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Abstract. We address the problem of computing the information lealaige
system in an efficient way. We propose two methods: one base®ducing
the problem to reachability, and the other based on tecbsiffom quantitative
counterexample generation. The second approach can beitisexdfor exact or
approximate computation, and provides feedback for dehggdhese methods
can be applied also in the case in which the input distrilbisanknown. We then
consider the interactive case and we point out that the tiefinof associated
channel proposed in literature is not sound. We show howtaatrthe leakage
can still be defined consistently, and that our methods exéemothly.

1 Introduction

By information hiding we refer generally to the problem of constructing protecmi
programs that protect sensitive information from beinguted by some adversary. In
anonymity protocol$4], for example, the concern is to design mechanisms togmtev
an observer of network traffic from deducing who is commuticg In secure infor-
mation flow[17], the concern is to prevent programs from leaking thearst input to
an observer of their public output. Such leakage could belaotal or malicious.

Recently, there has been particular interest in approgdhiese issueguantita-
tively, using concepts of information theory. See for example$130, 6, 4]. The secret
input S and the observable outpGt of an information-hiding system are modeled as
random variables related bychannel matrixwhose(s, o) entry specified(o|s), the
conditional probability of observing outputgiven inputs. If we define thevulnera-
bility of S as the probability that the adversary could correctly gtiesvalue ofS in
one try, then it is natural to measure the information leakagcomparing the priori
vulnerability of S with thea posteriorivulnerability of S after observing). This leads
us to consider two measures of leakag@ditive that is the difference between the
posteriorianda priori vulnerabilities; andnultiplicative that is their quotient [19, 3].

We thus view a protocol or program as@isy channeland we calculate the leakage
from the channel matrix and treepriori distribution onS. But, given an operational
specification of a protocol or program, how do we calculagegarameters of the noisy
channel: the sets of inputs and outputs,dtpiori distribution, the channel matrix, and
the associated leakage? These are the main questions vessiddihis paper. We focus
on probabilistic automatawhose transitions are labeled with probabilities antions
each of which is classified as secret, observable, or interna



We first consider the simple case in which the secret inputspéace at the begin-
ning of runs, and their probability is fixed. The interprégatin terms of noisy channel
of this kind of systems is well understood in literature. Ttanework of probabilistic
automata, however, allows to represent more general isinsatThanks to the nonde-
terministic choice, indeed, we can model the case in whiehittiput distribution is
unknown, or variable. We show that the definition of channairir extends smoothly
also to this case. Finally, we turn our attention to the axttve scenario in which in-
puts can occur again after outputs. This case has also besiteced in literature, and
there has been an attempt to define the channel matrix in tfrithe probabilities of
traces [11]. However it turns out that the notion of chanaelrisound. Fortunately the
leakage is still well defined, and it can be obtained in theeseuay as the simple case.

We consider two different approaches to computing the chlanatrix. One uses a
system of linear equations as in reachability computati@vith this system of equa-
tions one can compute th@int matrix, the matrix of probabilities of observing both
ando; the channel matrix is trivially derived from this joint mit The other approach
starts with & channel matrix, which we callgartial matrixat this point. We iteratively
add the contributions in conditional probabilities of cdetp paths to this partial ma-
trix, obtaining, in the limit, the channel matrix itself. Vileen group paths with the same
secret and the same observable together using ideas framtitgtiee counterexample
generation, namely by using regular expressions and syraoginected component
analysis. In this way, we can add the contribution of (inéilyif many paths at the same
time to the partial matrices. This second approach also sékmossible to identify
which parts of a protocol contribute most to the leakagecivig useful for debugging.

Looking ahead, after reviewing some preliminaries (Secfipwe present restric-
tions on probabilistic automata to ensure that they haveé-aefined, finite channel
matrices (Section 3). This is followed by the techniquesdlzwate the channel ma-
trix efficiently (Section 4 and Section 5). We then turn oueation to extensions of
our information-hiding system model. We use nondeterrtimishoice to model the
situation where tha priori distribution on the secret is unknown (Section 6). Finally,
we consider interactive systems, in which secret actiodsofservable actions can be
interleaved arbitrarily (Section 7).

2 Preliminaries

2.1 Probabilistic automata

This section recalls some basic notions on probabilistioraata. More details can be
found in [18]. A functionu: @ — [0, 1] is adiscrete probability distributiomn a set))

if the support ofi. is countable antzqu u(q) = 1. The set of all discrete probability
distributions ony is denoted byD(Q).

A probabilistic automatoris a quadrupléd/ = (Q, X, 4, «) whereQ is a countable
set ofstates X' a finite set ofactions ¢ the initial state, andy a transition function
a:Q — pr(D(X x Q)). Herep(X) is the set of all finite subsets of. If a(q) =0
theng is aterminal state. We writej—p for p € a(q), ¢ € Q. Moreover, we write
g1 for ¢, € Q whenevey—p andy(a,r) > 0. A fully probabilistic automatoris
a probabilistic automaton satisfying(q)| < 1 for all states. In case(q) # 0 we will
overload notation and ug€q) to denote the distribution outgoing frogn



A pathin a probabilistic automaton is a sequence= ¢ = ¢; = --- where
¢ € Q,a; € ¥ andg; "% ¢;.,1. A path can bdinitein which case it ends with a state. A
path iscompletédf it is either infinite or finite ending in a terminal state.v@h a pathv,
first(o) denotes its first state, anddfis finite thenlast(o) denotes its last state.@ycle
is a pathy such thatast (o) = first(o). We denote the set of actions occurring in a cycle
asCyclesA(M). Let Paths, (M) denote the set of all pathBaths*, (M) the set of all
finite paths, and’Paths, (M) the set of all complete paths of an automatdnstarting
from the statey. We will omit ¢ if ¢ = §. Paths are ordered by the prefix relation, which
we denote by<. Thetraceof a path is the sequence of actiongiiiU 2> obtained by
removing the states, hence for the abevee havetrace(o) = ajaq.... If X/ C X,
thentracex: (o) is the projection oftrace(o) on the elements of’. Thelengthof a
finite patho, denoted byo|, is the number of actions in its trace.

Let M(Q, X, ¢, o) be a (fully) probabilistic automaton, € ) a state, and let €
Pathsj (M) be afinite path starting ip. Theconegenerated by is the set of complete
paths(c) = {0’ € CPaths,(M) | ¢ < ¢'}. Given a fully probabilistic automaton
M = (Q,X,§,«) and a state, we can calculate theprobability value denoted by
P, (o), of any finite pathr starting ing as follows:P,(¢q) = 1 andP,(¢c % ¢) =
P,(o) u(a,q"), wherelast(o) — p.

Let £2, £ CPaths, (M) be the sample space, and &t be the smallest-algebra
generated by the cones. ThBrinduces a uniquprobability measur@n F, (which we
will also denote byP,) such thatP,({c)) = P, (o) for every finite pathr starting in
q. Forqg = ¢ we writeP instead ofP,;.

Given a probability spacg?, F, P) and two eventsi, B € F with P(B) > 0, the
conditional probabilityof A givenB, P(A | B), is defined as®(A N B)/P(B).

2.2 Noisy Channels

This section briefly recalls the notion of noisy channelsrfimformation Theory [7].

A noisy channels a tupleC £ (X, Y, P(-|-)) whereX = {z1,22,...,2,} is a
finite set ofinput valuesmodeling thesecretof the channel, and = {y1,y2, ..., Ym}
is a finite set obutput valuestheobservablesf the channel. Fog; € X andy; € ),
P(y;|z;) is the conditional probability of obtaining the outpytgiven that the input
is ;. These conditional probabilities constitute the so calednnel matrix where
P(y;|z;) is the element at the intersection of théh row and thej-th column. For any
input distributionPx on X, Px and the channel matrix determine a joint probabiltty
onX x ), and the corresponding marginal probabiliy on)’ (and hence a random
variableY’). Px is also calleda priori distribution and it is often denoted by. The
probability of the input given the output is callagosteriori distribution

2.3 Information leakage

We recall here the definitions aofiultiplicative leakaggroposed in [19], anddditive
leakageproposed in [3]. We assume given a noisy changek= (X,), P(-]-)) and a
random variableX on X’. Thea priori vulnerabilityof the secrets itk is the probability

! The notion proposed by Smith in [19] was given in a (equivglEgarithmic form, and called
simply leakage For uniformity sake we use here the terminology and fortmueof [3].



of guessing the right secret, defined\X) = max,cx Px (). The rationale behind
this definition is that the adversary’s best bet is on theeterith highest probability.

The a posteriori vulnerabilityof the secrets int is the probability of guessing
the right secret, after the output has been observed, ae@ger the probabilities of
the observables. The formal definition\igX |Y) £ > yey Py (y) maxgzex Pz |y).
Again, this definition is based on the principle that the aglagy will choose the secret
with the highest a posteriori probability.

Note that, using Bayes theorem, we can write the a postenidnerability in terms
of the channel matrix and the a priori distribution, or imtsrof the joint probability:

X = .
lY) = Zmax (y | z)Px(x) Zla‘fleagp/\(w,y) 1)
yeY yey

A

The muItiplicativeandadditiveIeakage are defined, respectively,&s(C, Px)
S andL. (€, Px) £ V(X]Y) = V(X).

3 Informatlon Hiding Systems

To formally analyze the information-hiding properties @bfmcols and programs, we
propose to model them as a particular kind of probabilistibaata, which we call
Information-Hiding System@HS). Intuitively, an IHS is a probabilistic automaton in
which the actions are divided in three (disjoint) categaritbose which are supposed
to remain secret (to an external observer), those whichiaitde; and those which are
internal to the protocol.

First we consider only the case in which the choice of theetdakes place entirely
at the beginning, and is based on a known distribution. leantiore we focus on fully
probabilistic automata. Later in the paper we will relaxséaeonstraints.

Definition 3.1 (Information-Hiding System) An information-hiding system (IHS) is
a quadrupleZ = (M, Xs, X0, X.) whereM = (Q, X, g, «) is a fully probabilistic
automaton) = Ys U Xp U X whereX's, Yo, andX, are pairwise disjoint sets of
secret, observable, and internal actions, arsatisfies the following restrictions:

1. a(§) e D(Xs x Q),

2. Vs e Xs g . al(d)(s,q) #0,

3. a(q) e D(Xo U X, xQ) for q#q,
4. Va € (¥sUXp).ad CyclesA(M),
5. P(CPaths(M) N Paths*(M)) = 1.

The first two restrictions are on the initial state and meat timly secret actions
can happen theré) and each of those actions must have non null probabilityoaedr
only once @), Restriction3 forbids secret actions to happen in the rest of the automaton
and Restrictior ensures that the channel associated to the IHS has finitely imputs
and outputs. Finally, Restrictiohmeans that infinite computations have probability
and therefore we can ignore them.

We now show how to interpret an IHS as a noisy channel. We tcadk s (o)
andtraces,, (o) the secretand observabldraces ofo, respectively. Fos € X%, we
define[s] £ {0 € CPaths(M) | traces (o) = s}; similarly for o € X%, we define
[0] = {0 € CPaths(M) | traces, (o) = o}.



Definition 3.2. Given an IHSZ = (M, X's, Yo, X;), its noisy channel i$S, O, P),
whereS £ X5, O = trace s, (CPaths(M)), andP(o | s) = P([o] | [s]). The a priori
distribution € D(S) of 7 is defined byr(s) = a(q)(s, -). If C is the noisy channel of
7, the multiplicative and additive leakage BHfare naturally defined as

Lo(T)2 Ly(Com) and Lo(T)2 L4 (C,m).

Example 3.3.Crowds [16] is a well-known anonymity protocol, in which aeus
(called theinitiator) wants to send a message to a web

server without revealing his identity. To achieve this, he

routes the message through a crowd of users patrticipat- 1
ing in the protocol. Routing is as follows. In the begin-5 y
ning, the initiator randomly selects a user (calleda
warder), possibly himself, and forwards the request to
him. A forwarder performs a probabilistic choice. With
probabilityp (a parameter of the protocol) he selects a
new user and again forwards the message. With proba-
bility 1—p he sends the message directly to the server.
One or more users can berruptedand collaborate with
each other to try to find the identity of the initiator.

We now show how to model Crowds asHiS for 2 Fig. 1: Crowds Protocol
honest and corrupted user. We assume that the corrupted user immigdiate/ards
messages to the server, as there is no further informatioa ¢@ined for him by bounc-
ing the message back.

Figure 1 shows the automatori\ctionsa andb are secret and represent who initi-
ates the protocol; actions, B, andU are observabled and B represent who forwards
the message to the corrupted ugémepresents the fact that the message arrives at the
server undetected by the corrupted user. We asstoebe observable to represent the
possibility that the message is made publically availabteeserver’s site.

The channel associated to this IHS i#as= {a,b}, O = {A, B,U}, and a priori

2

distribution7(a) = 3, m(b) = %. Its channel matrix is computed in the next section.

4 Reachability analysis approach

This section presents a method to compute the matrix of fivbabilitiesF, associ-
ated to arfHS, defined as

P.(s,0) 2 P([s]N]o]) forall s € S ando € O.

We omit the subscript when no confusion arises. Frofy we can derive the channel
matrix by dividing P\ (s, 0) by 7(s). The leakage can be computed directly frém
using the second form of the a posteriori vulnerability in (1
We write :cg for the probability of the set of paths with tragec (Xs U Yp)*
starting from the state of M:
352 £ P, ([Mg),

2 For the sake of simplicity, we allow the initiator of the pobl to send the message to the
server also in the first step of the protocol.



where[\], £ {o € CPaths,(M) | tracessus, (o) = A}. The following key lemma
shows the linear relation between tlng’s. We assume, w.l.o.g., that tH&IS has a
unique final state.

Lemma 4.1. LetZ = (M, Xs, Y0, X,) be anIHS. For all A € (Xs U Yp)* and
q € Q we have

xfn =1,

xl?f = 0 for\#e,

952 = Zhezf Zq’EsucC(Q) a(q)(h, q’) ’ z;, for q 7é 4as>
ail(A

.172 = Zq’Esucc(q) a(q)(ﬁrSt()‘)7ql) : JI;, w

+ 2 hes, al@)(h,d) - xy for A # e andq # q;.

Furthermore, fors € S ando € O we haveP([s] N [o]) = z3°.

Using this lemma, one can compute joint probabilities byisgl the system of lin-
ear equations in the variableg.’s. It is possible that the system has multiple solutions;
in that case the required solution is the minimal one.

Example 4.2. Continuing with the Crowds example, we show how to compuite jo
probabilities. Note thag; = S The linear equations from Lemma 4.1 are

aA _ 1 A A _p. A p . A P . € A _ A
Linit 3 'xqav zqa - 3 ‘Tqa 3 ‘Tqb + 3 " Lcorrs Leor = Ts
bA __ 2 A A _p. A p . A p. A A
Tinp = 5 g, Tg, = 3%, t 304 T35 Teom rg =0,
aB _ 1 B B_p.,.B ,.p.,.B_ P, B B _ ..B
Tinit = 3 " Tq,> Tq, =3 %q, T35 %q 3 Teom Leorr = Ts s
bB _ 2 B B _p B p B p € B _
Tint = 3 * g, » Tg, =3 Tq T3 Zq, + 5 Teom RS 0,
aU _ 1 U v _p. U y4 U o L€ € €
Tinit = 3 " Tq,> g, = 3 " Tq, T3 g, + (1-p) Ts) Leorr = T's)
W2 U U_p.U _p. .U Yo e _
Tint = 5 * Zg,» zq, =5 7q, + 5 2q +(1-p) 2§ z§ =1

4.1 Complexity Analysis

We now analyze the computational complexity for the comiparteof the channel ma-
trix of a simpleIHS. Note that the only variables (from the system of equations i
Lemma 4.1) that are relevant for the computation of the chbnratrix are thos&é
for which it is possible to get the tracestarting from statg. As a rough overestimate,
for each state, there are at mosS| - |O| A's possible: in the initial state one can have
every secret and every observable, in the other states net $epossible and only a
suffix of an observable can occur. This gives at M@st |S| - |O] variables. Therefore,
we can straightforwardly obtain the desired set of valueg({Q| - |S| - |0])?) time
(using Gaussian Elimination). Note that using Strasseetods the exponent reduces
to 2.807, this consideration applies to similar results in the réshe paper as well.
Because secret actions can happen only at the beginningystem of equations
has a special form. The variables of the farffi only depend on variables of the form
zg (with varyingo andq # ¢) and not on each other. Hence, we can first solve for all



variables of the formxg and then compute the remaining few of the forffi. Required
time for the first step i©)((|O| - |Q])?) and the time for the second step can be ignored.
Finally, in some cases not only do the secret actions happlgred the beginning
of the protocol, but the observable actions happen onlyeaetid of the protocoal, i.e.,
after taking a transition with an observable action, thegwol only performs internal
actions (this is, for instance, the case for our model of Gwin this case, one might
as well enter a unique terminal state after an observable action happens. Then the
only relevant variables are of the forryy”, x, andxfn ; thez3? only depends on theg,
thexzg only depend ony, (with the same, but varyingg’s) and onwg and:c;f =1.
Again ignoring the variables:® for complexity purposes, the system of equations has
a block form with|O| blocks of (at most)Q| variables each. Hence the complexity in
this case decreases@(|O| - |Q]?).

5 The Iterative Approach

We now propose a different approach to compute channel ceatend leakage. The
idea is to iteratively construct the channel matrix of asysby adding probabilities of
sets of paths containing paths with the same observabledratd secret traceto the
(o|s) entry of the matrix.

One reason for this approach is that it allows us to borrolrgpies from quan-
titative counterexample generation. This includes thesibdiy of using or extending
counterexample generation tools to compute channel reatocleakage. Another rea-
son for this approach is the relationship with debugging.($pecification of a) system
has a high leakage, the iterative approach allows us tordeterwhich parts of the
system contribute most to the high leakage, possibly pairgut flaws of the protocol.
Finally, if the system under consideration is very large,itrative approach allows us
to only approximate the leakage (by not considering all ditit only the most relevant
ones) under strict guarantees about the accuracy of thexdpyation. We will focus
on the multiplicative leakage; similar results can be aisdifor the additive case.

5.1 Partial matrices

We start by defining a sequence of matrices converging toitaerel matrix by adding
the probability of complete paths one by one. We also defimggpaersion of the a
posteriori vulnerability and the leakage. Later, we show lo use techniques from
gquantitative counterexample generation to add probasilaf many (maybe infinitely
many) complete paths all at once.

Definition 5.1. LetZ = (M, XYs, Yo, X;) be anIHS, « its a priori distribution, and
01,09, ... an enumeration of the set of complete paths\bf We define thepartial
matricesP" : S x O — [0, 1] as follows

P*(ols) + %’“51)) if traces, (oky1) =0
PP(ols) £0,  P*(o]s) £ and tracesg (ox41) = s,
P"(o|s) otherwise

We define thepartial vulnerability \/g,o asy", max, P*(o|s) - m(s), and thepartial
multiplicative leakagec” (7) asV&o/max, 7(s).



The following lemma states that partial matrices, a posterulnerability, and leak-
age converge to the correct values.
Lemmab5.2. LetZ = (M, Xs, X, X) be anIHS. Then
1. P*(o|s) < P*"1(0|s), andlimy_.o, P"(o|s) = P(o|s),
2. Vi, < V&S, andlimy o Vg = V(S|0),

3. L8 (T) < £ETN(T), andlimy, oo L5 (T) = L« (T).

Since rows must sum up th this technique allow us to compute matrices up to
given errore. We now show how to estimate the error in the approximatiothef
multiplicative leakage.

Proposition 5.3. Let (M, X's, X», X ) be anIHS. Then we have

S|
L5(T) < Lu(T) < L5T) + (1)),

wherep! denotes the mass probability of theh row of P¥, i.e.pf 2 3 P¥(ols;).
5.2 On the computation of partial matrices.

After showing how partial matrices can be used to approxénchtinnel matrices and
leakage we now turn our attention to accelerating the cgarere. Adding most likely
paths first is an obvious way to increase the convergenceHateever, since automata
with cycles have infinitely many paths, this (still) gives iafinite amount of path to
process. Processing many paths at once (all having the dzsae/able and secret trace)
tackles both issues at the same time: it increases the rateérgence and can deal
with infinitely many paths at the same time,

Interestingly enough, these issues also appequantitative counterexample gen-
eration In that area, several techniques have already been prbtadmeet the chal-
lenges; we show how to apply those techniques in the curoeniégt. We consider two
techniques: one is to group paths together using regulaessgjon, the other is to group
path together using strongly connected component analysis

Regular expressions.In [9], regular expressions containing probability valaesused
to reason about traces in Markov Chains. This idea is use@]im[the context of
counterexample generation to group together paths witbdiree observable behaviour.
The regular expression there are over p&jrs;) with p a probability value and a
state, to be able to track both probabilities and obsergalile now use the same idea
to group together paths with the same secret action and the shservable actions.
We consider regular expressions over triples of the foanp, ¢) with p € [0, 1]
a probability valueg € X' an action label ang € @ a state. Regular expressions
represent sets of paths as in [8]. We also take the probatditie of such a regular
expression from that paper.

Definition 5.4. The functionual : R(X) — R evaluates regular expressions:

val(e) =1, val(r - r') £ val(r) x val(r'),
val({a,p,q)) = p, val(r*) 21 if val(r) =1,
val(r + 1) £ val(r) + val(r'), val(r*) £ ﬁal@) if val(r) # 1.



The idea is to obtain regular expressions representingéetths ofM, each reg-
ular expression will contribute in the approximation of #f&nnel matrix and leakage.
Several algorithms to translate automata into regularesgions have been proposed
(see [14]). Finally, each term of the regular expressiorioled can be processed sepa-
rately by adding the corresponding probabilities [9] to plagtial matrix.

As mentioned before, all paths represented by the regufaession should have
the same observable and secret trace in order to be able its galdbability to a single
element of the matrix. To ensure that condition we requesteyular expression to be
normal, i.e., of the form; + - - - + r,, with ther; containing no+’s.

For space reasons, instead of showing technical detailswyeshow an example.

Example 5.5. We used JFLAF.0 [12] to obtain the regular expressior& r, + o +
-+ 4 710 equivalent to the automaton in Figure 1.

ri = (b, 2,q,) -7 - (B,0.3,corr) - (1,1,9),
ro £ (b, 2,q,) -7 - (7,0.3,q,) - (1,0.3,q,)* - (4,0.3,corr) - (1,1,9),
rs = (a,%,q,) - (1,0.3,q,)* - (4,0.3,corr) - (1,1,9),
re 2 (b, 2,q,) 7 (U,0.1,9,
5 % (a, 2%,qa) {7,0.3,9,)* - (1,0.3,q,) - #* - (B,0.3,corr) - (1,1,9),
re = (b, g,qb> 7#*-(7,0.3,q,) - (1,0.3,q,)* - (U,0.1,9),
rr = (a,3,0,) - (1,0.3,0,)* - (U,0.1,9),
rs = (a,3,0,)  (7,0.3,0,)" - (1,0.3,0,) - #* - (7,0.3,0,) - (7,0.3,9,)*-
(A,0.3,corr) - (1,1,9),
ro £ (a,5,4,)  (1,0.3,0,)" - (7,0.3,q,) - 7* - (U,0.1,9),
r10 = (a,3,0,) - (1,0.3,0,)* - (7,0.3,0,) - #* - (7,0.3,0,) - (7,0.3,9,)* - (U,0.1,9),
where £ (<T 0.3,0,)* - ((r,0.3,0,) - {(7,0.3,q,)* - (7,0.3,¢,))*). We also note
val(ry) = ( ) val(re) = 2—0 (b, A), wal(rs) = % (a, A), wal(ry) = 6—70 (b,U),
val(rs) = ( , val(rg) = 1 (b U), wal(ry) = % (a,U), val(rg) = 2%0 (a, A),
val(rg) = 75 ( ) val(r1p) = m (a,U),

where the symbols between brackets denote the secret ardrable traces of each
regular expression.

Now we have all the ingredients needed to define partial oesgrising regular
expressions.

Definition 5.6. LetZ = (M, X's, Yo, X;) be anlHS,  its a priori distribution, and
r=ry+7re+---+1r, aregular expression equivalentté in normal form. We define

fork =0,1,...,nthe matrices?* : Sx O — [0, 1] as follows
0 if k=0,
- val(r f
PX(ols) = P*1(o|s) + W((S)’“) if kK # 0and traces, (r) = o

and trace s (ri) = s,
P 1(0|s) otherwise



Note that in the context of Definition 5.6, we hak& = P.

SCC analysis approach.In [2], paths that only differ in the way they traverse striyng
connected componentS({C's) are grouped together. Note that in our case, such paths
have the same secret and observable trace since secret sergaile actions cannot
occur on cycles. Following [2], we first abstract away #@C's, leaving only proba-
bilistic transitions that go immediately from an entry poafithe SCC to an exit point
(called input and output states in [2]). This abstractiopgemns in such a way that the
observable behaviour of the automaton does not change.

Again, instead of going into technical details (which alegolves translating the
work [2] from Markov chains to fully probabilistic automatave show an example.

Example 5.7. Figure 2 shows the automaton obtained after ab-
stractingSCC. In the following we show the set of complete
paths of the automaton, together with their correspondiogp
abilities and traces

o 2init % q, “com S Plo) =24, (a,4), > iy
or £init g, L comr S P(on) =%,  (b,B), N :
o3 2init % q, -5 S P(os)= &,  (a,U), N
o 2 init - g, U S Plo) =1 (bD) ©,

o5 £init <> q, —>cor =S P(os) =, (a.B), Fig. 2: Crowds after
o6 £init - q, < comr S P(og) =2, (bA). theSCC analysis

The partial matrices obtained from the acyclic automatersaown in the Appendix.

Note that theSCC analysis approach groups more paths together (for instance
group together the same paths than the regular expressi@mslrg in the examples
of this section), as a result channel matrix and leakagelateered faster. On the other
hand, regular expressions are more informative providingenprecise feedback.

5.3 Identifying high-leakage sources

We now describe how to use the techniques presented in tlisrs¢o identify sources
of high leakage of the system. Remember that the a postetidmerability can be
expressed in terms of joint probabilities

V(S| 0) = ZmSXP([s] N [o]).

This suggests that, in case we want to identify parts of tetesy generating high leak-
age, we should look at the sets of paig N [s1], . .., o] N [sn] Where{os,...0,} =
O ands; € arg (max; P([o;] N [s])). In fact, the multiplicative leakage is given divid-
ing V(S | O) by V(S), but sinceV(S) is a constant value (i.e., it does not depend on the
row) it does not play a role here. Similarly for the additizese.

The techniques presented in this section allow us to obtah sets and, further-
more, to partition them in a convenient way with the purpdsdentifying states/parts
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of the system that contribute the most to its high probabilitdeed, this is the aim of
the counterexamples generation techniques previous$epted. For further details on
how to debug sets of paths and why these techniques meetutpaige we refer to [1,

8,2].

Example 5.8. To illustrate these ideas, consider the pathof the previous example;
this path has maximum probability for the observabldy inspecting the path we find

the transition with high probabilitg,, 4 corr. This suggests to the debugger that the
corrupted user has an excessively high probability of agpting a message from user
a in case he is the initiator.

In case the debugger requires further information on howupted users can in-
tercept messages, the regular expression approach psduitieer/more-detailed infor-
mation. For instance, we obtain further information by limgkat regular expressions
r3 andrg instead of pathr, (in particular it is possible to visualize the different vgay
the corrupted user can intercept the message ofawsdren he is the generator of the
message).

6 Information Hiding Systems with Variable a Priori

In Section 3 we introduced a notion GfiS in which the distribution over secrets is
fixed. However, when reasoning about security protocoksithbften not the case. In
general we may assume that an adversary knows the distriboier secrets in each
particular instance, but the protocol should not depend.dn such scenario we want
the protocol to be secure, i.e. ensuring low enough leakageyery possible distribu-

tion over secrets. This leads to the definition of maximurkaeg.

Definition 6.1 ([19, 3]). Given a noisy channél = (S, O, P), we define the maximum
multiplicative and additive leakage (respectively) as

ML, (C) = Wrenggé)ﬁx(C,ﬂ), and MLL(C) & ﬂrenpaé) Ly(C, ).

In order to model this new scenario where the distributioer@ecrets may change, the
selection of the secret is modeledrasdeterministic choicén this way such a distri-
bution remains undefined in the protocol/automaton. Weastlume that the choice of
the secret happens at the beginning, and that we have onlyeanet per run. We call
such automaton aitS with variable a priori

Definition 6.2. An IHS with variable a priori is a quadruple = (M, Xs, Yo, X;)
whereM = (Q, X, ¢, «) is a probabilistic automaton; = Y's U Xp U X whereXs,
Yo, andX; are pairwise disjoint sets of secret, observable, andriat@rctions, and
satisfies the following restrictions:

1. a(q) C D(Zs x Q),

2. (@) =|S|AVs e Xs . T q.7(s,q) = 1, for somer € a(q),

3. a(q) S D(Xo UX: x Q) and|a(q)| < 1, forallg # g,

4. Va € (¥sUXp).a¢ CyclesA(M),

5. Vg, s Vrea(q) . (7(s,q) = 1 = P(CPaths, (M) N Paths, (M)) = 1).
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Restrictionsl, 2 and3 imply that the secret choice is non deterministic and happen
only at the beginning. Additionally3 means that all the other choices are probabilistic.
Restriction4 ensures that the channel associated tolHfe has finitely many inputs
and outputs. Finally; implies that, after we have chosen a secret, every computati
terminates except for a set with null probability.

Given anlHS with variable a priori, by fixing the a priori distribution wean obtain
a standardHS in the obvious way:

Definition 6.3. LetZ = ((Q, X, 4, «), Xs, X0, X;) be anlHS with variable a priori
andr a distribution oveiS. We define thdHS associated t¢Z, ) asZ, = (@, X,
§.o'), Zs, Do, Tr) with o (q) = a(q) for all ¢ # g anda’(4)(s, -) = m(s).

The following result says that the conditional probalbtiassociated to aitiS
with variable a priori arénvariantwith respect to the a priori distribution. This is fun-
damental in order to interpret th&[S as a channel.

Proposition 6.4. Let Z be anIHS with variable a priori. Then for allr, 7’ € D(S)
such thatr(s) # 0 andn’(s) # 0 for all s € S we have that’z = Pz _,.

Proof. The secrek appears only once in the tree and only at the beginning ofspath
henceP([s] N [o]) = a/(q)(s,-) By, ([o]) andP([s]) = ' (¢)(s, -). ThereforeP([o] |
[s]) = B, ([0o]), whereg; is the state after performing While o/ (§)(s, -) is differentin
I andZ,./, R, ([o]) is the same, because it only depends on the parts of the [ftghs a
the choice of the secret. O

Note that, although in the previous proposition we exclungbeit distributions with
zeros, the concepts of vulnerability and leakage also meksesfor these distributiohis

This result implies that we can define the channel matrix dité®Z with variable
a priori as the channel matrix @f, for any =, and we can compute it, or approximate
it, using the same techniques of previous sectionsSimiael can compute or approx-
imate the leakage for any given

We now turn the attention to the computation of the maximuekdge. The follow-
ing result from the literature is crucial for our purposes.

Proposition 6.5([3]). Given a channel, arg max,cp(sy L« (C, ) is the uniform dis-
tribution, andarg max,cp(s) £+ (C, 7) is acorner poindistribution, i.e. a distribution
7 such thatr(s) = 1 onx elements of, and~(s) = 0 on all the other elements.

K

As an obvious consequence, we obtain:

Corollary 6.6. Given anlHS Z with variable a priori, we haveI L, (Z) = L« (Z),
wherer is the uniform distribution, andM L (Z) = L4 (Z,), wheren’ is a corner
point distribution.

Corollary 6.6 gives us a method to compute the maxima leakafg. In the mul-
tiplicative case the complexity is the same as for computiegeakagé In the addi-
tive case we need to find the right corner point, which can beedrly computing the

3 We assume that conditional probabilities are extended hiiragity on such distributions.

4 Actually we can compute it even faster using an observatiomf[19] which says that the
leakage on the uniform distribution can be obtained simplysbmming up the maximum
elements of each column of the channel matrix.
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leakages for all corner points and then comparing them. m@hod has exponential
complexity (in|S|) as the size of the set of corner point€i8!. We conjecture that this
complexity is intrinsic, i.e. that the problem is NP-hard.

7 Interactive Information Hiding Systems

We now consider extending the framework to interactiveesyst namely to IHS’s in
which the secrets and the observables can alternate in dgragytway. The secret part
of arunis then an element f%, like the observable partis an elemengf. The idea
is that such system models an interactive play between @safisecret information,
and a protocol or program that may produce, each time, soseregdble in response.
Since each choice is associated to one player of this “gatreg'ems natural to impose
that in a choice the actions are either secret or observadtksn, but not both.

The main novelty and challenge of this extension is that pathe secrets come
after observable events, and may depend on them.

Definition 7.1. InteractivelHS's are defined aBHS’s (Definition 3.1), except that Re-
strictionsl to 3 are replaced by (q) € D(Xs x Q) UD(X — Xs x Q).

Example 7.2. Consider an Ebay-like auction protocol with one seller ama possible
buyers, one rich and one poor. The seller first publisheg¢he fie wants to sell, which
can be either cheap or expensive. Then the two buyers stitinigi At the end, the
seller looks at the profile of the bid winner and decides wéietb sell the item or
cancel the transaction. Figure 7 illustrates the automapresenting the protocol, for
certain given probability distributions.

We assume that the identities of the buy-
ers are secret, while the price of the item
and the seller’'s decision are observable. We ig-
nore for simplicity the hidden actions which

Yo = {cheap, expensive, sell, cancel}, ZT =
0, S = X5 = {poor,mch}, and O =
{cheap, expensive} x {sell, cancel}. The distri-
butions onS and O are defined as usual. For in-

Fig. 3: Ebay Protocol

stance we havP([cheap sell]) = P({go™ % g1 7% g5 2 47, q0 L g Tt
U
e T

Let us now conS|der how to model the protocol in terms of ayncignnel. It would
seem natural to define the channel associated to the pratsdble triple(S, O, P)

whereP (o | s) = P([o]|[s]) = % This is, indeed, the approach taken in [11].
For instance, with the protocol of Example 7.2, we would have
P([poor] N [cheap sell]) 2.3.4
P([cheap sell]|[poor]) = = =—. (2
([cheap sell] | [poor]) B Tpoor] ST @

However, it turns out that in the interactive case (in paitic when the secrets are not
in the initial phase), it does not make sense to model th@pobtn terms of a channel.
At least, not a channel with inp. In fact, the matrix of a channel is supposed to
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be invariant with respect to the input distribution (like in the case of TRS's with
variable a priori considered in previous section), and thisot the case here. The
following is a counterexample.

Example 7.3. Consider the same protocol as in Example 7.2, but assumehaduhe
distribution over the choice of the buyer is uniform, iaéq, ) (poor, q3) = a(q1)(rich, q4)
= a(g2)(poor, g5) = a(ga)(rich, gs) = 3. Then the conditional probabilities are dif-
ferent than those for Example 7.2. In particular, in contta$2), we have

P([poor] N [cheap sell]) — §-5-3 8
P([cheap sell]| [poor]) = _ _8
P([poor]) 2141115

The above observation, i.e. the fact that the conditionath@bilities depend on the
input distribution, makes it unsound to reason about aeitdormation-theoretic con-
cepts in the standard way. For instance,dhpacityis defined as the maximum mutual
information over all possible input distributions, and thelitional algorithms to com-
pute it are based on the assumption that the channel matnixins the same while the
input distribution variates. This does not make sense angindhe interactive setting.

However, when the input distribution is fixed, the matrixloé joint probabilities is
well defined asP\ (s,0) = P([s] N [o]), and can be computed or approximated using
the same methods as for simpléS’s. The a priori probability and the channel matrix
can then be derived in the standard way:

m(s) = Z Pr(s,0), P(o]|s) =
Thanks to the formulation (1) of the a posteriori vulnerijithe leakage can be
computed directly using the joint probabilities.

Example 7.4. Consider the Ebay protoc@l presented in Example 7.2. The matrix of
the joint probabilitiesP, (s, o) is:

| cheap sell cheap cancel expensive sell expensive cancel

8 2 1 2
poor 25 25 25 75

- 1 1 19 a1
rich 5 15 75 75

Furthermorer(poor) = = andx(rich) = £. Hence we havel,(Z) = 5% and
Li(T)=4.

We note that our techniques to compute channel matriceakede extend smoothly
to the case where secrets are not required to happen at tmineg However, no as-
sumptions can be made about the occurrences of secretsdftheyt need to occur at
the beginning anymore). This increases the complexity ®féachability technique to
O((IS| - |0] - 1Q])?). On the other hand, complexity bounds for the iterative apphn
remain the same.
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8 Related Work

To the best of our knowledge, this is the first work dealinghwitte efficient com-
putation of channel matrices and leakage. However, for itn@le scenario, channel
matrices can be computed using standard model checkingitpers. Chatzikokolakis
et al. [4] have used Prism [15] to model Crowds as a Markov €haid compute its
channel matrix. Each conditional probabiliB(o|s) is computed as the probability of
reaching a state wheeeholds starting fronthestate where holds. Since for the simple
version of[HS’s secrets occur only once and before observables (as indsjpsuch a
reachability probability equalB(o|s). This procedure leads 0(|S| - |O| - |Q|?) time
complexity to compute the channel matrix, whépeds the space state of the Markov
Chain.

Note that the complexity is expressed in terms of the spate ef a Markov Chain
instead of automaton. Since Markov Chains do not carry médion in transitions
they have a larger state space than an equivalent automaton.
Figure 8 illustrates this: to model the automaton (left hand |

into states of the Markov Chain (right hand side). Thereforé!
the probability of seeing observatianand thenc in the

(in our two honest and one corrupted user configuration) has
27 states. (See Appendix.)

For this reason we conjecture that our complexifig.4: Automaton vs
O(|O] - |Q|?) is a considerable improvement over the ordarkov Chain
on Markov Chaing)(|S| - |O| - |Q]?).

With respect to the interactive scenario, standard modsdkihg techniques do not
extend because multiple occurrences of the same secrélmved (for instance in our
Ebay exampleP (cheap sell|rich) cannot be derived from reachability probabilities
from the two different states of the automaton wheiké: holds).

9 Conclusion and Future Work

In this paper we have addressed the problem of computingtbemation leakage of a
system in an efficient way. We have proposed two methods: asedoon reachability
techniques; the other based on quantitative counterexcagepleration.

We plan to use tools developed for counterexamples geoaréti particular the
Prism implementation of both techniques presented in &ed@) in order to com-
pute/approximate leakage of large scale protocols. Weiralsod to investigate in more
depth how the results obtained from those tools can be usddrtify flaws of the pro-
tocol causing high leakage.

In Section 7 we have shown that when the automaton is inteeage cannot define
its channel in the standard way. An intriguing problem is tiovextend the notion of
channel so to capture the dynamic nature of interaction.i@eeeis to use channels with
history and/or feedback. Another idea is to lift the inputsi secrets to schedulers on
secrets, i.e. to functions from paths to distributions mearets.
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