N
N

N

HAL

open science

Derivation of anisotropic matrix for bi-dimensional

strain-gradient elasticity behavior
Nicolas Auffray, Bouchet Regis, Yves Brechet

» To cite this version:

Nicolas Auffray, Bouchet Regis, Yves Brechet. Derivation of anisotropic matrix for bi-dimensional
strain-gradient elasticity behavior. International Journal of Solids and Structures, 2009, 46 (2), pp.440-

454. 10.1016/j.ijsolstr.2008.09.009 . hal-00445238

HAL Id: hal-00445238
https://hal.science/hal-00445238

Submitted on 12 May 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License


https://hal.science/hal-00445238
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

Derivation of anisotropic matrix for bi-dimensional strain-gradient
elasticity behavior

N. Auffray **, R. Bouchet?, Y. Bréchet®

2 ONERA/DMSM, 29 Avenue de la Division Leclerc, F-92322, Chdtillon Cedex, France
b LTPCM, BP 75, Domaine Universitaire de Grenoble, F-38402, Saint Martin d’Héres Cedex, France

The different forms of second order elasticity operators, in Mindlin’s strain-gradient elas-
ticity, are given for a bi-dimensional physical space. These different forms are obtained
according to the different symmetry classes of a material media. Dimensional aspects
are discussed together with observations made on the physical behavior of such a media.

1. Introduction

Designing lightweight and innovating materials is nowadays one of the most important challenge for material’s engi-
neering. The aim is to reach high mechanical properties with low density materials. To achieve such contradictory objec-
tives the scientific community has, for several years, focused its attention on cellular materials structured at the
mesoscale. Designing in optimal way such a material, requires to understand at the same time the relation between
architecture and physical properties, and the explicit method to calculate these properties. According to a geometric def-
inition of a RVE (Representative Volume Elementary) a classical way to obtain the overall behavior of our cellular mate-
rial is to use homogenization theory. It is well known that classical homogenization relied on a clear scale separation
between the geometric pattern and mechanical fields. If the scale separation is not broad enough, the classical theory
fail to predict the overall behavior. As shown by Boutin (1996) and Forest (1998), if we want to keep a continuum
description we have to consider a generalized continuum to model the substitution material resulting from the homog-
enization process. In particular, if we are designing millimetric microstructural materials to be implemented in centimet-
ric structures (such as, for instance, hollow spheres stacking for acoustical absorber (Gasser, 2003)) we cannot take the
strong scale separation for granted. And so, second order elastic effects have to be taken into account in the homoge-
nization approach.

In order to achieve this goal some basic facts about constitutive behavior of strain-gradient elasticity will be recalled in
Section 2. In Section 3 a mathematical transformation will introduced allowing us to handle easily the higher order tensors
that define our behavior. Using this framework all the operators we need we will obtained in Section 4. This paper will be
concluded, in Section 5, by some complementary remarks on the physics of such a behavior.
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2. Mindlin’s strain-gradient elasticity

In classical elasticity theory stress at a material point is related to strain through the classical elasticity tensor. This rela-
tion, usually known as Hooke’s law, is written in tensorial fashion in the following way:
(i) = Eqij am€m) (1)

Where o is the symmetrical-stress tensor, &gy, the strain tensor and E; (m) the tensor describing our material property.
The notation () stands for the minor symmetries whereas .. stands for the major one.

In the case of Mindlin elasticity the material state at a material point also depends on the strain gradient. We shall note
Kmyn the strain-gradient tensor, which is formally defined as:

@8(1m)

K([m)n = W
n

= E(m)n 2)

where the notation, n mean the derivation of the operator along n. This strain-gradient elasticity is also known as the type II
Mindlin’s elasticity (Mindlin and Eshel, 1968).

Taking into account strain-gradient effect in the mechanical formulation led one to define symmetrically the hyperstress
tensor Sg;«. So the knowledge, in each material point, of the stress tensor completed by the hyperstress one allows to com-
pute the effective tensor 7. This tensor is defined as:

i) = O — Stikk 3)
and is the one to consider to calculate the local equilibrium (Forest, 2004). Tensors g ; and S are related with &g, and
Kmy through the following general constitutive relation:

i) = Eqi am)€am) + MgjyamynK imyn (4)

Stk = Mjkam €am) + Agip mnK imyn ()

where the tensor Agjk umn is the second order elasticity tensor and M jum;» the coupling tensor between first and second
order elasticity.

As explained by Triantafyllidis and Bardenhagen (1996) in a three dimension physical space for a centro-symmetric med-
ia, this coupling tensor will vanish. In a bidimensional space this tensor would vanish for any media that is even order rota-
tional invariant (Auffray et al., accepted for publication). For both cases the former constitutive relations could be rewritten:

(i) = Eqij am€m) (6)

Stk = Atk mnK myn )

In this study we will focus our attention on operators describing A (m), for each material’'s symmetry classes. The different
expressions of the operators are necessary for a correct numerical implementation of that kind of behavior in FEM code. First
of all, in order to handle the tensor formerly defined, mathematical transformation should be introduced, allowing us to turn
our 2-dimensional 6th-order tensor into a 6-dimensional 2nd-order tensor.! This will allow us to rewrite the second order
constitutive relation as:

Sy =AupK; (8)

3. Change of space

We aim at obtaining the operators defined in Egs. (6) and (7) to implement in FEM-code to compute strain-gradient elas-
ticity. We are dealing here especially in 2-D space, nevertheless most of our approach would still be valid in 3-D space. The
first order elasticity was studied in depth by Mehrabadi and Cowin (1990). So, our attention will be focused on the 2nd-order
elasticity. In a 2-D space the 3rd-order tensor K, belong to a 6-D vector space, and the fully anisotropic tensor Ay (imn
would belong to an 21-D vector space. o

As a 6th-order tensor is not an easy object to handle, a transformation will now be introduced to turn that object into a
2nd-order tensor. Let’s begin with some remarks about matrix representations of a tensor.

3.1. Matrix representation

In the case of Hooke’s law the classical Voigt matrix representation of constitutive equation is:

! The permutation order-dimension is just a coincidence, in 3-D the same transformation would turn a 3-dimensional 6th-order tensor into a 18-dimensional
2nd-order tensor.
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022 E22]] 52222 E2233 E2223 E2213 E2212 &2
033 _ E33]] E3322 E3333 E3323 E3313 E3312 €33 (9)
023 B E2311 E2322 E2333 E2323 E2313 E2312 2823
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But, as explained by Mehrabadi and Cowin (1990), this notation does not define a 2nd-order tensor, it is just a common
matricial representation. A rigorous expression of that relation in a tensorial fashion will be:

on Eimn Ei12 Eiss V2Eis V2Eims vV2Enn én
0 Exin Ex Exss  V2Eans V2Enis V2Enn &
033 _| Esm E3320 Ess33 V2Ess V2Esis V2Esmn €33 (10)
V202 V2Es11 V2Es» V2Enss  2Ems 2Easis 2Exsp V2e53
V2013 V2Ei311 V2Ei3 V2Ei333 2Ei3 2Ess 2E;sn V2er3
V201, V2E1 V2Ei222 V2Ess 2Eies 2Enis 2B V2é,
In the same way the rigorous way of representing the 6th-order tensor A as a 2nd-order, one according to its symmetries, is:
S At At1222 A Az V2Annz  V2Annun Kin
S22 Axin Az22222 Ao Aotz V2An222 V2Anan K22,
S _ | Aanm Api22 Axion Az V2Anie  V2Ani K221 (11)
Si12 A2 At12222 A2 Aoz V2Anziz  V2Anain Kiz
V2812 V2A111 V2An:  V2An1 V2Aa 2 2Amn V2K
V28151 V2An1111 V2Ann  V2Ania V2Annn 2A8nmn 2Ani V2Kin

That is a true tensorial way of writing the constitutive relation Sgjx = Agjjk (1mnKmjn- An example for that representation is the
following. According to Mindlin and Eshel (1968) in indicial the isotropic strain-gradient relation could be written as:

1 .
Sijk = §a1 (Klljéik + I<lli5kj + 2K1k15,'j) +ap (K[ﬂélk + I<li15jk) + 2a3Kllk5ij + 204Kijk + s (Kjki + Kikj) (12)
So the tensorial representation of that relation is:
Sin ¢t 0 o 0 3 O Kin
S22 0 ¢t 0 o 0 c3 Koz,
Sa21 e 0 s 0 ¢ O Koz (13)
Si12 ]0 ¢ 0 ¢ 0 o Kinz
\/25122 c3 0 s 0 ¢ O \/§K122
V2812 0 3 0 ¢ 0 ¢ V2K 15
with
1
=21+ +03+0+05); C=a +2a; €3=V2 501+ );
1
Ca = 2(ay + a4); 65:«/§<§a1+a5); Cg = O3 + 204 + U5
Let’s detail the way this transformation works.
3.2. Change of space formalism
The change of space could be expressed by the following diagram (14):
E i} " i |E2n
L h Lk (14)

E —& B2

E is the physical space, a vector space which basis vectors are e;,i varying from 1 to d for a d-dimensional physical space.
Vector space of higher dimensions could be generated by the self tensor product of the initial space. The space obtained
by n — 1 self product of E will be noted E" and its dimension is d". So E? is a d°-dimensional vector space which base is
e; ® e; ® e,. An endomorphism on this space belong to an 2nd-order vector space of d*" dimensions. In the same time E" could



be associated with E a true d"-dimensional physical space which vectors basis are e,. And so elements of End(E) are 2nd-
order tensor belonging to £2. The basis of that space is e, ® e;. For the sake of simplicity the indexes symmetries of the dif-
ferent spaces were neglected, taking them into account don’t change the philosophy of our transformation. An orthonormal
basis of S will now be constructed (with the index symmetry now), and the application h will be defined.

3.2.1. Construction of equivalent basis
In strain-gradient elasticity S° is the vector space of Kand S. This space is symmetric with respect of the first two indices
permutation. Let’s construct the 6-D space S; its basis vectors é, could be expressed as:

=e1Re1Re; &H=00eR6e; e3=e0ee;

. R 1 . 1
=€ ®e ®e; _5:72(9 e +eRe)Qe; _6:72(21 Re+e®e)®e
The orthonormality of e; implies the one of &, and so we got:
€y - €y = Oy (15)

for o and p varying from 1 to 6. Jup stands for the classical Kronecker symlgol. This implies the expression of h linking de
coefficients of S" with those of S. So given T in s® and T,, its image in S, we got h defined by:

T, h(Ty) = 4 t=J (16)
TV VAT i
And so do for the strain gradient and the hyperstress tensors:
Kuey = h(Ki)es; Sy = h(Si)éy (17)

We could now construct the basis of $2 by the tensor product of the basis S. So given a tensor Tk gmyn in S® its image Ta,; in
S2 is obtained by the application h*:

Tijklmn i :j and ] =k
Tap = " (Tijuimn) = { V2Tjumn  i#j and | =m or i = j and Im (18)
2Tijk1mn l?é] and [#m

3.2.2. Derivation of transformation matrix
As the space transformation in now introduced, let’s focus on the way an O(2)-orthogonal operator could be transformed
into a O(6)-orthogonal operator. Let’s e; be the image of the vectors e; under the action of Q,Q € O(2). We got:

¢ =Qe (19)
Let’s, in the same way, % be the image of é, under the action of Q. Q is defined as the image of Q in O(6) and we got:

e, = Ql,;e,, (20)
Q will be expressed, now, as a function of Q. The action of Q on a E> could be expressed as:

€ @€ @€ = QiQjnQne @ em @ en (21)
The same action on a element of the symmetrized space S° lead to:

2o e oe) 56 =1 (QuQn+ UnQQuner © en D&, 22)

The operator we just written is the following 6th-order tensor:

s 1
Q° = 5 (QiQjn + Qin Q) Quni @ € © € @ € @ e @ €y (23)

By the h™ application introduced in the previous section we could turn this 6th-order tensor into a 2nd-order one in S2. And
so:

@a/f@ ®eép= h* <% (QiQjm + Qimle)an)Q ®ep (24)

The following table sum-up the information about the change of system

o 1 2 3 4 ) 6

(25)

(i, 5, 6)|[(1,1,D)](2,2,2)[(2,2, D|(1,1,2)|(1,2,2)[(1,2,1)




If we consider now Q € E? we got:

Qll Q12
o= (o o) (26)
we could construct Q € S? as:
Q3 Q3 Q%,Qn Q%,Q12 V2Q%,Qn V2Q3,Q1
Q3 Q% Q3,Qx Q3,Q2 v2Q5,Qx v2Q5,Q2
Q _ Q%] Qll Q%zQ]Z ng Q]l Q%] Q12 ﬁQlZQZZ Q21 \/ZQH Q22Q21
%1 QZ] Q%zQZZ Q%z Q21 Q%] Q22 \/§Q11 Q12Q22 \/EQH Q12Q21

\/ZQ; Ql] \/ngz Q12 \/§Q12Q22Q21 \/ZQH QZZQZI (Ql 1 Q22 + Q12Q21 )QZZ (Q]l QZZ + QlZQZ] )QZ]
\/ZQ%QZ] \/ZQ%QZZ \/ZQ12Q22Q11 \/lel Q21Q12 (Q11Q22 + Q12Q21 )Q12 (Q]l Q22 + Q12Q21 )Qll

(27)
In the case of O(2) we consider the two following operators: Q. the rotation operator, Q,; the mirror operator.
_ [cos() —sin(0)\ (1 0
Q= (e ooy ) @ (o 1) (28)
Theirs images in O(6) are:
c(0)’ —s(0) c(0)s(0)® —c(0)’s(0)  V2c(0)s(0)>  —v2c(0)*s(0)
s(0)° c(0)? c(0)%s(0) c(0)s(0)> 2c(0)%s(0)  V2c(0)s(0)?
. c(0)s(0) —c(0)*s(0) c(0)? —s(0)° —V2c(0)s(0)>  V2c(0)*s(0)
Qrot = 2 2 3 3 _ 2 _ 2 (29)
c(0)?s(0) c(0)s(0) s(0) c(0) V2c(0)*s(0) —v2c(0)s(0)
V2e(0)s(0)2  —v2c(0)%s(0) —V2c(0)s(0)>  v2c(0)*s(0) c(20)c(0) c(20)s(0)
V2c(0)’s(0)  V2c(0)s(0)>  —v2c(0)’s(0) —v2c(0)s(0)°  —c(20)s(0) c(20)c(6)
1 0 0 0 0 O
0 -1 0 0 0 O
~ 0 01 0 0 O
Qmir = 0 0 0 -1 0 0 (30)
0 0 0 01 O
0 0 0 0 0 -1
Where, for the sake of simplicity, cos(6) and sin(6) have been noted c(6), and s(6). We could check that for Q € 0(2) we got:
Q'Q =1Id (31)

so the orthogonality of Q implies the one of QandsoQ ¢ 0(6).
With that transformation, completed by the expression of Q, we have the tools we need to study the different expressions
of Ak amn for different material’s symmetry classes.

4. Derivation of anisotropic operators
4.1. Expression of invariance

Let G be a group of operation,a material .# will be said G-invariant if the action of all the element of G transform the mate-
rial into itself. This set of operation will be noted G_,, namely the material symmetry’s group, and defined by:

G,=1{Qe0Q), Qw.i=.u} (32)

Where ¥ represents the action of Q upon .#. As we are dealing with 2-D materials, our attention will be restricted to the 2-D
orthogonal group: O(2). Moreover we know that G , must be conjugate to a subgroup of O(2) (Zheng and Boehler, 1994). The
collection of those subgroups is, according to Armstrong (1988):

T = {I,Z,,D,,50(2),0(2)} (33)

Where I is the identity group. Z, is the cyclic group of order n, it is the group of rotations of a chiral figure that possesses an n-
fold invariance (cf. Fig. 2 for an example of an Zs;-invariant figure). D, is the dihedral group of order 2n, it is the group of
operations that leave a regular n-gone invariant (cf. Fig. 1 for the example of an D;-invariant figure). SO(2) is the continuous
group of rotations. The generator of the Z,-invariance is the matrix Q,,, and for the D,-invariance the set of generator have to
completed with the matrix Q ;.
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Fig. 1. D;-invariant figure.

Consider now a physical property 2 defined on our material .#. The physical group of symmetry of that property could be
defined as the set of operations that leave the behavior invariant. This set of operations will be noted G, namely the
physical’s symmetry group and defined as:

G,={Qe0(2), Qt2=2) (34)
In our case the action of Q upon the tensor A could be rewritten as:

Ga={Q€0(2), QiQjpQuQurQusQucAopgrst = Ajjictmn } (35)
By the mean of Neumann'’s principle (Zheng and Boehler, 1994), we got the inclusion:

G,CGy (36)

this just mean that every operation that leaves our material invariant will let our physical properties invariant. Nevertheless
the physical property could appear to be more symmetrical than the material (Auffray, 2008).

In the following subsections, consequences of material symmetries on tensorial components will be studied. This work
will be simplified by the use of transformation introduced in Section 3, and so, the group of symmetry of tensor A could
be rewritten as:

Ga={Qe0(2), QuQuA;=Ay} (37)
The restriction on tensorial coefficients will be the different solutions of the following matricial system:
Q'AQ =A (38)

for Q belonging to the generators of all O(2)-subgroups.
Let’s begin by studying the consequence of a Z,-material invariance on Ay (myn-

4.2. Z,-material invariance

In the following subsections the following notation will adopted for the matricial coefficients:
e a; will stand for not final coefficients, some more transformation are needed to reach the minimal expression;
o b; will be the coefficients of the minimal expression, b; are independent;

e ¢; will be used to make comparison between different forms, the c; are not independent.

In the same way a non-minimal matrix representation will be noted by a * exponent.
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Fig. 2. Z;-invariant figures.
4.2.1. Z,-invariance
For Z, no restriction will be imposed on A.

4.2.2. Z3/Zg-invariance
The Z3 and the Zs-invariance will lead to the same following operator:

a1 ai2 a3 —2a1; — a3 a5 *01\2/425023
3

az; a3 11 — 22 + 013 — V2(an — ax) + as

N N _ _ Gy —lyy 3ap+ay3

Ay =A; = Q11 — a2 + Q4 a2 15 + =47 7 (39)
3 6 _ 3y —
Aag 012‘/5023 7\/2(1]] — 5+ azf/;“
(11 — Qq3 — 9257 2aip

—ay; — a3 + 3022%
This operator seems to depend on 7 different coefficients. But writing of the system:
QAQ" =0 (40)
shows that there exists a rotation:

sin(60)  2ap
cos(60)  ay —ay;

(41)

allowing us to reduce the number of parameters from 7 to 6. The operator will have, in an appropriate basis, the following
expression:

bii 0 by by buy b” — bss b”
by —bis byy —bay 4 bys % 3b” b33 - b35 —V2by
Azﬁ _ b3 0 bss - ’% (42)
bs3 4 by — b1y b‘f‘z‘ \/j(bzz —b11) +bss
Pt — by 0

—3by1+b
=223 — b3 + 2by,

where b;; coefficients are functions of the former a;; coefficients of A}ﬁ. So, finally, the tensor A is defined by 6 coefficients in
its hexatropic chiral class.

An example of a material with such a geometry could be found in Prall and Lakes (1996). The geometry of the honey-
combed studied by the authors is described Fig. 3.

4.2.3. Z4-invariance
For the Z,-invariance we got:

ap 0 a3 Gig G5 s
a1 —0ig 413 —16 015

Ar — as3 0 Qss  0dsg (43)
Z (33 —03 0s3s
Ass5 0
ass



Fig. 3. Z6-invariant honeycomb.

As in the case of the Z3/Zs-invariance a rotation decreasing the operator’s number of parameters could be found. The action
of the following rotation:

sin(40) 2V2(a16 — asg)

- 44
cos(40) (a1 + as3 — 2(ay3 + dss)) (44)
reduces our former operator to the new one:
bl] 0 b13 bl4 blS b16
bll _b14 b13 _blﬁ b15
n b33 0 b35 b]G
A, = 45
“ bss —big bss ()
b55

In this new basis the former coefficients a;¢ and asg are now equal and are denoted by the new coefficient b;s. And so the
number of independent coefficients in the orthotropic chiral class decrease from 9 to 8.

424.75/Z,,n > 7-invariance
For a Zs-invariance, and for any Z,-invariance in which n > 7, we got the following operator:

by 0 biz by b”\;;” —bss —%
biy —bis b3 % b”}zb” —bss
—~ b33 0 b35 _bu
Aso) = V2 46
s0(2) b b b (46)
33 el 35
bn;rbsa — b3 0
b1142rb33 _ b]3

This symmetry class depends on 5 parameters.

4.2.5. Analysis of the hemitropic class

It can be noticed that for n > 7 the order of the symmetry exceed the order of the tensor A. According to Hermann'’s the-
orem (Auffray, 2008), the symmetry group of A must be, in that case, conjugate to a continuous group. As we are dealing with
subgroups of O(2) this continuous group must be either SO(2) or O(2). In other words, for a Zs-invariance, and for any Z,-
invariance in which n > 7, the tensor A must be either hemitropic (SO(2)-invariant) or isotropic (O(2)-invariant). So in our
case A is at least hemitropic. Let’s

bii=ci; biz=cy; biz=cs; bis=¢s
where ¢; for i varying from 1 to 6 are the Mindlin’s coefficients. The following relations are verified:

bi1—b b b
€5 = ”\/233—b35; 6 = 11; 33

and if we note c¢; = by4, we finally obtain:

- b13
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C4 T C5
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Ce 0
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This expression differs from the isotropic one (13) by the presence of the c¢; coefficient. But, as A is at least hemitropic, it does
not exist any rotation that could make c; disappear. So the Zs/Z,,n > 7-invariance, lead to a non-isotropic invariance,

namely the hemitropic invariance.

4.3. D,-material invariance

For the dihedral-invariance, former results have to be combined with mirror-invariance. This means the invariance of our

former operators under the action of Q y;.

4.3.1. Dy-invariance
For a D,-invariance, we obtain the operator:

b]] 0 b13 0 b15 0
by, 0 by 0 by

A, — bss 0 bss O
m bas 0 by
bss O

bes

This system is defined by 12 coefficients.

4.3.2. D3/Dg-invariance
The D; and the Dg-invariance lead to:

biy 0 b3 0
by, 0 by —by+bis
b3z + by — b1

This class is defined by 5 coefficients.
4.3.3. D4-invariance
For D4, we got:
by 0 b3 0 bis O
bu 0 bz 0 bss

ADM) _ bz 0 bss O
bz 0 bss

bss O

bss

This class is defined by 6 coefficients.

4.3.4. Ds/Dn,n > 7-invariance

by1—bs3
2 b35

0
bss
0

byi+b
112 33 b]3

And finally for Ds and D,,,n > 7 we got the following operator:

0

731;11[;1;33 — b3s —V2by,
0

\/j(bzz —b11) + bss
0

—3b]é+b33 _ b13 + 2b22

(48)

(49)



by 0 b3 O 7’3”\;;33—1335 0

biu 0 b3 0 b”\/}b” — bss
A0(2> _ bss bO bss 0 (51)
33 0 b35
bn;rb?,a _ b13 0
b1142rb33 _ b13

which is defined by only 4 coefficients. If we substitute those coefficients with the c; one of Mindlin second order elasticity
we obtain:
¢t 0 g 0 ¢35 O
0 ¢t 0 ¢ 0 ¢
-~ c; 0 ¢4 0 ¢ O
0 ¢ 0 ¢4 0 c5
c3 0 ¢ 0 ¢ O
0 c3 0 ¢ 0 cg
The mirror-invariance make the hemitropic coefficient c; to vanish and we obtain the isotropic operator. So we have now

obtained for the second order elasticity in a bidimensional space 8 different expressions for the operator A (mn according
to its different classes of symmetry. These results could be sum-up in the following table: T

Gy Ga dim
1,Z, I 21
D, D, 12
Zy Zy 8
Dy Dy 6
D5, Dg Dg 5
Z5,Zp,n =7 S0(2) 5
Ds,Dp,n > 7 0(2) 4

In a two dimensional physical space, the group of symmetry an operator Ay @my» belongs to must be conjugate to an ele-
ment of the following set: -

4 : {I,D2,Z4,D4,Z5,D5,50(2),0(2)} (53)

5. Discussion

Besides the fact we obtain, in a 2-D space, the explicit expression of the anisotropic second order elastic tensor in strain-
gradient elasticity theory, some points concerning symmetry of the operators are worth emphasizing.

5.1. Class jump phenomenon

The results presented here are obtained considering a 2-D physical space, whereas the real physical space is 3-D. It is
therefore useful to analyse the consequence of this hypothesis.
A tensor could be represented, in 3-D space, by the following block matrix:
(x@x] [xoy] [x©z] [xoc]
[yoy] yoz] [yoc]
[z®2z] [z®cC]
[cwc]

(54)

where x,y, z stand for mechanisms along the different direction, and c stands for a coupling between all of those mechanisms.
This full matrix is square and of dimension 18. A sub-operator modeling effect along the x and y direction could be extracted.
This sub operator will be of the following form:

[x©x] [x®y]
< [y®y]> 3)

10



This matrix is obviously square, and it could be shown that its dimension is 10. What we called x and y are kind of vectors
containing indexes. We got:

111 222
221 332
x=[331], y=|112 (56)
122 233
133 121

And so if we get rid of elements with indices equal to 3, we obtain x,p and y,, each of length 3. And so we could construct the
following sub-operator:

<[XZD ®Xap]  [Xap ®Y2D]>
(Yoo ®Yap]

This last operator is the operator of Mindlin’s elasticity in a 2D-space, the operator we have been working on since the begin-
ning of that paper.

The operator we obtain is so the one we would obtain by suppressing rows and columns with an out-of-plane indice in
the expression of the 3-D operator. This operation implies a loss of information. The most noticeable consequence is the exis-
tence for 2-D modeling of a “class-jump” phenomena. An example of such phenomenon is the following.

In Section 4.2 we notice that the Hermann'’s theorem implies that for an order of symmetry that exceed 6 the operator of
strain-gradient elasticity must possesses a continuous group of symmetry. We also show in the same subsection that it was
also the case for an order of symmetry equal to 5. The fact a 5-fold axe induce a continuous symmetry is a dimensional
anomaly specific to bi-dimensional space. In Fig. 4, we plot, for the cyclic group, the material invariance group against
the physical invariance group. We observe that for A, that is an even-order tensor, an odd-order material-invariance imply
a physical invariance of twice order: a Z,,.1-material invariance implies a Z,(p1)-physical invariance. This fact which is spe-
cific to bi-dimensional space can be formally proved working on the harmonic decomposition of the operator (Auffray et al.,
accepted for publication). This phenomena could also be observed for classical elasticity. So the difference induced on an
operator by a Z,,.-material symmetry or a Z,.1) one just concern out-of-plane coefficients. This explain why continuous
symmetry class appear for an 5-fold symmetry whereas we are not in the case of Hermann’s theorem. In case of bi-dimen-
sional space an 5-fold symmetry is seen as a 10-fold symmetry and this time we are in the case of the former theorem. Fi-
nally, it’s well known since Mindlin that isotropic strain-gradient elasticity depend on five independent coefficients. But as
we showed here this number of coefficient depend on the dimension of the physical space, for a two dimensional space this
number decreases to 4. This fact depend on the operator, for the conventional elasticity the number of isotropic coefficients
is the same in two and three dimensions (Zou et al., 2001).

(57)

Gten r

&*—e >

| Z, Z, 2, Zs Zy Z; z, Girat

Fig. 4. Jump of symmetry classes between material and physical invariances.
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If we get back to the expression of matrices (55) and (57), we understand that the last one don’t take into account for out-
of plane coupling. In (Auffray et al., accepted for publication) it has been proved that, in 3-D, different material invariances
lead to different physical behaviors. This fact means that the matrix (55) is different for even and odd-material invariance,
meanwhile its submatrix (57) remains the same. This remark, made through the study of operators in 2-D space, has a deep
meaning about the physical consequence of material symmetry in 3-D. In, 3-D, the difference between a Z,,1 and a Zyp+1)
material invariance will just concerns out-of-plane coupling coefficients. This remark holds true for any kind of linear
behavior.

5.2. Chiral-sensitivity

The second is the fact that strain-gradient elasticity is a chiral-sensitive behavior. For conventional elasticity, for example,
the Z,-invariance and the D, lead to the same elastic operator expressed in two different basis; as shown by Forte and Via-
nello (1996) you can always find a angle of rotation to turn the Z4-invariant operator into the D4 one. As shown in,Section 4
for the second order elasticity after reduction the operators for the two different class remain distinct. The existence of an
hemitropic class of symmetry, class which does not exist for classical elasticity, shows that the sensitivity to chirality is inde-
pendent of the choice of an appropriate basis. The chirality coupling can be easily illustrated in the following way. In Section
3 we introduce the following matrix representation for A:

S Antnin Att1222 Att1a Az V2Anna  V2Ann Kins
S22 Ain Az22o2 Axzanni Aotz V2An2 V2Anon K32,
S221 _ | Aaun Ani22 A1 Apiiz V2Annn V2Anun K321 (58)
Si12 A2 At12222 Atz Az V2Anai2 V2Ai21 Kir
V2512 V2Ai111 V2A: V2Aan V2Anane 2R 2Am V2Ki2
V281 V2Ain V2Aiize V2Aii21 V2Aniz  28pnzn 2Annn V2Kin

We can rewrite this operator separating the strain-gradient mechanisms along the x-direction and the y-direction, leading
to:

5”1 All]l]l A111221 ﬁA111122 A111222 A]11112 \/EAHHZ] K]]]
5221 AZZ]]]] A221221 \/§A221122 A221222 A221112 \/§A221121 K221
\/55122 _ \/§A122]11 ﬁA]2222] 2A122122 \/§A122222 ﬁA122112 2A12212] \/jKlzz (59)
5222 A2221 11 A222221 ﬁAZZZIZZ A222222 A222112 \/§A222121 K222
5112 Alllel A112221 \/ZAHZIZZ A112222 A]12112 \/7A]12121 K“Z
\/55121 \/2A121111 \/ZAIZIZZI 2A121122 \/§A121222 \/jA121112 2A121121 ﬁK]Zl

We can rewrite now the matrix we obtain in this system. We shall do that here just for the hemitropic and the isotropic
cases, but this result stands for any Z,-invariance and D,-invariance: Z,-invariance behave likes the hemitropic case mean-
while Dy-invariance is stimulate to the isotropic one. For the isotropic-invariance, and for any D,-invariance, in the former
system of vectors the matrix operators are block-diagonal. We have, on one hand:

i C (3 0 0 0
Cs4 Cs 0 0 O

~ ¢ 0 0 O
Aop) = 60
o) 6o (60)
Cs Cs
Ce

for hemitropic-invariance, and for any Z.-invariance, we have, on the other hand:

C1 C C3 0 C7 *%
Cs C; —C7 0 %
n Cg — g _9 0
Asop) = C\/i C\/f . (61)
1 2 3
Cy Cs
Ce

In this system the upper right block matrix represent the coupling effect between strain gradient in the x-direction and in the
y-direction. If the material is invariant under a mirror-symmetry this coupling effect vanish. Otherwise the coupling effect
appears in the form of a skew-symmetric matrix. This skew-symmetric coupling is a chiral-sensitive mechanism.

12
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Fig. 5. Different isoenergy curves for different tensor parameters by; and b,.

5.3. Anisotropy of plane periodic tilling

We observe that a material symmetry of order 6 will lead to an anisotropic elastic behavior. So whereas 1st-order elas-
ticity is isotropic for a 6-fold invariant material, its 2nd-order term will become anisotropic. This fact makes sense since that
the order of rotation group that allow a bi-dimensional-media to be periodic is finite and must be either 1, 2, 3, 4 or 6. This
fact is known as the crystallographic restriction. So it can be concluded that for any bidimensional periodic material, the
strain-gradient elasticity must be anisotropic.? This effect can be shown by expressing the 2nd-order elastic energy W in
the plane (x,y) as a function of K (x,y). This energy could be expressed through the Voigt’s formalism:

125 1~ 5 5
W(x,y) = isofl(oC = EAW)K/;IQ (62)
We consider now the following special strain-gradient field® K:
X3
y3
Ry = | (63)
= *,y - yx2
V2xy?
V2yx?
For such a special field the second order elastic energy is a symmetric homogeneous polynomial:
2W(x,y) = biX® + bpy® + 2(bia + V2b16)x°y + 2(bas + V2bas)xy® + (2(bys + bes + V2(bis + bas)) + bas)x*y?
+ (2(baa + bss + V2(ba6 + b3s)) + b33)x*y* + 2(by + bsa + 2bsg + V2(bsg + bas))x*y? (64)

2 This result is obviously also true in 3-D space. In 3-D space, Mindlin’s elasticity defined over a Zs-invariant media is not transverse isotropic.
3 The elastic energy expressed through this field with that special spatial dependence depend only on the full symmetrical part of the tensor A. Such a choice
of a strain-gradient field allows us to represent the anisotropic part of the tensor in the plane.
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Fig. 6. Ds-invariant Penrose tilling.

Fig. 7. Dg-invariant Ammann-Beenker tilling.

For both hemitropy or isotropy symmetry the polynomial (64) will reduce to:

(65)

b]1 (X2 +y2)3

2Wiso (X,Y)
This implies that the iso-energy lines are concentric circles. That was for at least hemitropic behavior. For the Zg/Ds-invari-

ance the polynomial will reduce to:

(66)

)2

bii (3 = 3xy?)? + by (=3x%y +?

2WD5 (xvy)
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As shown in Fig. 5 iso-energy lines for such a material would be represented by different “stars” according the values of the
parameters by, and b,,. This fact clearly show that the physical response of an Zg/Dg-invariant material depends, for 2nd-
order elasticity, on the direction of the space, and so that the tensor corresponding to this symmetry is anisotropic.

So a natural question one can wonder, is “what kind of geometry a media should have for Mindlin’s elasticity to be iso-
tropic on?”. As it would be shown in Section 5.1 the answer depend on the dimension of the physical space, but in both case
it deals with quasi-periodic tilling (Gratias et al., 2000). In 2-D space, for instance, Mindlin’s elasticity define over Penrose
tilled media should be isotropic (cf. Fig. 6). As shown Section 5.1 and explained by Auffray et al. (accepted for publication)
in 2-D space this a Z,,;-material invariance induce a Z(,1)-physical invariance.* So for Mindlin’s elasticity a Ds-invariant
media is seen as a Dqp-invariant one.

But, even if it is not the scope of this paper, it should be note that in 3-D space the Penrose tilling will not induce a trans-
verse isotropic behavior. The reason is that in 3-D, we don’t have jump of class phenomenon, and so the order of rotation
should be strictly greater than the tensor’s number of index to imply a continuous class of symmetry. So in that case we
could consider, for example, the Ds Ammann-Beenker tilling Fig. 7.

6. Conclusion

We derived all the expressions the 2nd-order tensor of Mindlin elasticity could have in a 2-D physical space depending of
the material symmetry. To achieve this goal we introduced an algebraically transformation of space to change a 2-dimen-
sional 6th-order tensor in a 6-dimensional 2nd-order tensor. This goal was reached using the formalism introduce by Mehra-
badi and Cowin (1990). That allowed us to show that the tensor Ay umn could be of eight different types. The two main
results concerning second order elasticity are that all the periodic media are anisotropic and that this elasticity depend
on the chirality of the material. The particularity of two dimensional physical space was finally pointed out, showing that
in two dimension some anomaly, like the class-jump, appears.
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