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ABSTRACT

Iterative decoding was not originally introduced as theaugoh to

an optimization problem rendering the analysis of its cogeace
very difficult. In this paper, we investigate the link betwdterative
decoding and classical optimization techniques. We firstvstinat
iterative decoding can be rephrased as two embedded matiotiz
processes involving the Fermi-Dirac distance. Based anribiv
formulation, an hybrid proximal point algorithm is first dexd with

the additional advantage of decreasing a desired critetion sec-

ond part, an hybrid minimum entropy algorithm is proposethwi

improved performance compared to the classical iterageading.
Even if this paper focus on iterative decoding for BICM, theults
can be applied to the large class of turbo-like decoders.

Index Terms— Optimization methods, Iterative methods, De-

coding.

1. INTRODUCTION

Bit-Interleaved Coded Modulation (BICM) was first suggestey
Zehavi in ﬂ.] to improve the Trellis Coded Modulation perfaance
over Rayleigh-fading channels. In BICM, the diversity ardein-
creased by using bit-interleavers instead of symbol ieéertrs. This

improvement is achieved at the expense of a reduced minimum E

clidean distance leading to a degradation over non-fadiags§ian
channelsml]. This drawback can be overcome by using iteraie-
coding (BICM-ID) at the receiver[[Z]. BICM-ID is known to pvie
excellent performance for both Gaussian and fading channel

an interesting interpretation in terms of projections. Paeticular
case of BICM-decoding has been studied]q[8, 91[1 [10] ttimbo-
decoding is interpreted in a geometric setting as a dyndsystéem
leading to new but incomplete results.

In this paper we reformulate the iterative decoding as twbesided
proximal point algorithms involving the Bregman divergertauilt
on the Fermi-Dirac energy. We prove that each iteration efdé-
coding decreases a certain criterion.We also propose ardhyin-
imum entropy algorithm with improved performance compat@d
the classical BICM.

2. BICM-ID WITH SOFT DECISION FEEDBACK

A conventional BICM systemml] is built from a serial coneat
nation of a convolutional encoder, a bit interleaver and aar
bits-to-symbol mapping (wher@/ = 2™) as shown in fig. ||1.
The sequence of information bits is first encoded by a convo-
lutional encoder to produce the output encoded bit sequerafe
length L. which is then scrambled by a bit interleaver (as op-
posed to the channel symbols in the symbol-interleavedccede
guence) operating on bit indexes. leetdenote the interleaved se-
guence. Thenm consecutive bits ofl are grouped as a channel
symbold, = (dkm+1, ---dkt1)m)- The complex transmitted signal
sk = €(dg) is then chosen from an M-ary constellati@nwheree
denotes the mapping scheme. For simplicity, we considasinés-
sion over the AWGN channel. The received signal reads:

Ye=se+ny 1<k<L./m Q)

The iterative decoding scheme used in BICM-ID is very simila

to serially concatenated turbo-decoders. Indeed, thelserbo-  \wheren, is a complex white Gaussian noise with independent in-
decoder makes use of an exchange of information betweenleompphase and quadrature components having two-sided powetraipe
tationally efficient decoders for each of the component sode  gensityo?2.

BICM-ID, the inner decoder is replaced by demapping whidess  pye to the presence of the random bit interleaver, the trugman
computationally demanding than a decoding step. Evensfphai
per focuses on iterative decoding for BICM, the results carap-
plied to the large class of iterative decoders includingaer paral-
lel concatenated turbo decoders as long as low-densitfypareck
(LDPC) decoders. Among the different attempts to provideuaa-
ysis of iterative decoding, the EXIT chart analysis and dgmevolu-
tion have permitted to make significant progrésﬂ[& 4] betrdsults
:ﬁ;ﬁp?nmﬁzlp tgh(;f jfeglnnaﬁyzfsplé ?ﬁéyégnt::cgzieo?fit%; practice. Figureﬂz_ shows the_ t_)lock diagram of the receiverafo
coding to factor graph{|[5] and belief propagatiﬂn [6]. Gangence BICM-ID system with soft-decision feedback.

results for belief propagation exist but are limited to thsewhere

the corresponding graph is a tree which does not includetcoble P(eiO)

or LDPC. A link between iterative decoding and classicalmja- “““”L J
tion algorithms has been made recently|in [7] where the tuido o ,
coding is interpreted as a nonlinear block Gauss Seideititer. In Y e
parallel, a geometrical approach has been considered andies
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Fig. 1. Transmission model
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Fig. 2. Receiver for a BICM-ID with soft-decision feedback




In the first iteration, the encoded bits are assumed equallgimension2”¥ x N. Letn be a probability mass function on the
likely. The demapping consists in evaluatiagposteriori proba-  outcomesy = B; then
bilities (APP) for the encoded bits without accounting foe ttode
structure, namely: n = (Prlx = Bo], Pr[x = Bu], .., Pr[x = Ban_,])"

o _ Given a PMF, its log-coordinates are the vectBrwhosei'” el-
papp(dimis =b)  ~ 3oy cuy PYISIP(S) @ ement is given by, = In(Prly = Bi]) — In(Pr[x = Bo)).
~ ZSkE\I,;; P(yk|sk)p(sk) (3)  We can observe that there is a one-to-one mapping betweeul
0 since the vector; can be writteny = exp(6 — ¥ (6)) where
wheres = {s1,....Sp./m}b ¥ = {¥1, Y. m} and Wi, b € (@) = log(3, exp((6):)).We also introduce the bitwise log-
{0, 1}, denotes the subset &f that contains all symbols whose la- probability ratios with elements of the forth; = log(%)
bels have the valukin the:*" position. In the turbo decoding pro- : th i ; N et
o I wherey; is the;*" bit of the binary wordy and\ € R™. For fac-
cess, the quantities exchanged through the blocks a eriori . J - . .
probabiliti?es (APP) but extrignsic infor%watiOEIlZ] Tkg:i):tsic in- t(;rliaplebprqbablllty me?sureeh(PMF that factors into theh prloduct
formation at the output of the demappip@ix..+:; O) is computed 2oct)r((jeilrr]atg\;vksaekéntﬁ?g?ﬁ?:s%t)\a‘t’r(x) = 11;Pr(x;)). the log-
aspapp(dim+i)/P(dkmti; I) where p(dimy:; ) is the a priori '
information for the demapping sub-block. Since the bitrilegver
makes the bits independent, the extrinsic informagQdy,,,+:; O)

reads: Let 6., denote the log-coordinates vector of the PMEy|s).

Let A1 denote the log-probability ratio corresponding to the iprio
Pldimss =6;0) = K D7 plyelse) [T p(demess D @) i such that

3.2. Link with iterative decoding

spET! J#
()i = In (DAlmti = L)
and the corresponding APP reads: Vkmtt = (e = 0,1)
parp(dimsi = b) = K, Z p(ykISk)Hp(dka;I) (5) Thus, the log-coordinates ofp(y|s)IL; xp(dkm+i; L) reads
sREYY J

Let pex,+o.,, represent the vector whosg&” element is the
n. Probability that the it" bit is 1 according to the measure
formationp(dym.; O) is de-interleaved and delivered to the SISO With l0g-coordinate BAx + 0. The APP at the ~output
decoder [[18] as aa priori information on the encoded bits. Let ©f the demapper merge withex, +o,,. From eq. i),
¢t = dy—1(4my ;) Whereo ! is for the permutation on the indexes papP(dim+i = b) = pldrmti = b1)p(dkm+: = b;0), the
due to the deinterleavepy(c;; I) is the updated input of the Single 09-coordinates of the APP at the output of the demappermatsge

Input Single Output (SISO) decoder. The extrinsic infoiioratat ~ With B(A1 + A2) where (A2)km4: = In (%). Then

where K,, and K}, are normalization factors. The extrinsic i

the output of the SISO decoder is obtained throyf 8, 14]: the demapper sub-block solves, with respectpothe equation:
pla=00)=Kc Y Te(e) [ ] (e ) (6) PB(A1+22) = PBA1+0m ®)
cERY, el Let 6. denote the log-coordinates of the PMF associated with the

indicator function. Then the decoder sub-block solveshwéspect
to \1, the equation:
DPB(A1+22) = PBAa+6c )

and the corresponding APP is:

q=b=K, Ic(c cii I 7
parr(c ) GZRZ el )1;[1’( 7+1) ) Iterative decoding is thus equivalent to:
cey

; (k+1) _
where Ic(c) stands for the indicator function of the code, i.e. f%nd )\z(kﬂ) such that pg a0, \4ct1)) = P04,
Ic(c) = 1if cis a codeword ané otherwise and?! denotes the find A such that P (et (et )y = Py (kt1) g
set of binary words of lengttL. with valuebd in the I** position.
K. and K, are normalization factors. The extrinsic information .
p(c; O) is interleaved and delivered to the demapping sub-block"‘ccordancgepB(A(ﬁ)+A;°°)) T Pea () 10, T PBAL 10,

as a regenerateal priori information. If the process converges the

At the convergence, the APP from the two sub-blocks shoulih be

APP of the two sub-blocks are the same. The criteria proposed 4. AN OPTIMIZATION PROBLEM
in the following are based on this property and encouragesteifa
convergence towards this objective. The Fermi-Dirac divergence is the Bregman divergence builthe

Fermi-Dirac entropyf(p) = >, p; In(p;) + (1 — p;) In(1 — p;)
with dom(f) = [0; 1]. The Fermi-Dirac divergence reads

Drp(p,q) = ZPJ In (2_;) +Z(1 —pi)ln G:—Z)

We first introduce some notations that will be useful in thgued.  and is exactly the Kullback-Leibler distance for bit protitibs.
Let B, € {0,1}" denote the binary representation of the integerThe Fermi-Dirac divergence is a non-symmetric distance.was
i,0 < i < 2¥7!. The binary representation of all the words of can notice, this distance is very convenient for computiistpdces
length N is gathered into matri8 = (Bo, B1, ..., Boy ;)7 with between bit probabilities.

3. NOTATIONS FROM INFORMATION GEOMETRY

3.1. Basic tools



Proposition 1 The demapping sub-block solves the minimization
problem n;in DrD(PBAy+6m>PB(A1+22))
2

The decoding sub-block solves the minimization problem

n;in Drp(PBAz+6c: PB(A1+22))
1

Proof: The proof is obvious by noting that (A1 + A2)km—+:

PB(A;+20) (dem4i=1) _ ezp(A14A2)
n (PB()\1+)\2)(dkm+i:O) thUSpB(A1+>\2) T ldexp(A1tAz)”

This proposition illustrates that iterative decoding carfdrmulated
as two embedded minimization steps based on the Fermi-Disac
tance. In the next section, we investigate some modificatodnhis

original criterion.

4.1. An hybrid proximal point algorithm

In the classical iterative decoding, the two minimizatiteps seem
independent meaning that the minimization of one of theedah
does not imply necessarily a decrease of the other criteighe
next iteration. Proximal point methodEl[lS] permit to make tink
between the two criteria. These methods are generally gsgukr-
antee the monotonicity of the convergence process oftdmeatdst
of a slow convergence speed. Following the proximal poiohte
nigue we obtain the minimization process:

A = min Jo,, (A1, Az) = min Drp (PBA1+6m s PB(A1 +12))
2 2

Him Drp(Pg 00 309y, PBOG+22))

)\(1k+1) = n}l\in Jo, (A1, A2) = niin DFD(pBA2+9C, pB()\1+>\2))
1 1

HheDED(Pg (00 4 5041 PB( +22))

As can be seen, the original criterion is modified througtetiidition
of a penalization term in order to encourage smooth variatiof
the successive estimates. This minimization process isaqut to
finding AS") such that

Ppa 1o, + HmPpg (0 {20,

Ppofo i) = T+ pu (10)
m
andA{**" such that
pBA(2k+1)+9C + MCpB(A;k)+>\(2k+1)) 1)

PB(/\(1k+1)+A(2k+1)) = 1+ e

Note that this new procedure also converges towards solu-

tions satisfying [§8) and[[9). A good choice for the param-
eters u,, and p. permits to ensure that each criterion de-
creases with the iterations. Actually, we want to enforce

Jo,, A ALY < gy (A% A0, Since the Fermi-Dirac dis-

tance is convex with respect to its second parameter, we have

K) | (k+1 .
o ANV < fm (D
DFD(pB(Agk)Hék)),pBA<1k)+0m))-

k k :
Drp(Pgy00 g, Ppa(0200)) < Jo. (A1, 259). Connecting
the two relations, we obtain an upper bound figy:

Ppa® g, PROM 2 0) T
Moreover, we also have

§ DFD(ka;k)wc,PB(AgmH;k)))
~ Drp — Drp(

:u‘m )
Pl 1o, PO 4200

where  Drp is a symmetric distance, namely
Drp = DFD(pBA(lk)+0m,pB(A(lk)+A(2k))) +
DFD(pB(A(lk)HQ‘))’pBA(l“)+9m)' The upper bound foru,

can be obtained in the same way. Iterati@ (10) Ed (112) pithnd
1m correctly chosen yields an algorithm that converges tosvérd
same points than the classical iterative decoding with tuitianal
advantage of decreasing at each iteration a desired oriteli the
next section, we propose a new criterion in order to imprdwe t
performance of the iterative decoding.

4.2. An hybrid minimum entropy algorithm

The entropy of the vectors of marginalg», +,) is defined as

Ep(x+x0) = — ZpB(>\1+)\2)(n)ZOQQ(pB(M‘HQ)(n))
- Z(l = PB(u+x2) (M)10g2(1 — pp(x;+25) (1))

The quantityE g, +,) gives a measure of the reliability of the de-
cisions. IndeedFEp(r,+x,) — 0 does not always mean that the
decisions are correct, but rather that the iterative depdigorithm

is confident about its decisions. Nevertheless, in thetiterdecod-
ing, the decisions are in most cases correct Whgn, , 1,y — 0
[Lg]. In this section, we propose a new criterion that miziesi
EB(x42,) Under the constrainD rp (PBAy +0ms PB(A 1 +12)) < €
for the demapping an®rp (PBa,+6., PB(x; +1,)) fOr the decod-
ing. This is equivalent to:

AT = min Do (PBA1+0m: PB( +32)) + T EBn120) (12)
2
AT = min Drp(PBaz+6cs PB(A1+22)) T MeEB(A +20) (13)
1

By zeroing the gradient of the two criteria iE[lZ) aE (13%,obotain
the new update equations:

Ao FHD) 1<n< Le

Frm (P a0 4240y (1) = Py (1)
k+1

YRR Pty 240y (1) = Py en () 1< < Le

where f, (pB(x,+32) (1)) = PB(A+32) (1) = MPB(A +20) (M) (1 —

(n) . .
DB a0 (1)) log (%) The functionf, is plotted

J——)

—+—n=01]
=05

——n=1

o

Fig. 3. fy(p) for various values ofy

on fig @). We can notice thafi) the distortion increases with(ii)
fn(p) belongs tdo0; 1] (iii) f, (p) is a strictly increasing function. As
a consequence each step of the minimization process hasjaeuni
solution that can be found using classical techniques.



5. SIMULATION

We compare the performance in terms of bit error rate andtitar
number of the classical iterative decoding with the hybrioipmal
point algorithm (HPP) and also with the hybrid minimum epiral-

gorithm (HMEA). Each algorithm stops when the Fermi-Diras-d

tance between the APP of the two sub-blocks is less titari or

[1]
(2]

when 30 iterations are reached. The generator polynomial of the

encoder iy = [111;001; 100]. The bits are mapped using subset [

partitioning to a 8-PSK modulation. The length of the codade-
quence isL. = 6000. The step-sizes,, andr. in the HMEA are
both chosen equal @05. The results are plotted in figﬂ(zl) arEl
We can see that the classical iterative decoding and the WfiBits
exactly the same performance. This is not surprising concgithe

BER since both methods converge towards the same pointsakliVe ¢

also notice that these results are obtained with the saméeof
iterations in both cases meaning that the proximal poirtriggie

does not reduce, in this case, the convergence speed. Bdtbdse

have almost the same computational complexity with thetafdil
advantage for the HPP to minimize a desired criterion withith

erations. As expected, the HMEA outperforms the others austh

().

[4]

(5]

(6]

7. REFERENCES

E. Zehavi, “8-PSK trellis codes for a Rayleigh fading ohal,”
|EEE Trans. Commun., vol. 40, pp. 873-883, May 1992.

X. Li, A. Chindapol, and J.A. Ritcey, “Bit interleaved ded
modulation with iterative decoding and 8-PSK signaling,”
|EEE trans Commun., vol. 50, pp. 1250-1257, Aug 2002.

3] S. ten Brink, “Convergence behavior of iteratively dded

parallel concatenated codeslEEE trans Commun., vol. 49,
pp. 1727-1737, Oct 2001.

H. El Gamal and A.R. Hammons, “Analysing the turbo decode
using the Gaussian approximation/EEE Trans. on Inform.
Theory, vol. 47, pp. 671-686, Feb. 2001.

F.R. Kschischang, B.J. Frey, and H.A. Loeliger, “Fadoaphs
and the sum-product algorithm\EEE Trans. on Inform. The-
ory, vol. 47, pp. 498-519, Feb. 2001.

J. Pearl, Probahilistic Reasoning in Intelligent Systems: Net-
work of Plausible Inference, San Francisco, CA: Morgan Kauf-
mann, 1988.

in terms of BER in the middle area with a number of iteratiohs a [7] J.M. Walsh, P.A. Regalia, and C. R. Johnson, “Turbo déwpd

most equal to the number of iterations needed in the cld$3iCM.

However, this last method has a higher computational coxitple

due to the distortion functioff,.

107

—&— Classical terative decoding| ]
—&— Hybrid Proximal Point
Hybrid Min Entropy

107

10°

6 6.5 7 75 8 85
EbNO

Fig. 4. BER versus EbNO

—&— Classical iterative decoding
—&— Hybrid Proximal Point
Hybrid Min Entropy

iterations

EbNO

Fig. 5. Iteration number versus EbNO

6. CONCLUSION

In this paper, iterative decoding is rephrased as two endzedin-
imization processes. From this formulation, we have ddrive hy-
brid proximal point algorithm that exhibits the same periance
than the classical iterative decoding. This proximal paigbrithm
decreases at each step a well identified criterion. We haeebaiilt
an hybrid minimum entropy algorithm. The minimization oétén-
tropy leads to an improvement of the performance.

(8]

[9]

(10]

(11]

(12]

(13]

(14]

(15]

(16]

as lterative Constrained Maximum-Likelihood Sequence De-
tection,” |IEEE Trans. on Inform. Theory, vol. 52, pp. 5426—
5437, Dec. 2006.

B. Muquet, P. Duhamel, and M. de Courville, “A geomettica
interpretation of iterative turbo decoding,” RFroc. Int. Sym-
posium on Inform. Theory, Lausanne, Switzerland, May 2002.

F. Alberge, “Iterative decoding as Dykstra’s algorithmith
alternate I-projection and reverse I-projection,” BHSPCO
Proc., Lausanne, Switzerland, August 2008.

T. Richardson, “The geometry of turbo-decoding dynzsyii
IEEE Trans. on Inform. Theory, vol. 46, no. 1, pp. 9-23, 2000.

G. Caire, G.Taricco, and E. Biglieri, “Bit-interleasdrecoded
modulation,” |[EEE Trans. on Inform. Theory, vol. 4, pp. 927—
946, May 1998.

C. Berrou, A. Glavieux, and P. Thitimajshima, “Near 8han
limit error-correcting coding and decoding: Turbo codes”
Proc. |IEEE Int. Conf. Commun, 1993, pp. 1064-1070.

S. Benedetto, D. Divsalar, G. Montorsi, and F. Polldfssoft-
input soft-output APP module for iterative decoding of con-
catenated codes,]JEEE Commun. Letters, vol. 1, pp. 22—-24,
Jan 1997.

M. Moher and T.A. Gulliver, “Cross-entropy and itesagide-
coding,” IEEE Trans. on Inform. Theory, vol. 44, no. 7, pp.
3097-3104, Nov. 1998.

F.J. Luque, “Asymptotic convergence analysis of thexpmal
point algorithm,” S AM Journal on Control and Optimization,
vol. 22, no. 2, pp. 277-293, 1984.

L. Kocarev, F. Lehmann, G.M. Maggio, B. Scanavino, Z: Ta
sev, and A. Vardy, “Nonlinear dynamics of iterative decadin
systems: analysis and application€EE Trans. on Infor. The-
ory, vol. 52, no. 4, pp. 1366-1384, 2006.



