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Navigable Map-Aided Differential Odometry to
Enhance GNSS in adverse conditions

Clément Fouque, Philippe Bonnifait
Heudiasyc UMR 6599, Université de Technologie de Compiègne

Abstract—This paper studies the benefits of integrating pro-
prioceptive measurements and a-priory geographical knowledge
in the GNSS computation to increase availability and accuracy
for modern ITS applications. A tightly-coupled framework f or
merging GNSS pseudo-ranges and odometric measurements is
first introduced. An efficient way to merge a 2D navigable road-
map is then presented, including the road selection and the map
measurement model. A cautious fusion strategy, which provides
enhanced GNSS-like positioning is performed, using an Extended
Kalman filter monitoring innovation signals. This method has
been applied to real-field data recorded during spring 2007.
Results show the benefits of the proposed framework for GPS-
computation under adverse conditions, i.e. with bad satellites
availability and configuration.

I. I NTRODUCTION

In the recent years, many Intelligent Transportation Systems
(ITS) and field robotic applications have been developed. Most
of these applications are underlaid by a global positioning
provider and a geo-referenced database. In this case, the
positioning provider estimates the current location of the
vehicle. It must fulfill availability, reliability and accuracy
requirements coming from the application. To address this
problem, many positioning solutions have been studied. Using
a GNSS receiver is the easiest way to provide a global location.
Unfortunately, a standalone receiver can be subject to signal
degradation or outages in adverse conditions. Here, adverse
conditions mean bad satellites availability (less than 4 satellites
in direct view with a good geometrical configuration) and
multipath. To tackle these issues, the GNSS receiver is com-
monly fused with proprioceptive sensors, such as odometers,
wheel speed sensors or inertial measurements [1], [2], [3],
[4]. Additionally, GNSS data can be either loosely, or tightly
integrated with dead-reckoning (DR). In tight integration, the
GNSS pseudo-ranges are directly exploited [5], [6]. It allows
taking advantages of the few available measurements in case
of averse conditions. This helps to reduce the unavoidable
proprioceptive estimation drift which is not possible witha
loosely coupled scheme that suffers from complete outages
when less than four satellites are visible. This configuration
is also more efficient to reject multipath coming from signal
propagation troubles [7].

Navigable road-maps are becoming very common and af-
fordable nowadays. Using such an information is a promising
issue to correct the location estimates drift in adverse con-
ditions since the road network of the map contains absolute
information that can constraint the solution [8], [9], [10], [11].
The road network can be used either as a positioning sensor

[12] or as virtual base station to provide DGPS corrections
[13]. As a standard navigable map is often subject to offset and
since the vehicle rarely drives exactly on the poly-lines, these
techniques introduce biases in the estimated location [14]. This
issue can be tackled using a precise map describing the road
space using multi-poly lines [15], [16].

In this paper, a Kalman-based fusion process merging GNSS
measurements and proprioceptive measurements together with
a navigable road-map is presented in order to provide a GNSS-
like positioning information. The process relies on trustworthy
wheel speed sensors (WSS) that provide an estimated motion
of the vehicle. These are tightly fused with the raw GNSS
pseudo-ranges. Additionally, a method to integrate a standard
2D navigable road-map into the fusion process is presented.
We propose to use it as a compass sensor which allows taking
into account easily the unavoidable map offset. Since the
GNSS pseudo-ranges and the map can introduce both faulty
measurements, an internal consistency test is considered to
reject outliers. It is based on the monitoring of innovation
signals gated thanks to a statistical threshold.

The paper is organized as follows. First, the state-space
description of the vehicle is given, including the process model
for the state prediction and the sensor models for the state
update. The use of a 2D navigable road-map is presented
in the second section. The third section details the Kalman-
based fusion process. It includes the map-matching strategy
for selecting the correct road segment and the consistency test
used for faulty measurements rejection. Finally, experimental
results are given to illustrate the efficiency of the proposed
framework using EGNOS corrections.

II. PROBLEM DEFINITION

A. Working frame

In order to merge GNSS measurements with DR measure-
ments, expressed relatively to the vehicle body-frame, the
use of a local working frame is convenient to elaborate an
evolution model [17, Chap. 10.4]. For that, a East - North -
Up (ENU) navigation frame is defined. This frame is tangent
to the Earth ellipsoid at a given reference point, close to
the working area. This frame is valid only for a limited
area and thus, must be updated from time to time. The
satellites coordinates, usually given in Earth Centered-Earth
Fixed (ECEF) coordinates, have to be transformed.

B. Process model

The process model used for the Kalman predictive step
relies on a locally circular linear interpolation of a 2D
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differential-drive motion model. It is assumed to be locally
planar. According to the tight integration of GNSS measure-
ments, additional parameters must be considered. The vehicle
altitude in the local frame is introduced using a constant
elevation model. Additionally, the GNSS receiver clock offset
is considered using a first-order polynomial model, allowing
the offset to evolve during a complete outage. Therefore, the
following state vectorXk is :

Xk =
[

x, y, z, ψ, v, ω, d, ḋ
]

(1)

Where(x, y, ψ) describes the 2D vehicle pose,z its altitude
in the local frame,(v, ω) the linear and angular velocities of
the vehicle, and(d, ḋ) the GNSS receiver clock offset and
drift. So, a discrete motion model can be given by,Te being
the sampling period:
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ḋk+1 = ḋk

(2)

The vehicle evolution model is then depicted by a set of
non-linear equations, whereαk is the process model error:

Xk+1 = f (Xk) + αk (3)

C. Sensor models

1) Dead-Reckoning: According to the hypothesis made in
Section II-B, the rear WSS provide good estimates of the linear
speeds of the wheels. Withvl (resp.vr) denoting the left (resp.
right) linear wheel speed, the observation model of the DR
sensors is given by the following linear equation set:

[

vl
vr

]

=

[

1 −

L
2

1 L
2

]

.

[

v

ω

]

(4)

WhereL is the rear axle length.
2) GNSS measurements: To realize the tight integration

of the GNSS raw measurements, the L1 pseudo-ranges (PR)
are used. Using broad-casted ephemeris and a SBAS1 such
as EGNOS in Europe, the measured PRs can be corrected
by taking into account SV (Space Vehicle) clock offsetdt
and elongation due to atmospheric effects. By denotingR the
distance, the PR observation model [17] can be reduced to:

ρ = R+ d+ βρ (5)

With these corrections, PR errorsβρ are assumed to be zero-
mean, Gaussian and uncorrelated . Additionally, the SBAS
system provides an estimated PR error variance [18], which
is mandatory in a Bayesian fusion framework.

1Satellite Based Augmentation System

III. N AVIGABLE ROAD MAPS

A. Road Cache

Commonly, a navigable road map is a database that contains
a vectored description of the road network. Each road in the
database is identified by a unique identification (Id), and is
described by both geometrical and topological information.
Each road is spatially sampled and described by a set of shape
points and two nodes (origin and end). These points form a
polygonal curve describing the shape of the road center-line.
The number of carriageways and line width are also often
known. In addition, a connectivity table is given, allowingthe
user to known which roads are connected with a given Id. This
connectivity table is usually used for path planning. It canalso
improve the tracking of the roads [19].

A complete navigable road map represents a huge amount of
data, even for offline computation. Thus, a reduced road cache
is extracted around a given point [19]. This extraction point
is set as the reference point of the working frame (Sec.II-A).
Indeed, the working frame must be updated each time a new
road cache is requested. Before being usable, the shape points
and nodes are converted into the working frame. Additionally,
several road features, such as segment heading and length, are
precomputed to speed up the map-matching process. This is a
second advantage of using a road cache.

B. Map usage

Unfortunately, a digital road map is subject to bad precision
(i.e. low spatial sampling) and bad accuracy (ie. absolute
offset). Therefore, using the road shape for constraining the
position estimation induces non zero-mean errors which can
affect badly any Bayesian estimation process. Since the preci-
sion of the map is often better than its accuracy, we suggest to
use the heading information provided by the polygonal curve
describing the road, under the hypothesis that the car heading
is parallel to the road. The DR process can take advantage of
this information, as its drift is very dependent of the quality
of the heading estimate [20].

In order to handle unavoidable position offset, the map
observation itself is quite simple since it is only a head-
ing information, according to the driving direction. Let us
suppose for simplification that the right segment has been
map-matched. By denotingψr this segment heading, the
observation model used for map update is:

ψr = ψk + βψ (6)

Whereβψ represents the observation model error.

IV. CAUTIOUS FUSION STRATEGY

Next, a method for tight integration of GNSS PR with 2D
geographic information and DR measurements is introduced.
The DR measurements are supposed to be trustworthy (no
outlier). This is mandatory since the DR estimates need to be
reliable in our fusion strategy. Figure 1 illustrates the fusion
process.

First, the current position is predicted according to Eq. 2
and is then updated according to the WSS measurements.
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Figure 1. The proposed fusion algorithm flowchart.

In the pose tracking process, the road cache is updated if
needed and the most-likely road segment is identified in a
cautious way according to vehicle pose after the DR update.

Contrary to the DR measurements, the GNSS receiver and
the road map can provide faulty measurements. Thus, these
measurements are validated through an internal consistency
test before being fused. The map observation is validated
using the Mahalanobis distance between the DR estimated
poseXk|k,DR and the pose computed according to the selected
road [12]. It is given by the following expression:

∆r =
d2

σ2
d + λ2

max

+
∆ψ2

σ2
r + σ2

ψ

(7)

The GNSS PR are validated using a Normalized Innovation
Squared (NIS) test. The NIS value is also computed according
to the DR estimated poseXk|k,DR. It is given by:

ηk =
1

2
νk.Q

−1
ν .νk (8)

Where ν is the innovation andQν its covariance matrix.
The innovation vector is the difference between the current
PRs vectorρk and the predicted measurement corresponding
to the predicted stateXk|k−1,DR:

νk = ρk − h(Xk|k−1,DR) (9)

Whereh(Xk|k−1,DR) is the non-linear observation model
derived from the GNSS observation model.

In case of an Extended Kalman Filter, the innovation
covariance matrix is given by:

Qν = Hk.Pk|k−1,DR.H
T
k +Qρ (10)

WhereHk is the jacobian matrix of the observation model.
Finally, a threshold value is computed using theχ2 distri-

bution given a False Alarm probability for each∆r and ηk.
If ∆r and ηk are greater than their corresponding threshold,

Figure 2. Experimental vehicle.

the measurement is not consistent with the noise model with
a high probability [21] and is rejected. Otherwise, accepted
measurements are fused (Eq 5 and 6) to compute the new
estimated stateXk|k.

V. EXPERIMENTAL RESULTS

Experiments have been carried out in May 2007 using an
experimental vehicle of the Heudiasyc laboratory (Figure 2).
The reference path of the vehicle has been recorded using a
Trimble 5700 DGPS PPK receiver and 4 base stations from the
French Orpheon network. The car was driven in Compiegne
suburbs, which constitute an open area with occasional tree
foliage leading to GPS errors and bad geometrical configura-
tion of the SV constellation. For all the following experiments,
a unique road cache was used with the reference point located
at 49°23´ 6.36”N, 2°47´ 2.04”E.

A. Map-aided differential odometry

The performance of map-aided DR is first compared to un-
aided DR. The estimator is first initialized using GNSS and
DR measurements. Figure 3 shows the position estimates in
the ENU frame for the DR estimations with and without map-
aiding. It also shows the reference trajectory and an emphasis
is made on locations where the map is used. Figure 4 depicts
the angular velocity estimation error for the un-aided DR. This
chart shows that differentiating the WSS measurements pro-
vides a noisy angular velocity estimates. Thus, the estimated
location is degraded. In addition, the RMS error signal for the
map-aided DR is provided by Figure 5. The RMS error signal
for DR estimates using a fiber-optic yaw-rate gyro (KVH400)
is also given.

According to Figure 3, differential odometry alone is not
able to provide a correct estimation for a long period of time. If
a long outage occurs, the state estimates diverge significantly.
Now, considering the estimated trajectory using the map-aided
DR, a major improvement can be seen. With the map, the
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Figure 3. ENU trajectory estimates for un-aided differential odometry and
map-aided differential odometry.
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Figure 4. Estimated Angular velocity for the differential odometry compared
to the measured angular velocity provided by an optic-fiber gyro.

fusion process is able to keep a correct location estimates in
spite of noisy angular velocity estimates. During this trail, the
map is used54% of time, including the initialization process.
Now considering the RMS error signal, the map-aided DR
shows interesting perfomances in comparison with the DR
estimates using a fiber-optic gyro. After a2km-long loop, the
RMS error of the map-aided DR is about10m, to be compared
with the2m error for the gyro-aided DR. This is a good result
knowing that only the WSS have been used to estimate the
rotational speed.
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Figure 5. RMS error for map-aided DR compared with the resultobtained
using the WSS and a fiber optic gyro (KVH400).

B. Adverse GNSS visibility conditions

In this second experiment, adverse GNSS visibility con-
ditions are considered. A simulated urban canyon has been
defined around the straight line between the two roundabouts.
It has been applied using a sectoral mask on the available SVs.
Thus, the GNSS visibility is degraded, whereas the GNSS
signals are not. Figure 6 shows the GNSS configuration while
driving through the urban canyon. Figure 7 reports the esti-
mated location for unaided and map-aided hybridized GNSS
with an emphasis on the locations where the map has been
used. Additionally, Figure 8 depicts the NIS for the hybridized
GNSS under the simulated urban-canyon conditions, with an
emphasis on period where the map was used (yellow-area).
Figure 9 presents the RMS error signal for the map-aided DR
under the simulated adverse conditions.

Before entering the urban-canyon, both unaided and map-
aided hybridized GNSS shows analogous results (Figure 7).
This is due to the good GNSS signal condition under open-
sky. Additionally, due to the availability of GNSS PR, the
estimated error variance is low, leading to map rejection in
several part of the path.

When driving through the urban-canyon, only 2 PR are
available (Figure 6). Under these adverse conditions, the NIS
estimated for both unaided and map-aided hybridized GNSS
is null (Figure 8). This shows that 2 PR only are not sufficient
to estimate the vehicle state. Thus, when unaided, the 2D pose
(x, y, ψ) is estimated according to the WSS measurements
(Figure 7). Considering the map-aided hybridized GNSS, the
2D pose estimates is enhanced as the maximum error stays
under 7m according to Figure 9. As the estimation of the
altitude and the clock-bias are linked through the PR model
(Eq.5), the estimation of this value is enhanced compared to
the unaided hybridized GNSS.

After the urban-canyon, open-sky conditions are retrieved.
When unaided, this NIS value for the GNSS measurements
increases so that the PRs are rejected (Figure 8). Thus, a
significant error variance must be obtained to recover GNSS
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Figure 6. Skyplot for the simulated urban canyon. PRN 20 and 23 are the
visible SV.

measurements. This inhere in integrity methods based on
internal consistency. On the contrary, due to the correct 2D
estimated location (about 4 m, Figure 9), a smaller NIS value
is obtained when map-aided (Figure 8). Thus, the GNSS
measurements are immediately usable. Finally, a good error
variance is estimated as the map is rejected after the second
roundabout (Figure 7). In this area, the map suffers from a
5m offset.

During the complete trail, the map measurement is used
39.5% of time. Under adverse conditions, the quality of
the estimates relies on the DR when using tight integration.
Using the WSS measurements for estimating angular velocity
provides a noisy estimation. So, when unaided, the hybridized
GNSS is not able to handle such adverse conditions. On the
contrary, the map-aiding technique shows interesting benefits.
On the one hand, it enhances the DR estimation process (see
Sec.V-A) allowing to correct the estimated heading of the
vehicle. On the other hand, adding a measurement in the fusion
process increases the reliability of the system as it allowsthe
use of fewer satellites

VI. CONCLUSION

In this paper, a GNSS enhancement technique has been
presented. To supply a GNSS-like solution, the raw GNSS
PR are tightly fused with WSS and a 2D navigable road-
map. As shown, this integration can be easily done thanks
to the use of a local frame. Using the DR estimates, the
road selection is performed. Thanks to the selected road, a
map heading observation is used. Before being fused, the
GNSS PR and the map observation are both validated through
an internal consistency test. This test allows the rejection
of doubtful measurements. Afterward, the state estimates are
updated using PR and/or map heading, if validated.

The proposed method has shown interesting results under
adverse conditions and complete outage. In these situations,
the map-aiding technique compensates the 2D location from
odometric drift. It then allows computing a location with less
than 4 available PR. Unfortunately, under severe conditions the
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receiver clock bias and vehicle altitude estimates are degraded.
As it is difficult to provide an external information for receiver
clock bias, improvements must be done regarding the altitude
estimates. Therefore, the use of forthcoming 3D navigable
maps is a major perspective for this research.
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