containing every vertex of M , that is, S contains a
half-edge in every vertex of M (except if M has a single vertex, where we authorize
S to be empty) and σ|S , α|S act transitively on S. The submap represented in
Figure 3 (right) is a map but is not connecting. A covered map is a spanned map
such that the submap M|S is a connecting unicellular map. A tree-rooted map is a
spanned map such that the submap M|S is a spanning tree, that is, a connecting
plane tree.

The motion function of the spanned map (M,S) is the mapping θ defined on
H by θ(h) = φ(h) ≡ σα(h) if h is in S and θ(h) = σ(h) otherwise. Note that the
motion function is a permutation of H since the stability of S by α implies that
θ−1(h) = ασ−1(h) if σ−1(h) is in S and θ−1(h) = σ−1(h) otherwise. Observe also
that, givenM , the set S can be recovered from the motion function θ. Topologically,
the motion function is the permutation describing the tour of the connected compo-
nents of the submap M|S in counterclockwise direction: we follow the border of the
edges of the submap M|S and cross the edges not in M|S. For instance, the submap
represented in Figure 3 has motion function θ = (a, c, e, n, d, k,m, h, i)(b, j, l)(f, g).

c d

e

f

k

l

n

m
j

a

b

h g
i

Figure 3. Motion function of the submap M|S defined by S = {a, b, c, d, i, j, k, l}.

Orientations. An orientation of a map M = (H,σ, α) is a partition H = I ⊎ O
such that the involution α maps the set I of ingoing half-edges to the set O of
outgoing half-edges. The pair (M, (I,O)) is an oriented map. A directed path is
a sequence h1, h2, . . . , hk of distinct ingoing half-edges such that hi, α(hi+1) are
incident to the same vertex (are in the same cycles of σ) for i = 1 . . . k−1. A
directed cycle is a directed path h1, . . . , hk such that hk and α(h0) are incident
to the same vertex. The half-edge hk is called the extremity of the directed path.
An orientation is root-connected if for any ingoing half-edge h is the extremity of a
directed path h1, . . . , hk = h such that α(h1) is incident to the root-vertex of M .

Duality The dual map of a map M = (H,σ, α) is the map M∗ = (H,φ, α) where
φ = σα is the face-permutation of M . The root of the dual map M∗ is equal to
the root of M . Observe that the genus of a map and of its dual are equal (by Euler
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relation) and that M∗∗ = M . Topologically, the dual map M∗ is obtained by the
following two steps process: see Figure 4.

(1) In each face f of M , draw a vertex vf of M∗. For each edge e of M
separating faces f and f ′ (which can be equal), draw the dual edge e∗ of
M∗ going from vf to vf ′ across e.

(2) Flip the drawing of M∗, that is, inverse the orientation of the surface.

We now define duals of spanned maps and oriented maps. Given a subset S ⊆ H ,
we denote S̄ = H \ S. The dual of a spanned map (M,S) is the spanned map
(M∗, S̄); see Figure 4. We also say that M|S and M∗

|S̄
are dual submaps. Observe

that the motion functions of a spanned map (M,S) and of its dual (M∗, S̄) are
equal. The dual of the oriented map (M, (I,O)) is (M∗, (I,O)). Graphically, this
orientation is obtained by applying the following rule at step 1: the dual-edge e∗

of an edge e ∈ M is oriented from the left of e to the right of e; see Figure 14.
Observe that duality is involutive on maps, spanned maps and oriented maps.

(c)(b)(a)

a3
a1

ā3 b2

b3

b̄3

ā3

a4

ā4
b2

ā2

b1

a2

b̄1

ā1

b̄2

a4
ā4

a1

a3

b̄1

b3

ā1 a2

b1

b̄3

ā2

b̄2

Figure 4. (a) A spanned map (the submap is indicated by thick
lines). (b) Topological construction of the dual. (c) The dual
covered map.

3. Covered maps as shuffles of unicellular maps.

In this Section, we establish some preliminary results about covered maps. In
particular we prove that covered maps are stable by duality and explicit their
decomposition as shuffles of two unicellular maps. Our first result should come as
no surprise: it simply states that a spanned map (M,S) is a covered map if and
only if turning around the submap M|S (that is following the border of its edges)
starting from the root allows one to visit every half-edge of M .

Proposition 3.1. A spanned map (M,S) is a covered map if and only if its motion
function is a cyclic permutation.

The following lemma relate the cycles of the motion function to the faces of the
submap; see Figure 3 for the topological intuition.

Lemma 3.2. Let (M,S) be a spanned map, and let σ, α and φ = σα be the vertex-,
edge-, and face-permutations of M . The motion function θ satisfies θ|S = σ|Sα|S

and θ|S̄ = φ|S̄α|S̄. That is, the restriction θ|S is the face permutation of the pseudo
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map M|S, while the restriction θ|S̄ is the face-permutation of the dual pseudo map
M∗

|S̄
.

Proof of Lemma 3.2. We first prove that θ|S = σ|Sα|S . Let h be in S and let l =
θ|S(h). By definition of restrictions, there exists a sequence h0 = h, h1, h2 . . . , hk+1 =

l such that h1, h2, . . . , hk ∈ S̄ and hi+1 = θ(hi) i = 0 . . . k. By definition of θ, one
gets h1 = σ(α(h)) and hi+1 = σ(hi) for i = 1 . . . k. Moreover, the half-edge α(h)
is in S since h is in S which is stable by α. Thus, by definition of restriction
α|S(h) = α(h) and σ|S(α|S(h)) = l. Thus θ|S(h) = l = σ|S(α|S(h)), that is, the
permutations θ|S and σ|Sα|S coincide on h. The relation θ|S̄ = φ|S̄α|S̄ follows from

the preceding point by duality (since the motion function of a spanned map and its
dual are equal). �

Proof of Proposition 3.1. Suppose first that (M,S) is a covered map. Since M|S is
connecting, each cycle of the motion function θ contains an element of S. Hence, the
number of cycles of θ and θ|S is the same. Moreover, by Lemma 3.2, θ|S = σ|Sα|S

is the face-permutation of M|S . Since M|S is unicellular, θ|S = σ|Sα|S is cyclic and
θ is also cyclic.

Conversely, suppose that the motion function θ is cyclic. In this case, the pseudo
map M|S has a face-permutation which is cyclic by Lemma 3.2. Hence it is a
unicellular map. �

Proposition 3.1 immediately gives the following corollary concerning duality.

Corollary 3.3. If a spanned map (M,S) is a covered map, then the dual spanned
map (M∗, S̄) is also a covered map. Moreover the genus of M is the sum of the
genera of the unicellular maps M|S and M∗

|S̄
:

g(M) = g(M|S) + g(M∗
|S̄).

Corollary 3.3 is illustrated by Figure 4.

Proof. The fact that (M∗, S̄) is a covered map is an immediate consequence of
Proposition 3.1 since the motion function of a submap and of its dual are always
equal. The fact the genus add up is obtained by writing the Euler relation for the
maps M , M|S and M∗

|S̄
. �

Let (M,S) be a covered map. By Lemma 3.2, the restrictions θ|S and θ|S̄ of the
motion function θ correspond respectively to the face-permutations of the unicel-
lular maps M|S and M∗

|S̄
. This inclines to say, somewhat vaguely, that the covered

map (M,S) is a shuffle of the unicellular maps M|S and M∗
|S̄

. Making this state-

ment precise requires introducing codes of unicellular maps and covered maps.

A unicellular code on the alphabet An = {a1, ā1, . . . , an, ān} is a word on An

such that every letter of An appears exactly once, and for all 1 ≤ i < j ≤ n, the
letter ai appears before āi and before aj. Let T = (H,σ, α) be a unicellular map
with n edges. By definition, the face-permutation φ = σα is cyclic. Hence, there
exists a unique way of relabelling the half-edges on the set An in such a way that
α(ai) = āi for all i = 1 . . . n and φ = (w1, w2, . . . , w2n), where w1 is the root and
w = w1w2 · · ·w2n is a unicellular code. We call w the code of the unicellular map T .
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Topologically, the code of a unicellular map is obtained by turning around the
face of the map in counterclockwise direction starting from the root and writing
ai when we discover the ith edge and writing āi when we see this edge for the
second time. For instance the code of the unicellular map in Figure 2 is w =
a1a2a3a4ā1ā2ā4a5ā5ā3. We also mention that the unicellular map T is a plane tree
if and only if its code w does not contain a subword of the form aiaj āiāj . In this
special case, replacing all the letters ai, i = 1 . . . n of the code w by the letter a and
all the letters āi, i = 1 . . . n by the letter ā results in no loss of information. One
thereby obtains the classical bijection between plane trees and parenthesis systems
on {a, ā}.
Lemma 3.4 (Folklore). The mapping which associates its code to a unicellular
map is a bijection between unicellular map with n edges and unicellular code on the
alphabet An.

Proof. The mapping is injective since the root and the edge-permutation α and
vertex-permutation σ = φα can be recovered from the code. It is also surjective
since starting from any code one obtains a pair of permutation α, σ which indeed
gives a unicellular map T = (An, α, σ) (the only non-obvious property is the tran-
sitivity condition, but this is granted by the fact the face-permutation φ = σα is
cyclic). �

A word on Ak ⊎ Bl (where Bl = {b1, b̄1, . . . , bl, b̄l}) is a code-shuffle if the sub-
words w|A and w|B made of the letters in Ak and Bl respectively are unicellular
codes on Ak and Bl. Let (M,S) be a covered map, where M = (H,σ, α) and let
k = |S|/2, l = |S̄|/2. By Lemma 3.1, the motion function θ is cyclic. Hence, there
exists a unique way of relabelling the half-edges on the set Ak ⊎ Bl in such a way
that S = Ak, S̄ = Bl, α(ai) = āi for all i = 1 . . . k, α(bi) = b̄i for all i = 1 . . . l,
and φ = (w1, w2, . . . , w2n), where w1 is the root of M and w = w1w2 · · ·w2n is a
code-shuffle. We call w the code of the covered map (M,S).

Topologically, the code of a covered map (M,S) is obtained by turning around
the submap T = M|S in counterclockwise direction starting from the root and

writing ai (resp. bi) when we discover the ith edge in S (resp. S̄) and writing āi

(resp. b̄i) when we see this edge for the second time. For instance, the code of the
unicellular map in Figure 7(a) is w = a1b1a2b2ā2b3ā1b̄1a3b4a4a5b̄3ā5b̄2ā4b̄4ā3. We
now state the main result of this preliminary section.

Proposition 3.5. The mapping φ which associates its code to a covered map is a bi-
jection between covered maps with n edges and code-shuffles of length 2n. Moreover,
if w is the code of the covered map (M,S), then w|A is the code of the unicellular
map M|S (on the alphabet A|S|/2) and w|B is the code of the dual unicellular map
M∗

|S̄
(on the alphabet B|S̄|/2).

Proof. To see that φ is injective, observe first that the code-shuffle allows to recover
the root of the map M = (H,σ, α), the subset S = Ak, the edge-permutation α
and the motion function θ = (w1, . . . , w2n). From this, the vertex-permutation σ is
deduced by σ(h) = θα(h) if h ∈ S and σ(h) = θ(h) otherwise. We now prove that
φ is surjective. For this, it is sufficient to prove that starting from any shuffle-code,
the pair (M,S) defined as above is a covered map. First note that the permutations
σ and α clearly act transitively on H since θ is cyclic, hence M is a map. Now, the
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fact that (M,S) is a a covered map is a consequence of Lemma 3.1 since θ is the
motion function of (M,S) and is cyclic.

We now prove the second statement. LetwA = w′
1, . . . , w

′
2k and wB = w′′

1 , . . . , w
′′
2l.

By definition of restrictions, θ|S = (w′
1, . . . , w

′
2k) and θ|S̄ = (w′′

1 , . . . , w
′′
2l). More-

over, by Lemma 3.2, these restrictions θ|S and θ|S̄ correspond respectively to the

face-permutations of M|S and M∗
|S̄

. Recall also that the root r1 of M|S is σi(r),

where r is the root of M and i is the least integer such that σi(r) ∈ S. Equivalently,
r1 = θi(r) where i is the least integer such that θi(r) ∈ S, hence r1 = w′

1. Simi-
larly, the root r2 of M∗

|S̄
is φj(r) where j is the least integer such that φj(r) ∈ S̄,

or equivalently r2 = θj(r) where j is the least integers such that θj(r) ∈ S̄, hence
r1 = w′′

1 . Thus, the words w|A and w|B are the codes of the unicellular maps M|S

and M∗
|S̄

respectively. �

We now explore the enumerative consequence of Proposition 3.5. Let Ag(n) be
the number of unicellular maps of genus g with n edges. Let Cg1,g2

(n1, n2) (resp.
Cg1,g2

(n)) be the number of covered maps (M,S) such that the unicellular maps
M|S and M∗

|S̄
have respectively n1 and n2 edges (resp. a total of n edges) and genus

g1 and g2. Since there are
(

2n1+2n2

2n1

)

ways of shuffling unicellular codes of length
2n1 and 2n2, Proposition 3.5 gives

Cg1,g2
(n1, n2) =

(

2n1 + 2n2

2n1

)

Ag1
(n1)Ag2

(n2),(5)

and

Cg1,g2
(n) =

n
∑

m=0

(

2n

2m

)

Ag1
(m)Ag2

(n−m).(6)

An alternative equation (used in Section 5) is obtained by fixing the number of ver-
tices of M|S and M∗

|S̄
instead of their genus. Let Av(g) be the number of unicellular

maps with v vertices and n edges (Av(g) = A(n−v+1)/2(n) by Euler relation and

this number is 0 if n − v + 1 is odd). Let also Cv,f (n) be the number of covered
maps with v vertices, f faces and n edges (and genus g = (n − v − f + 2)/2).
Proposition 3.5 gives

Cv,f (n) =

n
∑

m=0

(

2n

2m

)

Av(m)Af (n−m).(7)

Equation (6) generalizes the results used by Mullin [29] and by Lehman and
Walsh [24] in order to count tree-rooted maps. Indeed, the number of tree-rooted
maps of genus g with n edges is

Tg(n) = C0,g(n) =
m

∑

n=0

(

2n

2m

)

Cat(m)Ag(n−m),(8)

where Cat(m) = 1
m+1

(

2m
m

)

is the mth Catalan number. In [29], Mullin proved

Equation (1) by applying the Chu-Vandermonde identity to (8) (in the case g = 0).
Similarly, in [24], Lehman and Walsh proved Equation (2) by applying the Chu-
Vandermonde identity to (8) (in the case g = 1). In [2], Bender et al. used the
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asymptotic formula

Ag(n) ∼n→∞
n3g− 3

2

12gg!
√
π

4n

(

1 +O

(

1√
n

))

which they derived from the expressions given in [23], together with (8) in order to
determine the asymptotic number of tree-rooted maps of genus g and obtained:

Tg(n) ∼n→∞
4

πg!96g
n3g−316n.

Applying the same techniques as Bender et al. to Equation (6) gives the asymp-
totic number of covered map:

Cg1,g2
(n) ∼n→∞

(

g1 + g2
g1

)

4

πg!96g
n3g−316n.(9)

In particular, the the total number of covered maps of genus g with n edges satisfies:

Cg(n) =

g
∑

h=0

Ch,g−h(n) ∼ 4

πg!48g
n3g−316n.(10)

Hence the proportion of tree-rooted maps among covered maps of genus g tends to
1/2g when the size n goes to infinity. We have no simple combinatorial interpreta-
tion of this fact.

This concludes our preliminary exploration of covered maps. We now leave the
world of shuffles and concentrate on the main subject of this paper, that is, the
bijection Ψ between covered maps and pairs made of a tree and a unicellular bipar-
tite map.

4. The bijection.

We now define the mapping Ψ which associates to a covered map (M,S) a pair
(A,B) made of a tree A = Ψ1(M,S) and a bipartite unicellular map B = Ψ2(M,S).
The mapping Ψ has two steps that we first describe in a non-formal way. The first
step of the bijection associates an oriented map (M, (I,O)) to the covered map
(M,S). For instance, Figure 7(b) represents the oriented map associated to the
covered map of Figure 7(a). The second step of the bijection, which we call un-
folding, can be seen as a way of splitting each vertex incident to k > 0 ingoing
half-edges into k vertices. The rule of this splitting process is represented in Fig-
ure 6. The map obtained after these splits is a plane tree A and the information
about the splitting process is encoded into a bipartite unicellular map B called the
mobile. The tree A = Ψ1(M,S) and the mobile B = Ψ2(M,S) are represented in
Figure 9.

Step 1: Orientation ∆. The orientation step is represented in Figure 7. One
starts with an covered map (M,S) and obtains an orientated map (M, (I,O)).
Topologically, the orientation (I,O) is obtained by turning around the submap
M|S (in counterclockwise direction starting from the root) and orient each edge of
M according to the following rule:

• each edge in M|S is oriented in the direction it is followed for the first time
during the tour,
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• each edge not in M|S is oriented in such a way that the ingoing half-edge
is crossed before the outgoing half-edge during the tour.

Let us now make definitions precise in terms of the combinatorial definition
of maps. Let (M,S) be a covered map, let r be its root, and let θ be its mo-
tion function. Recall from Proposition 3.1 that θ is a cyclic permutation on the
set H of half-edges. Therefore, one obtains a total order ≺S, named appearance
order, on the set H by setting r ≺S θ(r) ≺S · · · ≺S θ|H|−1(r). Topologically,
the appearance order is the order in which half-edges of M appear when turning
around the spanning submap T = M|S in counterclockwise order starting from the
root. For instance, the order obtained for the spanning submap T in Figure 7(a) is
a1 ≺S b1 ≺S a2 ≺S b2 ≺S ā2 ≺S b3 ≺S · · · ≺S ā3. We now define the oriented map
(M, (I,O)) = ∆(M,S) which is represented in Figure 7(b).

Definition 4.1. Let (M,S) be a covered map with half-edge set H . The mapping
∆ associates to (M,S) the oriented map (M, (I,O)), where the set I of ingoing
half-edges contains the half-edges h ∈ S such that α(h) ≺S h and the half-edges
h /∈ S such that h ≺S α(h) (and O = H \ I).

We now characterize the image of the mapping ∆ by defining left-connected
orientations. Let M = (H,σ, α) be a map and let (I,O) be an orientation. Let h0

denote the root of M . A left-path is a sequence h1, h2, . . . , hk of ingoing half-edges
such that for all i = 1 . . . k, there exists an integer qi > 0 such that hi−1 = σqi(α(hi))
and σp(α(hi)) ∈ O for all p = 0 . . . qi − 1. In words, a left-path is a directed path
starting from the arrow pointing the root-corner and such that no ingoing half-
edges is incident to the left of the path. Clearly, for any ingoing half-edge h, there
exists at most one left-path h1, h2, . . . , hk whose extremity is hk is h. We say that an
oriented map (M, (I,O)) is left-connected if every ingoing half-edge is the extremity
of a left-path.

h1

root h0

hkarrow pointing the root-corner

Figure 5. A left-path.

Theorem 4.2. The mapping ∆ is a bijection between covered maps and left-
connected maps.

The proof of Theorem 4.2 and of the following lemma are postponed to Section 6.

Lemma 4.3. If (M, (I,O)) is a left-connected map with root r, then every non-root
vertex of M is incident to a half-edge in I and every non-root face is incident to a
half-edge in O.

Remark on the planar case: It is shown in [3, Prop. 3] that the mapping ∆
is a bijection between planar covered maps (i.e. tree-rooted maps) and (planar)
oriented maps which are root-connected (there exists a directed path from the root-
vertex to any other vertex) and minimal (no directed cycle is oriented in clockwise
direction when the map is drawn in the plane with the root-face being the infinite-
face). Thus, in the planar case the left-connected orientations are the minimal
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root-connected orientations. However, giving a direct proof of this fact would lead
us too far from our main subject.

Step 2: Unfolding Λ. The unfolding step is represented in Figures 8 and 9.
One starts with a left-connected map (M, (I,O)) and obtains two maps A =
Λ1(M, (I,O)) and B = Λ2(M, (I,O)). The map A is a plane tree and the map
B is a bipartite unicellular map (with black and white vertices) called mobile. Let
us start with the topological description of this step. Let v be a vertex of the
oriented map (M, (I,O)) and let h1, . . . , hd be the incident half-edges in counter-
clockwise order around v (here it is convenient to think of the arrow pointing the
root-corner as an ingoing half-edge). If the vertex v is incident to k > 0 ingoing
half-edges, say hi1 , hi2 , . . . , hik

= hd, then the vertex v of M will be split into
k vertices v1, v2, . . . , vk of the tree A. The splitting rule is represented in Fig-
ure 6: for j = 1 . . . k, the vertex vj of the trees A is incident to the half-edges
hij−1+1, hij−1+2, . . . , hij

.

h3h1 h2

h8 h8

h7

h6 h5

h3

h2h1

h4

h5h7
h6

v
v3

h4

v2

v1

Figure 6. Splitting of a vertex v incident to 3 ingoing half-edges h4, h5, h8.

Observe that the splitting of the vertex v can be written conveniently in terms
of permutations. Indeed, seeing the vertex v as the cycle (h1, . . . , hd) of the vertex-
permutation σ and the vertices v1 = (h1, . . . hi1), . . . , vk = (hik−1+1, . . . , hik

) as
cycles of the vertex-permutation τ of the tree A gives the following relation between
v and the product of cycles v′ = v1v2 . . . , vk (these are both permutations on
{h1, . . . , hk})

v = v′π◦,

where π◦ is the permutation such that π◦(h) = h if h ∈ O and π◦(hij
) = hij+1

for j = 1, . . . , l. Hence, v′ = vπ−1
◦ , where π◦ = v|I (with the convention that the

restriction v|I acts as the identity on O). The cycle (hi1 , hi2 , . . . , hil
) of π◦ will

represent one of the (white) vertices of the bipartite unicellular map B. This white
vertex is represented in Figure 8(a).

We now describe the unfolding step in more details. Let r be the root of the
map M = (H,σ, α) and let φ = σα be its face-permutation . We consider two
new half-edges i and o not in H and define H ′ = H ∪ {i, o}, I ′ = I ∪ {i} and
O′ = O ∪ {o} (the half-edge i should be thought as this half-edge pointing to the
root-corner, while o should be thought as its dual). We define the involution α′ on
H ′ by setting α′(i) = o and α′(h) = α(h) for all h ∈ H . We also define σ′ as the
permutation on H ′ obtained from σ by inserting the new half-edge i just before the
root r in the cycle of σ containing r and creating a cycle made of o alone (that is,
σ′(o) = o). Similarly we define φ′ as the permutation on H ′ obtained from φ by
inserting the new half-edge o just before r in the cycle of φ containing r and creating
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a1

a3

b̄3

ā3

b4 b̄2

b2

ā5

b1

ā2

a2

b3

a5

b̄4

a4
ā4

b̄1

ā1

b̄3

ā3

b4 b̄2

b2

ā5

b1

ā2

a2

b3

a5

a1

a4

b̄4

ā4

b̄1

ā1

a3

Figure 7. (a) A covered map of genus 1 (the unicellular submap
is indicated by thick lines) (b) The associated oriented map.

v

(b)

(a)

π•

v2

v1

v3 π◦

(c)

Figure 8. Representation of the unfolding: (a) around one vertex;
(b) around one face; (c) on the map of Figure 7.

o i

(a) (b)
a1

a1

b1

ā2

b̄2

b3

b̄3

ā3 a3

b4

b̄4

b4

ā4

a5

ā5

ā5

a5

ā1

a4

b2

a2 ā3

a3

ā1 b3 b̄2 ā2

ā4
a4

b̄3

a2

b̄4

b̄1

b2
b1

b̄1

Figure 9. (a) The tree Ψ1(M,S). (b) The unicellular map Ψ2(M,S).

a cycle made of i alone. Recall that φ = σα and observe that φ′ = (i, o)σ′α′. We
consider the restrictions

π◦ = σ′
|I′ and π• = φ′|O′ .(11)

In the example of Figure 7, one gets π◦ = (i)(ā1, b1, b3)(ā2, b2)(ā3, b4)(b3)(ā4) and
π• = (o, a1, a3)(b̄1, a2, b̄4, a4, a5, b̄3)(b̄2). We now define the permutation π and τ ′



A BIJECTION FOR COVERED MAPS 15

on H ′, and a permutation τ on H by setting

π = π◦π
−1
• , τ ′ = σ′π−1

◦ and τ = τ ′|H ,(12)

where a slight abuse of notation is done by considering that π◦ = σ′
|I′ acts as the

identity on O′ and that π• = φ′|O′ acts as the identity on I ′. It is easily seen that

τ ′(o) = o. On the other hand, we will show (Lemma 6.9) that the half-edge i is not
alone in its cycle of τ ′. Hence, the half-edge t = τ ′(i) is distinct from i and o. We
now consider the pseudo maps A = (H, τ, α) with root t = τ ′(i) and B = (H ′, π, α′)
with root i.

Definition 4.4. We denote by Λ the mapping which to a left-connected map
(M, (I,O)) associates the pair (A,B). We also denote Ψ = Λ ◦ ∆. Lastly if (M,S)
denotes the covered map such that (M, (I,O)) = ∆(M,S), we denote Ψ1(M,S) =
Λ1(M, (I,O)) = A and Ψ2(M,S) = Λ2(M, (I,O)) = B.

The images (A,B) of the covered map in Figure 7(a) by the mappings Ψ1 and
Ψ2 are represented respectively in Figure 9(a) and (b). In terms of permutations,
one gets A = (H, τ, α) and B = (H ′, π, α′), where

τ = (a1, b̄1, ā3)(ā1)(b1)(ā3, a4, b̄4)(a4)(ā4, a5, b2)(ā5, b̄3)(b3, a2)(ā2)(b̄2)(b4)

and

π = (i)(ā1, b1, b3)(ā2, b2)(ā3, b4)(b3)(ā4)(o, a3, a1)(b̄3, a5, a4, b̄4, a2, b̄1)(b̄2).

Our main result is the following theorem which will be proved in Section 6.

Theorem 4.5. The mapping Ψ = Λ ◦∆ which to a covered map (M,S) associates
the pair (Ψ1(M,S),Ψ2(M,S)) is a bijection between covered maps of size n and
genus g and pairs made of a plane tree Ψ1(M,S) of size n and a bipartite unicellular
map Ψ2(M,S) of size n+1 and genus g. Moreover by coloring the vertices of the
bipartite map Ψ2(M,S) in two colors, say white and black, with the root-vertex
being white, one gets v(M) white vertices and f(M) black vertices.

Remark (topological intuition). From Figures 8(a) and (b), the reader should
see that the mobile B = Λ2(M, (I,O)) has white vertices (the cycles of π◦ made of
half-edges in I ′) corresponding to the vertices of M and black vertices (the cycles
of π−1

• made of half-edges in O′) corresponding to the faces of M . The topological
intuition that the pseudo map A = Ψ1(M,S) is connected is that left-paths are pre-
served during the unfolding step. From that, counting vertices and edges show that
A is a plane tree. The topological intuition that the mobile B is a unicellular map
comes from the fact that A can reach every white corners of B (without crossing
its edges). Indeed, this implies that the pseudo-map B has no contractible cycles.
From this, a counting argument involving the Euler relation for pseudo-maps shows
that B is a unicellular map of genus g(M).

5. Enumerative corollaries and a shortcut between Harer-Zagier

and Jackson formulas.

Recall the notations of Section 3: Ag(n), Bg(n), Cg(n) are respectively the num-
ber of general unicellular maps, bipartite unicellular maps, and covered maps with
n edges and genus g. Similarly Av(n), Bv,f (n), Cv,f (n) are respectively the number
of general unicellular maps with v vertices, bipartite unicellular maps with v white
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and f black vertices, and covered maps with v vertices and f faces having n edges.

The first direct consequence of Theorem 4.5 is:

Theorem 5.1. The numbers Cg(n) and Cv,f (n) of covered maps, and the numbers
Bg(n) and Bv,f (n) of bipartite maps are related by:

Cg(n) = Cat(n)Bg(n+ 1)(13)

Cv,f (n) = Cat(n)Bv,f (n+ 1)(14)

where Cat(n) = 1
n+1

(

2n
n

)

.

Using known closed-form expressions for the numbers Bg(n) (see [15]), we obtain
the following expressions for the numbers of covered maps of small genus:

C0(n) = Cat(n)Cat(n+ 1), C1(n) = Cat(n)
(2n− 1)!

6(n− 2)!(n− 1)!
.

We now examine the special case of the torus (genus 1). By Lemma 3.3, a covered
map on the torus is either a tree-rooted map (the submap has genus 0, that is, is a
spanning tree) or the dual of a tree-rooted map. Since duality is involutive, exactly
half of toroidal covered maps of given size are tree-rooted maps. This gives the
first bijective proof to the following result:

Corollary 5.2 (Lehman and Walsh [24]). The number of tree-rooted maps with n
edges on the torus is:

T1(n) =
1

2
C1(n) =

(2n)!(2n− 1)!

12(n+ 1)!n!(n− 1)!(n− 2)!
.

Another enumerative byproduct of our bijection is a relation between the num-
bers of general and bipartite unicellular maps. Indeed, by comparing the expression
of Cv,f (n) obtained by the shuffle approach (Equation (7)) with the one of Theo-
rem 5.1, we obtain the following:

Theorem 5.3. The numbers of bipartite and monochromatic unicellular maps are
related by the formula:

Bv,f (n+ 1) =
∑

n1+n2=n

n!(n+ 1)!

(2n1)!(2n2)!
Av(n1)A

f (n2)(15)

In terms of generating series, the Harer-Zagier formula (3) implies the Jackson-
Adrianov formula (4).
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Proof. The first statement is obtained by comparing Equations (7) and (14). We
now show how to retrieve (4) from (3). One has:

∑

p,q≥1

Bp,q(n+ 1)ypzq

Eq. (15)
=

∑

p,q≥1

∑

n1+n2=n

n!(n+ 1)!

(2n1)!(2n2)!
Ap(n1)A

q(n2)y
pzq

=
∑

n1+n2=n

n!(n+ 1)!

(2n1)!(2n2)!





∑

p≥1

Ap(n1)y
p









∑

q≥1

Aq(n2)z
q





Eq. (3)
=

∑

n1+n2=n

n!(n+ 1)!

2nn1!n2!

∑

i,j≥1

2i+j−2

(

n1

i− 1

)(

n2

j − 1

)(

y

i

)(

z

j

)

=
∑

i,j≥1

2i+j−n−2n!(n+ 1)!

(i− 1)!(j − 1)!

(

y

i

)(

z

j

)

∑

n1+n2=n

n1≥i−1, n2≥j−1

1

(n1 − i+ 1)!(n2 − j + 1)!

where the second and fourth equalities just correspond to rearrangements of the
summations. Moreover, the inner sum in the last equation is equal to 2n−i−j−2/(n−
i−j+2)! by Newton’s binomial theorem. This gives Jackson-Adrianov formula. �

Remark. Connoisseurs know that Harer-Zagier and Jackson’s formulas can be
interpreted in terms of unicellular maps with colored vertices (see e.g. [18, sec.
3.2.7]). For those readers, we point out that the equivalence between Harer-Zagier
and Jackson’s formulas can be seen in terms of colorings as well: Ψ is a bijection
between shuffles of two unicellular maps with vertices colored using all colors respec-
tively in {1, . . . , i} and {1, . . . , j} and pairs made of a plane tree and a unicellular
map with black and white vertices colored using all colors respectively in {1, . . . , i}
and {1, . . . , j}.

6. Proofs and inverse bijection.

This section is devoted to the proof of Theorems 4.2 and 4.5 concerning respec-
tively the orientation and unfolding steps of the bijection Ψ.

6.1. Proofs concerning the orientation step. In this Subsection, we prove
Theorem 4.2 about the orientation step ∆ and and define the inverse mapping Γ.
Given an oriented map (M, (I,O)) with vertex-permutation σ and face-permutation
φ, the backward function β is defined by β(h) = σ(h) if h ∈ O and β(h) = φ(h)
otherwise. We point out that the backward function is not a permutation, since
β(h) = β(α(h)) for any half-edge h.

Lemma 6.1. Let (M, (I,O)) be an oriented map with root h0 and let β be the
backward function. The oriented map (M, (I,O)) is left-connected if and only if for
any half-edge, there exists an integer q > 0 such that βq(h) = h0.

Proof. Suppose first that (M, (I,O)) is left-connected. Let h be a half-edge. If
h is ingoing, then it is the extremity of a left path h1, . . . , hk = h. By definition
of left-paths, there exist positive integers q1, . . . , qk such that hi−1 = βqi(hi) for
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all i = 1 . . . k. Hence, βq(h) = h0 for q = q1 + · · · + qk. Now, if h is outgoing,
β(h) = β(α(h)), hence there exists q > 0 such that h0 = βq(α(h)) = βq(h).

Suppose conversely that for any half-edge h, there exists an integer q > 0
such that βq(h) = h0. In this case, for any ingoing half-edge h, the sequence
h1, h2, . . . , hk = h of ingoing half-edges appearing (in this order) in the sequence
βq−1(h), βq−2(h), . . . , β(h), h is a left-path. Hence (M, (I,O)) is left-connected. �

Proposition 6.2. The image of any covered map by the mapping ∆ is left-connected.

Proof. Let (M,S) be a covered map, where the map M = (H,σ, α) has root r, and
let (M, (I,O)) be its image by ∆. Our strategy is to prove that for any half-edge h
such that β(h) 6= r, one has h ≺S β(h). This will clearly prove that the sequence
β(h), β2(h), β3(h) . . . must contain the root r, and by Lemma 6.1, that (M, (I,O))
left-connected.

We distinguish four cases, depending on the fact that h is in I or O, and in S or
S̄. In these four cases, we denote h′ the half-edge θ−1(β(h)), where θ is the motion
function of (M,S). Observe that h′ ≺S β(h) since by hypothesis β(h) 6= r.
Case 1: h is in O and in S̄. In this case, one has β(h) = σ(h) = θ(h), hence h′ = h.
Thus h = h′ ≺S β(h).
Case 2: h is in O and in S. In this case, one has β(h) = σ(h) = θ(α(h)), hence
h′ = α(h). Moreover, by definition of ∆, one has h ≺S α(h) thus h ≺S h

′ ≺S β(h).
Case 3: h is in I and in S̄. In this case, one has β(h) = σ(α(h)) = θ(α(h)), hence
h′ = α(h). Moreover, by definition of ∆, one has h ≺S α(h), thus h ≺S h

′ ≺S β(h).
Case 4: h is in I and in S. In this case, one has β(h) = σα(h) = θ(h), hence
h′ = h. Thus, h = h′ ≺S β(h). �

We will now define a mapping Γ that we will prove to be the inverse of ∆. Let
us first give the intuition behind the injectivity of ∆ by considering a covered map
(M,S) with motion function θ and its image (M, (I,O)) by ∆. Observe from the
definition of ∆ that the root r of M is in S if and only if it is in O. Thus, it is
possible to know from the orientation (I,O) whether r belongs to S or not, and
thereby deduce the next half-edge h1 = θ(r) around the submap M|S. The same
reasoning will allow to determine, from the orientation (I,O), whether the half-
edge h1 belongs to S and deduce the next half-edge h2 = θ(h1) around M|S and so
on. . . This should convince the reader that the mapping ∆ is injective and highlight
the definition of Γ given below.

It is convenient to define Γ as a procedure which given an oriented map (M, (I,O))
with root r returns a subset S of half-edges. This procedure visit some half-edges of
M starting from the root r, and decide at each step whether the current half-edge
h belongs to the set S or not.

Definition 6.3. The mapping Γ associates to an oriented map (M, (I,O)) the
spanned map obtained by the following procedure.
Initialization: Set S = ∅, R = ∅ and set the current half-edge h to be the root r.
Core:

• If h /∈ S ∪R do:
If h is in O then add h and α(h) to S; otherwise add h and α(h) to R.

• Set the the current half-edge h to be σα(h) if h in S and σ(h) otherwise.
Repeat until the current half-edge h returns to be r.
End: Return the spanned map (M,S).
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We first prove the termination of the procedure Γ.

Lemma 6.4. For any oriented map (M, (I,O)), the procedure Γ terminates and
returns a spanned map (M,S). Moreover, the list of all successive current half-edges
visited by the procedure is the cycle containing the root r of the motion function θ
associated to (M,S).

Proof. We first prove that the procedure Γ terminates. Observe that, at any step
of the procedure, the sets S and R are disjoint and stable by α. Moreover, these
sets are both increasing, hence they are constant after a while, equal to some sets
S∞ and R∞ which are disjoint. Let θ∞ be the motion function of the submap
M|S∞

. Then, at each core step of the procedure, the current half-edge h becomes
the half-edge θ∞(h). Indeed, if at the current step h is in S, then h is in S∞ (since
the set S cannot decrease) so that θ∞(h) = σα(h), while if h is in R, then h is in
R∞ (since the set R cannot decrease), hence it is not in S∞ so that θ∞(h) = σ(h).

Hence the sequence of all successive current half-edges form a cycle of the per-
mutation θ∞. Since the procedure starts with h equal to the root r, it follows that
r is reached a second time, and that the procedure terminates. Finally, the spanned
map returned by the algorithm is (M,S∞), which concludes the proof. �

Proposition 6.5. The image of a left-connected map by the mapping Γ is a covered
map.

Proof. Let (M, (I,O)) be a left-connected map. We denote by r the root of M =
(H,σ, α), by β the backward function of (M, (I,O)), and by θ the motion function
of (M,S) = Γ((M, (I,O))). Let K be the set of half-edges contained in the cycle
of the motion function θ containing the root r. In order to prove the proposition,
it suffices to prove that K = H . Indeed, in this case the motion function θ is cyclic
which implies that (M,S) is a covered map by Proposition 3.1.

Moreover, since (M, (I,O)) is left-connected, for any half-edge h in H , there
exists a positive integer q such that βq(h) is the root r which belongs to K. Hence,
it suffices to prove that any half-edge h such that β(h) is in K, is also in K.

Let h be an half-edge such that β(h) is in K and let h′ = θ−1(β(h)). Observe
that, by definition of K, the half-edge h′ is in K. We now distinguish four cases,
depending on the fact that h is in I or O, and in S or S̄.
Case 1: h is in O and in S̄. In this case, one has β(h) = σ(h) = θ(h), hence h′ = h.
Thus h = h′ is in K.
Case 2: h is in O and in S. In this case, by definition of Γ, the half-edge h was
the current half-edge when it was added to S. Thus, by Lemma 6.4, the half-edge
h is in K.
Case 3: h is in I and in S̄. In this case, one has β(h) = σ(α(h)) = θ(α(h)), hence
h′ = α(h). Since h′ is in K, Lemma 6.4 ensures that it was the current half-edge
at a certain step of the procedure Γ. Hence, since h′ = α(h) is in O but not in S,
it means that h and h′ were added to the set R at a step of the procedure Γ, such
that h was the current half-edge. Thus, by Lemma 6.4, the half-edge h is in K.
Case 4: h is in I and in S. In this case, one has β(h) = σα(h) = θ(h), hence
h′ = h. Thus h = h′ is in K. �

We now complete the proof of Theorem 4.2.

Proposition 6.6. The mappings ∆ and Γ are inverse bijections between covered
maps and left-connected maps.
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Proof. We first prove that the mapping ∆◦Γ is the identity on left-connected maps.
Observe that this composition is well-defined by Proposition 6.5. Let (M, (I,O))
be a left-connected map and let (M,S) be its image by Γ. We want to prove that

(M, (Ĩ , Õ)) ≡ ∆(M,S) is equal to (M, (I,O)). For that, it suffices to show that

any half-edge h such that h ≺S α(h) is in O if and only if it is in Õ. Let h be such

a half-edge. By definition of ∆, it follows that h is in Õ if and only if h is in S.
Now, by Lemma 6.4, the sequence h1 = r, h2, . . . , h2n of current half-edge visited
during the procedure Γ satisfies h1 ≺S h2 ≺S · · · ≺S h2n, hence h is visited before
α(h) during the procedure Γ. Hence, by definition of Γ, the half-edge h is in O if
and only if h is in S.

We now prove that the mapping Γ ◦∆ is the identity on covered maps. Observe
that this composition is well-defined and returns a covered map by Propositions 6.2
and 6.5. Let (M,S) be a covered map with root r and let (M, (I,O)) be its image
by ∆. Let also (M,S′) = Γ(M, (I,O)) and let θ and θ′ be respectively the motion
function of (M,S) and (M,S′). In order to prove that S = S′ it suffices to prove that
θ = θ′ (indeed, the set S and S′ are completely determined by θ and θ′). Suppose

now that θ 6= θ′ and consider the smallest integer k ≥ 0 such that θk+1(r) 6= θ′k+1(r)
(such an integer exists since θ and θ′ are cyclic). Observe that for all 0 ≤ j < k, the

half-edge θj(r) = θ′j(r) is in S if and only if it is in S′ (since θj+1(r) = θ′j+1(r)).

On the other hand, the half-edge h = θk(r) = θ′
k
(r) is in the symmetric difference of

S and S′ (since θk+1(r) 6= θ′
k+1

(r)). This implies that h ≺S α(h) and h ≺S′ α(h).
Since h ≺S α(h), the definition of ∆ shows that the half-edge h is in S if and only if
h is in O. Since h ≺S′ α(h), Lemma 6.4 proves that h is the current half-edge before
α(h) in the procedure Γ on (M, (I,O)). Hence, by definition of Γ, the half-edge h
is in S′ if and only if h is in O. This proves that h = θk(r) is not in the symmetric
difference of S and S′, a contradiction. �

Before leaving the world of left-connected maps, we prove Lemma 4.3.

Proof of Lemma 4.3. If a cycle of the vertex-permutation σ contains no edge in I,
then β(h) = σ(h) for every half-edge h in this cycle. By Lemma 6.1, this implies
that the root r belongs to this cycle. Similarly, if a cycle of the face-permutation
φ contains no edge in O, then β(h) = φ(h) for every half-edge h in this cycle. By
Lemma 6.1, this implies that the root r belongs to this cycle. �

6.2. Proofs concerning the unfolding step. In this Subsection we prove The-
orem 4.5. We fix a left-connected map (M, (I,O)), where the map M = (H,σ, α)
has n edges, genus g, root r and face-permutation φ. We denote A = (H, τ, α) =
Λ1(M, (I,O)) and B = (H ′, π, α′) = Λ2(M, (I,O)) and adopt the notation of Sec-
tion 4 for the sets H ′, I ′, O′ and the permutations σ′ φ′, τ ′, π◦ and π•.

Lemma 6.7. The permutations τ, α act transitively on H, thus A is a map.

As mentioned above, the intuition behind the connectivity of A is that left-paths
are preserved by the unfolding. This can be formalized as follows.

Proof. Let β be the backward function of the oriented map (M, (I,O)) defined by

β(h) = σ(h) if h is in O and β(h) = σα(h) otherwise. Let β̃ be the backward

function of the oriented map (A, (I,O)) defined by β̃(h) = τ(h) if h is in O and

β̃(h) = τα(h) otherwise.
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We first prove that β(h) = β̃(h) for any half-edge h ∈ H such that β(h) 6= r. If
h is in O (and β(h) 6= r), then

β(h) ≡ σ(h) = σ′(h) = τ ′(h) = τ(h) ≡ β̃(h),

since the permutations σ′ and τ ′ coincide on O′. If h is in I (and β(h) 6= r), then

β(h) ≡ σ(α(h)) = σ′(α(h)) = τ ′(α(h)) = τ(α(h)) ≡ β̃(h),

since again the permutations σ′ and τ ′ coincide on O′.
Since the oriented map (M, (I,O)) is left-connected, Lemma 6.1 ensures that for

any half-edge h, there exists an integer q > 0 such that βq(h) = r. Taking the least
such integer q, and using the preceding point shows that for any half-edge h, there
exists an integer q > 0 such that β̃q−1(h) = βq−1(h) = l, where l is a half-edge
such that β(l) = r. Moreover, the relation β(l) = r shows that l is either equal to
u = σ−1(h) or to α(u). Therefore, any half-edge h can be sent to one of the half-

edges u, α(u) by applying the function β̃, hence by acting with the permutations τ
and α. This proves the lemma. �

We call root-to-leaves orientation of a plane tree the unique orientation such that
each non-root vertex is incident to exactly one ingoing half-edge.

Proposition 6.8. The map A is a tree. Moreover, (I,O) is the root-to-leaves
orientation of A.

We start with an easy lemma.

Lemma 6.9. The half-edge u = σ−1(r) is in O and τ ′(u) = i. In particular, the
half-edge i is not alone in its cycle of τ ′.

Proof. Consider the backward function β of the oriented map (M, (I,O)). Since,
(M, (I,O)) is left-connected, Lemma 6.1 ensures that there exists a half-edge h such
that β(h) = r. Since β(h) = β(α(h)) we can take h in O and get h = σ−1(r) = u.
This proves that u = σ−1(r) is in O. It is then obvious from the definition of τ ′

that τ ′(u) = i. �

Proof of Proposition 6.8. Recall that n = |H |/2 denotes the number of edges of
M , hence of A. We first prove that the map A has (at least) n + 1 vertices. By

construction, the permutation τ ′ = σ′π−1
◦ = σ′σ′−1

|I has at most one element of I ′

in each of its cycle. Hence it has at least n + 1 cycles beside the cycle made of o
alone. Moreover, by Lemma 6.9, the half-edge i is not alone in its cycle of τ ′, thus
the vertex-permutation τ = τ ′|H has at least n+ 1 cycles.

The (connected) map A has n edges and (at least) n + 1 vertices hence it is a
tree. Moreover, each non-root vertex of A is incident to exactly one half-edge in I.
Thus, (I,O) is the root-to-leaves orientation of A. �

We prove a last easy lemma about the tree A = (H, τ, α).

Lemma 6.10. The permutation τ ′ = σ′π−1
◦ is obtained from the vertex-permutation

τ by inserting the half-edge i before the root t of A in the cycle of τ containing t
and creating a cycle made of o alone. The permutation ϕ′ = (i, o)τ ′α′ is obtained
from the face-permutation ϕ = τα by inserting the half-edge o before t in the cycle
of ϕ containing t and creating a cycle made of i alone.
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Proof. By definition, τ ′(i) = t and τ ′|H = τ . Moreover, it is easy to check that

τ ′(o) = σ′π−1
◦ (o) = o. This proves the statement about τ ′. We now denote u =

τ ′
−1

(i). By definition, ϕ(α(u)) = τ(u) = t and one can check ϕ′(α(u)) = o,
ϕ′(o) = t, ϕ′(i) = i, and ϕ′(h) = ϕ(h) for all h /∈ {i, o, α(u)}. This proves the
statement about ϕ′. �

We will now prove that the mobile B = (H ′, π, α′) = Λ2(M, (I,O)) is a unicel-
lular bipartite map. We introduce some notations for the half-edges in H . From
Proposition 6.8, the tree (A, (I,O)) is oriented from root to leaves. In particular,
the root t of A is outgoing. We denote o1 = t, o2, . . . , on the outgoing half-edges as
appearing during a counterclockwise tour around the tree A, that is to say, ϕ|O =
(o1, o2, . . . , on) where ϕ = τα is the face-permutation of A. This labelling is indi-
cated in Figure 10(a). Observe that Lemma 6.10 implies ϕ′

|O′ = (o, o1, o2, . . . , on).

For j = 1, . . . , n, we denote ij = α(oj), so that α′ϕ′
|Oα

′ = (i, i1, i2, . . . , in).

i
i5

i2o1

o4

i4
i3

o3

i1

o2

o5

o

i6

o6o2

i2

i5
o5

i6

i3

i1

o3

i4

o6

o1

o4

Figure 10. A pair (A,B) coherently labelled on the alphabet
{i, i1, . . . , i6, o, o1, . . . , o6}: the face-permutation ϕ of the tree A
satisfies ϕ′

|O′ = (o, o1, . . . , o6), while the face-permutation ψ of the

mobile B satisfies ψ|I′ = (i, i1, . . . , i6).

Proposition 6.11. The mobile B = Λ2(M, (I,O)) is a bipartite unicellular map
of genus g(M). Moreover, if we color the vertices of B in two colors, say white and
black, with the root-vertex being white, then it has v(M) white vertices and f(M)
black vertices. Lastly, the half-edges incident to white vertices are i, i1, i2, . . . , in
and appear in this order during a clockwise tour around B, that is to say, ψ−1

|I′ =

(i, i1, . . . , in) = α′ϕ′
|Oα

′, where ψ = πα′ is the face-permutation of B and ϕ′ =

(i, o)τ ′α′.

Lemma 6.12. The permutation ψ = πα′ and ϕ′ = (i, o)τ ′α′ are related by ψ−1
|I′ =

(i, i1, . . . , in) = α′ϕ′
|O′α′.

Proof. Since the involution α′ maps I ′ to O′, one gets α′ϕ′
|O′α′ = (α′ϕ′α′)|I′ .

Hence, α′ϕ′
|O′α′ = (α′(i, o)τ ′)|I′ ≡ (α′(i, o)σ′σ′−1

|I′ )|I′ . Consider now a half-edge h

in I ′. By definition of restrictions, one gets

α′ϕ′
|O′α′(h) = (α′(i, o)σ′)|I′σ′−1

|I′ (h),

since σ′−1
|I′ acts as the identity on O′. We now determine ψ−1

|I′ (h). Observe that the

sets I ′ and O′ are stable by the permutation π = π◦π
−1
• . Thus the permutation



A BIJECTION FOR COVERED MAPS 23

ψ−1 ≡ α′π−1 maps I ′ to O′. This gives

ψ−1
|I′ (h) = α′π−1α′π−1(h) = α′π•α

′π−1
◦ (h) = α′φ′|O′α′σ−1

|I′ (h),

since π• ≡ φ′|O′ = π−1
|O′ and π◦ ≡ σ′

|I′ = π|I′ . Moreover, α′φ′|O′α′ = (α′φ′α′)|I′ =

(α′(i, o)σ′)|I′ since φ′ = (i, o)σ′α′ (and the sets I ′ and O′ are exchanged by α′).
Thus, for any half-edge h in I ′,

ψ−1
|I′ (h) = (α′(i, o)σ′)|I′σ−1

|I′ (h)

which concludes the proof. �

Proof of Proposition 6.11. By Lemma 6.12, every half-edge in I ′ belongs to the
same cycle C of the permutation ψ = πα′. Now, if h is a half-edge in O′, ψ(h) =
πα(h) is in I ′ (since I ′ is stable by π) hence it belongs to the cycle C. Thus,
the permutation ψ is cyclic. Hence, the permutations π and α act transitively on
H ′, that is, B is a map. Moreover, its face-permutation ψ is cyclic, that is, B is
unicellular.

Moreover, since the sets I ′ and O′ are stable by the vertex-permutation π and
exchanged by the edge-permutation α′, the map B is bipartite. Let us therefore
consider the bipartite coloring where the vertices incident to half-edges in I ′ are
white while the vertices incident to the half-edges in O′ are black. By Lemma 4.3,
each of the cycles of σ′ except the cycle made of o alone contains at least one half-
edge in I ′. Therefore, the number of cycles of the permutation π◦ = σ′

|I′ on I ′ is

the number v(M) of cycles of the vertex-permutation σ. Similarly, the number of
cycles of the permutation π• = φ′|O′ on O′ is the number f(M) of cycles of the

face-permutation φ. Thus, the map B has v(M) white vertices and f(M) black
vertices. Now, Euler relation gives

2g(B) = 2 + e(B)− f(B)− v(B) = 2 + (e(M) + 1)− 1− (v(M) + f(M)) = 2g(M).

Thus, the genus of B is g(M). This concludes the proof of Proposition 6.11. �

Topological description of the folding step (Figure 11). We now define a
mapping Ω, the folding step, which we will prove to be the inverse of the unfolding
step Λ. Before defining Ω in terms of permutations, let us explain the topolog-
ical interpretation of Proposition 6.11. We denote by v0, v1, . . . , vn the vertices
of A in counterclockwise order around A (starting from the root-corner) and by
c0, c1, . . . , cn the first corners of these vertices; see Figure 11(a). Equivalently, v0 is
the root-vertex and c0 is the root-corner, while for j = 1 . . . n, vj is the vertex inci-
dent to the ingoing half-edge ij and cj is the corner following ij in counterclockwise
order around vj ; see Figure 10. We also denote by x0, . . . , xn the white corners of
B in clockwise order around B (starting from the root-corner x0); see Figure 11(a).
By Proposition 6.11, for j = 0 . . . n, xj is the corner of B following the half-edge ij
in clockwise order around the incident vertex. Therefore this proposition indicates
how the folding step Ω = Λ−1 should be defined topologically: for j = 0, . . . , n the
first-corner cj of the vertex vj (the jth vertex of A in counterclockwise direction)
is glued to the corner xj (the jth white corner of B in clockwise direction). This
gives a map containing edges of both A and B that we call partially folded map
which is represented in Figure 11(b). The oriented map (M, (I,O)) = Ω(A,B) is
obtained from the partially folded map by keeping the half-edges of A with their
cyclic ordering around the white vertices of B (while the edges and black vertices
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of B are deleted).

(b)
v0

v5
v1

v3

v6
v4

(a)

x6

v2 x4

(c)
x0

x5

x2
x1

x3

Figure 11. Topological representation of the folding step. Fig-
ure (b) represents the partially folded map.

We now defines the mapping Ω in terms of permutations. Let Ã = (H, τ̃ , α) be a

rooted plane tree with n = |H |/2 edges, and B̃ = (H ′, π̃, α′) be a rooted bipartite
unicellular map with n+ 1 = |H ′|/2 edges. We consider the usual black-and-white

coloring of B̃ (with the root-vertex being white). The pair (Ã, B̃) is said coherently
labelled if the following conditions are satisfied:

(i) H ′ = H ∪ {i, o}, where i is the root of M and o = α′(i).
(ii) α = α′

H .

(iii) The root-to-leaves orientation (I,O) of Ã is such that the half-edges in I ′ =

I ∪{i} are incident to white vertices of B̃, while half-edges in O′ = O∪{o}
are incident to black vertices of B.

(iv) If the half-edges o1, o2, . . . , on in O appear in this order in counterclock-

wise direction around Ã with o1 being the root of Ã, then the half-edges
i, i1, . . . , in defined by ij = α(oj) for j = 1 . . . n appear in this order in clock-

wise direction around B̃. Equivalently, ψ−1
|I′ = (i, i1, . . . , in) = α′ϕ′

|Oα
′,

where ψ = πα′ is the face-permutation of B and ϕ′ = (i, o)τ ′α′.

For example, the pair (A,B) represented in Figure 10 is coherently labelled. Ob-
serve that Proposition 6.11 precisely states that the image by Λ of a left-connected
map (M, (I,O)) is coherently labelled. We now prove (the somewhat obvious fact)

that any pair (Ã, B̃) can be relabelled coherently.

Lemma 6.13. Let Ã = (H, τ̃ , α) be a rooted plane tree with n = |H |/2 edges, and

B̃ = (H ′, π̃, α′) be a rooted bipartite unicellular map with n + 1 = |H ′|/2 edges.

Then, there is a unique way of relabelling B̃ in such a way that the pair (Ã, B̃) is
coherently labelled.

Proof. We denote by (I,O) the root-to-leaves labelling of A. We denote by I ′

and O′ respectively the set of half-edges incident to white and black vertices of B̃
and observe that these sets are exchanged by α′ (since B̃ is bipartite). We denote

ϕ̃ = τ̃α and ψ̃ = π̃α′ are the face-permutation of Ã and B̃ respectively. Lastly, we
denote (o1, o2, . . . , on) the cycle ϕ̃|O with o1 being the root of Ã and (i′, i′1, . . . , i

′
n)

the cycle ψ̃−1
|I′ with i′ being the root of B̃. Now we consider the relabelling of B̃

given by the bijection λ from H ′ to H ∪ {o, i} (where i, o are half-edges not in
H) given by λ(i′) = i, λ(α(i′)) = o and for all j = 1 . . . n, λ(i′j) = α(oj) and
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λ(α(i′j)) = oj . Clearly λ is a bijection and it is the unique bijection making the

pair (Ã, B̃) coherently labelled. �

We denote by Pn the set of pairs (Ã, B̃) made of a tree of size n and a unicellular

bipartite map of size n+1. We now consider such a pair (Ã, B̃), where Ã = (H, τ̃ , α)

and B̃ = (H ′, π̃, α′). By Lemma 6.13, we can assume that the pair (Ã, B̃) is
coherently labelled and we adopt the notations i, o, I, O, I ′, O′ introduced in the
conditions (i- iv) (in particular, (I,O) is the root-to-leaves orientation of A). We
then define τ̃ ′ as the permutation on H ′ obtained from τ by inserting i before the
root t of Ã in the cycle containing it and creating a cycle made of o alone. We also
define the permutations π̃◦ and σ̃′ on H ′ and the permutation σ̃ on H by

(16) π̃◦ = π̃|I′ , σ̃′ = τ̃ ′π̃◦ and σ̃ = σ̃′
|H ,

(where a slight abuse of notation is done by considering π̃◦ as a permutation on

H ′ acting as the identity on O′). With these notations, we define Ω(Ã, B̃) =

(M̃, (I,O)), where M̃ = (H, σ̃, α).

We now complete the proof of Theorem 4.5 by proving the following proposition.

Proposition 6.14. The mappings Λ and Ω are inverse bijections between left-
connected maps of size n and pairs in Pn.

Proof. • We first prove that the mapping Ω ◦ Λ is the identity on left-connected
maps.
Let (M, (I,O)) be a left-connected map, where M = (H,σ, α). Let (A,B) =
Λ(M, (I,O)), where A = (H, τ, α) and B = (H ′, π, α′) (recall that (A,B) is co-

herently labelled by Proposition 6.11). Let also (M̃, (Ĩ , Õ)) = Ω(A,B), where

M̃ = (H, σ̃, α). We want to prove that (I,O) = (Ĩ , Õ) and M = M̃ (or equiva-
lently, σ = σ̃).

By definition of Ω, (Ĩ , Õ) is the root-to-leaves orientation of A. Moreover, by
Proposition 6.8, (I,O) is also the root-to-leaves orientation of A. Hence, (I,O) =

(Ĩ , Õ).
By definition, σ = σ′

|H , where σ′ = τ ′π◦ = τ ′π|I′ (see (12)). Similarly, σ̃ = σ̃′
|H

and σ̃′ = τ̃ ′π̃◦ = τ̃ ′π|I′ (see (16)). Moreover, Lemma 6.10 ensures that τ ′ = τ̃ ′

(since the permutations τ ′ and τ ′′ are obtained from τ by the same procedure).
Thus, σ′ = σ̃′ and σ = σ̃.

• We now prove that the mapping Λ ◦ Ω is the identity on Pn.
We must first prove that this mapping is well-defined, that is, the image of any
pair (Ã, B̃) ∈ Pn by Ω is a left-connected map. Let us denote Ã = (H, τ̃ , α) and

B̃ = (H ′, π̃, α′). By Lemma 6.13, we can assume that the pair (Ã, B̃) is coherently
labelled and we adopt the notations i, o, I, O, I ′, O′ of conditions (i-iv) and the

notations π̃◦, σ̃
′, σ̃ introduced in (16). Lastly, we denote Ω(Ã, B̃) = (M̃, (I,O)),

where M̃ = (H, σ̃, α).

Let β̃ be the backward function of the tree Ã defined on H by β̃(h) = τ̃(h) if h

is in O and β̃(h) = τ̃α(h) otherwise. Let β be defined on H by β(h) = σ̃(h) if h is

in O and β(h) = σ̃α(h) otherwise. Let t be the root of Ã and let u = τ−1(t). It

is easy to show (as is done in the proof of Lemma 6.7) that β(h) = β̃(h) as soon
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as β̃(h) 6= t. The tree (A, (I,O)) is oriented from-root-to leaves, hence it is left-
connected. Thus, by Lemma 6.1, for any half-edge h ∈ H there exists an integer
q > 0 such that βq(h) = t. By taking the least such integer q, one gets β̃q−1(h) =

βq−1(h) ∈ {u, α(u)}. Since u is in O, one gets β̃(α(u)) = β̃(u) = σ̃(u) = r. Hence,

β̃q(h) = r. By Lemma 6.1, this implies that (M̃, (I,O)) is left-connected.

We now study the restrictions π̃◦ ≡ π̃|I′ and π̃• ≡ π̃−1
|O′ . Recall that the map B̃ is

bipartite with white vertices incident to half-edges in I ′ and black vertices incident
to half-edges in O′. Hence, π̃ = π̃◦π̃

−1
• .

We first prove that the permutation π̃◦ is equal to σ̃′
|I′ . We consider a half-edge

h in I ′. By definition of restrictions, σ̃′
|I′(h) = σ̃′k

|I′(h) for a positive integer k such

that for all 0 < j < k, the half-edge σ̃′j
|I′(h) is in O′. Moreover, the permutations

τ̃ ′ and σ̃′ coincide on O′. Thus, σ̃′
|I′(h) = τ̃ ′k−1(σ̃′(h)). By (16), σ̃′ = τ̃ ′π̃◦, hence

σ̃′
|I′(h) = τ̃ ′

k
(π̃◦(h)). Therefore, σ̃′

|I′(h) is a half-edge in I ′ contained in the cycle of

τ̃ ′ containing the half-edge π◦(h) (which is in I ′). Since (I,O) is the root-to-leaves

orientation of Ã, every cycle of τ̃ ′ contains exactly one half-edge in I ′ (except for
the cycle made of o alone). Thus, σ̃′

|I′(h) = π̃◦(h).

We now prove that the permutation π̃• is equal to φ̃′|O′ , where φ̃′ = (i, o)σ̃′α′.

We consider the face-permutation ψ̃ = π̃α′ of B̃. Since π̃ = π̃◦π̃
−1
• one gets

ψ̃−1 = α′π̃•π̃
−1
◦ , hence ψ̃−1

|I′ = α′π̃•α
′π̃−1

◦ and finally, π̃• = α′ψ̃−1
|I′ π̃◦α

′. We now

use the property (iv) of the coherently labelled pair (Ã, B̃). This property reads

ψ̃−1
|I′ = α′ϕ̃′

|O′α′, where ϕ̃′ = (i, o)τ̃ ′α′. Thus, π̃• = ϕ̃′
|O′α′π̃◦α

′. We now consider a

half-edge h in O′. By definition of restrictions, π̃•(h) = ϕ̃′k(α′π̃◦α
′(h)), where k is

the least positive integer k such that ϕ̃′k(α′π̃◦α
′(h)) is in O′. Moreover, the permu-

tations ϕ̃′ = (i, o)τ̃ ′α′ and φ̃′ = (i, o)σ̃′α′ coincide on I ′ (since σ̃′ and τ̃ ′ coincide on

O′). Thus, π̃•(h) = φ̃′
k−1

(ϕ̃′α′π̃◦α
′(h)) , where k is the least positive integer k such

that φ̃′
k−1

(ϕ̃′α′π̃◦α
′(h)) is in O′. Moreover, ϕ̃′α′π̃◦α

′(h) = (i, o)σ̃′α′(h) ≡ φ̃′(h)

since ϕ̃′ = (i, o)τ̃ ′α′ and π̃◦ = τ̃ ′−1σ̃′ by (16). Thus, π̃•(h) = φ̃′
k
(h) = φ̃′|O′(h).

Given that π̃◦ ≡ π̃|I′ = σ̃′
|I′ and π̃• ≡ π̃|O′ = φ̃′|O′ , it is clear from the defini-

tion of the mapping Λ that Λ(M̃, (I,O)) = (Ã, B̃). This concludes the proof of
Proposition 6.14. �

7. Alternative descriptions of the unfolding step

In this section we present two alternative ways of encoding the pairs (A,B) made
of a tree and a mobile. We also give the description of the folding and unfolding
steps in terms of these encodings. These alternative descriptions are particularly
useful for studying the specializations of the bijection Ψ. In particular we will use
them in the next section in order to prove that Ψ specializes to a classical bijection
by Bouttier et al [6]. These descriptions are also used in the planar case in [4] for
handling specializations of Ψ allowing for a bijective counting of certain classes of
triangulations and quadrangulations.
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We first define the degree-code and height-code of a tree. Let A be a (rooted
plane) tree with n edges. Let v0, v1, . . . , vn be the vertices in counterclockwise order
of appearance around the tree (with v0 being the root). The height-code of the tree
A is the sequence c0, . . . , cn, where cj is the height of the vertex vj (the number
of edges on the path from v0 to vj). The degree-code (or Lukasiewicz code) is the
sequence d0, . . . , dn, where dj is the number of children of vj . The height- and
degree-code for the tree A represented in Figure 12 are respectively 0123212 and
2210010. It is well-known that the height-code or degree-code both determine the
tree A. Moreover, a sequence of non-negative integers c0, . . . , cn is a height-code if
and only if

c0 = 0 and ∀i < n, 0 < ci+1 ≤ ci + 1,

and a sequence of non-negative integers d0, . . . , dn is a degree-code if and only if

n
∑

i=0

(di − 1) = −1 and ∀k < n,
k

∑

i=0

(di − 1) ≥ 0.

We can now give alternative descriptions of a pair (A,B) by encoding the tree A
as some decorations added to the mobile B (the decorations corresponding either
to the height- or degree-code of A). We consider the usual black and white coloring
of the mobile B (with the root-vertex being white). We say that the mobile B is
corner-labelled if a non-negative number called label is attributed to each of the
n + 1 white corners. The mobile B is corner-well-labelled if the root-corner has
label 0, all other corners have positive labels and the labels do not increase by more
than 1 from a corner to the next one in clockwise direction around B. Equivalently,
B is corner-well-labelled if the sequence of corners encountered in clockwise order
around the mobile starting from the root-corner is the height-code of a tree. A
corner-well-labelled mobile is shown in Figure 12(b). We now consider mobiles with
buds, that is, dangling half-edges. A blossoming mobile is a mobile B together with
some outgoing buds glued in each white corners. The sequence of buds encountered
in clockwise order around the mobile is the sequence d0, d1, . . . , dn where di is the
number of buds in the ith corner of B (in clockwise order starting from the root).
The blossoming mobile is balanced if its sequence of buds is the degree-code of
a tree. A balanced blossoming mobile is shown in Figure 12(c). Since both the
height- and degree-code (made of n + 1 integers) determine a plane tree (with n
edges) the following result is obvious.

Lemma 7.1. The three following sets are in bijection:

• pairs (A,B) made of a plane tree A and a mobile B with respectively n and
n+ 1 edges,

• corner-well-labelled mobiles with n+ 1 edges,
• balanced blossoming mobiles with n+ 1 edges.

The correspondences between the three sets considered in Lemma 7.1 are repre-
sented in Figure 12 (top part). By Theorem 4.5, these sets are all in bijection with
left-connected maps (and covered maps) with n edges. In the rest of this section
we describe the folding and unfolding step in terms of corner-well-labelled mobiles
and balanced blossoming mobiles.

Let (A,B) be a pair made of a plane tree A and a mobile B with respectively n
and n+1 edges. Recall from Section 6 the topological description of the folding step
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Figure 12. Three equivalent representations of a pair (A,B) and
descriptions of the folding step.

Ω = Λ−1 for (A,B): if the vertices of the tree A are denoted v0, v1, . . . , vn in coun-
terclockwise order around A and the white corners of B are denoted x0, x1, . . . , xn

in clockwise order around B, then the partially folded map N is obtained by gluing
the first-corner of the vertex vj to the corner xj (see Figure 11). The oriented map
(M, (I,O)) = Ω(A,B) is then obtained from the partially folded map N by deleting
the edges and black vertices of B.

This description implies that endowing A with its root-to-leaf orientation (for
which the vertex vj is incident to a unique ingoing half-edge ij) results in having
exactly one ingoing half-edge of A in each white corner of B (except in the root-
corner); see Figure 8(a). More precisely, around a white vertex of N , one has in
clockwise order between the half-edges of B defining the corner xj : first the ingo-
ing half-edge ij of A (or the arrow pointing the root-corner if j = 0), and then the
outgoing half-edges of A leading to the children of vj .

Description of the folding step in terms of corner-labelled mobiles. Let
(B, ℓ) be a corner-well-labelled mobile, where ℓ is the function associating a label
to each white corner of B. For j = 1 . . . n, we denote by x′j be the last corner
of B having label ℓ(xj) − 1 appearing before xj in clockwise direction around B.
Because (B, ℓ) is well-labelled, the corner x′j always exists and appears between the
root-corner and the corner xj in clockwise order around B. The partially folded
map N ′ associated to (B, ℓ) is defined as the map obtained from B by adding n
edges sequentially: for j = 1 . . . n a directed edge ej of N ′ is created from the corner
x′j to the corner xj . More precisely, at each step the newly created edge is between
the corner xj and the corner of N ′ inside the corner x′j of B which is incident to

the root-face. The result is represented in Figure 12(b).
Clearly, the procedure Ω′ described above is well-defined if and only if at each

step j there exists a unique corner of N ′ incident to the root-face inside the corner
x′j of B. The fact that there is at most one such corner is clear by induction (and
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this is the corner of N ′ following the ingoing half-edge inside the corner x′j). The
fact that there is such a corner is also obtained by using the following induction
hypothesis: after step j the white corners of B appearing before xj and containing
a corner of N ′ incident to the root-face are, in clockwise order around B, the last
corners of B before xj with respective labels 0, 1, . . . , ℓ(xj). It remains to prove
that the procedure Ω′ is indeed equivalent to the folding step Ω.

Proposition 7.2. If (B, ℓ) is the corner-well-labelled mobile corresponding with
the pair (A,B) (i.e. ℓ(w0)ℓ(w1) . . . ℓ(wn) is the height-code of A), then the partially
folded maps N and N ′ coincide.

Proof. It suffices to show that the edges e1, . . . , en created by the procedure Ω′ are
the edges that would have been obtained by gluing the tree A on the mobile B. Let
j be in {1 . . . n} and let uj be the parent of vj in A. The edge of A joining v′′j and

vj gives an edge e′′j of N from a corner x′′j to the corner xj of the mobile B. We
need to show that x′′j = x′j . First observe that ℓ(x′′j ) = ℓ(xj)− 1 because the labels

ℓ(xj) and ℓ(x′′j ) correspond to the height of vj and v′′j in A. Moreover, the vertex v′′j
(which is the parent of vj) is the last vertex with height ℓ(xj)− 1 appearing before
vj in counterclockwise order around A. Thus, by definition of N , the corner x′′j is

the last corner with label ℓ(xj) − 1 appearing before xj in clockwise order around
B, that is, x′′j = xj . This shows that the edges ei and e′′i are incident to the same

corners of B. Moreover, for both N and N ′ the clockwise order of the half-edges
inside a white corner xj of B coincide with the clockwise order of appearance of
their other half around B. Thus, N = N ′. �

Description of the folding step in terms of blossoming mobiles. Let ~B

be a balanced blossoming mobile. Let ~B′ be the fully blossoming mobile with

ingoing and outgoing buds obtained from ~B by inserting an ingoing bud in each

white corner of ~B following an edge of B (and not a outgoing bud) in clockwise

order around the white vertex ( ~B′ is represented in solid lines in the bottom part

of Figure 12(c)). Because the blossoming mobile ~B is balanced, the sequence of

outgoing and ingoing buds in clockwise order around the ~B′ (starting from the root-
corner) is a parenthesis system (if outgoing and ingoing buds are seen respectively
as opening and closing parentheses). Hence, there is a unique way of pairing each
outgoing bud to an ingoing bud following it without creating any crossings. The
partially folded map N ′ associated to the blossoming mobile B̄ is the map obtained

from ~B′ by performing these pairings. The result is represented in Figure 12(c).

Proposition 7.3. If ~B is the blossoming mobile associated with the pair (A,B)
(i.e. the sequence of buds of B̄ is the degree-code of A), then the partially folded
maps N and N ′ coincide.

Proof. It suffices to show that the paired edges of N ′ are the edges that would have
been obtained by gluing the tree A on the mobile B. First observe that around a
white vertex of N ′, one has in clockwise order between the half-edges of B defining
the corner xj : first an ingoing half-edge and then dj outgoing half-edges, where

dj is the number of children of vj in A (because the sequence of buds of ~B is the

degree-code of A). Thus, ~B′ is the map obtained from N by cutting each edge of
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A at their midpoint. Moreover, for both N and N ′ the clockwise order of the half-
edges inside a white corner of B coincide with the clockwise order of appearance of
their other half around B. Thus, N = N ′. �

8. Link with the bijection of Bouttier, Di Francesco and Guitter.

In [6] Bouttier, Di Francesco and Guitter defined a bijection between bipartite
maps and vertex-well-labelled mobiles2 (see definition below). The goal of this sec-
tion is to show the bijection of Bouttier et al. can be obtained as a specialization

of the unfolding mapping Λ′ = Ω′−1
associating a corner-labelled mobile to a left-

connected map (Figure 12(b)).

We first recall some definitions. The distance between two vertices of a map
is the minimum number of edges on paths between them. We denote by d(v) the
distance of a vertex v from the root-vertex. Clearly, any pair of adjacent vertices
u, v satisfies |d(u) − d(v)| ≤ 1. An orientation is geodesic if any edge with origin u
and end v satisfies d(u) ≤ d(v) (i.e. edges are oriented away from the root-vertex).
For a bipartite map any pair of adjacent vertices u, v satisfies |d(u) − d(v)| = 1
(since every cycle has even length), hence there is a unique geodesic orientation.
The geodesic orientation is indicated in Figure 13(b).

A vertex-well-labelled mobile is a corner-well-labelled mobile such that the labels
coincide around each white vertices, that is, any two corners incident to the same
vertex have the same label. An example is given in Figure 13(c). Observe that
vertex-well-labelled mobile are equivalently defined as mobiles with a label ℓ(v)
associated to each vertex v satisfying:

• the root-vertex has label 0 and degree 1, while other white vertices have
positive labels,

• the increase between the labels of two consecutive white vertices in clock-
wise order around a black vertex is at most 1.

Proposition 8.1. The geodesic orientation of a bipartite map is left-connected.
Moreover, the unfolding mapping Λ′ induces a bijection between the set of bipartite
maps (with n edges and genus g) endowed with their geodesic orientation and the
set of vertex-well-labelled mobiles (with n + 1 edges and genus g). This induced
bijection is exactly the bijection described by Bouttier et al. in [6].

Proof. Let (M, (I,O)) be a bipartite map endowed with its geodesic orientation.
We first prove that the geodesic orientation is left-connected by using Lemma 6.1
concerning the backward function β. Clearly, for any half-edge h incident to a
non-root vertex v, there exists an integer p > 0 such that the half-edge βp(h) is
incident to a vertex u satisfying d(u) = d(v) − 1 (because there are ingoing edges
incident to v, and they all join v to a vertex u satisfying the property). Thus, there
exists q > 0 such that the half-edge βq(h) is incident to the root-vertex. Moreover,
for any half-edge h′ incident to the root-vertex there exists an integer r > 0 such
that the half-edge βr(h′) is the root (because the root-vertex is only incident to
outgoing half-edges). Therefore, by Lemma 6.1, the geodesic orientation is left-
connected. We now show that the corner-labelled mobile (B, ℓ) = Λ′(M, (I,O)) is

2Strictly speaking, the bijection in [6] only describes the planar case. But is was explained
in [9] how to extend it to higher genera.



A BIJECTION FOR COVERED MAPS 31

vertex-well-labelled. Let v be a vertex of M and let v1, . . . , vk be the vertices of the
tree A = Λ1(M, (I,O)) resulting from unfolding the vertex v. Clearly, any directed
path from the root-vertex to v in M has length d(v). Hence, for all i ∈ {1, . . . , k}
every directed paths from the root-vertex to vi in A has length d(v). Hence, the
label ℓ of every corner of the white vertex v of the mobile B is equal to d(v). Thus,
the corner-labelled mobile (B, ℓ) is vertex-well-labelled.

Conversely, let (B, ℓ) be a vertex-well-labelled mobile, let (M, (I,O)) = Ω′(B, ℓ)
be the corresponding left-connected map. We want to prove that M is bipartite
and (I,O) is the geodesic orientation. By definition of the folding Ω′ any edge of
M goes from a white vertex u to a white vertex v satisfying ℓ(v) = ℓ(u)+1. Hence,
reasoning on the parity of labels shows that M is bipartite. In order to prove that
(I,O) is the geodesic orientation, it suffices to prove that the label function ℓ is
equal to the distance function d. Let v be a non-root vertex. On one hand, one
gets d(v) ≥ ℓ(v) from the fact that labels cannot decrease by more than one when
following an edge of M (hence the root-vertex cannot be reached by following less
than ℓ(v) edges). On the other hand, one gets d(v) ≤ ℓ(v) from the fact that any
non-root vertex of M is adjacent to a vertex having a smaller label (by definition
of the folding step Ω′). Thus d = ℓ and the orientation is geodesic. �

(a) (b) (c)

2 1 2

321

0 1 2

Figure 13. (a) The rightmost BFS tree. (b) The geodesic orien-
tation. (c) The associated vertex-well-labelled mobile.

In the remaining of this section, we complete the picture by characterizing the
unicellular submap of a bipartite map which corresponds to the geodesic orientation
(by the orientation step ∆). A spanning tree is said BFS (for Breadth-First-Search)
if for any vertex v, the distance d(v) is equal to the height in the spanning tree.

Definition 8.2. The rightmost BFS tree is the spanning tree T obtained by the
following procedure:
Initialization: Set every vertex to be alive. Set the tree T as the tree containing
the root-vertex of M and no edge.
Core: Consider the alive vertex v which has been in the tree T for the longest
time and set it dead. Inspect the half-edges incident to v in counterclockwise order
(starting from the root if v is the root-vertex, and starting from the half-edge
following the edge of T leading v to its parent otherwise) and whenever a half-edge
leads to a vertex not in the tree T add this vertex and the edge to T .
Repeat until all vertices are dead.
End: Return the spanning tree T .

The rightmost BFS tree is indicated in Figure 13(a). We omit the proof of the
following easy result.
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Lemma 8.3. The procedure terminates and returns a BFS spanning tree. More-
over, the order in which the set of half-edges incident to vertices at a given distance
from the root-vertex are inspected coincide with the order of appearance during the
counterclockwise tour of the tree.

Proposition 8.4. Let (M,S) be a bipartite covered map, and let (M, (I,O)) =
∆(M,S) be the associated left-connected map. The orientation (I,O) is geodesic if
and only if M|S is the rightmost BFS tree of M .

Proof. We suppose that M|S is the rightmost BFS tree and consider the orientation
(M, (I,O)) = ∆(M,S). We need to prove that (I,O) is the geodesic orientation.
Let e be an edge in M|S. By definition of ∆, the edge e is oriented from parent
to child. Since the tree M|S is BFS, this orientation coincide with the geodesic
orientation of e. Let now e be an edge not in M|S with origin u and end v. We
want to prove that d(v) = d(u) + 1. Suppose the contrary: d(u) = d(v) + 1. Let v′

be the parent of u and let e′ be the edge from v′ to u. Let h and h′ be respectively
the half-edges of e and e′ incident to v and v′. By definition of ∆, the edge e
is oriented in such a way that the ingoing half-edge h is encountered before the
outgoing half-edge during the counterclockwise tour of M|S . This implies that h is
encountered before h′ during the counterclockwise tour of M|S. By Lemma 8.3, this
implies that the half-edge h is inspected before h′ during the procedure constructing
the rightmost BFS. Hence, when the half-edge h is inspected, the vertex u is not in
the tree T and should be added together with the edge e. We reach a contradiction.
Thus, we have shown that the orientation (I,O) associated to the rightmost BFS
is the geodesic orientation of M . �

9. Duality.

Recall from Section 3 that the dual of a covered map is a covered map. In this sec-
tion, we explore the properties of the bijection Ψ with respect to duality. Through-
out this section, we consider a covered map (M,S), where the map M = (H,σ, α)
has root r and face-permutation φ = σα. We denote (M, (I,O)) = ∆(M,S) and
(A,B) = Ψ(M,S).

Lemma 9.1 (Duality at the orientation step). The oriented map associated to the
dual covered map is the dual oriented map, that is to say, ∆(M∗, S̄) = (M∗, (O, I)).

Lemma 9.1 is illustrated in Figure 14.

Proof. Recall that the the submaps M|S and M∗
|S̄

have the same motion functions,

hence define the same appearance order on H . Thus, Lemma 9.1 immediately
follows from the definition of the mapping ∆. �

We now explore the properties of the unfolding step with respect to duality.
We denote A = (H, τ, α) = Ψ1(M,S) and B = (H ′, π, α′) = Ψ2(M,S), where
H ′ stands for H ∪ {i, o} and i is the root of the mobile B. We also denote by
A⋆ = (H, τ⋆, α) = Ψ1(M

∗, S̄) and B⋆ = (H ′, π⋆, α′) = Ψ2(M
∗, S̄), the plane tree

and mobile associated to the dual covered map (M∗, S̄). We shall prove the exis-
tence of two independent mappings Υ and Ξ such that A⋆ = Υ(A) and B⋆ = Ξ(B).
In words, the duality acts component-wise on the plane tree and the mobile.
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Figure 14. (a) The oriented map (M, (I,O)) = ∆(M,S) associ-
ated to the covered map represented in Figure 4(a). (b) Topological
construction of the dual: each oriented edge of M is crossed by the
the dual oriented edge of M∗ from left to right. (c) The oriented
map (M∗, (O, I)).

(b)

Figure 15. Simultaneous unfolding of the oriented map of Fig-
ure 14 and of its dual.

Proposition 9.2 (Duality and the mobile). Let (M,S) be a covered map and let
(M∗, S̄) be the dual covered map. If the mobile B = Ψ2(M,S) is denoted (H ′, π, α′)
and has root i, then the mobile B⋆ = Ψ2(M

∗, S̄) is the map (H ′, π−1, α′) with root
o = α(i).

Proposition 9.2 is illustrated in Figure 16. It implies that the mobile B⋆ is
entirely determined by the mobile B.

Proof. The map M has vertex-permutation σ and face-permutation φ, while the
map M∗ has vertex-permutation σ⋆ = φ and face-permutation φ⋆ = σ. We denote
∆(M,S) = (M, (I,O)), so that B = Λ(M, (I,O)) and B = Λ(M∗, (I⋆, O⋆)), where
I⋆ = O and O⋆ = I by Lemma 9.1. We adopt the notations i, o, I ′, O′, σ′, φ′, π◦,
π•, π of Section 4 for defining B and adopt the corresponding notations i⋆, o⋆, I ′

⋆
,

O′⋆, σ′⋆, φ′⋆, π◦
⋆, π•

⋆, π⋆ for defining B⋆. We choose i⋆ = o and o⋆ = i, so that
I ′

⋆ ≡ I⋆ ∪ {i⋆} = O′, O′⋆ ≡ O⋆ ∪ {o⋆} = I ′, σ′⋆ = φ′ and φ′
⋆

= σ′. From this,
it follows that π⋆

◦ ≡ σ′⋆
|I′⋆ = φ′|O′ = π• and π⋆

• ≡ φ′
⋆
|O′⋆ = σ′

|I′ = π◦ and finally

π⋆ ≡ π⋆
•π

⋆
◦
−1 = π◦π

−1
• = π−1. Lastly, the root of B⋆ is i⋆ = o. �

We now explicit the relation between the trees A and A⋆ in terms of their codes.
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Ξ

Figure 16. The mapping Ξ between the mobile B = Ψ2(M,S)
associated to the covered map (M,S) of Figure 14 and the mobile
B⋆ = Ψ2(M

∗, S̄) associated to the dual covered map.

Proposition 9.3 (Duality and the tree). If the height-code of A = Ψ1(M,S) is
c0, . . . , cn, then the degree-code of A⋆ = Ψ1(M

∗, S̄) is d0, . . . , dn, where dn−j =
cj + 1 − cj+1 for j = 1, . . . , n−1 and d0 = cn.

Recall that a tree is completely determined by its height-code or by its degree-
code. Hence, Proposition 9.3 shows that the tree A⋆ is entirely determined by the
tree A. Observe that the mapping A 7→ A⋆ is an involution since duality of cov-
ered map is an involution. A topological version of this mapping is illustrated in
Figure 17(b), where the two trees A and A⋆ are represented simultaneously in the
way they interlace around the mobile’s face. The rest of this section is devoted to
the proof of Proposition 9.3.

a1

ā1

ā3

a4

ā4

b̄3

b3
a1

ā1

a3

b2 ā2

b1

ā3

b1

b̄1

a4

ā4

b3

b̄1

a2b̄2

b̄3

b̄2

b2

a2

ā2

a3

(a) (c)(b)

Figure 17. (a) The plane tree A = Ψ1(M,S) associated to the
covered map of Figure 14. (b) Topological construction of the tree
A⋆ = Ψ1(M

∗, S̄): in the mobile face, the trees A and A⋆ interlace
in such a way that each edge of A is crossed by exactly one edge
of A⋆. (c) The plane tree A⋆.

We denote by t the root of the tree A = (H, τ, α) and by t⋆ the root of the tree
A⋆ = (H, τ⋆, α). We also adopt the notations σ′, φ′, π◦, π•, π, τ ′ of Section 4
for the tree A and adopt the corresponding notations σ′⋆, φ′

⋆
, π◦

⋆, π•
⋆, π⋆, τ ′⋆

for the tree A⋆. Lastly, we denote ϕ = τα, ϕ′ = (i, o)τ ′α′, ϕ⋆ = τ⋆α and
ϕ′⋆ = (i, o)τ ′⋆α′. Recall that Lemma 6.10 describes the (simple) link existing
between the permutations τ and τ ′ and between ϕ and ϕ′.

Lemma 9.4. The permutations ϕ′ and ϕ′⋆ are related by ϕ′
|O′ = (α′ϕ′⋆α′)−1

|O′ .
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For the example in Figure 17, one gets ϕ′
|O′ = (o, a1, b̄2, a2, b̄1, a3, a4, b̄3) and

ϕ′⋆
|I′ = (b3, ā4, ā3, b1, ā2, b2, ā1, i).

Proof. By Proposition 6.11, the face-permutation ψ = πα of the mobile B satis-
fies ϕ′

|O′ = α′ψ−1
|I′ α

′. The same property applied to the mobile B⋆ gives ϕ′⋆
|I′ =

α′ψ⋆−1
|O′α′, where ψ⋆ = π⋆α′ is the face-permutation of B. This gives

(α′ϕ′⋆α′)−1
|O′ = α′(ϕ′⋆)−1

|I′ α
′ = ψ⋆

|O′ .

Moreover, by Proposition 9.2, π⋆ = π−1, so that ψ⋆ = π−1α′ = α′ψ−1α. Hence,

(α′ϕ′⋆α′)−1
|O′ = ψ⋆

|O′ = (α′ψ−1α)|O′ = α′ψ−1
|I′ α

′ = ϕ′
|O′ .

�

Lemma 9.5. The permutations ϕ′ and τ ′
⋆

are related by τ ′
⋆

= ϕ′ϕ′−1
|O′ .

Proof. By definition, τ ′⋆ = σ′⋆π⋆
◦
−1 = φ′φ′−1

|O′ , where φ′ = (i, o)σ′α′. We want

to prove φ′φ′
−1
|O′ = ϕ′ϕ′−1

|O′ , or equivalently, φ′|O′φ′−1 = ϕ′
|O′ϕ′−1

(by taking the

inverse). Observe that the permutations φ′ = (i, o)σ′α′ and ϕ′ = (i, o)τ ′α′ coincide
on I ′ (since σ′ and τ ′ coincide on O′). We now consider a half-edge h inH ′. Suppose

first that φ′−1(h) is in I ′. In this case, φ′
−1

(h) = ϕ′−1
(h) (since φ′ and ϕ′ coincide

on I ′), hence φ′|O′φ′−1(h) = φ′
−1

(h) = ϕ′−1
(h) = ϕ′

|O′ϕ′−1
(h). Suppose now that

φ′
−1

(h) is in O′. Observe that ϕ′−1
(h) is also in O′ (since φ′ and ϕ′ coincide on I ′).

Moreover, by definition of reductions, φ′|O′φ′−1(h) = φ′
k
(h), where k ≥ 0 is such

that φ′
k
(h) ∈ O′ and φ′

j
(h) ∈ I ′ for all 0 ≤ j < k. Since φ′ and ϕ′ coincide on I ′,

we get φ′
j
(h) = ϕ′j(h) for 0 ≤ j ≤ k. Thus, φ′|O′φ′−1(h) = ϕ′k(h) and where k ≥ 0

is such that ϕ′k(h) ∈ O′ and ϕ′j(h) ∈ I ′ for all 0 ≤ j < k. Hence, by definition of

reductions, φ′|O′φ′−1(h) = ϕ′
|O′ϕ′−1

(h). �

Proof of Proposition 9.3.
We denote by o0 = o, o1, . . . , on the half-edges in O′ in such a way that ϕ′

|O′ =

(o, o1, . . . , on) and we denote ij = α(oj) for j = 0 . . . n. We denote by v0, v1, . . . , vn

the vertices of A in counterclockwise order around A. By definition (and because
(I,O) is the root-to-leaves orientation of A), this means that vj is incident to the
ingoing half-edge ij for j = 1 . . . n. Therefore, the height-code of A is c0c1 · · · cn,
where c0 = 0 and for j = 0 . . . n−1, cj+1 = cj + 1 − δj where δj is the number of
half-edges in I between the half-edge oj and oj+1 in the face-permutation ϕ (hence,
also in the permutation ϕ′). Equivalently, for j = 0 . . . n−1, δj ≡ cj + 1 − cj+1 is

the number of half-edges in I ′ in the cycle of the permutation ϕ′ϕ′−1
|O′ containing

oj . We also denote δn = cn and observe that this is the number of half-edges in I ′

in the cycle of the permutation ϕ′ϕ′−1
|O′ containing on.

We now consider degree-code d0d1 · · · dn of A⋆ and want to prove that δj = dn−j

for j = 0 . . . n. Let v⋆
0 , v

⋆
1 , . . . , v

⋆
n be the vertices of A⋆ in counterclockwise order

around A⋆. By Lemma 9.1, the root-to-leaves orientation of A⋆ is (O, I) and by
Lemma 9.4, ϕ′⋆

|I′ = (i, in, . . . , i2, i1). Therefore, for j = 1 . . . n−1 the vertex v⋆
n−j of

A⋆ is incident to the half-edge oj . Thus, for j = 0 . . . n−1, the number of children
dn−j of v⋆

n−j is the number of half-edges in I ′ in the cycle of the vertex-permutation

τ⋆ containing oj (hence, also in the permutation τ ′⋆). For j = n also, we observe
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that dn−j is the number of half-edges in I ′ in the cycle of the permutation τ ′⋆

containing oj . By Lemma 9.5, τ ′⋆ = ϕ′ϕ′−1
|O′ , hence δj = dn−j for j = 0 . . . n. This

concludes the proof of Proposition 9.3. �
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