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1. Introduction

Designing lightweight and innovating materials is nowadays one of the most important challenge for material’s engi-

neering. The aim is to reach high mechanical properties with low density materials. To achieve such contradictory objec-

tives the scientific community has, for several years, focused its attention on cellular materials structured at the

mesoscale. Designing in optimal way such a material, requires to understand at the same time the relation between

architecture and physical properties, and the explicit method to calculate these properties. According to a geometric def-

inition of a RVE (Representative Volume Elementary) a classical way to obtain the overall behavior of our cellular mate-

rial is to use homogenization theory. It is well known that classical homogenization relied on a clear scale separation

between the geometric pattern and mechanical fields. If the scale separation is not broad enough, the classical theory

fail to predict the overall behavior. As shown by Boutin (1996) and Forest (1998), if we want to keep a continuum

description we have to consider a generalized continuum to model the substitution material resulting from the homog-

enization process. In particular, if we are designing millimetric microstructural materials to be implemented in centimet-

ric structures (such as, for instance, hollow spheres stacking for acoustical absorber (Gasser, 2003)) we cannot take the

strong scale separation for granted. And so, second order elastic effects have to be taken into account in the homoge-

nization approach.

In order to achieve this goal some basic facts about constitutive behavior of strain-gradient elasticity will be recalled in

Section 2. In Section 3 a mathematical transformation will introduced allowing us to handle easily the higher order tensors

that define our behavior. Using this framework all the operators we need we will obtained in Section 4. This paper will be

concluded, in Section 5, by some complementary remarks on the physics of such a behavior.

* Corresponding author.

E-mail address: nicolas.auffray@onera.fr (N. Auffray).

1

mailto:nicolas.auffray@onera.fr
http://www.sciencedirect.com/science/journal/00207683
http://www.elsevier.com/locate/ijsolstr


2. Mindlin’s strain-gradient elasticity

In classical elasticity theory stress at a material point is related to strain through the classical elasticity tensor. This rela-

tion, usually known as Hooke’s law, is written in tensorial fashion in the following way:

rðijÞ ¼ EðijÞ ðlmÞeðlmÞ ð1Þ

Where rðijÞ is the symmetrical-stress tensor, eðlmÞ the strain tensor and EðijÞ ðlmÞ the tensor describing our material property.

The notation () stands for the minor symmetries whereas :: stands for the major one.

In the case of Mindlin elasticity the material state at a material point also depends on the strain gradient. We shall note

KðlmÞn the strain-gradient tensor, which is formally defined as:

KðlmÞn ¼
oeðlmÞ

oxn
¼ eðlmÞ;n ð2Þ

where the notation, n mean the derivation of the operator along n. This strain-gradient elasticity is also known as the type II

Mindlin’s elasticity (Mindlin and Eshel, 1968).

Taking into account strain-gradient effect in the mechanical formulation led one to define symmetrically the hyperstress

tensor SðijÞk. So the knowledge, in each material point, of the stress tensor completed by the hyperstress one allows to com-

pute the effective tensor sðijÞ. This tensor is defined as:

sðijÞ ¼ rðijÞ � SðijÞk;k ð3Þ

and is the one to consider to calculate the local equilibrium (Forest, 2004). Tensors rðijÞ and SðijÞk are related with eðlmÞ and

KðlmÞn through the following general constitutive relation:

rðijÞ ¼ EðijÞ ðlmÞeðlmÞ þMðijÞðlmÞnKðlmÞn ð4Þ

SðijÞk ¼ MðijÞkðlmÞeðlmÞ þ AðijÞk ðlmÞnKðlmÞn ð5Þ

where the tensor AðijÞk ðlmÞn is the second order elasticity tensor and MðijÞðlmÞn the coupling tensor between first and second

order elasticity.

As explained by Triantafyllidis and Bardenhagen (1996) in a three dimension physical space for a centro-symmetric med-

ia, this coupling tensor will vanish. In a bidimensional space this tensor would vanish for any media that is even order rota-

tional invariant (Auffray et al., accepted for publication). For both cases the former constitutive relations could be rewritten:

rðijÞ ¼ EðijÞ ðlmÞeðlmÞ ð6Þ
SðijÞk ¼ AðijÞk ðlmÞnKðlmÞn ð7Þ

In this study we will focus our attention on operators describing AðijÞk ðlmÞn for each material’s symmetry classes. The different

expressions of the operators are necessary for a correct numerical implementation of that kind of behavior in FEM code. First

of all, in order to handle the tensor formerly defined, mathematical transformation should be introduced, allowing us to turn

our 2-dimensional 6th-order tensor into a 6-dimensional 2nd-order tensor.1 This will allow us to rewrite the second order

constitutive relation as:

bSa ¼ bAðabÞ bK b ð8Þ

3. Change of space

We aim at obtaining the operators defined in Eqs. (6) and (7) to implement in FEM-code to compute strain-gradient elas-

ticity. We are dealing here especially in 2-D space, nevertheless most of our approach would still be valid in 3-D space. The

first order elasticity was studied in depth by Mehrabadi and Cowin (1990). So, our attention will be focused on the 2nd-order

elasticity. In a 2-D space the 3rd-order tensor KðlmÞn belong to a 6-D vector space, and the fully anisotropic tensor AðijÞk ðlmÞn
would belong to an 21-D vector space.

As a 6th-order tensor is not an easy object to handle, a transformation will now be introduced to turn that object into a

2nd-order tensor. Let’s begin with some remarks about matrix representations of a tensor.

3.1. Matrix representation

In the case of Hooke’s law the classical Voigt matrix representation of constitutive equation is:

1 The permutation order-dimension is just a coincidence, in 3-D the same transformation would turn a 3-dimensional 6th-order tensor into a 18-dimensional

2nd-order tensor.
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But, as explained by Mehrabadi and Cowin (1990), this notation does not define a 2nd-order tensor, it is just a common

matricial representation. A rigorous expression of that relation in a tensorial fashion will be:
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In the same way the rigorous way of representing the 6th-order tensor A as a 2nd-order, one according to its symmetries, is:
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That is a true tensorial way of writing the constitutive relation SðijÞk ¼ AðijÞk ðlmÞnKðlmÞn. An example for that representation is the

following. According to Mindlin and Eshel (1968) in indicial the isotropic strain-gradient relation could be written as:

Sijk ¼
1

2
a1ðK lljdik þ K llidkj þ 2K lkldijÞ þ a2ðK ljldikþ K lildjkÞ þ 2a3K llkdij þ 2a4K ijk þ a5ðK jki þ K ikjÞ ð12Þ

So the tensorial representation of that relation is:
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with

c1 ¼ 2ða1 þ a2 þ a3 þ a4 þ a5Þ; c2 ¼ a1 þ 2a2; c3 ¼
ffiffiffi
2

p 1

2
a1 þ a3

� �
;

c4 ¼ 2ða2 þ a4Þ; c5 ¼
ffiffiffi
2

p 1

2
a1 þ a5

� �
; c6 ¼ a3 þ 2a4 þ a5

Let’s detail the way this transformation works.

3.2. Change of space formalism

The change of space could be expressed by the following diagram (14):

E !f E
n !g E

2n

# h # h
�

bE !ĝ bE2

ð14Þ

E is the physical space, a vector space which basis vectors are ei; i varying from 1 to d for a d-dimensional physical space.

Vector space of higher dimensions could be generated by the self tensor product of the initial space. The space obtained

by n� 1 self product of E will be noted E
n and its dimension is d

n
. So E

3 is a d
3
-dimensional vector space which base is

ei � ej � ek. An endomorphism on this space belong to an 2nd-order vector space of d
2n

dimensions. In the same time E
n could
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be associated with bE a true d
n
-dimensional physical space which vectors basis are ea. And so elements of EndðbEÞ are 2nd-

order tensor belonging to bE2. The basis of that space is ea � eb. For the sake of simplicity the indexes symmetries of the dif-

ferent spaces were neglected, taking them into account don’t change the philosophy of our transformation. An orthonormal

basis of bS will now be constructed (with the index symmetry now), and the application h will be defined.

3.2.1. Construction of equivalent basis

In strain-gradient elasticity S
3 is the vector space of K

’
and S

’
. This space is symmetric with respect of the first two indices

permutation. Let’s construct the 6-D space bS; its basis vectors êa could be expressed as:

ê1 ¼ e1 � e1 � e1; ê2 ¼ e2 � e2 � e2; ê3 ¼ e2 � e2 � e1;

ê4 ¼ e1 � e1 � e2; ê5 ¼ 1ffiffiffi
2

p ðe1 � e2 þ e2 � e1Þ � e2; ê6 ¼ 1ffiffiffi
2

p ðe1 � e2 þ e2 � e1Þ � e1

The orthonormality of ei implies the one of êa and so we got:

êa � êb ¼ dab ð15Þ

for a and b varying from 1 to 6. dab stands for the classical Kronecker symbol. This implies the expression of h linking de

coefficients of Sn with those of bS. So given T ðijÞk in S
3 and bT a, its image in bS, we got h defined by:

bT a ¼ hðT ijkÞ ¼
T ijk i ¼ j
ffiffiffi
2

p
T ijk i–j

(

ð16Þ

And so do for the strain gradient and the hyperstress tensors:

bK aêa ¼ hðK ijkÞêa; bSaêa ¼ hðSijkÞêa ð17Þ

We could now construct the basis of bS2 by the tensor product of the basis bS. So given a tensor TðijÞk ðlmÞn in S
6 its image bT ab in

bS2 is obtained by the application h
I

:

bT ab ¼ h
IðT ijklmnÞ ¼

T ijklmn i ¼ j and j ¼ k
ffiffiffi
2

p
T ijklmn i–j and l ¼ m or i ¼ j and l–m

2T ijklmn i–j and l–m

8
><

>:
ð18Þ

3.2.2. Derivation of transformation matrix

As the space transformation in now introduced, let’s focus on the way an Oð2Þ-orthogonal operator could be transformed

into a Oð6Þ-orthogonal operator. Let’s e0i be the image of the vectors ei under the action of Q ;Q 2 Oð2Þ. We got:

e0i ¼ Q ijej ð19Þ

Let’s, in the same way, ê0a be the image of êa under the action of bQ . bQ is defined as the image of Q in Oð6Þ and we got:

ê0a ¼ bQ abêb ð20Þ
bQ will be expressed, now, as a function of Q. The action of Q on a E

3 could be expressed as:

e0i � e0j � e0k ¼ Q ilQ jmQknel � em � en ð21Þ

The same action on a element of the symmetrized space S
3 lead to:

1

2
ðe0i � e0j þ e0j � e0iÞ � e0k ¼

1

2
ðQ ilQ jm þ Q imQ jlÞQ knel � em � en ð22Þ

The operator we just written is the following 6th-order tensor:

QS
3

¼ 1

2
ðQ ilQ jm þ Q imQ jlÞQknei � ej � ek � el � em � en ð23Þ

By the h
I

application introduced in the previous section we could turn this 6th-order tensor into a 2nd-order one in bS2. And

so:

bQ abêa � êb ¼ h
I 1

2
ðQ ilQ jm þ Q imQ jlÞQ kn

� �
êa � êb ð24Þ

The following table sum-up the information about the change of system

ð25Þ

4



If we consider now Q 2 E
2 we got:

Q ¼
Q11 Q12

Q21 Q22

� �
ð26Þ

we could construct bQ 2 bS2 as:
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In the case of Oð2Þ we consider the two following operators: Q rot the rotation operator, Qmir the mirror operator.

Q rot ¼
cosðhÞ � sinðhÞ
sinðhÞ cosðhÞ

� �
; Qmir ¼

1 0

0 �1

� �
ð28Þ

Theirs images in Oð6Þ are:
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bQmir ¼

1 0 0 0 0 0

0 �1 0 0 0 0
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Where, for the sake of simplicity, cosðhÞ and sinðhÞ have been noted cðhÞ, and sðhÞ. We could check that for Q 2 Oð2Þ we got:

bQ T bQ ¼ IdbS2 ð31Þ

so the orthogonality of Q implies the one of bQ and so bQ 2 Oð6Þ.
With that transformation, completed by the expression of bQ , we have the tools we need to study the different expressions

of AðijÞk ðlmÞn for different material’s symmetry classes.

4. Derivation of anisotropic operators

4.1. Expression of invariance

Let G be a group of operation,a materialMwill be said G-invariant if the action of all the element of G transform the mate-

rial into itself. This set of operation will be noted GM, namely the material symmetry’s group, and defined by:

GM ¼ fQ 2 Oð2Þ; QIM ¼ Mg ð32Þ

WhereI represents the action of Q uponM. As we are dealing with 2-D materials, our attention will be restricted to the 2-D

orthogonal group: Oð2Þ. Moreover we know that GM must be conjugate to a subgroup of Oð2Þ (Zheng and Boehler, 1994). The

collection of those subgroups is, according to Armstrong (1988):

R :¼ fI; Zn;Dn; SOð2Þ;Oð2Þg ð33Þ

Where I is the identity group. Zn is the cyclic group of order n, it is the group of rotations of a chiral figure that possesses an n-

fold invariance (cf. Fig. 2 for an example of an Z3-invariant figure). Dn is the dihedral group of order 2n, it is the group of

operations that leave a regular n-gone invariant (cf. Fig. 1 for the example of an D3-invariant figure). SOð2Þ is the continuous

group of rotations. The generator of the Zn-invariance is the matrix Q rot, and for the Dn-invariance the set of generator have to

completed with the matrix Qmir.
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Consider now a physical propertyP defined on our materialM. The physical group of symmetry of that property could be

defined as the set of operations that leave the behavior invariant. This set of operations will be noted GP, namely the

physical’s symmetry group and defined as:

GP ¼ fQ 2 Oð2Þ; QIP ¼ Pg ð34Þ

In our case the action of Q upon the tensor A could be rewritten as:

GA ¼ fQ 2 Oð2Þ; Q ioQ jpQ kqQ lrQmsQntAopqrst ¼ Aijklmng ð35Þ

By the mean of Neumann’s principle (Zheng and Boehler, 1994), we got the inclusion:

GM #GP ð36Þ

this just mean that every operation that leaves our material invariant will let our physical properties invariant. Nevertheless

the physical property could appear to be more symmetrical than the material (Auffray, 2008).

In the following subsections, consequences of material symmetries on tensorial components will be studied. This work

will be simplified by the use of transformation introduced in Section 3, and so, the group of symmetry of tensor A could

be rewritten as:

GA ¼ fQ 2 Oð2Þ; bQ ac
bQ bd

bAcd ¼ bAabg ð37Þ

The restriction on tensorial coefficients will be the different solutions of the following matricial system:

bQ T bA bQ ¼ bA ð38Þ

for Q belonging to the generators of all Oð2Þ-subgroups.
Let’s begin by studying the consequence of a Zn-material invariance on AðijÞk ðlmÞn.

4.2. Zn-material invariance

In the following subsections the following notation will adopted for the matricial coefficients:

� aij will stand for not final coefficients, some more transformation are needed to reach the minimal expression;

� bij will be the coefficients of the minimal expression, bij are independent;

� ci will be used to make comparison between different forms, the ci are not independent.

In the same way a non-minimal matrix representation will be noted by a � exponent.

Fig. 1. D3-invariant figure.
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4.2.1. Z2-invariance

For Z2 no restriction will be imposed on A.

4.2.2. Z3=Z6-invariance

The Z3 and the Z6-invariance will lead to the same following operator:
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2

p
ffiffiffi
2

p
ða11 � a22Þ þ a15

a11 � a22 þ a44 a12 �a15 þ a22�a44ffiffi
2

p 3a12þa23ffiffi
2

p

a44
a12�a23ffiffi

2
p �

ffiffiffi
2

p
a11 � a15 þ 3a22�a44ffiffi

2
p

a11 � a13 � a22�a44
2

2a12

�a11 � a13 þ 3a22þa44
2

0

BBBBBBBBB@

1

CCCCCCCCCA

ð39Þ

This operator seems to depend on 7 different coefficients. But writing of the system:

QAQT ¼ 0 ð40Þ

shows that there exists a rotation:

sinð6hÞ
cosð6hÞ ¼

2a12

a22 � a11
ð41Þ

allowing us to reduce the number of parameters from 7 to 6. The operator will have, in an appropriate basis, the following

expression:

bAZ6 ¼

b11 0 b13 b14
b11�b33ffiffi

2
p � b35 � b14ffiffi

2
p

b22 �b14 b11 � b22 þ b13
b14ffiffi
2

p 3b11�b33ffiffi
2

p � b35 �
ffiffiffi
2

p
b22

b33 0 b35 � b14ffiffi
2

p

b33 þ b22 � b11
b14ffiffi
2

p
ffiffiffi
2

p
ðb22 � b11Þ þ b35

b11þb33
2

� b13 0
�3b11þb33

2
� b13 þ 2b22

0

BBBBBBBBBB@

1

CCCCCCCCCCA

ð42Þ

where bij coefficients are functions of the former aij coefficients of bA�
Z6
. So, finally, the tensor A is defined by 6 coefficients in

its hexatropic chiral class.

An example of a material with such a geometry could be found in Prall and Lakes (1996). The geometry of the honey-

combed studied by the authors is described Fig. 3.

4.2.3. Z4-invariance

For the Z4-invariance we got:

bA�
Z4

¼

a11 0 a13 a14 a15 a16
a11 �a14 a13 �a16 a15

a33 0 a35 a36
a33 �a36 a35

a55 0

a55

0

BBBBBB@

1

CCCCCCA
ð43Þ

Fig. 2. Z3-invariant figures.
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As in the case of the Z3=Z6-invariance a rotation decreasing the operator’s number of parameters could be found. The action

of the following rotation:

sinð4hÞ
cosð4hÞ ¼

2
ffiffiffi
2

p
ða16 � a36Þ

ða11 þ a33 � 2ða13 þ a55ÞÞ
ð44Þ

reduces our former operator to the new one:

bAZ4 ¼

b11 0 b13 b14 b15 b16

b11 �b14 b13 �b16 b15

b33 0 b35 b16

b33 �b16 b35

b55 0

b55

0

BBBBBBBB@

1

CCCCCCCCA

ð45Þ

In this new basis the former coefficients a16 and a36 are now equal and are denoted by the new coefficient b16. And so the

number of independent coefficients in the orthotropic chiral class decrease from 9 to 8.

4.2.4: Z5=Zn;n P 7-invariance

For a Z5-invariance, and for any Zn-invariance in which n P 7, we got the following operator:

bASOð2Þ ¼

b11 0 b13 b14
b11�b33ffiffi

2
p � b35 � b14ffiffi

2
p

b11 �b14 b13
b14ffiffi
2

p b11�b33ffiffi
2

p � b35

b33 0 b35 � b14ffiffi
2

p

b33
b14ffiffi
2

p b35

b11þb33
2

� b13 0

b11þb33
2

� b13

0

BBBBBBBBBBBB@

1

CCCCCCCCCCCCA

ð46Þ

This symmetry class depends on 5 parameters.

4.2.5. Analysis of the hemitropic class

It can be noticed that for n P 7 the order of the symmetry exceed the order of the tensor A. According to Hermann’s the-

orem (Auffray, 2008), the symmetry group of A must be, in that case, conjugate to a continuous group. As we are dealing with

subgroups of Oð2Þ this continuous group must be either SOð2Þ or Oð2Þ. In other words, for a Z5-invariance, and for any Zn-

invariance in which n P 7, the tensor A must be either hemitropic (SOð2Þ-invariant) or isotropic (Oð2Þ-invariant). So in our

case A is at least hemitropic. Let’s

b11 ¼ c1; b13 ¼ c2; b33 ¼ c4; b35 ¼ c5

where ci for i varying from 1 to 6 are the Mindlin’s coefficients. The following relations are verified:

c3 ¼ b11 � b33ffiffiffi
2

p � b35; c6 ¼ b11 þ b33

2
� b13

and if we note c7 ¼ b14, we finally obtain:

Fig. 3. Z6-invariant honeycomb.
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bASOð2Þ ¼

c1 0 c2 c7 c3 � c7ffiffi
2

p

c1 �c7 c2
c7ffiffi
2

p c3

c4 0 c5 � c7ffiffi
2

p

c4
c7ffiffi
2

p c5

c6 0

c6

0

BBBBBBBBBBB@

1

CCCCCCCCCCCA

ð47Þ

This expression differs from the isotropic one (13) by the presence of the c7 coefficient. But, as A is at least hemitropic, it does

not exist any rotation that could make c7 disappear. So the Z5=Zn;n P 7-invariance, lead to a non-isotropic invariance,

namely the hemitropic invariance.

4.3. Dn-material invariance

For the dihedral-invariance, former results have to be combined with mirror-invariance. This means the invariance of our

former operators under the action of bQmir.

4.3.1: D2-invariance

For a D2-invariance, we obtain the operator:

bADð2Þ ¼

b11 0 b13 0 b15 0

b22 0 b24 0 b26

b33 0 b35 0

b44 0 b46

b55 0

b66

0

BBBBBBBBBB@

1

CCCCCCCCCCA

ð48Þ

This system is defined by 12 coefficients.

4.3.2. D3=D6-invariance

The D3 and the D6-invariance lead to:

bADð3Þ ¼ bADð6Þ ¼

b11 0 b13 0 b11�b33ffiffi
2

p � b35 0

b22 0 b11 � b22 þ b13 0 3b11�b33ffiffi
2

p � b35 �
ffiffiffi
2

p
b22

b33 0 b35 0

b33 þ b22 � b11 0
ffiffiffi
2

p
ðb22 � b11Þ þ b35

b11þb33
2

� b13 0

�3b11þb33
2

� b13 þ 2b22

0

BBBBBBBBBBBBB@

1

CCCCCCCCCCCCCA

ð49Þ

This class is defined by 5 coefficients.

4.3.3: D4-invariance

For D4, we got:

bADð4Þ ¼

b11 0 b13 0 b15 0

b11 0 b13 0 b15

b33 0 b35 0

b33 0 b35

b55 0

b55

0

BBBBBBBBBBB@

1

CCCCCCCCCCCA

ð50Þ

This class is defined by 6 coefficients.

4.3.4. D5=Dn;n P 7-invariance

And finally for D5 and Dn;n > 7 we got the following operator:

9



bAOð2Þ ¼

b11 0 b13 0 b11�b33ffiffi
2

p � b35 0

b11 0 b13 0 b11�b33ffiffi
2

p � b35

b33 0 b35 0

b33 0 b35

b11þb33
2

� b13 0
b11þb33

2
� b13

0

BBBBBBBBBB@

1

CCCCCCCCCCA

ð51Þ

which is defined by only 4 coefficients. If we substitute those coefficients with the ci one of Mindlin second order elasticity

we obtain:

bAOð2Þ ¼

c1 0 c2 0 c3 0

0 c1 0 c2 0 c3

c2 0 c4 0 c5 0

0 c2 0 c4 0 c5

c3 0 c5 0 c6 0

0 c3 0 c5 0 c6

0

BBBBBBBB@

1

CCCCCCCCA

ð52Þ

The mirror-invariance make the hemitropic coefficient c7 to vanish and we obtain the isotropic operator. So we have now

obtained for the second order elasticity in a bidimensional space 8 different expressions for the operator AðijÞk ðlmÞn according

to its different classes of symmetry. These results could be sum-up in the following table:

GM GA dim

I; Z2 I 21

D2 D2 12

Z4 Z4 8

D4 D4 6

Z3; Z6 Z6 6

D3;D6 D6 5

Z5; Zn;n P 7 SOð2Þ 5

D5;Dn;n P 7 Oð2Þ 4

In a two dimensional physical space, the group of symmetry an operator AðijÞk ðlmÞn belongs to must be conjugate to an ele-

ment of the following set:

RA : fI;D2; Z4;D4; Z6;D6; SOð2Þ;Oð2Þg ð53Þ

5. Discussion

Besides the fact we obtain, in a 2-D space, the explicit expression of the anisotropic second order elastic tensor in strain-

gradient elasticity theory, some points concerning symmetry of the operators are worth emphasizing.

5.1. Class jump phenomenon

The results presented here are obtained considering a 2-D physical space, whereas the real physical space is 3-D. It is

therefore useful to analyse the consequence of this hypothesis.
bA tensor could be represented, in 3-D space, by the following block matrix:

x� x½ � x� y½ � x� z½ � x� c½ �
y� y½ � y� z½ � y� c½ �

z� z½ � z� c½ �
c � c½ �

0

BBB@

1

CCCA ð54Þ

where x; y; z stand for mechanisms along the different direction, and c stands for a coupling between all of those mechanisms.

This full matrix is square and of dimension 18. A sub-operator modeling effect along the x and y direction could be extracted.

This sub operator will be of the following form:

x� x½ � x� y½ �
y� y½ �

� �
ð55Þ
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This matrix is obviously square, and it could be shown that its dimension is 10. What we called x and y are kind of vectors

containing indexes. We got:

x ¼

111

221

331

122

133

2

6666664

3

7777775
; y ¼

222

332

112

233

121

2

6666664

3

7777775
ð56Þ

And so if we get rid of elements with indices equal to 3, we obtain x2D and y2D each of length 3. And so we could construct the

following sub-operator:

x2D � x2D½ � x2D � y2D½ �
y2D � y2D½ �

� �
ð57Þ

This last operator is the operator of Mindlin’s elasticity in a 2D-space, the operator we have been working on since the begin-

ning of that paper.

The operator we obtain is so the one we would obtain by suppressing rows and columns with an out-of-plane indice in

the expression of the 3-D operator. This operation implies a loss of information. The most noticeable consequence is the exis-

tence for 2-D modeling of a ‘‘class-jump” phenomena. An example of such phenomenon is the following.

In Section 4.2 we notice that the Hermann’s theorem implies that for an order of symmetry that exceed 6 the operator of

strain-gradient elasticity must possesses a continuous group of symmetry. We also show in the same subsection that it was

also the case for an order of symmetry equal to 5. The fact a 5-fold axe induce a continuous symmetry is a dimensional

anomaly specific to bi-dimensional space. In Fig. 4, we plot, for the cyclic group, the material invariance group against

the physical invariance group. We observe that for A, that is an even-order tensor, an odd-order material-invariance imply

a physical invariance of twice order: a Z2pþ1-material invariance implies a Z2ð2pþ1Þ-physical invariance. This fact which is spe-

cific to bi-dimensional space can be formally proved working on the harmonic decomposition of the operator (Auffray et al.,

accepted for publication). This phenomena could also be observed for classical elasticity. So the difference induced on an

operator by a Z2pþ1-material symmetry or a Z2ð2pþ1Þ one just concern out-of-plane coefficients. This explain why continuous

symmetry class appear for an 5-fold symmetry whereas we are not in the case of Hermann’s theorem. In case of bi-dimen-

sional space an 5-fold symmetry is seen as a 10-fold symmetry and this time we are in the case of the former theorem. Fi-

nally, it’s well known since Mindlin that isotropic strain-gradient elasticity depend on five independent coefficients. But as

we showed here this number of coefficient depend on the dimension of the physical space, for a two dimensional space this

number decreases to 4. This fact depend on the operator, for the conventional elasticity the number of isotropic coefficients

is the same in two and three dimensions (Zou et al., 2001).

Fig. 4. Jump of symmetry classes between material and physical invariances.
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If we get back to the expression of matrices (55) and (57), we understand that the last one don’t take into account for out-

of plane coupling. In (Auffray et al., accepted for publication) it has been proved that, in 3-D, different material invariances

lead to different physical behaviors. This fact means that the matrix (55) is different for even and odd-material invariance,

meanwhile its submatrix (57) remains the same. This remark, made through the study of operators in 2-D space, has a deep

meaning about the physical consequence of material symmetry in 3-D. In, 3-D, the difference between a Z2pþ1 and a Z2ð2pþ1Þ
material invariance will just concerns out-of-plane coupling coefficients. This remark holds true for any kind of linear

behavior.

5.2. Chiral-sensitivity

The second is the fact that strain-gradient elasticity is a chiral-sensitive behavior. For conventional elasticity, for example,

the Z4-invariance and the D4 lead to the same elastic operator expressed in two different basis; as shown by Forte and Via-

nello (1996) you can always find a angle of rotation to turn the Z4-invariant operator into the D4 one. As shown in,Section 4

for the second order elasticity after reduction the operators for the two different class remain distinct. The existence of an

hemitropic class of symmetry, class which does not exist for classical elasticity, shows that the sensitivity to chirality is inde-

pendent of the choice of an appropriate basis. The chirality coupling can be easily illustrated in the following way. In Section

3 we introduce the following matrix representation for bA:

S111

S222

S221

S112ffiffiffi
2

p
S122ffiffiffi

2
p

S121

0

BBBBBBBB@

1

CCCCCCCCA

¼

A111111 A111222 A111221 A111112

ffiffiffi
2

p
A111122

ffiffiffi
2

p
A111121

A222111 A222222 A222221 A222112

ffiffiffi
2

p
A222122

ffiffiffi
2

p
A222121

A221111 A221222 A221221 A221112

ffiffiffi
2

p
A221122

ffiffiffi
2

p
A221121

A112111 A112222 A112221 A112112

ffiffiffi
2

p
A112122

ffiffiffi
2

p
A112121ffiffiffi

2
p

A122111

ffiffiffi
2

p
A122222

ffiffiffi
2

p
A122221

ffiffiffi
2

p
A122112 2A122122 2A122121ffiffiffi

2
p

A121111

ffiffiffi
2

p
A121222

ffiffiffi
2

p
A121221

ffiffiffi
2

p
A121112 2A121122 2A121121

0

BBBBBBBBB@

1

CCCCCCCCCA

K111

K222

K221

K112ffiffiffi
2

p
K122ffiffiffi

2
p

K121

0

BBBBBBBB@

1

CCCCCCCCA

ð58Þ

We can rewrite this operator separating the strain-gradient mechanisms along the x-direction and the y-direction, leading

to:

S111

S221ffiffiffi
2

p
S122

S222

S112ffiffiffi
2

p
S121

0

BBBBBBBB@

1

CCCCCCCCA

¼

A111111 A111221

ffiffiffi
2

p
A111122 A111222 A111112

ffiffiffi
2

p
A111121

A221111 A221221

ffiffiffi
2

p
A221122 A221222 A221112

ffiffiffi
2

p
A221121ffiffiffi

2
p

A122111

ffiffiffi
2

p
A122221 2A122122

ffiffiffi
2

p
A122222

ffiffiffi
2

p
A122112 2A122121

A222111 A222221

ffiffiffi
2

p
A222122 A222222 A222112

ffiffiffi
2

p
A222121

A112111 A112221

ffiffiffi
2

p
A112122 A112222 A112112

ffiffiffi
2

p
A112121ffiffiffi

2
p

A121111

ffiffiffi
2

p
A121221 2A121122

ffiffiffi
2

p
A121222

ffiffiffi
2

p
A121112 2A121121

0

BBBBBBBBB@

1

CCCCCCCCCA

K111

K221ffiffiffi
2

p
K122

K222

K112ffiffiffi
2

p
K121

0

BBBBBBBB@

1

CCCCCCCCA

ð59Þ

We can rewrite now the matrix we obtain in this system. We shall do that here just for the hemitropic and the isotropic

cases, but this result stands for any Zk-invariance and Dk-invariance: Zk-invariance behave likes the hemitropic case mean-

while Dk-invariance is stimulate to the isotropic one. For the isotropic-invariance, and for any Dk-invariance, in the former

system of vectors the matrix operators are block-diagonal. We have, on one hand:

bAOð2Þ ¼

c1 c2 c3 0 0 0

c4 c5 0 0 0

c6 0 0 0

c1 c2 c3

c4 c5

c6

0

BBBBBBBB@

1

CCCCCCCCA

ð60Þ

for hemitropic-invariance, and for any Zk-invariance, we have, on the other hand:

bASOð2Þ ¼

c1 c2 c3 0 c7 � c7ffiffi
2

p

c4 c5 �c7 0 c7ffiffi
2

p

c6 � c7ffiffi
2

p � c7ffiffi
2

p 0

c1 c2 c3

c4 c5

c6

0

BBBBBBBBB@

1

CCCCCCCCCA

ð61Þ

In this system the upper right block matrix represent the coupling effect between strain gradient in the x-direction and in the

y-direction. If the material is invariant under a mirror-symmetry this coupling effect vanish. Otherwise the coupling effect

appears in the form of a skew-symmetric matrix. This skew-symmetric coupling is a chiral-sensitive mechanism.
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5.3. Anisotropy of plane periodic tilling

We observe that a material symmetry of order 6 will lead to an anisotropic elastic behavior. So whereas 1st-order elas-

ticity is isotropic for a 6-fold invariant material, its 2nd-order term will become anisotropic. This fact makes sense since that

the order of rotation group that allow a bi-dimensional-media to be periodic is finite and must be either 1, 2, 3, 4 or 6. This

fact is known as the crystallographic restriction. So it can be concluded that for any bidimensional periodic material, the

strain-gradient elasticity must be anisotropic.2 This effect can be shown by expressing the 2nd-order elastic energy W in

the plane ðx; yÞ as a function of KðijÞkðx; yÞ. This energy could be expressed through the Voigt’s formalism:

Wðx; yÞ ¼ 1

2
bSa bK a ¼ 1

2
bAðabÞ bK b

bK a ð62Þ

We consider now the following special strain-gradient field3 K̂:

K̂ðx; yÞ ¼

x3

y3

xy2

yx2ffiffiffi
2

p
xy2ffiffiffi

2
p

yx2

0

BBBBBBBB@

1

CCCCCCCCA

ð63Þ

For such a special field the second order elastic energy is a symmetric homogeneous polynomial:

2Wðx; yÞ ¼ b11x
6 þ b22y

6 þ 2ðb14 þ
ffiffiffi
2

p
b16Þx5yþ 2ðb23 þ

ffiffiffi
2

p
b25Þxy5 þ ð2ðb13 þ b66 þ

ffiffiffi
2

p
ðb15 þ b46ÞÞ þ b44Þx4y2

þ ð2ðb24 þ b55 þ
ffiffiffi
2

p
ðb26 þ b35ÞÞ þ b33Þx2y4 þ 2ðb12 þ b34 þ 2b56 þ

ffiffiffi
2

p
ðb36 þ b45ÞÞx3y3 ð64Þ

2 This result is obviously also true in 3-D space. In 3-D space, Mindlin’s elasticity defined over a Z6-invariant media is not transverse isotropic.
3 The elastic energy expressed through this field with that special spatial dependence depend only on the full symmetrical part of the tensor A. Such a choice

of a strain-gradient field allows us to represent the anisotropic part of the tensor in the plane.

Fig. 5. Different isoenergy curves for different tensor parameters b11 and b22 .
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For both hemitropy or isotropy symmetry the polynomial (64) will reduce to:

2Wisoðx; yÞ ¼ b11ðx2 þ y2Þ3 ð65Þ

This implies that the iso-energy lines are concentric circles. That was for at least hemitropic behavior. For the Z6/D6-invari-

ance the polynomial will reduce to:

2WD6
ðx; yÞ ¼ b11ðx3 � 3xy2Þ2 þ b22ð�3x2yþ y3Þ2 ð66Þ

Fig. 7. D8-invariant Ammann–Beenker tilling.

Fig. 6. D5-invariant Penrose tilling.
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As shown in Fig. 5 iso-energy lines for such a material would be represented by different ‘‘stars” according the values of the

parameters b11 and b22. This fact clearly show that the physical response of an Z6=D6-invariant material depends, for 2nd-

order elasticity, on the direction of the space, and so that the tensor corresponding to this symmetry is anisotropic.

So a natural question one can wonder, is ‘‘what kind of geometry a media should have for Mindlin’s elasticity to be iso-

tropic on?”. As it would be shown in Section 5.1 the answer depend on the dimension of the physical space, but in both case

it deals with quasi-periodic tilling (Gratias et al., 2000). In 2-D space, for instance, Mindlin’s elasticity define over Penrose

tilled media should be isotropic (cf. Fig. 6). As shown Section 5.1 and explained by Auffray et al. (accepted for publication)

in 2-D space this a Z2pþ1-material invariance induce a Z2ð2pþ1Þ-physical invariance.
4 So for Mindlin’s elasticity a D5-invariant

media is seen as a D10-invariant one.

But, even if it is not the scope of this paper, it should be note that in 3-D space the Penrose tilling will not induce a trans-

verse isotropic behavior. The reason is that in 3-D, we don’t have jump of class phenomenon, and so the order of rotation

should be strictly greater than the tensor’s number of index to imply a continuous class of symmetry. So in that case we

could consider, for example, the D8 Ammann–Beenker tilling Fig. 7.

6. Conclusion

We derived all the expressions the 2nd-order tensor of Mindlin elasticity could have in a 2-D physical space depending of

the material symmetry. To achieve this goal we introduced an algebraically transformation of space to change a 2-dimen-

sional 6th-order tensor in a 6-dimensional 2nd-order tensor. This goal was reached using the formalism introduce by Mehra-

badi and Cowin (1990). That allowed us to show that the tensor AðijÞk ðlmÞn could be of eight different types. The two main

results concerning second order elasticity are that all the periodic media are anisotropic and that this elasticity depend

on the chirality of the material. The particularity of two dimensional physical space was finally pointed out, showing that

in two dimension some anomaly, like the class-jump, appears.
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