
Linear Programming based algorithms for
preemptive and non-preemptive RCPSP

Jean Damay, Alain Quilliot and Eric Sanlaville
{jean.damay, alain.quilliot, eric.sanlaville}@isima.fr

Laboratoire LIMOS-CNRS UMR 6158, Université de Clermont II

Complexe Scientifique des Cézeaux

63173 Aubière Cedex, France

Abstract: In this paper, the RCPSP (Resource Constrained Project Scheduling Problem)
is solved using a linear programming model. Each activity may or may not be preemptive.
Each variable is associated to a subset of independent activities (antichains). The properties
of the model are first investigated. In particular, conditions are given that allow a solution
of the linear program to be a feasible schedule. From these properties, an algorithm based
on neighbourhood search is derived. One neighbour solution is obtained through one Simplex
pivoting, if this pivoting preserves feasibility. Methods to get out of local minima are provided.
The solving methods are tested on the PSPLIB instances in a preemptive setting and prove
efficient. They are used when preemption is forbidden with less success, and this difference is
discussed.

Keywords: Scheduling, Resource Constrained Project, Preemption, Linear Program-

ming, Column Generation.

1 Introduction

We consider in this paper the Resource Constrained Project Scheduling Prob-
lem (RCPSP). A project is composed of activities and subject to precedence
and resource constraints, and the objective is minimizing the makespan. A
precedence constraint consists in completing some activity before another one
can start. The resource constraints specify that each activity requires constant
amounts of renewable resources while being processed, these resources having
limited capacities.

The approach developed in this paper involves variables associated to sub-
sets of activities that can be simultaneously processed during the schedule. A
time-indexed linear formulation of the non-preemptive version of the RCPSP
involving these feasible subsets (here called valid antichains) has been intro-
duced by Mingozzi et al. [7]: precedence and non-preemption constraints can
be simply formulated in spite of a very large number of variables (depending on
the length of the discretized time interval [0;T], where T is an upper bound of
the makespan, and on the number of valid antichains of the project). In such
approaches, the resource constraints are taken into account in the computation
of these antichains, which allows to eliminate these constraints from the linear
formulation.

By evading the non-preemption constraints and partially the precedence con-
straints, Mingozzi et al. also formulate an LP-relaxation of the RCPSP, which
was slightly modified by Brucker and Knust [3] and then Baptiste and Demassey
[1] to give the best known lower bounds of the problem. They both implement
a destructive approach on T and use constraint propagation techniques cooper-
ating with the resolution of this linear relaxation through column generation.

Concerning the preemptive version of the RCPSP (an activity can be inter-
rupted and later resumed without penalty), it is assumed in papers that look

1

for optimality [5] [11], that all processing times are integer and that preemption
only occurs at integer times. This may increase the optimal makespan, as in
the following classical example: mono-resource project of capacity 2 with three
unit-length and unit-resource-requiring unrelated activities. The optimal pre-
emptive makespan is 1.5, whereas the makespan with integer preemptions is 2.
In this paper, it is assumed that for a subset of activities, preemption is allowed
and occurs at arbitrary rational times.

In section 2, the model based on Linear Programming and valid antichains
is defined. In section 3, algorithms that explore the set of (preemptive or non-
preemptive) feasible solutions are presented. The next section provides numeri-
cal results on classical instances of the literature, and the paper ends with some
conclusions and perspectives.

2 The valid antichain based model

2.1 Notations and definitions

Let R be the set of renewable resources, with a time-independent capacity Rk

for each resource k ∈ R. Let V = {1, 2, . . . , n} be the set of n activities. Each
activity i has a processing time pi and requires an amount of rik units of resource
k ∈ R. Denote by E the transitive closure of the precedence relation between
activities: (i, j) ∈ E if and only if activity i must be completed before the
beginning of activity j. The graph G = (V, E) is called precedence graph.

Let I be a set of activities, such that i ∈ I if and only if preemption is not
allowed for activity i. Of course I = ∅ (resp. I = V) for the preemptive (resp.
non-preemptive) version of the problem. An I-schedule is defined by, for each
activity i ∈ V , a list of time intervals on which i is executed, such that

• at any time, the total resource requirements are not greater than the
corresponding capacities

• precedence constraints between activities are respected

• if i ∈ I, the number of associated time intervals is equal to 1

The I-RCPSP consists in finding an I-schedule that minimizes the makespan
Cmax (the maximum ending value of all time intervals). Without loss of gener-
ality, it is assumed that for any t < Cmax, at least one activity is executed at t.
In Figure 1, the precedence graph (except for transitivity arcs) of an instance
with 7 activities and one resource is presented. Suppose I = {1, 2, 5, 6, 7}. A
Gantt chart is also given, representing a solution for the instance. E.g. for
activity 4, the time intervals are {[0; 1], [3, 4]}. This solution is an I-schedule
(and, in fact, optimal among preemptive solutions - when I = ∅).

The core of our approach is the notion of subsets of independent activi-
ties, hereafter called antichains. A subset a ⊆ V is an antichain if and only if
∀i, j ∈ a, (i, j) /∈ E (antichain property in the graph G). It is a valid antichain
if ∀k ∈ R,

∑
i∈a rik ≤ Rk (resource property). Denote by A the set of all valid

antichains of the project.
Let us define on A a precedence relation ≺: for two antichains a, b ∈ A, a ≺ b

if and only if there exist two activities i, j such that i ∈ a, j ∈ b, and (i, j) ∈ E.

2

Figure 1: precedence graph and Gantt chart of a {1, 2, 5, 6, 7}-schedule

For each activity i ∈ V we denote by Ai the set of valid antichains contain-
ing i. Let σ = (a1, . . . , aL) be a sequence of valid antichains, and for all i ∈ V ,
let σi = Ai ∩ σ be the set of antichains of σ containing i. σ is said ordered
if the order of this sequence respects the partial order given by ≺, that is to
say ∀l, l′ ∈ {1, . . . , L}, l < l′ ⇒ al′ 6≺ al. σ is said I-consecutive if and only
if for each activity i ∈ I, the antichains of σi are consecutive in σ. σ is said
I-candidate if it is ordered and I-consecutive. Note now that for the preemptive
version of the problem, a sequence is ∅-candidate if and only if it is ordered.

The I-schedule of Figure 1 can be seen as the sequence of valid antichains
({1, 4}, {2}, {3, 4}, {3, 5}, {5, 6}, {3, 6}, {7}), valued by durations (1, 2, 1,
0.5, 0.5, 0.5, 1). The equivalence between schedules and sequences is stated be-
low.

Proposition 2.1 Let σ be a sequence of valid antichains, and z be a positive
vector indexed on σ. The couple (σ, z) represents an I-schedule if and only if σ
is I-candidate and z verifies ∀i ∈ V,

∑
a∈σi

za = pi. Its makespan is
∑

a∈σ za.

Proof. (⇐) We can easily transform σ into a list of intervals for each activ-
ity, weighted by the value of z for the associated antichains, and that respects
the two first properties of an I-schedule. As the sequence is by definition I-
consecutive, the initial non-preemption property for the activities of I is re-
spected.
(⇒) If we define an event as the beginning or the end of a time interval, an
I-schedule can be transformed into a sequence of valid antichains by generating
a new antichain at each event. An antichain is valued by the time spent till the
next event. This sequence is ordered and for each i ∈ I, the antichains contain-
ing i are consecutive, so we can define an I-candidate valid antichain sequence.
By construction and because of the lack of activity-empty time intervals, the
time spent between 0 and the latest event is the sum of the values of z for all
generated antichains.

By a slight abuse of notation, a couple (σ, z) where σ is I-candidate and
∀i ∈ V,

∑
a∈σi

za ≥ pi represents also an I-schedule.
Let f be a family of valid antichains, and for all i ∈ V , let fi = Ai∩f be the

set of antichains of f containing i. In the following, ≺f is the restriction of ≺
to the family f . By extension, a family f of valid antichains is said I-candidate
if and only if we can build with exactly all the antichains of f an I-candidate

3

sequence.
f is said complete if and only if ∀i ∈ V, fi 6= ∅.

2.2 Antichain formulation

Mingozzi et al. presented in [7] the linear model P for the RCPSP:

(P) : min Z = 1 · z, A z ≥ p, z ∈ R
|A|
+ .

The incidence matrix A(n, |A|) is defined as follows: Ail = 1 if activity i
belongs to antichain al, 0 otherwise. p is the vector of all processing times p =
(pi)i∈V . This formulation relaxes the non-preemption constraints, and partially
the precedence constraints (any precedence constraint becomes a disjunction).

We say that an antichain al is active for a solution z of P if and only if
zl > 0. Let us denote by ACT (z) the set of active antichains for z.

We now define SI as the set of solutions z of P for which ACT (z) is I-
candidate.

Theorem 2.2 Solving the I-RCPSP consists in finding an element of SI that
minimizes Z.

Proof. Let z∗ be an element of SI minimizing Z. ACT (z∗) is an I-candidate
family, therefore it is associated to an I-candidate sequence, say σ∗, so that
(σ∗, z) (where z is the restriction of z∗ to ACT (z∗), re-indexed on σ∗) repre-
sents an I-schedule of makespan

∑
a∈σ∗ za =

∑
a∈A z∗a. Suppose there exists an

I-schedule of makespan m′ strictly lower. Thanks to Proposition 2.1, we obtain
a couple (σ′, z′) such that

∑
a∈σ′ z′a = m′. Thus, we can obtain a vector z′+

indexed on {1, . . . ,A}, whose components are z′+a = z′a if a ∈ σ′, 0 else. This
vector belongs by definition to SI and has an objective value of m′, a contra-
diction with the hypothesis on z∗.

Let us now state the following:

Proposition 2.3 If a valid antichain family f is I-candidate, then a (not nec-
essarily complete) subfamily φ of f is also I-candidate.

Proof. The valid antichain sequence σ associated to f is ordered and I-
consecutive. If we remove the antichains of f\φ from σ, the new sequence
σ′ (associated to φ) is obviously still ordered, and for each activity i ∈ I, σ′

i is
still consecutive in σ′.

Remark The set of basis solutions (in the Simplex sense) for P in SI is domi-
nant.
Indeed, let z be an element of SI , and Pz the restriction of P to the columns
indexed by ACT (z). Pz admits at least one solution (z itself), hence admits one
optimal basis solution, which is also a basis solution of P , with a non-increasing
value of Z. Proposition 2.3 ensures that the family associated to this basis so-
lution is still I-candidate.
In the following, we shall only consider the basis solutions of SI . Hence, an
element of SI is characterized by exactly n variables of P (corresponding to its
active antichains and some slack variables).

4

The proof of the following connexity theorem is written in appendix. It gives
us further information on the set SI of solutions of the I-RCPSP.

Theorem 2.4 (Connexity Theorem) SI is connected in the sense that two
elements of SI are neighbours if and only if one can be obtained from the other
by exactly one Simplex pivoting.

It follows that one may go from one solution of SI to any other by a sequence
of Simplex pivotings.

2.3 Characterization of I-candidate antichain families

We define now the elementary relation RI between two directed pairs of an-
tichains of f :

Definition 1 (relation RI) Let a, b, a′, b′ be four valid antichains of f .
(a, b)RI(a

′, b′) if and only if one of the following conditions is met:

i) (a, b) = (a′, b′)

ii) a = a′ and ∃i ∈ I such that i /∈ a and i ∈ b, i ∈ b′

iii) b = b′ and ∃i ∈ I such that i /∈ b and i ∈ a, i ∈ a′.

Then we denote by R∗
I the transitive closure of relation RI . As RI is reflexive

and symmetrical, R∗
I is an equivalence relation. We also set, for two antichains

a, b ∈ f , Cf

(a,b) as the equivalence class (a directed pair subset) of (a, b) for the

R∗
I relation.

Let (a′, b′) ∈ Cf

(a,b). Informally, this means that, if a precedes b in a sequence

σ associated to the I-candidate family f , then I-consecutiveness entails that a′

precedes b′ in σ (see Sequence Lemma below).

Let us consider now the same instance as in Figure 1, except that I = V . On
Figure 2, antichains of the family determined by the schedule given in Figure 1,
are represented as the nodes of two antichain graphs. The equivalence classes
of the oriented pairs ({3, 5}, {5, 6}) and ({1, 4}, {2}) are the arcs of the first and
the second graph, respectively. Clearly the whole family is not V -candidate: it
suffices to consider either of these two equivalence classes.

Figure 2: two equivalence classes for two subfamilies of valid antichains

Let us remark that Cf

(a,b) = {(a′, b′), (b′, a′) ∈ Cf

(b,a)}.

Denote by ≺I
f =

⋃
u∈≺f

Cf
u the set of all propagated arcs of ≺f through R∗

I .
Let us give two preliminary lemmas before giving the main theorem of this
section.

5

Lemma 2.5 (Sequence Lemma) Let f be an I-candidate family of valid an-
tichains and σ be an associated I-candidate sequence. Let a, b, a′ and b′ be four
elements of f such that (a′, b′) ∈ Cf

(a,b) and a precedes b in σ. Then a′ precedes

b′ in σ.

Proof. Suppose first (a, b)RI(a
′, b′), and let us consider a = a′. Then ∃i ∈

I, i ∈ b ∩ b′\a. Suppose b′ precedes a in σ, then the antichains of σi are not
consecutive in σ. The same holds if b = b′. In the general case ((a, b)R∗

I(a
′, b′)),

a simple induction provides the result.

Lemma 2.6 (Triangle Lemma) If a, b, a′, b′, c in an antichain family f are

such that (a′, b′) ∈ Cf

(a,b), (a′, c) /∈ Cf

(a,b) and (c, b′) /∈ Cf

(a,b), then (c, a′) ∈ Cf

(c,a)

and (b′, c) ∈ Cf

(b,c).

Proof. Suppose first (a, b)RI(a
′, b′), and let us consider a = a′ (immediately

(c, a)RI(c, a
′) and (a, c) /∈ Cf

(a,b)). Then ∃i ∈ I, i ∈ b ∩ b′\a. If i /∈ c, then by

definition (b, c)RI(b
′, c). If i ∈ c, then (a′, c)RI(a, b), a contradiction with the

hypotheses. So (b, c)RI(b
′, c), and (c, b) /∈ Cf

(a,b). The same reasoning holds for

b = b′. In the general case ((a, b)R∗
I(a

′, b′)), an induction provides the result.

Theorem 2.7 (Characterization theorem) A valid antichain family f is I-
candidate if and only if both the following conditions are met:

C1) for all a, b ∈ f , a 6= b, such that neither (a, b) nor (b, a) belongs to ≺I
f , we

have (b, a) /∈ Cf

(a,b)

C2) the antichain subgraph (f,≺I
f) does not contain any oriented cycle.

Proof. This proof is inspired from [2], [9] involving ordered interval hyper-
graphs.
(⇒): Let σ be an I-candidate sequence associated to f : C1 comes directly from
the Sequence lemma with (a′, b′) = (b, a) in σ. To prove C2, suppose there
exists an oriented cycle in (f,≺I

f). Then it is impossible to find a total order of

all antichains of f which includes ≺I
f , so impossible to find a sequence that is

ordered and that respects I-consecutiveness.
(⇐): Let us suppose that both conditions C1 and C2 are satisfied. In case ≺I

f

is a total order, the result is obvious. Otherwise, we may choose a and b in f
such that neither (a, b) nor (b, a) is in ≺I

f . We shall prove that it is possible to

insert either (a, b) or (b, a) into ≺I
f without losing condition C2.

Suppose ≺I
f ∪ Cf

(a,b) contains some oriented cycle Γab and ≺I
f ∪ Cf

(b,a)

contains some oriented cycle Γba. We may choose Γab and Γba in such a way that
their lengths are minimal. Clearly Γab must contain at least one oriented pair
(a′, b′) of Cf

(a,b). It also must be of cardinality larger than 2 thanks to condition

C1. Let α and β be respectively the predecessor of a′ and the successor of b′ in
Γab (α 6= b′ and β 6= a′). Because of the minimality of Γab, (α, b′) /∈ Cf

(a,b) and

because its cardinality cannot be 2, (a′, α) /∈ Cf

(a,b). The Triangle Lemma with

c = α may be applied to provide (α, a) R∗
I (α, a′). The same reasoning applied

6

on β leads to the relation: (b, β) R∗
I (b′, β). So (a′, b′) can be replaced by (a, b)

in Γab. Suppose another arc (a′′, b′′) ∈ Γab ∩ C
f

(a,b). Then replacing it again by

(a, b) implies another shorter oriented cycle, and a contradiction.
Γab can be written Γab = (a, b) ∪ Γ′

ab, where Γ′
ab is a path from b to a made

only with arcs of ≺I
f . By proceeding the same way with Γba, Γba = (b, a) ∪ Γ′

ba

where Γ′
ba is a path from a to b made only with arcs of ≺I

f . But the concate-

nation of Γ′
ab and Γ′

ba makes a cycle in (f,≺I
f), a contradiction . For sake of

simplicity, notation ≺I
f is kept, even after adding such arcs of an equivalence

class. We reiterate on the next oriented pair (a, b) until ≺I
f is a total order.

In the preemptive version of the problem, I = ∅, and ∀a, b ∈ f, Cf

(a,b) = {(a, b)}.

Thus, C1 is always true, and C2 becomes: the antichain subgraph (f,≺f) does
not contain any oriented cycle.

2.4 Incremental test of feasibility for Simplex pivotings

We now present an incremental test to check as simply as possible if, starting
from some element of SI (basis of P), the next basis of P obtained by Simplex
pivoting is still I-candidate.

Let f be a basis of SI , ao the leaving variable, ae the entering variable for
some Simplex pivoting. Note first that thanks to Proposition 2.3, the removal of
the antichain ao of the I-candidate active antichain family f does not withdraw
the I-candidate property. The following corollary may be applied on family
f\ao and ae to test the feasibility of the next basis.

Corollary 2.8 (Incrementality corollary) Let f be an I-candidate valid an-
tichain family and ae /∈ f be a valid antichain. Then the family f ′ = f ∪ ae is
I-candidate if and only if

C′
1) for all a ∈ f, (ae, a) /∈ Cf ′

(a,ae)

C′
2) there is no oriented cycle containing ae in the antichain subgraph (f ′,≺I

f ′).

Proof. The part (Only if) is trivial thanks to the Characterization Theorem
for f ′. For the other part, condition C1 for f and C′

1 ensures condition C1 for
f ′. For condition C2 of f ′, suppose there is an oriented cycle Γ in (f ′,≺I

f ′).
Assuming Γ is of minimal length, it clearly includes an arc of a class of an arc
containing ae. As in the proof of the Characterization Theorem, we demon-
strate that there exists an oriented cycle containing this arc itself, so containing
vertex ae.

For the preemptive version, C′
1) is always true, and C′

2) becomes: there is
no oriented cycle containing ae in the antichain subgraph (f ′,≺′

f).

7

3 Building of feasible schedules

3.1 A descent algorithm based on Simplex pivoting

We have already established that solving the problem is equivalent to minimizing
Z on SI , that SI is connected, and that an incremental test of the I-candidate
property of an antichain family can be implemented. We can now present a de-
scent algorithm based on the Simplex. Indeed, if we have an initial solution z0

of SI , the idea of this algorithm is to check if the switch of variables proposed by
the Simplex pivoting will lead to a still I-candidate associated antichain family.
If the incremental test proves negative, the switch does not occur, and we try
another one proposed by the Simplex. Otherwise, the classical Simplex pivoting
is computed. The process is iterated until no candidate variable verifies the test:
this situation corresponds to a local minimum of the problem.

As the number of valid antichains is very large and a few of them are in-
teresting for our problem, we set up a column generation module. Each dual
variable πi is associated to activity i ∈ V and an entering column ae has to
verify

∑
i∈ae

πi > 1 due to our formulation of P . Hence, the subproblem is a
multidimensional knapsack-stable problem: each activity i has a unit profit πi

and a multidimensional weight rik, k ∈ R. The disjunctions (i, j) are defined by
some resource constraint violations (∃k ∈ R, rik +rjk > Rk) and the precedence
relations between activities ((i, j) ∈ E or (j, i) ∈ E), or can be strengthened
through constraint propagation techniques (see [1], [4], [12]), at least when a
better upper bound of the makespan is found. A preprocessing filtering step
is added on this subproblem, ensuring that the generated column ae does not
lead to an oriented cycle in the graph induced by the current associated family
(without computing and removing ao) plus ae. This preprocessing is removed
to check if a local minimum is indeed reached.

The aim of the following subsections is to show how to get out of these local
minima.

3.2 Reconstruction algorithm

We build here from the family f (of cardinality L) associated to a solution
of the relaxed problem P , an I-candidate sequence σ, allowing some antichain
modifications. In [8], the authors generate their schedules by applying list al-
gorithms with priority lists derived from the order of the jobs in the solution of
a Lagrangian relaxation. The following method is inspired from Moukrim and
Quilliot [10] (concerning the identical parallel machines scheduling problem).

The idea is to build step by step an ordered sequence of antichains. Let us
consider an ordered subsequence s = (a1, . . . , aλ), λ < L of antichains of f , and
an antichain α ∈ f\s. We define al as the first antichain of s such that α ≺ al.
If al does not exist, then the sequence resulting from the concatenation of α at

8

the end of s is ordered. Otherwise, let us define the six following sub-antichains:

MIN(al) = {i ∈ al such that ∃j ∈ α, (i, j) ∈ E}

MIN(α) = {i ∈ α such that ∃j ∈ al, (i, j) ∈ E}

MAX(al) = {i ∈ al such that ∃j ∈ α, (j, i) ∈ E}

MAX(α) = {i ∈ α such that ∃j ∈ {al, . . . , aq}, (j, i) ∈ E}

EQ(al) = {i ∈ al\MIN(al)\MAX(al)}

EQ(α) = {i ∈ α\MIN(α)\MAX(α)}.

Proposition 3.1 Given an ordered sequence s = (a1, . . . , al, . . . , aλ) and an
antichain α /∈ s, if we state:

a′
l = MIN(al) ∪MIN(α) ∪ EQ(al) ∪ EQ(α)

α′ = MAX(al) ∪MAX(α) ∪EQ(al) ∪EQ(α)

then

i) a′
l and α′ are antichains

ii) the sequence (a1, . . . , a
′
l, . . . , aλ) is still ordered

iii) α′ 6≺ a′
l.

Proof. It is only a matter of applying the definitions, keeping in mind that s
is ordered and that a couple of activities of an antichain cannot be linked by a
precedence relation of E, which is transitive.

Note first that a′
l and α′ are not necessarily valid, even if al and α are. This

fact is discussed in section 3.4. Thanks to Proposition 3.1, for a given α ∈ f
located just after the subsequence s, we proceed iteratively until the modified s,
concatenated with the final α′ is an ordered sequence. By induction on α (from
the second to the last antichain of f in its initial arbitrary order), we provide
from the initial family f an ordered sequence σ (of cardinality L) of non-valid
antichains. This reconstruction algorithm has a complexity of O(n2L3) (with
L ≤ n), since the computing of our six sub-antichains for al and α (in position
l′ in f) is O((l′ − l)n2).

In Table 1, we give an example of reconstruction algorithm applied to the in-
stance shown in Figure 1, I = V , and on the represented family f , solution of P :

• Line 1: the family of active antichains in an arbitrary order (makespan 6.5)

• Line 2: the sequence after reconstruction (removing already present an-
tichains)

• Line 3: the sequence after treatment of non-valid antichains (see 3.4)

• Line 4: the sequence after treatment of non-consecutiveness (see 3.4)

• Line 5: the sequence after loading in P (makespan 7: optimal non-
preemptive makespan).

9

Table 1: A complete reconstruction for the instance of Figure 1, I = V

1 5,6 1,4 3,4 2 3,6 7 3,5
2 1,4 2,5,6 3,5,6 3,6 3,5 7
3 1,4 2 5,6 3,5 3,6 5,6 3,6 3,5 7
4 1,4 2 5 3,5 3,6 6 6 7
5 1,4 2 3,5 3,6 7

3.3 Perturbation algorithm

During the descent algorithm described in section 3.1, one may observe that
some valid and Simplex candidate antichain ae is not allowed to enter the basis
f instead of an antichain ao because of an oriented cycle in (f ∪ {ae}\{ao},≺f)
containing ae. The idea of this algorithm is to force the entering of ae. Indeed,
ae may be present in some “good” solution, but some antichains of f forbid ae

to enter the basis through one Simplex pivoting.
First of all, we have to get the corresponding I-candidate sequence σ from

the associated valid antichains f of the current basis solution. To do that, we
only have to compute a topological order in the antichain subgraph (f,≺f).

The algorithm consists in building a sequence σ′ given by the following
proposition (for any al, notations of section 3.2 are used):

Proposition 3.2 Given an ordered sequence σ = (a1, . . . , al, . . . , aL) and an
antichain α /∈ σ. For any al, l ≤ L, we define:

a′
l = MIN(al) ∪MIN(α) ∪ EQ(al) ∪ EQ(α)

α′
l = MAX(al) ∪MAX(α).

Then a′
l and α′

l are antichains and the sequence σ′ = (a′
1, . . . , a

′
L, α, α′

1, . . . , α
′
L)

is ordered.

Proof. As for Proposition 3.1, it is a matter of applying the definitions, first
to prove that (a′

1, . . . , a
′
L) (resp. (α′

1, . . . , α
′
L)) is ordered, so that for any

l, m ∈ {1, . . . , L} with l < m, a′
m 6≺ a′

l (resp. α′
m 6≺ α′

l), and then that the
insertion of α preserves this property. This is left to the reader.

We build this way an ordered sequence σ′ (of cardinality 2L+1) of non-valid
antichains, containing the desired entering column α = ae. Note that a′

l and α′
l

depend only on the original sequence σ and of α, hence the order of building is
not important. This perturbation algorithm has a complexity O(n2L2).

In Table 2, an example of perturbation algorithm is given, for an element z
of SI (makespan 8), applied on instance of Figure 1, with I = ∅:

• Line 1: the ordered sequence of active antichains of z (makespan 8), and
the rejected antichain

• Line 2: the sequence after perturbation (removing already present an-
tichains)

• Line 3: the sequence after treatment of non-valid antichains (see 3.4)

• Line 4: the sequence after loading in P (makespan 7).

10

Table 2: A complete perturbation for the instance of Figure 1

1 4 1,5 2 3,6 7 3,4
2 4 1,4 2,4 3,4 3 3,5 3,6 7
3 4 1,4 2 3,4 3 3,5 3,6 7
4 1,4 2 3,4 3,5 3,6 7

3.4 Dealing with non-valid antichains and non-I-consecutive

sequences

In Propositions 3.1 and 3.2, the created antichains a′
l, α′ or α′

l may not be valid
because the resource requirements are not necessarily lower than or equal to
the corresponding capacities. One may create in this case two valid antichains:
for example, one would define a′

l = MIN(al) ∪ EQ(al) and a′′
l = MIN(α) ∪

EQ(α) to be inserted instead of al. Another idea considers these antichains
as representatives of a sub-family of valid antichains. Indeed, we can easily
compute all maximal valid antichains included in a non-valid antichain. The
advantage is that we can choose only a subset of them, without violating the
ordered property of the whole created sequence called σ here. This choice is
conditionned by the fact that we have to ensure the I-consecutiveness of this
sequence.

Note that for the preemptive version, σ is already ∅-consecutive. For I 6= ∅,
consider some non-I-consecutive ordered sequence σ. For each activity i ∈ V ,
we associate a list of index intervals of the antichains of σi in σ. The idea of
this step is to enlarge these intervals for all activities i in I as much as possible,
in order to finally have only one interval, and ensure the I-consecutiveness of
the sequence, hence its I-candidate property.

For an activity i ∈ I and an index interval of σi, this enlargement is processed
by trying to add i to the left and right neighbour antichains of the interval, with
respect to the resource constraints and the order property of σ. Some intervals
of an activity i ∈ I may be connected through this enlargement. If there is only
one interval at the end of this process, then the antichains of i are consecutive.
Otherwise, we select one of these intervals (heuristically the one with maximum
cardinality) and simply remove i from the others.

3.5 Global method

The global method described in Algorithm 1 computes first an initial (non-
preemptive) solution (line 2). In our implementation, this is done by a list
algorithm with random priority. It also involves the descent (3.1), reconstruc-
tion (3.2) and perturbation (3.3) algorithms. Note that all I-candidate families
corresponding to the reconstructed or perturbated sequences are also obviously
complete, thus they can be reloaded in basis of P . Note also that the column
chosen to perturb the solution is the first Simplex candidate one which was re-
jected by the incremental test.

In this method, Ki, Kr and Kp are given parameters representing the num-
ber of initial solutions, the number of reconstructions for each initial solution

11

Algorithm 1 Global method

Require: Ki, Kr, Kp

1: nbInit← 1
2: compute an initial randomized I-candidate family
3: nbReconst← 0
4: nbPerturb← 0
5: perform a descent with incremental tests to stay within SI

6: if nbPerturb < Kp then
7: perturb the local minimum into another I-candidate family
8: nbPerturb← nbPerturb + 1
9: goto step 5

10: end if
11: if nbReconst < Kr then
12: solve P from the current solution
13: reconstruct from this solution an I-candidate family
14: nbReconst← nbReconst + 1
15: goto step 4
16: end if
17: if nbInit < Ki then
18: nbInit← nbInit + 1
19: goto step 2
20: end if
21: give the best solution found so far

and the number of perturbations for each reconstruction, respectively.
This approach is of neighbourhood search kind (e.g. Taboo). The recon-

struction algorithm (after the solving of P) may be considered as a diversifi-
cation stage, whereas perturbation is similar to the search of a better solution
in the neighbourhood to escape a local minimum, except that a perturbation is
equivalent to several moves in a classical neighbourhood search.

Finally note that each solving of P provides a lower bound of the optimal
makespan, and that the algorithm is stopped as soon as the value of the best
solution is equal to this lower bound.

4 Computational experiments

The tests of the algorithms presented in this paper have been performed on a
Duron 1GHz through a C++ Code compiled by g++. Our algorithms have
been tested on the 480 instances of the standard PSPLIB benchmarks [6] with
n = 30 or 60. For each instance, Ki initial feasible solutions are computed:
INIT is the minimum makespan of them. OPT is the makespan of the optimal
solution for each instance, if we have it. Note that our algorithm does not use
any information from these hypothetical previously known optimal values. The
following values are obtained for different values of Ki, Kr, Kp (see section 3.5):

• SOL makespan of the best solution obtained by the global algorithm
(within time limit of 300 seconds)

• LB lower bound obtained by solving P . This value is computed several

12

times during the algorithm (before each reconstruction), and the con-
straint propagation mentioned in section 3.1 can improve the lower bound
obtained. The best one is stored in LB.

All gaps are given as percentages in average, with the maximum value be-
tween parentheses, and the number of times the two values are equal is provided
too. Note that a descent process is stopped if a local minimum is found or if
10 000 antichains have been successively rejected by the incremental test.

We define two sets of hard instances called hard1 and hard2. Let us first
recall one of the three parameters of ProGen, the standard project generator for
the PSPLIB, called RS (Resource Strength). The capacity of resource k is de-
fined as Rk = Rmin

k + round(RS.(Rmax
k −Rmin

k)), where Rmin
k is the maximum

resource requirement of an activity, and Rmax
k is the maximum requirement of

activities simultaneously executed in an earliest start schedule. RS takes the
following values {0.2, 0.5, 0.7, 1}. In case RS = 1, the earliest start schedule is
feasible.

• An instance belongs to hard1 if INIT 6= LB. It excludes the instances
with RS = 1.

• An instance belongs to hard2 if RS ∈ {0.2, 0.5}, for which it is well
known that the gap between the best-known upper and lower bounds
of the literature (for n ≥ 60 and V -RCPSP) is maximum.

Finally, let us define the reconstruction gap as the average gap between the
makespan of the reconstructed solution and of the value of the solution of P
from which it was computed.

4.1 The preemptive case

4.1.1 A Branch and Bound algorithm for the preemptive version

A Branch and Bound algorithm in case I = ∅ was implemented to find the
optimal preemptive solutions of our instances, or at least improve our best
known preemptive lower and upper bounds. Remember that optimal values
are not available from the PSPLIB itself. A node of the search tree consists
in a set of forbidden disjunctions, that is to say the associated antichains of
the solution of P for this node must not contain these couples of activities. If
the graph induced by these associated antichains does not contain any oriented
cycle, then this solution belongs to S∅ (leaf node). Otherwise, we consider a set
of disjunctions producing an oriented cycle of minimal length (chordless): for
example if we detect the antichain oriented cycle ({1, 2, 7, 8}, {3, 4, 9}, {5, 6}) due
to the following precedence relations between activities: {(2, 3), (4, 5), (6, 1)} ∈
E, then the corresponding forbidden disjunctions added to the three descendant
nodes are respectively {1, 2}, {3, 4} and {5, 6}. The set of forbidden disjunctions
may be enlarged by graph techniques.

4.1.2 Numerical results

A complete study of our algorithm is performed for the 480 instances of 30
activities (PSPLIB30), for which the optimal makespan is always obtained
by the Branch & Bound algorithm presented in section 4.1.1. These optimal

13

Table 3: numerical results for PSPLIB30 in preemptive case

Ki Kr Kp inst.(#) INIT/LB #eq. SOL/LB #eq. SOL/OPT #eq. CPU (s.)

1 0 0 all(480) 18.15(97.12) 139 4.69(52.63) 245 2.37(34.88) 291 0.5(5)

30 0 0 all(480) 11.33(48.78) 142 2.44(28.57) 272 0.23(6.11) 418 3.0(24)

1 20 0 all(480) 17.91(92.11) 139 2.32(31.75) 289 0.29(13.51) 415 2.4(26)

1 0 20 all(480) 18.15(97.12) 139 2.83(26.98) 267 0.59(16.22) 385 1.5(13)

1 20 5 all(480) 17.90(92.11) 139 2.15(26.98) 293 0.15(5.41) 442 9.9(300)

1 20 5 hard1(341) 25.19(92.11) 0 3.03(26.98) 154 0.21(5.41) 303 13.9(300)

1 20 5 hard2(240) 29.13(92.11) 6 4.05(26.98) 76 0.30(5.41) 202 17.4(300)

makespans are available on http://www.isima.fr/damay.

In Table 3, each line presents our results for one set of given parameters.
As the best results are obtained when reconstruction and perturbation are com-
bined, the last two lines detail the results for hard instances. The reconstruction
gap is 42.1(96.6). Note that for these values of Ki, Kr, Kp, the gap between
OPT and LB is 2.00(21.16) (294 equalities), and for information the num-
ber of Simplex pivotings, degeneracy pivotings, generated columns and rejected
columns by the incremental test are, respectively 17(157), 7(85), 273(2 623) and
12 400(315 000).

The results of the algorithm with these final values of Ki, Kr, Kp on the
instances of 60 activities (PSPLIB60), for which we do not have the optimal
makespan, is given in Table 4. We can expect that our algorithm also produces
feasible solutions of very good quality, since the gap between OPT and LB is
much larger than the gap between SOL and OPT for n = 30.

The number of Simplex pivotings, degeneracy pivotings, generated columns
and rejected columns are respectively 141(1326), 60(390), 931(15 342) and 59 500(428 000).
The reconstruction gap is 56.22(110.94).

4.2 The non-preemptive case

Table 5 reports the results of our algorithms on PSPLIB30 in the non-preemp-
tive case (I = V). The optimal values of these instances are available on the
web page of PSPLIB, cf [6]. The perturbation algorithm is not well adapted to
this case, so its results are not presented here. As a matter of fact, we observe
experimentally that most of the rejected columns for this test are not allowed
to enter the basis because of the non-consecutivity of the antichains containing
the same activity, and not because of an oriented cycle in the antichain graph.

Only with reconstructions, the gap between OPT and LB is 3.72(30.16)

14

Table 4: numerical results for PSPLIB60 in preemptive case

Ki Kr Kp inst.(#) INIT/LB #eq. SOL/LB #eq. CPU (s.)

1 20 5 all(480) 19.45(104.62) 141 2.38(21.09) 334 103.4(300)

1 20 5 hard1(339) 27.54(104.62) 0 3.37(21.09) 193 146.2(300)

1 20 5 hard2(240) 33.85(104.62) 3 4.68(21.09) 100 193.5(300)

Table 5: numerical results for PSPLIB30 in non-preemptive case

Ki Kr inst.(#) INIT/LB #eq. SOL/LB #eq. SOL/OPT #eq. CPU (s.)

1 0 all(480) 17.99(92.31) 139 15.21(92.11) 144 10.74(69.77) 158 1.0(16)

30 0 all(480) 11.19(48.78) 142 6.77(36.54) 207 2.75(22.06) 267 24.3(300)

1 30 all(480) 17.87(92.31) 139 5.76(31.75) 221 1.90(17.07) 291 67.47(300)

1 30 hard1(341) 25.16(92.31) 0 8.11(31.75) 82 2.67(17.07) 152 95.0(300)

1 30 hard2(240) 29.04(92.31) 6 10.22(31.75) 32 3.37(17.07) 77 93.6(300)

15

(243 equalities), and also larger than SOL/OPT . The reconstruction gap is
80.5(230.0). The number of Simplex pivotings, degeneracy pivotings, gener-
ated columns and rejected columns are, respectively 16(58), 6(33), 230(552)
and 25 800(160 000).

These gaps can be explained by the very high number of columns rejected by
the non-preemptive test. As a result, the current solution is very often a local
minimum. The reconstruction algorithm, used for diversification, improves the
result but not sufficiently to obtain a really small gap. An adaptation of the
perturbation algorithm might be useful. However, as mentioned above, it is not
easy to design.

5 Concluding remarks

This paper presents a characterization of the solution set for the preemptive and
non-preemptive RCPSP, based on a linear programming model. An exploration
algorithm of this solution space has been developed, in order to visit as many
local minima as possible. The experimental results are very good in the pre-
emptive case. The gap is much larger for non-preemptive activities. This is due
to the difficulty for a given improving column to pass the feasibility test. Other
combinatorial problems may be formulated as linear programs with additional
conditions on the column generation. Our method should behave well for these,
provided the feasibility test is not too demanding, as in the preemptive case.

Appendix: Proof of the connexity theorem

Proof. This proof is written for the case when the constraints of P are equal-
ities. The proof for inequalities is based on the same scheme, but it is simpler
to identify basis solutions in the first case, especially without slack variables.
The proof is to show that there exists a sequence of basis solutions of SI , corre-
sponding to a sequence of Simplex pivotings, leading from any solution of SI to
the solution corresponding to the family of singleton antichains, which evidently
belongs to SI .
Suppose there exists a basis solution of P in SI that does not verify this property.
Then we choose such a solution z and the I-candidate sequence σ associated to
its antichain family f in basis, such that:

• the number l0 of singleton antichains in the beginning of σ is maximal;

• the sum
∑

al∈f |al| is minimal, for l0 fixed.

Suppose l0 ≥ 1 and ∃l > l0, ∃i0 ≤ l0, i0 ∈ al. Let λ be the highest index
of antichains in σ such that i0 ∈ aλ. Replacing antichain aλ by aλ\{i0} in the
family f , we obtain a family denoted by fλ in which the n associated incidence
vectors are still linearly independent, since the new column is a linear combina-
tion of the old one with an other ({i0}). fλ also provides a new sequence still
trivially I-candidate (when i0 ∈ I or not). Moreover, the sum

∑
al∈fλ

|al| is
lower, so a contradiction on the minimality of the sum for f .

16

Hence, the basis incidence matrix corresponding to the family f has the
following shape (with l0 ≥ 0):

Let ǫ be a strictly positive real number. We define the vector zǫ by ∀al ∈
f, zǫ

l = zl + ǫ, so that the time durations associated to the antichains of f are
all non null, that is to say they are all active. This vector zǫ is a solution of the
linear problem in which the constraints are:

∑

al∈Ai

zl = pi + |fi|.ǫ (1)

Let i1 be the smallest index of the activities such that i1 ∈ al0+1 (i1 > l0).
Let λ′ be the highest index of the antichains in f such that i1 ∈ aλ′ . Let us
define the valid antichains aµ and aµ′ such that aµ = {i1} and aµ′ = aλ′\i1,
and the family f ′ = f ∪ {fµ, fµ′}.

Let us denote by Pǫ the linear problem defined by the constraints 1 and the
objective function max zµ.

The solving of Pǫ by the Simplex, in the variable space reduced to those
associated to f ′, provides a sequence Sǫ of basis solutions linked by the Simplex
pivoting neighbourhood operator, going from zǫ to an optimal solution zǫ∗ such
that zǫ∗

µ > 0, so for which aµ is inside the basis. Furthermore, the insertions
of aµ between al0 and al0+1 and of aµ′ between aλ′ and aλ′+1 give trivially a
sequence of antichains still I-candidate. Thanks to Proposition 2.3, all solutions
of Sǫ correspond to I-candidate families.

The number of basis solutions taking their antichains in f ′ is finite ((n+1)(n+2)
2),

hence we can find a sequence ǫk, k ∈ N, tending toward 0 such that the sequences
Sǫk

are identical. We deduce that there exists a sequence of basis solutions in SI

corresponding to a sequence of Simplex pivotings, going from z to a solution z∗

such that aµ is inside the basis. It implies a contradiction with the maximality
of l0.

References

[1] P. Baptiste and S. Demassey. Tight LP bounds for Resource Constrained
Project Scheduling. OR Spectrum, 26:251–262, 2004.

17

[2] F. Bendali and A. Quilliot. Representation of ordered families of intervals,
and applications. RAIRO, Recherche Opérationnelle/Operations Research,
31(1):73–101, 1997.

[3] P. Brucker and S. Knust. A linear programming and constraint
propagation-based lower bound for the RCPSP. European Journal of Op-
erational Research, 127:355–362, 2000.

[4] S. Demassey, C. Artigues, and P. Michelon. Constraint propagation based
cutting planes : an application to the resource-constrained project schedul-
ing problem. INFORMS Journal on Computing, 17(1):52–65, 2005.

[5] E. Demeulemeester and W. Herroelen. An efficient optimal solution proce-
dure for the preemptive resource-constrained project scheduling problem.
European Journal of Operational Research, 90:334–348, 1996.

[6] R. Kolisch and A. Sprecher. PSPLIB - A project scheduling library. Euro-
pean Journal of Operational Research, pages 205–216, 1996.

[7] A. Mingozzi, V. Maniezzo, S. Ricciardelli, and L. Bianco. An exact al-
gorithm for the resource-constrained project scheduling based on a new
mathematical formulation. Management Science, 44:714–729, 1998.

[8] R. H. Möhring, A. S. Schulz, F. Stork, and M. Uetz. Solving project
scheduling problems by minimum cut computations. INFORMS Manage-
ment Science, 49(3):330–350, 2003.

[9] A. Moukrim and A. Quilliot. A relation between multiprocessor scheduling
and linear programming. Order, 14:269–278, 1998.

[10] A. Moukrim and A. Quilliot. Optimal preemptive scheduling on a fixed
number of identical machines. Operations Research Letters, 33:143–150,
2005.

[11] C. Le Pape and Ph. Baptiste. Resource constraints for preemptive job-shop
scheduling. Constraints, 3(4):263–287, 1998.

[12] A. Schoo, O. Thiele, P. Brucker, and S. Knust. A branch and bound algo-
rithm for the resource-constrained project scheduling problem. European
Journal of Operational Research, 107:272–288, 1998.

18

