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Iterative decoding was not originally introduced as the solution to an optimization problem rendering the analysis of its convergence very difficult. In this paper, we investigate the link between iterative decoding and classical optimization techniques. We first show that iterative decoding can be rephrased as two embedded minimization processes involving the Fermi-Dirac distance. Based on this new formulation, an hybrid proximal point algorithm is first derived with the additional advantage of decreasing a desired criterion. In a second part, an hybrid minimum entropy algorithm is proposed with improved performance compared to the classical iterative decoding. Even if this paper focus on iterative decoding for BICM, the results can be applied to the large class of turbo-like decoders.

INTRODUCTION

Bit-Interleaved Coded Modulation (BICM) was first suggested by Zehavi in [START_REF] Zehavi | 8-PSK trellis codes for a Rayleigh fading channel[END_REF] to improve the Trellis Coded Modulation performance over Rayleigh-fading channels. In BICM, the diversity order is increased by using bit-interleavers instead of symbol interleavers. This improvement is achieved at the expense of a reduced minimum Euclidean distance leading to a degradation over non-fading Gaussian channels [START_REF] Zehavi | 8-PSK trellis codes for a Rayleigh fading channel[END_REF]. This drawback can be overcome by using iterative decoding (BICM-ID) at the receiver [START_REF] Li | Bit interleaved coded modulation with iterative decoding and 8-PSK signaling[END_REF]. BICM-ID is known to provide excellent performance for both Gaussian and fading channels. The iterative decoding scheme used in BICM-ID is very similar to serially concatenated turbo-decoders. Indeed, the serial turbodecoder makes use of an exchange of information between computationally efficient decoders for each of the component codes. In BICM-ID, the inner decoder is replaced by demapping which is less computationally demanding than a decoding step. Even if this paper focuses on iterative decoding for BICM, the results can be applied to the large class of iterative decoders including serial or parallel concatenated turbo decoders as long as low-density parity-check (LDPC) decoders. Among the different attempts to provide an analysis of iterative decoding, the EXIT chart analysis and density evolution have permitted to make significant progress [START_REF] Brink | Convergence behavior of iteratively decoded parallel concatenated codes[END_REF][START_REF] Gamal | Analysing the turbo decoder using the Gaussian approximation[END_REF] but the results developed within this setting apply only in the case of large block length. Another tool of analysis is the connection of iterative decoding to factor graphs [START_REF] Kschischang | Factor graphs and the sum-product algorithm[END_REF] and belief propagation [START_REF] Pearl | Probabilistic Reasoning in Intelligent Systems: Network of Plausible Inference[END_REF]. Convergence results for belief propagation exist but are limited to the case where the corresponding graph is a tree which does not include turbo code or LDPC. A link between iterative decoding and classical optimization algorithms has been made recently in [START_REF] Walsh | Turbo decoding as Iterative Constrained Maximum-Likelihood Sequence Detection[END_REF] where the turbo decoding is interpreted as a nonlinear block Gauss Seidel iteration. In parallel, a geometrical approach has been considered and provides an interesting interpretation in terms of projections. The particular case of BICM-decoding has been studied in [START_REF] Muquet | A geometrical interpretation of iterative turbo decoding[END_REF][START_REF] Alberge | Iterative decoding as Dykstra's algorithm with alternate I-projection and reverse I-projection[END_REF]. In [START_REF] Richardson | The geometry of turbo-decoding dynamics[END_REF], the turbodecoding is interpreted in a geometric setting as a dynamical system leading to new but incomplete results. In this paper we reformulate the iterative decoding as two embedded proximal point algorithms involving the Bregman divergence built on the Fermi-Dirac energy. We prove that each iteration of the decoding decreases a certain criterion.We also propose an hybrid minimum entropy algorithm with improved performance compared to the classical BICM.

BICM-ID WITH SOFT DECISION FEEDBACK

A conventional BICM system [START_REF] Caire | Bit-interleaved coded modulation[END_REF] is built from a serial concatenation of a convolutional encoder, a bit interleaver and an M-ary bits-to-symbol mapping (where M = 2 m ) as shown in fig. 1. The sequence of information bits b is first encoded by a convolutional encoder to produce the output encoded bit sequence c of length Lc which is then scrambled by a bit interleaver (as opposed to the channel symbols in the symbol-interleaved coded sequence) operating on bit indexes. Let d denote the interleaved sequence. Then, m consecutive bits of d are grouped as a channel symbol d k = (d km+1 , ...d (k+1)m ). The complex transmitted signal s k = ǫ(d k ) is then chosen from an M-ary constellation Ψ where ǫ denotes the mapping scheme. For simplicity, we consider transmission over the AWGN channel. The received signal reads:

y k = s k + n k 1 ≤ k ≤ Lc/m (1) 
where n k is a complex white Gaussian noise with independent inphase and quadrature components having two-sided power spectral density σ 2 c . Due to the presence of the random bit interleaver, the true maximum In the first iteration, the encoded bits are assumed equally likely. The demapping consists in evaluating a posteriori probabilities (APP) for the encoded bits without accounting for the code structure, namely:

pAP P (d km+i = b) ∼ P s:s k ∈Ψ i b p(y|s)p(s) (2) 
∼ P s k ∈Ψ i b p(y k |s k )p(s k ) (3) 
where s = {s1, ..., s Lc/m }, y = {y1, ..., y Lc/m } and Ψ i b , b ∈ {0, 1}, denotes the subset of Ψ that contains all symbols whose labels have the value b in the i th position. In the turbo decoding process, the quantities exchanged through the blocks are not a posteriori probabilities (APP) but extrinsic information [START_REF] Berrou | Near Shannon limit error-correcting coding and decoding: Turbo codes[END_REF]. The extrinsic information at the output of the demapping p(d km+i ; O) is computed as pAP P (d km+i )/p(d km+i ; I) where p(d km+i ; I) is the a priori information for the demapping sub-block. Since the bit interleaver makes the bits independent, the extrinsic information p(d km+i ; O) reads:

p(d km+i = b; O) = Km X s k ∈Ψ i b p(y k |s k ) Y j =i p(d km+j ; I) (4)
and the corresponding APP reads:

pAP P (d km+i = b) = K ′ m X s k ∈Ψ i b p(y k |s k ) Y j p(d km+j ; I) (5)
where Km and K ′ m are normalization factors. The extrinsic information p(d km+i ; O) is de-interleaved and delivered to the SISO decoder [START_REF] Benedetto | A softinput soft-output APP module for iterative decoding of concatenated codes[END_REF] as an a priori information on the encoded bits. Let c l = d σ -1 (km+j) where σ -1 is for the permutation on the indexes due to the deinterleaver; p(c l ; I) is the updated input of the Single Input Single Output (SISO) decoder. The extrinsic information at the output of the SISO decoder is obtained through [START_REF] Muquet | A geometrical interpretation of iterative turbo decoding[END_REF][START_REF] Moher | Cross-entropy and iterative decoding[END_REF]:

p(c l = b; O) = Kc X c∈R l b IC(c) Y j =l p(cj; I) (6) 
and the corresponding APP is:

pAP P (c l = b) = K ′ c X c∈R l b IC(c) Y j p(cj ; I) (7) 
where IC(c) stands for the indicator function of the code, i.e. IC(c) = 1 if c is a codeword and 0 otherwise and R l b denotes the set of binary words of length Lc with value b in the l th position. Kc and K ′ c are normalization factors. The extrinsic information p(c l ; O) is interleaved and delivered to the demapping sub-block as a regenerated a priori information. If the process converges the APP of the two sub-blocks are the same. The criteria proposed in the following are based on this property and encourage a faster convergence towards this objective.

NOTATIONS FROM INFORMATION GEOMETRY

Basic tools

We first introduce some notations that will be useful in the sequel. Let Bi ∈ {0, 1} N denote the binary representation of the integer i, 0 ≤ i ≤ 2 N-1 . The binary representation of all the words of length N is gathered into matrix B = (B0, B1, ..., B 2 N -1 ) T with dimension 2 N × N . Let η be a probability mass function on the outcomes χ = Bi then

η = (Pr[χ = B0], Pr[χ = B1], ..., Pr[χ = B 2 N -1 ]) T
Given a PMF η, its log-coordinates are the vector θ whose i th element is given by θi = ln(P r[χ = B i ]) -ln(P r[χ = B0]). We can observe that there is a one-to-one mapping between η and θ since the vector η can be written η = exp(θψ(θ)) where ψ(θ) = log( P i exp((θ)i)).We also introduce the bitwise logprobability ratios with elements of the form λj = log(

P r[χ j =1] P r[χ j =0] )
where χj is the j th bit of the binary word χ and λ ∈ R N . For factorisable probability measures (ie PMF that factors into the product of their bitwise marginals so that P r(χ) = ΠjP r(χj)), the logcoordinates take the form θ = Bλ.

Link with iterative decoding

Let θm denote the log-coordinates vector of the PMF p(y|s). Let λ1 denote the log-probability ratio corresponding to the prior p(d km+i ; I) such that:

(λ1) km+i = ln " p(d km+i = 1; I) p(d km+i = 0; I)
« Thus, the log-coordinates of p(y|s)Π j,k p(d km+i ; I) reads Bλ1 + θm.

Let p Bλ 1 +θm represent the vector whose i th element is the probability that the i th bit is 1 according to the measure with log-coordinate Bλ1 + θm.

The APP at the output of the demapper merge with p Bλ 1 +θm . From eq. ( 4)-( 5 

"

. Then the demapper sub-block solves, with respect to λ2, the equation:

p B(λ 1 +λ 2 ) = p Bλ 1 +θm (8) 
Let θc denote the log-coordinates of the PMF associated with the indicator function. Then the decoder sub-block solves, with respect to λ1, the equation:

p B(λ 1 +λ 2 ) = p Bλ 2 +θc ( 9 
)
Iterative decoding is thus equivalent to:

f ind λ2 (k+1) such that p B(λ (k) 1 +λ (k+1) 2 ) = p Bλ (k) 1 +θm f ind λ1 (k+1) such that p B(λ (k+1) 1 +λ (k+1) 2 ) = p Bλ (k+1) 2 +θc
At the convergence, the APP from the two sub-blocks should be in accordance ie p B(λ (∞)

1 +λ (∞) 2 ) = p Bλ (∞) 1 +θm = p Bλ (∞) 2 +θc .

AN OPTIMIZATION PROBLEM

The Fermi-Dirac divergence is the Bregman divergence built on the Fermi-Dirac entropy

f (p) = P j pj ln(pj) + (1 -pj) ln(1 -pj) with dom(f ) = [0; 1]. The Fermi-Dirac divergence reads DF D (p, q) = X j pj ln " pj qj « + X j (1 -pj) ln " 1 -pj 1 -qj «
and is exactly the Kullback-Leibler distance for bit probabilities. The Fermi-Dirac divergence is a non-symmetric distance. As we can notice, this distance is very convenient for computing distances between bit probabilities.

Proposition 1 The demapping sub-block solves the minimization problem min

λ 2 DF D (p Bλ 1 +θm , p B(λ 1 +λ 2 ) )
The decoding sub-block solves the minimization problem

min λ 1 DF D (p Bλ 2 +θc , p B(λ 1 +λ 2 ) )
Proof: The proof is obvious by noting that (λ1 + λ2) km+i = ln

" p B(λ 1 +λ 2 ) (d km+i =1) p B(λ 1 +λ 2 ) (d km+i =0) " thus p B(λ 1 +λ 2 ) = exp(λ 1 +λ 2 ) 1+exp(λ 1 +λ 2 )
. This proposition illustrates that iterative decoding can be formulated as two embedded minimization steps based on the Fermi-Dirac distance. In the next section, we investigate some modifications of this original criterion.

An hybrid proximal point algorithm

In the classical iterative decoding, the two minimization steps seem independent meaning that the minimization of one of the criterion does not imply necessarily a decrease of the other criterion at the next iteration. Proximal point methods [START_REF] Luque | Asymptotic convergence analysis of the proximal point algorithm[END_REF] permit to make the link between the two criteria. These methods are generally used to guarantee the monotonicity of the convergence process often at the cost of a slow convergence speed. Following the proximal point technique we obtain the minimization process:

λ (k+1) 2 = min λ 2 J θm (λ1, λ2) = min λ 2 DF D (p Bλ 1 +θm , p B(λ 1 +λ 2 ) ) +µmDF D (p B(λ (k) 1 +λ (k) 2 ) , p B(λ 1 +λ 2 ) ) λ (k+1) 1 = min λ 1 J θc (λ1, λ2) = min λ 1 DF D (p Bλ 2 +θc , p B(λ 1 +λ 2 ) ) +µcDF D (p B(λ (k) 1 +λ (k+1) 2 ) , p B(λ 1 +λ 2 ) )
As can be seen, the original criterion is modified through the addition of a penalization term in order to encourage smooth variations of the successive estimates. This minimization process is equivalent to finding λ

(k+1) 2 such that p B(λ (k) 1 +λ (k+1) 2 ) = p Bλ (k) 1 +θm + µmp B(λ (k) 1 +λ (k)
2 )

1 + µm [START_REF] Richardson | The geometry of turbo-decoding dynamics[END_REF] and λ

(k+1) 1 such that p B(λ (k+1) 1 +λ (k+1) 2 ) = p Bλ (k+1) 2 +θc + µcp B(λ (k) 1 +λ (k+1) 2 ) 1 + µc (11) 
Note that this new procedure also converges towards solutions satisfying ( 8) and [START_REF] Alberge | Iterative decoding as Dykstra's algorithm with alternate I-projection and reverse I-projection[END_REF]. A good choice for the parameters µm and µc permits to ensure that each criterion decreases with the iterations. Actually, we want to enforce J θm (λ

(k) 1 , λ (k+1) 2 ) ≤ J θc (λ (k) 1 , λ (k)
2 ). Since the Fermi-Dirac distance is convex with respect to its second parameter, we have J θm (λ

(k) 1 , λ (k+1) 2 ) ≤ µm 1+µm (DF D (p Bλ (k) 1 +θm , p B(λ (k) 1 +λ (k) 2 ) ) + DF D (p B(λ (k) 1 +λ (k) 2 ) , p Bλ (k) 1 +θm )).
Moreover, we also have

DF D (p Bλ (k) 2 +θc , p B(λ (k) 1 +λ (k) 2 ) ) ≤ J θc (λ (k) 1 , λ (k) 
2 ). Connecting the two relations, we obtain an upper bound for µm:

µm ≤ DF D (p Bλ (k) 2 +θc , p B(λ (k) 1 +λ (k) 2 ) ) DF D -DF D (p Bλ (k) 2 +θc , p B(λ (k) 1 +λ (k) 2 ) )
where

DF D is a symmetric distance, namely DF D = DF D (p Bλ (k) 1 +θm , p B(λ (k) 1 +λ (k) 2 ) ) + DF D (p B(λ (k) 1 +λ (k) 2 ) , p Bλ (k) 1 +θm ).
The upper bound for µc can be obtained in the same way. Iterating [START_REF] Richardson | The geometry of turbo-decoding dynamics[END_REF] and [START_REF] Caire | Bit-interleaved coded modulation[END_REF] with µc and µm correctly chosen yields an algorithm that converges towards the same points than the classical iterative decoding with the additional advantage of decreasing at each iteration a desired criterion. In the next section, we propose a new criterion in order to improve the performance of the iterative decoding.

An hybrid minimum entropy algorithm

The entropy of the vectors of marginals p B(λ 1 +λ 2 ) is defined as

E B(λ 1 +λ 2 ) = - X n p B(λ 1 +λ 2 ) (n)log2(p B(λ 1 +λ 2 ) (n)) - X n (1 -p B(λ 1 +λ 2 ) (n))log2(1 -p B(λ 1 +λ 2 ) (n))
The quantity E B(λ 1 +λ 2 ) gives a measure of the reliability of the decisions. Indeed, E B(λ 1 +λ 2 ) → 0 does not always mean that the decisions are correct, but rather that the iterative decoding algorithm is confident about its decisions. Nevertheless, in the iterative decoding, the decisions are in most cases correct when E B(λ 1 +λ 2 ) → 0 [START_REF] Kocarev | Nonlinear dynamics of iterative decoding systems: analysis and applications[END_REF] ) for the decoding. This is equivalent to:

λ (k+1) 2 = min λ 2 DF D (p Bλ 1 +θm , p B(λ 1 +λ 2 ) ) + ηmE B(λ 1 +λ 2 ) (12) λ (k+1) 1 
= min

λ 1 DF D (p Bλ 2 +θc , p B(λ 1 +λ 2 ) ) + ηcE B(λ 1 +λ 2 ) (13) 
By zeroing the gradient of the two criteria in ( 12) and ( 13), we obtain the new update equations:

λ2 (k+1) : fη m (p B(λ (k) 1 +λ (k+1) 2 ) (n)) = p Bλ (k) 1 +θm (n) 1 ≤ n ≤ Lc λ1 (k+1) : fη c (p B(λ (k+1) 1 +λ (k+1) 2 ) (n)) = p Bλ (k+1) 2 +θc (n) 1 ≤ n ≤ Lc where fη(p B(λ 1 +λ 2 ) (n)) = p B(λ 1 +λ 2 ) (n) -ηp B(λ 1 +λ 2 ) (n)(1 - p B(λ 1 +λ 2 ) (n)) log " p B(λ 1 +λ 2 ) (n) 1-p B(λ 1 +λ 2 ) (n) "
. The function fη is plotted 3). We can notice that: (i) the distortion increases with η (ii) fη(p) belongs to [0; 1] (iii) fη(p) is a strictly increasing function. As a consequence each step of the minimization process has a unique solution that can be found using classical techniques.

SIMULATION

We compare the performance in terms of bit error rate and iteration number of the classical iterative decoding with the hybrid proximal point algorithm (HPP) and also with the hybrid minimum entropy algorithm (HMEA). Each algorithm stops when the Fermi-Dirac distance between the APP of the two sub-blocks is less than 10 -3 or when 30 iterations are reached. The generator polynomial of the encoder is g = [111; 001; 100]. The bits are mapped using subset partitioning to a 8-PSK modulation. The length of the coded bit sequence is Lc = 6000. The step-sizes ηm and ηc in the HMEA are both chosen equal to 0.05. The results are plotted in fig. ( 4) and [START_REF] Kschischang | Factor graphs and the sum-product algorithm[END_REF]. We can see that the classical iterative decoding and the HPP exhibits exactly the same performance. This is not surprising concerning the BER since both methods converge towards the same points. We can also notice that these results are obtained with the same number of iterations in both cases meaning that the proximal point technique does not reduce, in this case, the convergence speed. Both methods have almost the same computational complexity with the additional advantage for the HPP to minimize a desired criterion with the iterations. As expected, the HMEA outperforms the others methods in terms of BER in the middle area with a number of iterations at most equal to the number of iterations needed in the classical BICM. However, this last method has a higher computational complexity due to the distortion function fη. 

CONCLUSION

In this paper, iterative decoding is rephrased as two embedded minimization processes. From this formulation, we have derived an hybrid proximal point algorithm that exhibits the same performance than the classical iterative decoding. This proximal point algorithm decreases at each step a well identified criterion. We have also built an hybrid minimum entropy algorithm. The minimization of the entropy leads to an improvement of the performance.
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  . In this section, we propose a new criterion that minimizes E B(λ 1 +λ 2 ) under the constraint DF D (p Bλ 1 +θm , p B(λ 1 +λ 2 ) ) ≤ ǫ for the demapping and DF D (p Bλ 2 +θc , p B(λ 1 +λ 2 )