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1. Why were you initially drawn to the study of computation and
randomness?

We encountered randomness in our different fields of interest, as unpredictable
phenomena are omnipresent in natural and artificial processes. In classical physical
systems (and by this we mean also relativistic ones) randomness may be defined
as ’deterministic unpredictability’. That is, since Poincaré’s results (on the Three
Body Problem) and his invention of the geometry of dynamical systems, determin-
istic systems include various forms of chaotic ones, from weak (mixing) systems
to ones highly sensitive to border conditions, where random behaviours are part
of the deterministic evolutions. Randomness got a new status with the birth of
quantum mechanics: access to information on a given systems passes through a
nondeterministic process (measurement). In computer sciences, randomness is at
the core of algorithmic information theory, all the while nondeterministic algo-
rithms and networks present crucial random aspects. Finally, an extensive use of
randomness is made also in biology.

Thus we wondered: all these different sciences refer to a concept of randomness,
but is it really the same concept? And if they are different concepts, what is the
relation between them?

Let us analyse in more detail the kind of randomness that emerges in the various
disciplines.

1.1. Physical randomness (classical). A kind of randomness can be viewed as
a property of trajectories within classical dynamical systems, namely as unpre-
dictability in finite time, over approximated physical measure with a given (non
reducible) precision, [2, 3, 20, 7, 34, 35]. Moreover, ergodicity (à la Birkhoff) pro-
vides a relevant and purely mathematical way to define randomness asymptotically,
in the limit of infinite trajectories, which still applies for deterministic systems in-
spired by physics, but independently of chaotic properties (unpredictability) of
physical processes, [18, 36]. In short, within these deterministic frames, random-
ness can be derived from a comparison between time averages (along a trajectory
starting from a point) and space averages (over the entire space) of the chosen
observables.

1.2. Physical randomness (quantum). Randomness in quantum mechanics
has a special status, as it is of intrinsic origin. In contrast to other fields , including
classical and relativistic physics, quantum randomness (QR) does not appear as a
mean of ”hiding” a kind of lack of knowledge, like, e.g., in statistical physics. The
experimental evidence of the violation of the Bell’s inequalities definitely proves
that QR really belongs to the paradigm of the theory.

Yet, on the other side, QR fits perfectly well on the axiomatic setting of quantum
mechanics, it is part of the 4 axioms of the so-called ”Copenhagen” formalism, and
the perfect coherence with the other postulates is a great success of the sciences
of the last century.
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Observe, in particular, that a quantum algorithm cannot avoid randomness, as
it provides, as ”output”, i.e. the result of a final measurement process, a bunch
of possibilities, one of them (fortunately the most probable) being the expected
result. Therefore (easy) checking of the validity of a result must be part of the
handled problem. The spectacular power of quantum algorithms, on the other
side, overcomes this double constraint (randomness of the result and necessity of a
posteriori validation of the ”guess”) and fully justifies this new branch of computer
sciences. In this perspective, quantum randomness cannot be viewed as a form of
(hidden or incomplete) determination, [21, 4].

1.3. Algorithmic randomness. Also recursion theory gave us a proper form of
(asymptotic) randomness, for infinite sequences, in terms of Martin-Löf random-
ness, [39] . This has been extensively developed by Chaitin, Schnorr, Calude and
many others, [15], also in relation to physics, [51]. As a matter of fact, on the
grounds of this theory one can give a precise meaning to vague notions such as
”easily describable” and ”regularities”. In short, algorithmic randomness tests
enables one to detect those elements whose regularities can be effectively tested,
labeling them as ”non-random”. The elements that remain are called ”random”.
Yet, the existing comparisons within (classical) physical randomness and algorith-
mic randomness are developed in formal space with insufficient physical generality.
Some recent work went beyond this limit, [51].

1.4. Computer science randomness. Probabilistic and nondeterministic mod-
els of computation have been extensively investigated in the computer science
literature, as well as their combination. Still there is no agreement about the pre-
cise nature of nondeterminism, and its relation with probability. In different areas
the term nondeterminism refers to different concepts, and even in the same area
people have different intuition and interpretation of nondeterministic models or
phenomena (see for example [5] for a good survey). This confusion has brought
consequences sometimes dramatic, especially when trying to transfer some theory
or methodology from one field to another. One community which is particularly
sensible to the problem is that of Computer Security. Although it was discovered
only recently, the issue has rapidly become known and recognized as crucial, to
the point that the organizers of the 2006 edition of the main forum in Computer
Security, the IEEE FCS, set up a panel to discuss about nondeterminism.

In sequential computation the term nondeterminism refers to models in which
the transition relation goes from one state to a set of states, like nondeterminis-
tic Turing machines. This is a useful device in specification, especially for search
problems, in that it allows to explore alternative solutions without having to de-
tail the backtracking policy. A characteristic of this kind of models is that their
intended meaning is in terms of may-semantics, in the sense that the computation
is considered successful if at least one of the alternative branches is successful. We
argue that this has nothing to do with randomness: the re-execution of the sys-
tem gives always the same result(s), and a deterministic implementation is always
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possible via backtracking (in a breath-first fashion to avoid that infinite branches
would cause a pitfall).

In concurrency theory the situation is very different [1]: nondeterminism is
inherent to the model, in the sense that it arises naturally from the concurrent
execution and interaction of parallel processes. More precisely, it generates from
the different ways in which processes may alternate their execution steps, cooperate
with each other, compete for resources, etc. In general, these processes are assumed
to run in different nodes of a distributed network, and the intended meaning is in
terms of the must-semantics, in the sense that every branch must be successful,
because the execution follows only one of the many alternatives, and backtracking
is not an option (it would be too expensive, if possible at all, because all the
processes would need to be backtracked, in order to ensure consistency). The re-
execution of the system gives a different result each time, determined by run-time
circumstances. In general we want to abstract from these, and we use the notion
of scheduler to represent how the choices are resolved.

1.5. Biology. A common characteristic in the various forms of physical random-
ness is the predetermination of the spaces of possibilities: random results or tra-
jectories are given among already known possible ones (the six sides of a dice, the
spin-up/spin-down of a quanton...). In fact, in quantum physics, even in cases
where new particles may be created, sufficiently ”large” spaces are provided up-
stream (the Fock spaces of which Hilbert spaces): Fock’s spaces capture all the
possible states, infinitely many in general. The classical methods transfer success-
fully in molecular analysis in Biology, where only physical processes are observed,
even though there are meant to happen within cells.

In System Biology, however, phase or reference spaces (that is, the spaces of pos-
sible evolutions) are far from being predetermined. Typically, the proper biological
observables of Darwinian Evolution, namely phenotypes and species [26, 33], are
not pre-given or there is no way to give them in advance within a space of all pos-
sible evolutions, in a sound theory. And, of course, there is no way to pre-give the
possible molecular interactions (internal and systemic) as well as the feedbacks,
from the forthcoming ecosystems onto molecular cascades. An analysis of Species
Evolution, in terms of a diffusion equation (thus of underlying random paths) is
given in [8]. Our attention to the problem of randomness in System Biology was
stimulated by these analogies and differences w. r. to Physics.

2. What have we learned?

Randomness is nowadays part of our culture. It appears everywhere. But, as
mentioned before, it reflects very different kinds of conceptual (and mathematical)
settings. Let us more closely review different forms of knowledge dealing with
randomness in modern sciences.
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2.1. Physical randomness (classical). In classical dynamics, it is possible to
give a notion of individual random element. More precisely, in a dynamical sys-
tems, with a transformation T preserving a measure µ, there exists a natural class
of (asymptotic) properties allowing a definition of ”random state” with respect to
the dynamic T and the equilibrium distribution defined by µ. This class is the one
associated to the Birkhoff ergodic theorem which states that for each (integrable)
function f : X → R (representing a quantified observation), the time average
of f along the orbit O(x) = {x, T (x), T 2(x), ...} converges to the spacial mean∫
fdµ with probability one. Such points are called typical for T [53]. Though

given asymptotically, the definition has a robust physical meaning and it may be
given for weakly chaotic dynamical systems : the mixing ones (that is, dynamical
systems where observable decorrelates with time, see [23], [24]).

2.2. Physical randomness (quantum). The appearance of non-determinism in
quantum mechanics was a shock. In the ’20s Physics was still very rooted in the
classical deterministic view of the world. Therefore it took a lot of time to accept
this fact, although it appears totally natural now to us that a description on the
world could be fully statistical. This randomness flavour of quantum mechanics
is usually handled in the so-called field of ”conceptual aspects” of the theory,[31].
Facing these conceptual aspects with new experimental physics is not so frequent,
and the relationship with other fields, as the ones presented here, are even less often
considered. At the meantime recent works (see [46, 47, 48, 49]) started invoking
these links. Let us finally mention a kind of philosophical morality: the high new
power of quantum algorithms relies on randomness, that is, releasing determinism
(in a way of keeping probability predictions) increases drastically efficiency.

2.3. Algorithmic randomness. As already mentioned, the notion of individual
random infinite sequence has been effectively modeled with the tools of computabil-
ity theory. The idea is that statistical tests may be ”effectively given”, that is one
can effectively look for regularities along infinite sequences. Then an infinite se-
quence is random if it passes all effective tests. This algorithmic modelling of
randomness has been formalized in different ways and there exist several defini-
tions (the one by Martin-Löf’s, in [39], being the most celebrated, see [15] for a
survey book).

In these approaches, being random yields a high degree of ”non-computability”,
as a random sequence has no infinite recursively enumerable subset. The role of
algorithmic randomness in dynamical systems, especially in ergodic ones, has al-
ready be the subject of previous research. However, without a more general theory
of randomness, all this work is restricted to ”symbolic spaces” (spaces of strings),
with little physical meaning. The non-obvious results recently obtained proved
an equivalence, in very general and ”physically meaningful” dynamical spaces, of
the (classical) physical randomness, à la Birkhoff, and algorithmic randomness, for
infinite trajectories (see the PhD theses by M. Hoyrup and C. Rojas (June 2008)
and [23, 24, 38]).
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As for finite time computations, Chaitin, Levin, Calude and many others, follow-
ing Kolmogorof, deeply analysed also (finite) sequence incompressibility (sequences
whose length coincides with their shortest generating program) and showed that
for infinite sequences, under suitable conditions, the incompressibility of initial seg-
ments yields Martin-Löf asymptotic randomness. But, in our opinion, unless the
physical generating process is spelled out, a finite incompressible sequence is not
random, it is just algorithmically incompressible. In other words, it is pseudoran-
dom in the strongest way and it is impossible to see in it any regularity whatsoever.
Conversely, it is a reasonable thesis to assume that a physical random sequence
is incompressible, in principle, but the converse is false or ill defined. That is,
if one stays within theory of computation and no physical process is mentioned,
there is no other way to give/conceive it but by a program, a formal/linguistic
matter, a priori with no physical meaning. A closer analysis of this issue is part
of our project, in view of our experience on the relation physical (dynamical) vs.
algorithmic randomness.

2.4. Randomness in computer science. As argued in previous section, sequen-
tial systems are inherently deterministic (despite the use of the adjective ’nonde-
terministic’ for the automata whose transition relation is one-to-many). Concur-
rency, on the contrary, seems to give rise to a true notion of randomness, due
to the unpredictable and unbacktrable nature of interaction between independent
and asynchronous agents.

The fact that computation in concurrent systems seems to have features which
are basically different from those of sequential computation has inspired some
intriguing lines of research, with the common goal of defining a ’good’ notion of
expressiveness for concurrent formalisms. One of the most successful approaches
is based on the notions of ’encoding’, and it has produced some interesting results
concerning the mechanisms of guarded choice, which are intimately related to the
nature of nondeterminism in concurrency. We mention in particular the works by
Nestmann and Pierce [41], and by Palamidessi [44, 45]. The first have shown that a
certain form of choice (input-guarded choice) can be encoded in parallelism, while
the latter has shown that mixed-guarded choice is essentially more expressive.

Another line of investigation has been pursued by Wegner and his collabora-
tors. Starting from the principle that interaction is more expressive than algo-
rithms, Wagner has written an intriguing position paper where he justifies this
claim, essentially on the basis of the intuition that interaction can express random
computation [54]. In the technical development of this idea in subsequent papers
[55, 25] the authors considered a sort of interactive Turing machines (persistent
Turing machines) and showed that they cannot be reduced to standard Turing
machines. However the approach is based on the conventional interpretation of
nondeterminism in automata theory.

An interesting result has bee found recently by Busi and her colleagues [13]:
they investigate a process calculus (CCS with replication) and show that in this
calculus the existence of a divergent path is decidable. Still, in a subsequent paper
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[14] they show that this formalism can encode Turing machines. The explanation
of this apparent paradox is that the nondeterminism of the language is essential
to achieve Turing-completeness: any attempt to eliminate it in an effective way is
doomed to fail, because otherwise decidability of (existence of) divergence would
imply decidability of termination.

In all the above investigations nondeterminism plays a central role: since in
concurrency there is no backtracking, it becomes important to control nondeter-
minism as much as possible, and the expressive power of a concurrent language
usually lies on the capability to exert such control.

In a more practical fashion, nondeterminism has been used in concurrency theory
as a convenient abstraction from run-time information. Essentially, a concurrent
program is nondeterministic because when we write it we do not know yet what
will determine at run-time the choice of a particular path, so all the possibilities
must be considered.

A common misconception of nondeterminism is to consider it a probabilistic
mechanism with uniform distribution. The confusion probably originates from
epistemic considerations: the total lack of knowledge about which of the available
alternatives will be chosen, in a nondeterministic process, evokes the concept of
maximum entropy. But maximum entropy represents the maximum degrees of un-
certainty within the probabilistic setting. Nondeterminism is outside the realm of
probability and it represents an even higher degree of uncertainty. In any case, con-
fusing nondeterminism with uniform probability has induced wrong approaches.
We argue that this due to several aspects: not only a nondeterministic property
cannot express the quantitative aspects of a probabilistic one, but also this trans-
formation requires angelic nondeterminism (nondeterminism working in favour of
the property), which is a strong assumption usually not guaranteed in a concurrent
setting (where nondeterminism is typically demonic).

2.5. Biology. We have no doubt that the issue of randomness in biology is ex-
tremely difficult, yet it is amazing to observe that leading biologists, still now and
along the lines of Crick and Monod ([40]), contrapose determination and random-
ness according to Laplace’s split: deterministic means predictable and random
is its opposite (non-deterministic), to be analyzed by statistics and probabilities.
Along these laplacian lines, deterministic, as it implies predictability (Laplace’s
conjecture), yields ”programmable”, which leads to the the idea that the ”DNA is
a program” (see [22] for an history.) Yet, since Poincaré (1890), we know that clas-
sical randomness is deterministic unpredictability and that unpredictability pops
out almost everywhere in non-linear systems (see [37] for a critique of the claim
that ”DNA is a program” from the point of view of Physics and Programming
Theory.)

In short, determination as ”necessity” in life phenomena, understood in a lapla-
cian way, is far from the frameworks of modern determination in physics, classi-
cal or quantum, even if it is supplemented by a few speckles of randomness (le
”hasard”). Crick’s ”central dogma” (”Genetic Information” goes one-way, from
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DNA to RNA to proteins - and to the phenotype) and the ”one gene - one en-
zyme” hypothesis in Molecular Biology are good examples of this. They guided
research for decades and, the first, is still nowadays believed by many, modulo the
addition of a few ”epigenetic factors” and ”norms of reaction” (for an alternative
view, see [27]; more discussions and references are in [37]). By their linear causality,
these assumptions do not seem to have still integrated the views on the interplay
of interactions in XXth century physics, that is the richness of the approaches to
physical determination and randomness. In these modern physical frames, causes
become interactions and these interactions themselves dynamically constitute the
fabric of the processes and of their manifestations; reshaping this fabric modifies
the interactions, intervening upon the interactions appears to reshape the fabric,
[6].

Our recent work on entropy in System Biology, [8], has been extensively bor-
rowing from the work on far-from-equilibrium thermodynamics, in particular dis-
sipative systems ([42, 43]). Note that entropy provides a measure for ”increasing
randomness” also for dynamical systems and this establishes a link, developed by
many, with other areas of physics (thermodynamics).

3. What are the most important open problems in the field?

”Random” is not the opposite of ”deterministic”, in spite of the opposition of
these concepts that is commonly made in Computer Science and Biology. As a
matter of fact, the analysis of randomness is part of the proposal for a structure
of determination of physical processes, in particular in classical dynamics, where
randomness is deterministic unpredictability. But it is so also when it is related the
very precise and specific notion of quantum indetermination and quantum measure
of ”deterministic evolutions of the state function” (determined by Schrödinger
equation).

As seen in the previous sections, randomness and nondeterminism appear at
least in four thematic fields (mathematics, physics, biology and computer sciences).
Yet, they cover different, sometimes antinomic meanings.

3.1. Algorithmic randomness. Since Chaitin’s 1975 construction of the first
random infinite word, an entire robust field has been opened concerning the com-
binatorial properties of randomness in discrete frames. This is leading to an inter-
esting analysis of infinite sequences and cycles in de Bruijn graphs, for example,
and a lot more in finite and infinite combinatorics.

A way to stress the difference and the strength of the approach we worked at,
is that, given a measurable space of measure µ, classical theorems like ”property
P holds for µ-almost every point” can be converted into ”property P holds for
every µ-random point”, and this in physical dynamics. Now, the notion of ”being
(µ-)random”, relatively to a measure µ, is fully understood, by the many result
in algorithmic randomness and, in particular, by our team’s work on asymptotic
randomness, relating classical (dynamical) and algorithmic randomness. In short,
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a major point of these results, is given by the use of discrete, though asymptotic,
tools from algorithmic randomness, in applications to continuous dynamics. By
this, our approach, by its relation to physically meaningful dynamical systems,
complements the relevant existing work on algorithmic randomness. Further ap-
plications (or correlations between) the recent ideas in algorithmic randomness,
like the ones developed by the authors above, and our understanding of classical
(and quantum) dynamics is one of the paths to be explored. In particular, a typ-
ical example of cross interest is given by the analysis of normality in the sense of
Borel1: a real number is absolutely normal with probability one, but construct-
ing such points is extremely complicate [12]. However, it is widely accepted that
computable simulations show the right ergodic behaviour [53]. Is it the case also
while modelling relevant physical dynamics? and which ones? We will hint below
on how a relation to our approach can be developed.

3.2. Computer science. In section 2, we mentioned the ambiguities we see in the
transfer of notions from algorithmic randomness (an asymptotically well-defined
notion) to finite time computations. Some may see our questioning as referring
to a terminological nuance, yet too much confusion in computing deserves clari-
fication. Consider, say, a so called ”non-deterministic” Turing Machine. This is
just a formal, deterministic device, associating a set of numbers to a number. Its
evolution is determined by an ill-typed input-output function. Indeed, it is a useful
device as it allows to speed up computations by a form of basic parallelism. Yet,
as long a physical process, choosing, at each step, one or a few of the elements
in the output set, is not proposed, one cannot discuss about ”determination” nor
”randomness”: is it classical? quantum? This is an analogue of the problem posed
for finite ”random” (incompressible!) sequences mentioned above. A major clari-
fication is needed here, as the relation between the abuses of ”non-deterministic”,
”random” in Computer Science deserve a close analysis in terms of their relation
to the underlying physical processes.

We need to tackle this problem within the relevant area which mostly interests,
concurrency and networks. In particular, the following three main objectives seem
relevant:

Clarify the nature of nondeterminism in concurrency. As discussed in previous
sections, there is a lot of confusion about this concept, especially in the way the
notions and tools developed in the area of concurrency get applied in other ar-
eas. We feel that this is because the concept of nondeterminism is still missing
a proper characterization, formalization, and theoretical foundations. The way
it is formalized in process calculi, indeed, makes it easy to confuse it with the
’nondeterminism’ of automata theory, which, as argued previously, has a radically
different nature.

1A “normal number” is a real number whose digits in every base show a uniform distribution,
with all digits being equally likely, all pairs of digits equally likely, all triplets of digits equally
likely, etc..[10]
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Investigate and formalize the difference of concurrent computations with re-
spect to sequential ones. With respect to Wegner’s claim that ’interaction is more
powerful than algorithms’ on the basis of the fact that interactive (concurrent)
systems can create real random sequences, our position is: we actually do not
believe that it is a matter of interaction having a superior expressive power (if
anything, it should be the reverse - randomization witnesses a lack of control ca-
pabilities), but certainly the capability of producing randomness sharply separates
interactive (concurrent) computations from algorithmic (sequential) ones. Once
this characterization in terms of randomness is given, we can also explore whether
we can characterize different classes of random sequences, which would induce a
separation in the concurrent formalisms (and mechanisms) that can produce them.

Explore the use of physical randomness (classical and quantum) for computer
science applications that use randomized mechanism to protect secret information.
Typically randomization is used to obfuscate the link between secrets and observ-
ables, and the use of really unpredictable mechanisms (in contrast to the pseudo
random ones) is critical. Examples of such applications are protocols for privacy,
anonymity, and confidentiality [52], like Crowds and DCnets. How non-linear sys-
tems, reflecting classical randomness, or intrinsic quantum randomness can help
in the developments of these areas?

3.3. Biology. A long term ambition would be to obtain, by mathematics if possi-
ble, a clarification of the not so much explored problem of randomness in System
Biology (again, in Molecular Biology, randomness plays a novel but fundamental
role, but the tools and concepts are borrowed from Physics, via Chemistry). As we
said, in a systemic approach to Biology, one of the challenges, as for our project,
is that species (and phenotypes) are co-constituted with their environment.

To make an analogy with the reasons for chaos in planetary systems, some sort
of ”resonance effect” takes place in this co-constitutive process. The difference is
that in the physical deterministic case, the resonance happens at one (and con-
ceptually simple) level: the gravitational interactions between a few planets, fully
determined by Newton-Laplace equations. In Evolution (but also in ontogenesis),
the resonance takes place between different levels of organization, each deserving
an analysis on terms of an appropriate structure of determination (typically, frac-
tal structures or geodetics in morphogenesis, see [28], vs. networks dynamics in
cellular/neural tissues, see [30].

That is, a systemic approach requires an analysis of interactions between species,
individuals, physical landscapes, but also organs and tissues and, very importantly,
by two ways interactions between these levels and molecular activities, starting
with DNA expression. Moreover, molecular events belong to microphysics, thus
possibly subject to quantum analysis, thus, quantum probabilities. By this, one
would need a theory encompassing both classical randomness, which may better
fit the description of macroscopic interactions, and quantum randomness, as they
may be retroacting one on top of the other. We are far form having such a theory,
even in Physics.
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In conclusion, Physics has been able to propose two different notions of ran-
domness in finite time: classical deterministic unpredictability and quantum ran-
domness. As we mentioned, we proved that they merge in infinite time. Biology
badly needs its own notion, while in search, of course, for unification with physical
(molecular?) structures of determination. We observe that the notions of ”ex-
tended criticality” and ”anti-entropy” (the opposite of ”increasing disorganization
or randomness”, yet differing from the classical negative entropy) recently pro-
posed in [8], [9] seem pertinent. They deeply involve randomness in Biology, by
the role of fluctuations in extended criticality and of random paths in the formation
and growths of anti-entropy.

3.4. Quantum mechanics. Since the beginning of the ’80s, and especially the
fundamental experiments by Aspect et al, showing the violation of Bell’s inequal-
ities, quantum mechanics has got the status of ”true” theory of the microscopic
world. Roughly at the same time appeared the beginning of what is called now
quantum information and quantum computing.

Feasibility of the construction of quantum computers is certainly one of the most
challenging perspective in physics. More generally experimental exhibition of single
phenomena in quantum mechanics is certainly one of the most striking success
of sciences of the last 25 years. In the mean time computer science developed,
independently, in a direction where non-determinism took an increasing place. An
objective would be to exhibit links between these two independent developments,
together with possible oppositions. As a bi-product, incidence of the rich computer
network theory on quantum mechanics is also expected to be strengthened.

4. What are the prospects for progress?

4.1. Quantum randomnesses. One of the subjects that should be seriously car-
ried out is the difference, in quantum mechanics, between two different type of ran-
domnesses: the one obtained through decoherence and the one of the measurement
process (see [29]). Indeed it is often said that decoherence presents a satisfactory
”explanation” of quantum measurement. Let us remind that the phenomenon of
decoherence is the action on a ”small” quantum system of the big quantum sur-
rounding system (e.g. the apparatus). In the limit of infinite ”reservoir” the state
of the small system gets a diagonal feature that one can identify with a statisti-
cal mixture. This last one is sometimes and wrongly presented as reflecting the
quantum randomness, as randomness in statistical mechanics. This point of view,
driven by a pure statistical perception of quantum phenomena, must be corrected,
as more and more single events in quantum mechanics are nowadays shown exper-
imentally. It seems to us that a clarification of the link between this dichotomy
between (not intrinsic) randomness and the true (intrinsic) one on the quantum
side, and the same kind of distinction in the other fields presented all a long this
paper, would be a major achievement.
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4.2. Pseudo-randomness and algorithmic randomness. Computer simula-
tions (the trajectory given in some initial condition and drawn on the screen) has
become a very important component of the analysis of physical dynamics. The
problem is that an algorithmically random point is strongly non-computable, and
consequently it is impossible to observe the trajectory of such a point in a com-
puter simulation. Worst, the set of computable points has probability 0! From
the simulation point of view, the fact that a given property holds with probability
one says nothing about its observability with a computer. A typical example is
(absolute) normality in the sense of Borel, but, as we mentioned, constructing such
points is extremely complicate.

As already mentioned, in spite of this intrinsic (mathematical) difficulties, it is
widely accepted that computable simulations display the right ergodic behaviour.
The evidence is mostly heuristic. More precisely, most arguments are based on
the various ”shadowing” theorems. By these results, it is possible to prove that
in a suitable system any ”pseudo”-trajectory, that is a trajectory obtained by a
simulation with round-off, is approximated by a real (continuous) trajectory of
the system (but, in general, not the converse). The main limit of this approach
is however that shadowing results hold only in particular systems (”hyperbolic”
dynamics), while many physically interesting systems do not need to belong to
this class. Can we extend this frame for shadowing to an analysis of randomness
for the systems of biological and physical relevance, both for finite and infinite
processes? What does this mean in a quantum perspective?

Moreover and as observed in the previous sections, algorithmically random
points are those points which have the ”generic” behavior, as prescribed by the
underlying measure. In a sense, they are physically ”randomized”, as they do not
possess any artificial feature related to the particular supporting space. An open
issue would be to turn this into a mathematical frame, where the only role of the
measure would be to distinguish the set of random points and give them a topo-
logical structure. Once this is done, probabilistic theorems can be formulated and
proved using the structure of the random set and topological methods (without
referring to the measure).

4.3. Computer science. The objectives proposed in previous section should be
pursued by applying the following approaches and methodologies:

Clarify the nature of nondeterminism in concurrency. The results and perspec-
tives developed in mathematics and physics and quoted above should be more
closely used to get new insights that can be used to understand in depth the no-
tion of nondeterminism in concurrency, in its intrinsically random nature. On this
basis:

Formalize the difference between concurrent and sequential computation in
terms of randomness. What about the applicability of Martin-Löf definition of
randomness to give this characterization?
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Explore the use of physical randomness (classical and quantum) for computer
science applications. Typically, it should be explored the possible use of differ-
ent kinds of randomness in quantum mechanics (see the paragraph on quantum
randomnesses in this section), as well as the extensively studied relations between
computational and dynamical randomness in enriching/clarifying randomness in
finite computing: how can this affect computing? (on a conceptual basis? by the
relevance of hardware?)

4.4. Extended Criticality in Biology. In recent work [9] we proposed to an-
alyze the state of living matter as ”extended critical state”. The idea is that an
organism is in a permanent critical transition, constantly reconstructing its own
organization. The well established domain called ”physics of criticality” [32] nec-
essarily deals with point-wise critical transitions: this is part of the very definition
of phase transition and it is used in an essential way by the main mathematical
tool in the approach, the ”renormalization methods” ([19]) In ongoing work, we
consider, instead, a set (whose closure is) of null-measure, an extended interval of
criticality w.r. t. all pertinent parameters (time, temperature, pressure...). It is as
if a snow flake (a ”coherence structure”, formed at a critical transition) could stand
variations within a relatively large interval of its control parameters by continu-
ally reconstructing itself, in a permanent ”going through” the critical transition
(extended criticality applies to far from equilibrium, dissipative and not necessar-
ily steady states). One then has an extended, permanently reconstructed global
organization in a dynamic interaction with local structures, as the global/local in-
teraction is proper to critical transitions. The role of randomness in these context
is crucial, yet to be explored: the structural stability of the system may be seen
as stability w. r. t. perturbations within the margins of criticality. Moreover,
the very construction of the coherent state is obtained from fluctuations from an
initial relatively stable state. The point now is to turn these conceptually ro-
bust ideas into sound mathematics. As the normalization methods cannot work,
by principle (non-pointwise nature of the critical ”transition”), how to describe
and handle rigorously extended criticality and its main properties (the establish-
ment and maintainance of the global coherent structure, its structural stability
and complexity, in particular in relation to random events)?

Extended criticality, a notion modeling organisms as ”extended coherence struc-
tures” (our proposal for structurally stable systems), needs also to be merged with
the work on entropy and anti-entropy in Species Evolution, mentioned above, see
[8]. The possible technical link may reside in the role of randomness in both
analyses. This shows up in fluctuations and resistance to perturbations (average
behaviours?), as for extended criticality, in diffusion equations (thus, in underlying
random paths) as for entropy and anti-entropy. In this frame, one needs to further
analyse the role of time and of diffusion equations (which average random paths)
both in phylogenesis (we already carried on a mathematical analysis of this in [8])
and in ontogenesis, an open issue.
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4.5. Comparison. It should be clear that the many forms of randomness above
differ or, in some cases, are not or ill formalized. Yet, as already mentioned, some
recent results of our’s prove that they merge, asymptotically. In particular, we re-
call, one of us proved an asymptotic merging of quantum and classical randomness
at the so-called ”semi-classical limit” [48] and the team of another of us proved
a form of equivalence between Birkhoff physical randomness, a limit notion, and
algorithmic randomness ([38] for a survey). This poses several open questions, for
example in the correlations in finite time of classical, quantum and algorithmic
randomness, an issue extensively studied by many, since the asymptotic analysis
may propose a new perspective. Moreover, as we said, the computational ap-
proach (algorithmic randomness) is far from being related to the modern forms
of randomness in networks and concurrency. Not to mention the very difficult
and rather confusing situation we can witness in Biology, when coming from more
mathematized disciplines.
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rue d’Ulm - F 75730 Paris cedex 05

E-mail address: http://www.di.ens.fr/users/longo/
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