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Abstract—For mobile robots to navigate autonomously,
knowing with certainty their location is fundamental. How-
ever, this is difficult when operating in complex outdoors
environments, and often results are inaccurate. To guarantee
the certainty of the location estimates, the notion of integrity
is used. This is a measure of the degree of confidence that
provides a guaranteed location zone. The process consists
in removing outliers amongst the measurements using Fault
Detection and Exclusion (FDE) algorithms and then to compute
Protection Levels (PL) that quantify the integrity zone. This is
applicable mainly to Global Navigation Satellite Sytems (GNSS)
in the aerospace domain where data redundancy exists and few
multipath, which is not the case for land applications. In this
paper, a new approach to localization integrity for land mobile
robots is proposed by combining vehicle and GNSS data, stored
within a short-term memory, the data horizon. This formulation
allows for the application of FDE algorithms on the combined
data set. It also leads to a gain of redundancy that enables
PLs to be reduced and to increase the availability of integrity
algorithms.

I. INTRODUCTION

Currently mobile robots are being successfully deployed

in complex outdoors environments. As machines and indi-

viduals become interconnected multiple opportunities exist

for Location Based Services (LBS). The feasibility of these

applications depends very much on the accuracy of the local-

ization systems, a critical issue for the successful deployment

of vehicle navigation and safety related applications [1], [2].

When evolving outdoors the main source of absolute

position information originates at GNSS, therefore when

occlusion or signal multipath occurs, these result in in-

accuracies. A thorough performance evaluation of GNSS

receivers operating in standard traffic conditions has shown

that the standard deviations recorded from the receivers do

not reflect the true error of the vehicle trajectory [3]. As a

result, assumptions with respect to the localization accuracy

might be misleading. It is difficult to know when errors exist,

this prevents the deployment of safety-related and location

dependent vehicle navigation applications.

The concept of integrity has been of concern since the

early 90s as aircraft navigation became more dependent on

GNSS. It is defined as the measure of trust which can be

placed in the correctness of the information supplied by the

total system. It is an integral part of the Required Navigation

Performance (RNP) formulation defined by the International

Civil Aviation Organization for aircraft navigation purposes.

The RNP includes concepts such as accuracy, integrity,

continuity and availability to describe the safe navigation of

vessels within a defined airspace.

To ensure the safe navigation of mobile robots, a similar

approach could be adopted, by introducing the concept of

integrity. Its availability will allow for deciding whether the

position estimate is reliable for its intended use, and thus for

the robot to decide if the location dependent applications can

be performed.

Conventional approaches to integrity measurement rely

on two algorithms: Fault Detection and Exclusion (FDE) to

reject outliers from the measured data and the computation

of the Protection Level (PL) associated to an integrity risk.

These algorithms are originally suited to aerospace applica-

tions where high redundancy of data exists and faults are

rare. In contrast, when navigating in urban environments,

GNSS signals are occluded and thus there is seldom re-

dundancy. Furthermore, multiple faults exists due to errors

on the pseudo-ranges (estimated time of flight of the GPS

signal, expressed in meters) originating from the multipath

(reflection of GPS signals on the environment inducing a

delay in the estimation). Typical localization systems for land

robots, combine GNSS and dead-reckoning data. It shall be

then possible to apply the Integrity concept to these data.

This paper proposes a new formulation of the localization

problem, it combines vehicle ego-state information with

GNSS data. It introduces the use of the data horizon concept,

as a short term memory used to store measurement data,

which allows for the use of standard integrity algorithms.

FDE algorithms are applied on both GNSS and vehicle mea-

surements due to the expression of their mutual redundancies

through time. The PLs are decreased for the same reasons

Finally, the redundancy gain allows for the application of

integrity algorithms more often than when only relying on

GNSS data.

The remainder of the paper is organized as follows:

Section II presents FDE and PL algorithms developed in

the aerospace domain for background purposes. Section III

introduces the ground vehicle specificities found in com-

plex urban environments applied to localization systems.

The principles of the proposed formulation are described

in Section IV. The application of the new formulation to

passenger vehicles using GNSS based localization system

is presented in Section V. The validation of the proposed

approach is included in Section VI. A critique of the results

and its applicability to navigation tasks are given in Section

VII.



II. FAULT DETECTION AND EXCLUSION & PROTECTION

LEVEL ALGORITHMS

A fault is defined as “an unacceptable deviation of at

least one characteristic property of the system from stan-

dard conditions” [4]. When the GPS is operating in ideal

conditions, disturbances, such as multipath, are assumed

to be non existent, the system is considered “fault free”.

For ground vehicles, multipath are considered as GNSS

faults, as well as a wheel slippage when using wheel speed

sensors. To remove these faults, FDE algorithms based on

measurement redundancy are applied. Next, the degree of

trust that can be placed in the location estimates is calcu-

lated. This is represented by protection levels (PL) [5]. This

section outlines the computation of FDE for GNSS, Receiver

Autonomous Integrity Monitoring (RAIM), and PL algorithm

for background purposes.

A. RAIM Algorithm

This algorithm is applicable to any redundant measure-

ment system. It is remarked that the presence of only one

fault at a time is assumed. First it uses a least square

resolution applied to a linearized observation equation:

Y = h(X) ⇒ dY = H.dX (1)

where Y is the exteroceptive measurement vector (in GPS,

pseudo-range vector for instance), X is the state vector (in

GPS, X =
[

x y z cdt
]

, that is the cartesian position

and the receiver clock offset in meter), dY and dX the

respective linearized vectors. The noise on Y is supposed

to be independent, Gaussian and zero mean with known

variance QY . H is the Jacobian of the observation function h
at the linearization point X0 and is full rank. The estimated

linearized state dX is given by:

dX̂ =
(

HT Q−1
Y H

)−1
HQ−1

Y · dY =̂H+ · dY (2)

where H+ is the weighted pseudo-inverse of matrix H .

The residuals ε can be calculated as the difference between

the measurements and the "estimated measurements" h(X̂);
these are derived from the estimated state:

ε = Y −h(X̂) ≈ dY −HdX̂ = (I−HH+)dY =̂S ·dY (3)

In normal conditions, the variable dY belongs to the kernel

of matrix S, then the mean of each component of the residual

vector is centered on 0.

Now, if faults are added to the pseudo-range vector, Eq.

2 and Eq. 3 have to be rewritten:

dX̂ = H+ · (dY + E) (4)

ε = S · (dY + E) (5)

where E is the vector of faults. If only one fault of

magnitude bi occurs on the ith pseudo-range, i.e. only the

ith element of E is non-zero and E(i) = bi, then all

the components of ε are no longer centered on 0. If no

fault is present, the components of ε follow a centered

gaussian distribution verified with a χ2test [6]: the Sum

the Squared Error (SSE) has to be inferior to a threshold

Th equal to a χ2distribution at n − m degrees of freedom,

having defined a probability of false alarm Pfa, where n
is the number of measurements used and m the state size,

Th = χ2
(1−Pfa,n−m). This outlines the need of having many

measurements (n >> m) as it increases the degrees of

freedom of the problem and makes it easier to perform

detection. So, an integrity failure is detected if:

SSE = εT Q−1
Y ε > Th (6)

Once the occurrence of a fault is detected, it is necessary

to identify the faulty measurement. Hence the score wj is

computed for each measurement as a function of its residual

and its variance (where Qε is the residuals covariance

matrix):

Qε = S.QY .ST (7)

wj =
∣

∣

∣
εj/

√

Qε(j,j)

∣

∣

∣
(8)

where the element of the ith row and jth column of

a matrix M is represented by M(i,j) in this paper. The

maximum score indicates the faulty measure. This is then

removed from the measurements vector, next a new position

is calculated and a new detection test is performed and

so on. It is observed that wj is a normalized score that

takes into account both the geometrical configuration and

the measurement noise thanks to the calculation of Qε.

If FDE is applied to GNSS, it needs at least 5 satellites

to perform detection, and 6 satellites to perform exclusion

because the state size is equal to 4. Even if the “one fault at

a time” assumption is taken, multiple faults can be removed

iteratively by this algorithm if the redundancy is sufficient

regarding the correlation of faults [7].

RAIM algorithm underwent some improvement with adap-

tive threshold [8]. It is based on parity space methods

which present similar results due to the linear formulation

[6]. Nevertheless one necessary condition to apply these

algorithms is the capability to represent the problem in a

linear and observable manner as in Eq. 2. The performance

comparison of these different methods for vehicle integrity

is out of the scope of this paper.

B. Protection Level Calculation

Next the PL is computed as it represents a possible metric

for localisation integrity. The concept of PL quantifies the

maximum error in position that an undetected fault could

cause. This is expressed in the positionning domain making

it more comprehensible. It is often restrained to the xy error

and called Horizontal Protection Level (HPL).

If a fault occurred only on the ith measurement, with a

magnitude equal to bi, and computations are performed in

a tangent local frame, then the error in the horizontal plane

will be equal to :

ei
hor

2
=

(

H+
(1,i)

2
+ H+

(2,i)

2
)

b2
i (9)

To link Eq. 9 to the norm of the residuals, the HSlope is

defined. It depends on the geometrical configuration of the



receiver with respect to the satellites, where HSlopeMAX

represents the maximum HSlopei for all measurements:

ei
hor =

√

√

√

√

√

(

H+
(1,i)

2
+ H+

(2,i)

2
)

∑

j

S2
(j,i)

. ‖εi‖ =̂HSlopei. ‖εi‖ (10)

Several formulas have been proposed to compute protec-

tion levels [5]. Most use the maximum of HSlopei on all

the satellites, multiplied by a value linked to the integrity

parameters (previous Pfa). The Approximate Radial-error

Protected (ARP) formulation is selected for this paper as

the PL [6], which is defined as:

ARP = HSlopeMAX .Th (11)

More generally a probability of missed detection Pmd can

be considered for the PL computation. It takes in account

through the computation of a minimum detectable bias, or

the addition of the ellipsoid of the positioning uncertainty

characterized by the Pmd, leading to the estimation of the

HPL [9]:

HPL = HSlopeMAX .Th + R(Pmd) (12)

PL computation relies on the capability of expressing the

observation problem with an invertible matrix, like in RAIM.

III. GROUND VEHICLE LOCALIZATION SPECIFICITIES

For ground vehicle localization, GPS is a key sensor as

it is available worldwide. However, due to multipath occur-

rence in urban constrained environments, GPS positioning

and RAIM performance are prone to severe deterioration.

Unlike in open sky aerospace conditions, passenger vehicles

encounter dense urban areas where streets are lined of

buildings. The number of available satellites is often less

than 7 [10].

Vehicle localization can benefit from vehicle specific sen-

sors i.e. wheel speed and inertial sensors. It has been demon-

strated that the combination of exteroceptive and proprio-

ceptive sensors can significantly improve FDE. For instance,

FDE based on an Extended Kalman filter (EKF) can perform

the detection and exclusion of outliers in GPS measurements

[11], [12] using innovation signals (known as pre-residuals).

However, these techniques have been linked weakly to PL

calculation. That is, the gain in outliers detectability has not

been turned into a gain in the integrity metric. Actually, the

estimation state from the update equation of the EKF is a

function of the current measurements and the last estimated

state, Eq. 13. Thus, the impact of a fault on the estimated

state can be evaluated with an equation similar to Eq. 9,

where H+ will be replaced by Kk. The estimated state

can also be impacted by a biased predicted state due to

faults occuring on the past measurements. To the authors

knowledge, no formulation has been proposed to include

such bias in the computation of PL.

Xk|k = Xk|k−1 + Kk

(

Yk − HXk|k−1

)

(13)

It is therefore proposed to consider data horizon in order

to process a short term history of the trajectory, sometimes

called finite memory approach.

IV. TRAJECTORY MONITORING ALGORITHM

A. Data Horizon Principle

This is one possible estimation method, it combines pro-

prioceptive and exteroceptive data and has been used in

diagnosis [13], [14]. The principle is to stack consecutive

states and then to estimate them together. The method:

• Uses a discrete linearized model:
{

Xk = AXk−1 + BPk

Yk = HXk

(14)

• Stacks over time the states Xk in one side, the mea-

surement vector Yk and input vector Pk on the other

side. For instance, if matrix B can be pseudo-inverted,

stacking two states leads to Eq. 15:




Yk

Pk

Yk−1



 =





Hk 0
B+

k −B+
k Ak

0 Hk−1



 .

[

Xk

Xk−1

]

(15)

If the so composed matrix is full rank, then it can be

pseudo-inverted, it is compatible with the formulation in Eq.

2. Hence the RAIM algorithm can be applied and the PL

computed. However, this data horizon formulation presents

a main drawback: it is impossible to separate input sensor

failures from evolution model failures, because matrix A,

which contains the evolution constraints, is involved in the

expression of Pk . Hence a different formulation is needed to

separate the evolution and input sensor models.

B. Trajectory Observation Formulation

Since we only address an observation problem, there is

no need to use a state space formulation similar to Eq. 14.

In fact, proprioceptive measurements (usually placed in the

input vector Pk) can be considered as observations of the

traveled trajectory and the evolution model as constraints

on it. As they measure or provide a priori information

on the movement of the robot or its derivatives, they can

be expressed as functions of the state derivatives in the

continuous case or as functions of two or several consecutive

states in the discrete case:






~0 = l (Xk−q, ..., Xk)
Pk = g (Xk−r, ..., Xk)

Yk = h (Xk)
(16)

where
−→
0 is a null vector and g and l are respectively the

new expressions of the proprioceptive sensor model and of

the evolution model with respect to the trajectory. By contrast

to the previous Data Horizon method, this new formulation

expresses the whole trajectory observation problem in a non-

linear manner, then linearization around a given trajectory

gives:





~0

dP̃

dỸ



 =











∂l

∂X̃

∣

∣

∣

X̃0

∂g

∂X̃

∣

∣

∣

X̃0

∂h

∂X̃

∣

∣

∣

X̃0











.dX̃ (17)



Fig. 1. Applicability of integrity to sensor types regarding data fusion
schemes

where d̃P , dỸ , dX̃ are respectively a linearized horizon

of adapted depth of proprioceptive measures, exteroceptive

measures and position. To compare with the previous formu-

lation, stacking two states leads to:








Yk

0
Pk

Yk−1









=









Hk 0
∂l/∂Xk

∂l/∂Xk−1

∂g/∂Xk
∂g/∂Xk−1

0 Hk−1









.

[

Xk

Xk−1

]

(18)

Like in the previous formulation, RAIM algorithms can be

applied and protection levels computed. The major difference

is that FDE can be independently performed on the proprio-

ceptive measurements Pk and the evolution model (this being

represented through constraints equal to 0). The protection

level includes the whole trajectory stored in the data horizon,

from which it is straightforward to extract the protection level

of the current position (the last introduced in the buffer).

As represented in Figure 1, data horizon groups advantages

of EKF and Least Squares together. Whilst the EKF allows

the application of FDE to exteroceptive sensors with the

help of proprioceptive sensors and Least Squares allows the

application of FDE and HPL on exteroceptive measurements,

the data horizon enables FDE and HPL computation on both

exteroceptive and proprioceptive measurements. It matches

an automotive integrity scheme.

C. Theoretical Benefits from the Formulation

As it extends integrity to proprioceptive sensors, the global

redundancy is increased compared to FDE algorithms applied

separately at each time step with Least Squares. This can be

justified by comparing the degrees of freedom of this for-

mulation to the sum of the degrees of freedom of individual

GPS FDE. For example, if there are 6 satellites in view and

a 4-size state, there are 2 degrees of freedom for a χ2test of

a RAIM algorithm. If a 4-samples data horizon is used with

2 proprioceptive sensors and one evolution constraint there

are a maximum of 33 measurements (6 × 4 + (2 + 1) × 3)
for a 16-size state, so there are 17 degrees of freedom

compared to 4 times 2 degrees of freedom with individual

FDE. This increase of redundancy enhances the performance

of FDE algorithms and their use even when there are few

exteroceptive measurements.

The impact of a fault on the horizontal positioning error,

ei, depends on its magnitude and on the weight of the

measurement in the position estimation. With respect to a

one epoch Least Squares, data horizon decreases the weight

of each exteroceptive measurement at this epoch because

they are linked to the exteroceptive measurements at previous

epochs through the proprioceptive data and the evolution

model. Consequently HSlopeMAX is lower. This is not com-

pensated by the Th increase (due to the degree of freedom

rise), so ARP is reduced, as presented in Section VI.

The following section will present a test case.

V. APPLICATION TO PASSENGER CAR LOCALIZATION

The formalized strategy based on Eq. 17 has been applied

to the localization of a car vehicle equipped with two

wheel speed sensors, a yaw rate gyroscope, a GPS receiver,

and under the assumption of a constant altitude evolution

model. For simplification this section presents only part of

the developed model. The GPS model is the one used in

tightly coupled solutions, details can be found in [12]. The

state is expressed in an earth-tangential local frame using

a Cartesian coordinates system. The location is augmented

by the clock bias of the receiver for each epoch, leading to

Xa

k
=

ˆ

xk yk zk cdtk
˜T .

The car reference frame is defined at the center of the rear

axle, the speed of a wheel (here the rear left at time k: vrl,k)

is a function of the distance traveled by the rear axle center

corrected by the difference of speed between left and right

wheel due to the turning maneuver:

vrl,k=grl(Xa
k ,Xa

k−1
,Xa

k−2)=

 

dk−

L(θk−θk−1)
2

!

∆tk
(19)

where dk is the distance traveled between two epochs,

θk the current heading, L the width of the rear axle and

∆tk = tk − tk−1. Assuming a 2D motion in the horizontal

plane and a sufficient sampling of the trajectory, dk and θk,

can be expressed as:

dk =

√

(xk − xk−1)
2
+ (yk − yk−1)

2
(20)

θk = atan2 ((yk − yk−1) , (xk − xk−1)) (21)

It is remarked that vrl,k is expressed as a function of θk−1,

it self depending on xk−2 and yk−2, thus it is defined as a

function of three consecutive states. Then it can be derived:

∂dk

∂Xa
k

= Gd
k =

[

(xk−xk−1)
dk

(yk−yk−1)
dk

0 0
]

(22)

∂θk

∂Xa
k

= Gθ
k =

[

−(yk−yk−1)
d2

k

(xk−xk−1)
d2

k

0 0
]

(23)

∂grl

∂Xa
k

= Grl
k,0 =

Gd
k + L.Gθ

kL.Gθ
k /2

∆tk
(24)

∂grl

∂Xa
k−1

= Grl
k,1 =

−2Gd
k − L.Gθ

k−1 − L.Gθ
k

2∆tk
(25)

∂grl

∂Xa
k−2

= Grl
k,2 =

L.Gθ
k−1

2∆tk
(26)



The introduction of an evolution model can be done in the

same way. For example, if the altitude has to be constrained

as a constant (in order to improve bad stability of GPS

altitude) a simple equation can be added:

0 = ldz

(

Xa
k , Xa

k−1

)

= zk − zk−1 (27)

An example of the full trajectory observation matrix with

a 4-samples state horizon, a GPS sensor, a rear left wheel

speed sensor, and a constant altitude constraint is given as:















0
0
0

dvrl,k

dvrl,k−1

dρk

dρk−1

dρk−2

dρk−3















=



















Ldz −Ldz 0 0

0 Ldz −Ldz 0

0 0 Ldz −Ldz

Grl
k,0 Grl

k,1 Grl
k,2 0

0 Grl
k−1,0 Grl

k−1,1 Grl
k−1,2

Hk 0 0 0
0 Hk−1 0 0
0 0 Hk−2 0
0 0 0 Hk−3























dXa
k

dXa
k−1

dXa
k−2

dXa
k−3



 (28)

where ρ is the pseudo-range vector and:

Ldz =
[

0 0 1 0
]

(29)

This example provides a mathematical formalization of the

data horizon approach.

VI. RESULTS

The results of the experiments performed to validate the

proposed approach are presented in this Section. They were

designed to validate the FDE capabilities, and to identify

the impact of the formulation on the PL regarding to the

introduced vehicle dynamic and the data horizon depth.

For this purpose the trajectory of a passenger vehicle and

ego-state variables were recorded together with data from

an automotive-type GPS, in real traffic conditions. The ego-

states variables are extracted from the rear wheel speeds and

a yaw rate gyroscope. The vehicle was driven for a distance

of 2.5 km in an urban context. This data was processed off-

line and faults introduced on the pseudo-ranges to emulate

their occurrence, as described in [12]. The introduction of

the faults allows to run the algorithm with certainty of their

existence. The objective is to take into account faults arising

due to the presence of multipath on the GPS measurements.

The FDE and PL algorithms are applied to this data set.

The results are shown in Figure 2, the vehicle travels

in a straight line at 20 m/s. The GPS measurements are

taken considering only the 6 higher satellites. The length

of the data horizon chosen was 8 samples, which considers

the vehicle response. To simulate the occurrence of faults,

a bias of 15 m was introduced to the pseudo-range of

the same satellite, for the last two samples. A false alarm

probability of 0.001 was taken. The measurements on the true

trajectory are represented by diamonds (green color). The

circles (blue color) represent the positions estimated applying

the data horizon based algorithms. The crosses (color red)

are the positions estimated independently at each sample

with the conventional RAIM algorithm applied to GPS data.

The figure presents a typical behavior of an iterated RAIM

algorithm applied to the proposed formulation when multiple

faults exist. It can be remarked that the last two crosses

have a larger error due to the fault introduced onto one

of the pseudo-ranges. The FDE algorithm on the GPS only

estimation can not detect the error due to the low bias value.

Fig. 2. Consecutive steps of data horizon based FDE

Figure 2, shows three steps that represent the consecutive

use of the FDE as a results of the data horizon. The first step

represents the estimation through the data horizon for all the

measurements including the two biases. In the second step,

an iterative RAIM algorithm is applied. This has led to the

detection and removal of one of the two faults and to generate

a new trajectory estimate. For the third step a new detection

and exclusion stage is performed. This results in a further

correction of the trajectory estimate as shown in Figure 2. It

is important to note that the shape of the estimated trajectory

using the new algorithm is continuous (no jumps) for all

steps. The heading is corrected gradually, the alignment and

the distance between points show the contribution of the

proprioceptive sensors on the estimation.

From the previous trajectory and the satellite configuration

at this time, the ARP was computed for the whole trajectory,

taking into account 7 satellites for a data horizon depth of 8

samples. The results are shown in Figure 3. The variations

in the ARP during the trajectory are due to the vehicle speed

and yaw rotation. It is observed that a long straight line at

70 km/h leads to the lowest ARP between t = 200s and t =
500s. This configuration is well-suited for reducing position

uncertainty by benefiting of the position filtering. It allows

for the reduction in the ARP. By contrast moving at low

speeds with the vehicle in a turning maneuver (e.g. crossing

a round about) leads to a high ARP, as what occurs between

t = 0s and t = 250s.
An interesting point is the impact of the horizon depth:

the deeper the data horizon, the lower the ARP, as shown

in Figure 4. It presents the ARPs computed for different

horizon depths. The contributions of the measurements by

the proprioceptive sensors and evolution models to express

the temporal redundancy, as described in Section IV, can be

there observed. Further, the gain is non-linear with regard to

the data horizon depth, and it seems to reach a limit: adding

old measurements provides less and less information.

Further tests will be performed in order to assess the

performance of the new formulation regarding to usual FDE



Fig. 3. ARP of the current location on the whole test trajectory

Fig. 4. ARP comparison for different horizon depths

and PL algorithms. It will include use cases with long partial

occlusions and simultaneous multi-path.

VII. CONCLUSIONS

Conventionally, integrity measures of localisation systems

have been limited to the aerospace domain and centered on

GPS measurements, in this paper through a new formulation

that incorporates vehicle ego-state data, it was possible to

extend them to mobile ground robotic applications. The

proposed approach uses past information and provides an

adapted formulation for FDE and PL algorithms. FDE algo-

rithms are therefore applied not only to GPS measurements

but include vehicle ego-state measurements and the evolution

model. Another advantage is the reduction of the PL with

the help of these new data. This formulation increases data

redundancy availability and therefore extends the usage of

FDE and PL algorithms throughout most of the vehicle

trajectory.

The experimental results have shown that it is possible to

compute the ARP and to detect faults for outdoors mobile

platforms using the proposed formulation. The algorithms

perform well when moving at most speeds, except when

the vehicles were at very low speeds. This is due to the

proximity of the positions considered as part of the data

horizon. It leads to singularities affecting the computation

when a temporal sampling is used. The problem will be

addressed by applying a spatial sampling.

The increase of redundancy could provide opportunities

to apply non standard FDE algorithms like RANCO [15].

Adding further constraints like the geometry of the roads

available from accurate digital maps is another possibility

opened by the formulation, it will be possible to enhance the

integrity estimations. Information, which will lead to the use

of localisation based solutions for safety-critical applications

like guiding intelligent passenger vehicles.
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