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ABSTRACT

Iterative decoding was not originally introduced as the solution to
an optimization problem rendering the analysis of its convergence
very difficult. In this paper, we investigate the link between iterative
decoding and classical optimization techniques. We first show that
iterative decoding can be rephrased as two embedded minimization
processes involving the Fermi-Dirac distance. Based on this new
formulation, an hybrid proximal point algorithm is first derived with
the additional advantage of decreasing a desired criterion. In a sec-
ond part, an hybrid minimum entropy algorithm is proposed with
improved performance compared to the classical iterative decoding.
Even if this paper focus on iterative decoding for BICM, the results
can be applied to the large class of turbo-like decoders.

Index Terms— Optimization methods, Iterative methods, De-
coding.

1. INTRODUCTION

Bit-Interleaved Coded Modulation (BICM) was first suggested by
Zehavi in [1] to improve the Trellis Coded Modulation performance
over Rayleigh-fading channels. In BICM, the diversity order is in-
creased by using bit-interleavers instead of symbol interleavers. This
improvement is achieved at the expense of a reduced minimum Eu-
clidean distance leading to a degradation over non-fading Gaussian
channels [1]. This drawback can be overcome by using iterative de-
coding (BICM-ID) at the receiver [2]. BICM-ID is known to provide
excellent performance for both Gaussian and fading channels.
The iterative decoding scheme used in BICM-ID is very similar
to serially concatenated turbo-decoders. Indeed, the serial turbo-
decoder makes use of an exchange of information between compu-
tationally efficient decoders for each of the component codes. In
BICM-ID, the inner decoder is replaced by demapping which isless
computationally demanding than a decoding step. Even if this pa-
per focuses on iterative decoding for BICM, the results can be ap-
plied to the large class of iterative decoders including serial or paral-
lel concatenated turbo decoders as long as low-density parity-check
(LDPC) decoders. Among the different attempts to provide ananal-
ysis of iterative decoding, the EXIT chart analysis and density evolu-
tion have permitted to make significant progress [3, 4] but the results
developed within this setting apply only in the case of largeblock
length. Another tool of analysis is the connection of iterative de-
coding to factor graphs [5] and belief propagation [6]. Convergence
results for belief propagation exist but are limited to the case where
the corresponding graph is a tree which does not include turbo code
or LDPC. A link between iterative decoding and classical optimiza-
tion algorithms has been made recently in [7] where the turbode-
coding is interpreted as a nonlinear block Gauss Seidel iteration. In
parallel, a geometrical approach has been considered and provides

an interesting interpretation in terms of projections. Theparticular
case of BICM-decoding has been studied in [8, 9]. In [10], theturbo-
decoding is interpreted in a geometric setting as a dynamical system
leading to new but incomplete results.
In this paper we reformulate the iterative decoding as two embedded
proximal point algorithms involving the Bregman divergence built
on the Fermi-Dirac energy. We prove that each iteration of the de-
coding decreases a certain criterion.We also propose an hybrid min-
imum entropy algorithm with improved performance comparedto
the classical BICM.

2. BICM-ID WITH SOFT DECISION FEEDBACK

A conventional BICM system [11] is built from a serial concate-
nation of a convolutional encoder, a bit interleaver and an M-ary
bits-to-symbol mapping (whereM = 2m) as shown in fig. 1.
The sequence of information bitsb is first encoded by a convo-
lutional encoder to produce the output encoded bit sequencec of
length Lc which is then scrambled by a bit interleaver (as op-
posed to the channel symbols in the symbol-interleaved coded se-
quence) operating on bit indexes. Letd denote the interleaved se-
quence. Then,m consecutive bits ofd are grouped as a channel
symboldk = (dkm+1, ...d(k+1)m). The complex transmitted signal
sk = ǫ(dk) is then chosen from an M-ary constellationΨ whereǫ
denotes the mapping scheme. For simplicity, we consider transmis-
sion over the AWGN channel. The received signal reads:

yk = sk + nk 1 ≤ k ≤ Lc/m (1)

wherenk is a complex white Gaussian noise with independent in-
phase and quadrature components having two-sided power spectral
densityσ2

c .
Due to the presence of the random bit interleaver, the true maximum
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Fig. 1. Transmission model

likelihood decoding of BICM is too complicated to implementin
practice. Figure 2 shows the block diagram of the receiver for a
BICM-ID system with soft-decision feedback.
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Fig. 2. Receiver for a BICM-ID with soft-decision feedback



In the first iteration, the encoded bits are assumed equally
likely. The demapping consists in evaluatinga posteriori proba-
bilities (APP) for the encoded bits without accounting for the code
structure, namely:

pAPP (dkm+i = b) ∼
P

s:sk∈Ψi
b
p(y|s)p(s) (2)

∼
P

sk∈Ψi
b
p(yk|sk)p(sk) (3)

wheres = {s1, ..., sLc/m}, y = {y1, ...,yLc/m} and Ψi
b, b ∈

{0, 1}, denotes the subset ofΨ that contains all symbols whose la-
bels have the valueb in the ith position. In the turbo decoding pro-
cess, the quantities exchanged through the blocks are nota posteriori
probabilities (APP) but extrinsic information [12]. The extrinsic in-
formation at the output of the demappingp(dkm+i;O) is computed
as pAPP (dkm+i)/p(dkm+i; I) wherep(dkm+i; I) is the a priori
information for the demapping sub-block. Since the bit interleaver
makes the bits independent, the extrinsic informationp(dkm+i;O)
reads:

p(dkm+i = b;O) = Km

X

sk∈Ψi
b

p(yk|sk)
Y

j 6=i

p(dkm+j ; I) (4)

and the corresponding APP reads:

pAPP (dkm+i = b) = K′
m

X

sk∈Ψi
b

p(yk|sk)
Y

j

p(dkm+j ; I) (5)

whereKm andK′
m are normalization factors. The extrinsic in-

formationp(dkm+i;O) is de-interleaved and delivered to the SISO
decoder [13] as ana priori information on the encoded bits. Let
cl = dσ−1(km+j) whereσ−1 is for the permutation on the indexes
due to the deinterleaver;p(cl; I) is the updated input of the Single
Input Single Output (SISO) decoder. The extrinsic information at
the output of the SISO decoder is obtained through [8, 14]:

p(cl = b;O) = Kc

X

c∈Rl
b

IC(c)
Y

j 6=l

p(cj ; I) (6)

and the corresponding APP is:

pAPP (cl = b) = K′
c

X

c∈Rl
b

IC(c)
Y

j

p(cj ; I) (7)

where IC(c) stands for the indicator function of the code, i.e.
IC(c) = 1 if c is a codeword and0 otherwise andRl

b denotes the
set of binary words of lengthLc with value b in the lth position.
Kc andK′

c are normalization factors. The extrinsic information
p(cl;O) is interleaved and delivered to the demapping sub-block
as a regenerateda priori information. If the process converges the
APP of the two sub-blocks are the same. The criteria proposed
in the following are based on this property and encourage a faster
convergence towards this objective.

3. NOTATIONS FROM INFORMATION GEOMETRY

3.1. Basic tools

We first introduce some notations that will be useful in the sequel.
Let Bi ∈ {0, 1}N denote the binary representation of the integer
i, 0 ≤ i ≤ 2N−1. The binary representation of all the words of
length N is gathered into matrixB = (B0,B1, ...,B2N−1)

T with

dimension2N × N . Let η be a probability mass function on the
outcomesχ = Bi then

η = (Pr[χ = B0],Pr[χ = B1], ...,Pr[χ = B2N−1])T

Given a PMFη, its log-coordinates are the vectorθ whoseith el-
ement is given byθi = ln(Pr[χ = Bi]) − ln(Pr[χ = B0]).
We can observe that there is a one-to-one mapping betweenη and
θ since the vectorη can be writtenη = exp(θ − ψ(θ)) where
ψ(θ) = log(

P

i exp((θ)i)).We also introduce the bitwise log-

probability ratios with elements of the formλj = log(
Pr[χj=1]

Pr[χj=0]
)

whereχj is thejth bit of the binary wordχ andλ ∈ R
N . For fac-

torisable probability measures (ie PMF that factors into the product
of their bitwise marginals so thatPr(χ) = ΠjPr(χj)), the log-
coordinates take the formθ = Bλ.

3.2. Link with iterative decoding

Let θm denote the log-coordinates vector of the PMFp(y|s).
Let λ1 denote the log-probability ratio corresponding to the prior
p(dkm+i; I) such that:

(λ1)km+i = ln

„

p(dkm+i = 1; I)

p(dkm+i = 0; I)

«

Thus, the log-coordinates ofp(y|s)Πj,kp(dkm+i; I) reads
Bλ1 + θm.
Let pBλ1+θm represent the vector whoseith element is the
probability that the ith bit is 1 according to the measure
with log-coordinate Bλ1 + θm. The APP at the output
of the demapper merge withpBλ1+θm . From eq. (4)-(5),
pAPP (dkm+i = b) = p(dkm+i = b; I)p(dkm+i = b; 0), the
log-coordinates of the APP at the output of the demapper alsomerge

with B(λ1 + λ2) where(λ2)km+i = ln
“

p(dkm+i=1;O)

p(dkm+i=0;O)

”

. Then

the demapper sub-block solves, with respect toλ2, the equation:

pB(λ1+λ2) = pBλ1+θm (8)

Let θc denote the log-coordinates of the PMF associated with the
indicator function. Then the decoder sub-block solves, with respect
to λ1, the equation:

pB(λ1+λ2) = pBλ2+θc (9)

Iterative decoding is thus equivalent to:

find λ2
(k+1) such that p

B(λ
(k)
1

+λ
(k+1)
2

)
= p

Bλ
(k)
1

+θm

find λ1
(k+1) such that p

B(λ
(k+1)
1

+λ
(k+1)
2

)
= p

Bλ
(k+1)
2

+θc

At the convergence, the APP from the two sub-blocks should bein
accordanceie p

B(λ
(∞)
1

+λ
(∞)
2

)
= p

Bλ
(∞)
1

+θm
= p

Bλ
(∞)
2

+θc
.

4. AN OPTIMIZATION PROBLEM

The Fermi-Dirac divergence is the Bregman divergence builton the
Fermi-Dirac entropyf(p) =

P

j pj ln(pj) + (1 − pj) ln(1 − pj)

with dom(f) = [0; 1]. The Fermi-Dirac divergence reads

DF D(p,q) =
X

j

pj ln

„

pj

qj

«

+
X

j

(1 − pj) ln

„

1 − pj

1 − qj

«

and is exactly the Kullback-Leibler distance for bit probabilities.
The Fermi-Dirac divergence is a non-symmetric distance. Aswe
can notice, this distance is very convenient for computing distances
between bit probabilities.



Proposition 1 The demapping sub-block solves the minimization
problem min

λ2

DF D(pBλ1+θm , pB(λ1+λ2))

The decoding sub-block solves the minimization problem

min
λ1

DF D(pBλ2+θc , pB(λ1+λ2))

Proof: The proof is obvious by noting that (λ1 + λ2)km+i =

ln
“

pB(λ1+λ2)(dkm+i=1)

pB(λ1+λ2)(dkm+i=0)

”

thus pB(λ1+λ2) = exp(λ1+λ2)
1+exp(λ1+λ2)

.

This proposition illustrates that iterative decoding can be formulated
as two embedded minimization steps based on the Fermi-Diracdis-
tance. In the next section, we investigate some modifications of this
original criterion.

4.1. An hybrid proximal point algorithm

In the classical iterative decoding, the two minimization steps seem
independent meaning that the minimization of one of the criterion
does not imply necessarily a decrease of the other criterionat the
next iteration. Proximal point methods [15] permit to make the link
between the two criteria. These methods are generally used to guar-
antee the monotonicity of the convergence process often at the cost
of a slow convergence speed. Following the proximal point tech-
nique we obtain the minimization process:

λ
(k+1)
2

= min
λ2

Jθm (λ1, λ2) = min
λ2

DF D(pBλ1+θm ,pB(λ1+λ2))

+µmDF D(p
B(λ

(k)
1

+λ
(k)
2

)
,pB(λ1+λ2))

λ
(k+1)
1

= min
λ1

Jθc (λ1, λ2) = min
λ1

DF D(pBλ2+θc ,pB(λ1+λ2))

+µcDF D(p
B(λ

(k)
1

+λ
(k+1)
2

)
,pB(λ1+λ2))

As can be seen, the original criterion is modified through theaddition
of a penalization term in order to encourage smooth variations of
the successive estimates. This minimization process is equivalent to
findingλ(k+1)

2
such that

p
B(λ

(k)
1

+λ
(k+1)
2

)
=

p
Bλ

(k)
1

+θm
+ µmp

B(λ
(k)
1

+λ
(k)
2

)

1 + µm
(10)

andλ(k+1)
1

such that

p
B(λ

(k+1)
1

+λ
(k+1)
2

)
=

p
Bλ

(k+1)
2

+θc
+ µcp

B(λ
(k)
1

+λ
(k+1)
2

)

1 + µc
(11)

Note that this new procedure also converges towards solu-
tions satisfying (8) and (9). A good choice for the param-
eters µm and µc permits to ensure that each criterion de-
creases with the iterations. Actually, we want to enforce
Jθm (λ

(k)
1
, λ

(k+1)
2

) ≤ Jθc (λ
(k)
1
, λ

(k)
2

). Since the Fermi-Dirac dis-
tance is convex with respect to its second parameter, we have
Jθm (λ

(k)
1
, λ

(k+1)
2

) ≤ µm

1+µm
(DF D(p

Bλ
(k)
1

+θm
,p

B(λ
(k)
1

+λ
(k)
2

)
) +

DF D(p
B(λ

(k)
1

+λ
(k)
2

)
,p

Bλ
(k)
1

+θm
)). Moreover, we also have

DF D(p
Bλ

(k)
2

+θc
,p

B(λ
(k)
1

+λ
(k)
2

)
) ≤ Jθc (λ

(k)
1
, λ

(k)
2

). Connecting

the two relations, we obtain an upper bound forµm:

µm ≤
DF D(p

Bλ
(k)
2

+θc
,p

B(λ
(k)
1

+λ
(k)
2

)
)

DF D −DF D(p
Bλ

(k)
2

+θc
,p

B(λ
(k)
1

+λ
(k)
2

)
)

where DF D is a symmetric distance, namely
DF D = DF D(p

Bλ
(k)
1

+θm
,p

B(λ
(k)
1

+λ
(k)
2

)
) +

DF D(p
B(λ

(k)
1

+λ
(k)
2

)
,p

Bλ
(k)
1

+θm
). The upper bound forµc

can be obtained in the same way. Iterating (10) and (11) withµc and
µm correctly chosen yields an algorithm that converges towards the
same points than the classical iterative decoding with the additional
advantage of decreasing at each iteration a desired criterion. In the
next section, we propose a new criterion in order to improve the
performance of the iterative decoding.

4.2. An hybrid minimum entropy algorithm

The entropy of the vectors of marginalspB(λ1+λ2) is defined as

EB(λ1+λ2) = −
X

n

pB(λ1+λ2)(n)log2(pB(λ1+λ2)(n))

−
X

n

(1 − pB(λ1+λ2)(n))log2(1 − pB(λ1+λ2)(n))

The quantityEB(λ1+λ2) gives a measure of the reliability of the de-
cisions. Indeed,EB(λ1+λ2) → 0 does not always mean that the
decisions are correct, but rather that the iterative decoding algorithm
is confident about its decisions. Nevertheless, in the iterative decod-
ing, the decisions are in most cases correct whenEB(λ1+λ2) → 0
[16]. In this section, we propose a new criterion that minimizes
EB(λ1+λ2) under the constraintDF D(pBλ1+θm ,pB(λ1+λ2)) ≤ ǫ
for the demapping andDF D(pBλ2+θc ,pB(λ1+λ2)) for the decod-
ing. This is equivalent to:

λ
(k+1)
2

= min
λ2

DF D(pBλ1+θm ,pB(λ1+λ2)) + ηmEB(λ1+λ2) (12)

λ
(k+1)
1

= min
λ1

DF D(pBλ2+θc ,pB(λ1+λ2)) + ηcEB(λ1+λ2) (13)

By zeroing the gradient of the two criteria in (12) and (13), we obtain
the new update equations:

λ2
(k+1) : fηm (p

B(λ
(k)
1 +λ

(k+1)
2 )

(n)) = p
Bλ

(k)
1 +θm

(n) 1 ≤ n ≤ Lc

λ1
(k+1) : fηc (p

B(λ
(k+1)
1 +λ

(k+1)
2 )

(n)) = p
Bλ

(k+1)
2 +θc

(n) 1 ≤ n ≤ Lc

wherefη(pB(λ1+λ2)(n)) = pB(λ1+λ2)(n) − ηpB(λ1+λ2)(n)(1 −

pB(λ1+λ2)(n)) log
“

pB(λ1+λ2)(n)

1−pB(λ1+λ2)(n)

”

. The functionfη is plotted
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Fig. 3. fη(p) for various values ofη

on fig (3). We can notice that:(i) the distortion increases withη (ii)
fη(p) belongs to[0; 1] (iii) fη(p) is a strictly increasing function. As
a consequence each step of the minimization process has a unique
solution that can be found using classical techniques.



5. SIMULATION

We compare the performance in terms of bit error rate and iteration
number of the classical iterative decoding with the hybrid proximal
point algorithm (HPP) and also with the hybrid minimum entropy al-
gorithm (HMEA). Each algorithm stops when the Fermi-Dirac dis-
tance between the APP of the two sub-blocks is less than10−3 or
when 30 iterations are reached. The generator polynomial of the
encoder isg = [111; 001; 100]. The bits are mapped using subset
partitioning to a 8-PSK modulation. The length of the coded bit se-
quence isLc = 6000. The step-sizesηm andηc in the HMEA are
both chosen equal to0.05. The results are plotted in fig. (4) and (5).
We can see that the classical iterative decoding and the HPP exhibits
exactly the same performance. This is not surprising concerning the
BER since both methods converge towards the same points. We can
also notice that these results are obtained with the same number of
iterations in both cases meaning that the proximal point technique
does not reduce, in this case, the convergence speed. Both methods
have almost the same computational complexity with the additional
advantage for the HPP to minimize a desired criterion with the it-
erations. As expected, the HMEA outperforms the others methods
in terms of BER in the middle area with a number of iterations at
most equal to the number of iterations needed in the classical BICM.
However, this last method has a higher computational complexity
due to the distortion functionfη.
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6. CONCLUSION

In this paper, iterative decoding is rephrased as two embedded min-
imization processes. From this formulation, we have derived an hy-
brid proximal point algorithm that exhibits the same performance
than the classical iterative decoding. This proximal pointalgorithm
decreases at each step a well identified criterion. We have also built
an hybrid minimum entropy algorithm. The minimization of the en-
tropy leads to an improvement of the performance.
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