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Abstract

The paper is devoted to the stability analysis of linear timevarying delay. We first model the time varying

delay system as an interconnected system between a known linear transformation and some operators depending

explicitly on the delay. Embedding operators related to thedelay into an uncertain set, stability of such system is

then performed by adopting the quadratic separation approach. Having recognized that the conservatism comes

from the choice of the feedback modeling and the operators definition, these first results are afterwards enhanced

by using some redundant equation and scaling filter. At last,numerical examples are given to illustrate the results.

1 INTRODUCTION

Stability of linear time-delay systems has been intensively studied since several decades (see [8], [21], [10]

and references therein). A such success can be explained by their applied aspect. Indeed, many processes include

dead-time phenomena such as biology, chemistry, economics, as well as population dynamics [17] [18]. Processing

time and propagation time in actuators and sensors generally induce also such delays, especially if some devices

are physically distant. That is the challenge of networked controlled systems [4] as well as network control [22].

In the case of constant delay and unperturbed linear systems, efficient criteria based on roots location [19]

allow to find the exact region of stability with respect to thevalue of the delay. Beside these direct methods, numer-

ous works based either on Lyapunov functionals [10][21][6]or robustness framework (small gain theory [10], IQC

[14] or quadratic separation [9]) have established interesting results to tackle the robust stability of delay systems

with practical tools (like LMI). All resulting stability conditions are based on convex optimization (linear matrix

inequality framework) and allow to conclude on stability intervals with respect to the delay and/or the uncertainty.



Regarding the case of time-varying delay systems, some authors have extended the upper cited results to

address the stability issue of such systems. Nevertheless,the time-varying nature of the delay should be care-

fully handled rather than roughly adapted from methods originally developed for the constant delay case. In the

Lyapunov-Krasovskii approach few studies [23][7][12][1]have proposed customized functionals able to signifi-

cantly improve classical results. In the input-output approach [10][8][15][2], some terms (or operators) related

to the delayed dynamics are embedded into an uncertain matrix and the method consists in ensuring the robust

stability of the nominal system with respect to the uncertain domain. Hence, in one hand, the key issue relies on

the choice of the interconnection modeling the delay systems (and thus the uncertain set), and in other hand, on the

L2-norm bounds which fit the uncertain set. Although the Lyapunov and the input-ouput approaches are closely

related [24][9], the second one states clearly the reasons of the conservatism and how it may be reduced.

In this paper, the quadratic separation principle, belonging to the input-output framework, is considered

to deal with the stability analysis of linear time-varying delay systems. First, such systems are modeled as the

interconnection of a linear matrix equation with an uncertain matrix of operators. Secondly, based on previous

results [2] and [15] which provide bounds on some operators,integral quadratic constraints are built. At last, a

redundant equation is introduced to construct a new modeling of the delay systems. To this end, an augmented

state is considered which is composed of the original state vector and its derivatives. Then defining relationship

between augmented states ˙x, ẍ, the delayh and its derivativėh as a set of integral quadratic constraints allows to

improve the stability criterion. Conditions are expressedin terms of linear matrix inequalities (LMI) which can be

solved efficiently with semi-definite programming (SDP) solvers.

After the introduction, the paper carries on with the definition of some operators and preliminaries on

quadratic separation useful to present the main result. In section 3, the prior result on robust stability is exploited

to derive a stability condition for time-varying delay systems. The robust stability for the case of uncertain systems

is also addressed. Numerical examples that show the effectiveness of the proposed critera is provided in section 4.

2 PRELIMINARIES

2.1 Notations and problem statement

Throughout the paper, the following notations are used. Theset ofLn
2 consists of all measurable functionsf : R+ →

Cn such that the following norm‖ f‖L2 =

(∞∫

0
( f ∗(t) f (t))

)1/2

dt < ∞. When context allows it, the superscriptn of

the dimension will be omitted. the setLn
2e denotes the extended set ofLn

2 which consists of the functions whose

time truncation lies inLn
2. For two symmetric matrices,A andB, A > (≥) B means thatA−B is (semi-) positive

definite. AT denotes the transpose ofA. 1n and0m×n denote respectively the identity matrix of sizen and null



Figure 1: Feedback system

matrix of sizem× n. If the context allows it, the dimensions of these matrices are often omitted. diag(A,B,C)

stands for the block diagonal matrix:

diag(A,B,C) =









A 0 0

0 B 0

0 0 C









.

Let consider the following time-varying delay system:







ẋ(t) = Ax(t)+Adx(t −h(t)) ∀t ≥ 0,

x(t) = φ(t) ∀t ∈ [−hmax,0]
(1)

wherex(t) ∈ Rn is the state vector,φ is the initial condition andA, Ad ∈ Rn×n are constant matrices. The delayh

is time-varying and the following constraints are assumed

h(t) ∈ [0,hmax] and |ḣ(t)| ≤ d, (2)

wherehmax andd are given scalar constants and may be infinite if delay independent condition and fast-varying

delay condition, respectively, are looked for.

2.2 Stability analysis via quadratic separation

Coming from robust control theory, the quadratic separation provides a fruitful framework to address the stability

issue of non-linear and uncertain systems [13], [20]. Recent studies [9] have shown that a such framework allows

to reduce significantly the conservatism of the stability analysis of time-delay systems with constant delay. Then,

in order to deal with the time-varying delay case, the quadratic separation method has been extended in [2] to

handle not only the case of uncertain matrices but more generally uncertain operators. Indeed, based on the inner

product and theL2e space a suitable theorem is then proposed. This latter will be later used to derive stability

conditions for time-varying delay systems.

Let consider the interconnection defined by Figure 1 whereE andA are two, real valued, possibly non-square

matrices and∇ is a linear operator fromL2e to L2e. For simplicity of notations, we assume in the present paper

thatE is full column rank. Assuming the well-posedness, we are interested in looking for conditions that ensure

the stability of the interconnection.



Theorem 1 The interconnected system of Figure 1 is stable if there exists a Hermitian matrixΘ = Θ∗ satisfying

both conditions
[

E −A

]⊥∗
Θ

[

E −A

]⊥
> 0 (3)

∀u∈ L2e, 〈






1

∇




u,Θ






1

∇




u〉 ≤ 0 (4)

Proof 1 Inspired from [20], the proof is detailed in [2].

Basically, inequality (4) which forms an integral quadratic constraint, is built from definitions and informations on

different operators which compose the matrix∇. Then, the other one (3) provides the stability condition ofthe

interconnection.

3 MAIN RESULTS

3.1 Defining operators

Toward modeling delay system as an interconnected system such as illustrated on Figure 1, it is required to define

appropriate operators. Define the integral operator

I : L2e → L2e,

x(t) →
t∫

0
x(θ )dθ ,

(5)

and the delay operator (or shift operator)

D : L2e → L2e,

x(t) → x(t −h),
(6)

which constitute the fundamental elementary operators to describe a delay system. The related integral quadratic

constraints are introduced in the following two lemmas. These latters will be helpful to construct inequality (4)

and to derive then stability criteria for linear systems with time-varying delays in the next section.

Lemma 1 An integral quadratic constraint for the operatorI is given by the following inequality∀x∈ Ln
2e and

for a positive definite matrix P,

〈






1n

I 1n




x,






0 −P

−P 0











1n

I 1n




x〉 < 0



Proof 2 Simple calculus shows that∀T > 0,∀x∈ Ln
2e, (x being truncated: x(t) = 0, ∀t > T)

〈






1n

I 1n




x,






0 −P

−P 0











1n

I 1n




x〉

= −2
T∫

0
x(t)TP

t∫

0
x(s)ds

= −2
T∫

0

d
dt (I x)TP(I x)dt

= −(
∫ T

0 x(s)ds)TP(
∫ T

0 x(s)ds) < 0

The second step is to derive a parameterized IQC for the operator D :

Lemma 2 An integral quadratic constraint for the operatorD is given by the following inequality∀T > 0,∀x∈ Ln
2e

and for a positive matrix Q,

〈






1n

D1n




x,






−Q 0

0 Q(1− ḣ)











1n

D1n




x〉 < 0 (7)

Proof 3 We get that∀T > 0,∀x∈ Ln
2e, (x being truncated: x(t) = 0, ∀t > T)

〈






1n

D1n




x,






−Q 0

0 Q(1− ḣ)











1n

D1n




x〉

= −∫ +∞
0 xT(u)Qx(u)du+

∫ ∞
0 xT

d (t)Qxd(t)(1− ḣ(t))dt

= −∫ +T
0 xT(t)Qx(t)dt+

∫ T−h(T)
−h(0)

xT(u)Qx(u)du

= −∫ T
T−h(T) x(u)TQx(u)du< 0

where xd(t) = x(t −h(t)).

In the next paragraph, applying the prior result exposed in Section 2.2 a rate and delay dependent stability

condition for time-varying delay systems is provided.



3.2 Stability condition for time-varying delay systems

First, let us reformulate the dynamic of linear systems withtime-varying delay as suggested on Figure 1 in order

to apply the quadratic separation principle. System (1) canbe described as the feedback






x(t)

x(t −h(t))






︸ ︷︷ ︸

w(t)

=






I 1n

D1n






︸ ︷︷ ︸

∇






ẋ(t)

x(t)






︸ ︷︷ ︸

z(t)

, (8)

over the feedforward equation






1 0

0 1






︸ ︷︷ ︸

E






ẋ(t)

x(t)






︸ ︷︷ ︸

z(t)

=






A Ad

1 0






︸ ︷︷ ︸

A






x(t)

x(t −h(t))






︸ ︷︷ ︸

w(t)

.

This simplistic description of the system 1 gives rise, applying Theorem 1, to the well-known independent of

delay (IOD) criterion [2][9]. Secondly, so as to develop delay dependent condition, an additional operator must

be blended into∇, enhancing then the time delay system description. Usually, the operator(1−D) ◦I (or in

Laplace domain for the constant delay case(1−e−sh)s−1), bounded byhmax, is added. This operator is applied to

the signal ˙x(t) and the relationship

(1−D)◦I [ẋi(t)] = (1−D)◦I [I −1[xi(t)]]

= xi(t)−xi(t −h(t)), i = {1, ...,n}

should be specified in the linear equationE z(t) = A w(t). In this paper, inspired from [15], instead of the integrator

I , a scaling filter of dimensionnφ of the form







ẋφ (t) = Aφ xφ (t)+Bφu(t),

y(t) = Cφ xφ (t)+Dφ u(t),
(9)

is considered. The key idea is now to apply the new operator(1−D) ◦ φ−1 to the filtered signaly(t,xi(t)) (each

component of the state vectorx(t) of system (1) is processedu(t) = xi(t), i = {1, ...,n}):

(1−D)◦φ−1[y(t,xi(t))] = (1−D)◦φ−1[φ [xi(t)]]

= xi(t)−xi(t −h(t)), i = {1, ...,n}

The dynamical system (9) should be designed according to thefollowing lemma.

Lemma 3 An integral quadratic constraint for the operatorF = (1−D)◦φ−1 is given by the following inequality



∀x∈ Ln
2e and for a positive definite matrix R,

〈






1n

F1n




x,






−R 0

0 R











1n

F1n




x〉 < 0,

whereφ , defined in (9), is a realization of any bounded rational transfert functionΦ which satisfies







|Φ( jω)| > 1+ 1√
1−d

, if hmax|ω | > 1+ 1√
1−d

,

|Φ( jω)| > hmax|ω |, if hmax|ω | ≤ 1+ 1√
1−d

.

(10)

Proof 4 In [15], it is shown that for all systemsφ satisfying the above specifications‖(1−D)◦φ−1‖L2
≤ 1 holds.

It means that for any v, a Ln2 function,

‖Fv‖L2 ≤ ‖v‖L2

∫ ∞
0 (Fv(t))TFv(t)−vT(t)v(t)dt ≤ 0

is satisfied. Defining v(t) = R1/2x(t), R being a symmetric positive definite matrix, we have

∫ ∞

0
(Fx(t))TRFx(t)−xT(t)Rx(t)dt ≤ 0.

Factorizing on both sides by[xT(t) (Fx(t))T ] and its transposed, the IQC of the lemma is recovered.

An example ofΦ(s), proposed by [15], satisfying (10) is

Φ(s) = k
h2

maxs
2 +chmaxs

h2
maxs2 +ahmaxs+b

(11)

wherek =
√

8/(2−d), a =
√

6.5+2b, b =
√

50 andc =
√

12.5.

The time-varying delay system (1) is now modeled as the interconnection of












x(t)

x̃φ (t)

x(t −h(t))

v1(t)












︸ ︷︷ ︸

w(t)

= ∇












ẋ(t)

˙̃xφ (t)

x(t)

φ̃ [x]












︸ ︷︷ ︸

z(t)

(12)



with ∇ = diag
(

I 1n,I 1nφ n,D1n,(1−D)◦φ−11n

)

and






1n(3+nφ )

0






︸ ︷︷ ︸

E

z(t) =















A 0 Ad 0

B̃φ Ãφ 0 0

1n 0 0 0

D̃φ C̃φ 0 0

1n 0 −1 −1















︸ ︷︷ ︸

A

w(t) (13)

wherev1(t) = x(t)−x(t −h(t)),

Ãφ = 1n⊗Aφ , B̃φ = 1n⊗Bφ ,

C̃φ = 1n⊗Cφ , D̃φ = 1n⊗Dφ ,

x̃φ =









xφ1

...

xφn









, φ̃ [x] =









φ [x1]

...

φ [xn]









,

(14)

xi are the components of the state vectorx. Note that there is one filter of dimensionnφ associated to eachxi . At

this point, refering to the quadratic separation approach,Theorem 1 may be applied.

Theorem 2 For given positive scalars hmax and d, if there exists positive definite matrices P∈ R
n(1+nφ )×n(1+nφ )

and Q, R∈ R
n×n, then system (1) with a time varying delay constrained by (2)is asymptotically stable if the LMI

condition (3) holds withΘ (settingḣ = d), E andA defined as (15) and (13).

Proof 5 First, condition (4) must be satisfied for∇ defined as (12). Invoking all Lemmas previously defined and

combining all inequalities related to each operator, it is readily seen that the separator (15) fulfills the inequality

(4), where

Θ =






Θ11 Θ12

Θ∗
12 Θ22




 ,

Θ11 = diag(0n(1+nφ ),−Q,−R),

Θ12 = diag(−P,02n),

Θ22 = diag(0n(1+nφ ),(1− ḣ)Q,R),

(15)

and P∈ R
n(1+nφ )×n(1+nφ ) and Q,R∈ Rn×n are positive definite matrices. It is readily seen that inequality (7) still

holds forḣ = d. Hence, regarding the separator,Θ22 can be chosen asdiag(0,(1−d)Q,R). Then, the filterφ may

be chosen as a realization of (11) defined by







ẋφ i(t) =






0 1

− b
h2

max
− a

hmax




xφ i(t)+






0

1




u(t)

yi(t) =

[

− kb
h2

max

kc−ka
hmax

]

xφ i(t)+ku(t)

,



where xφ i , i = {1, ...,n}, represents the different states of the same filter accordingto the different inputs u(t) =

{x1(t), ...,xn(t)}. Considering Theorem 1 where the interconnection is given by (13)-(12), and (4) being proved,

the LMI (3) forms the stability criterion.

3.3 Model extension

Previous works [5] and [3], [9] have shown that redundant system modeling (for linear uncertain systems and

constant delay systems, respectively) may increase the relevancy of the stability analysis. The rational behind

this model extension is to provide some extra relations between the delay, its variations and the state. Using

the derivative operator, an augmented state is constructedwhich is composed of the original state vector and its

derivatives. Then defining relationship between augmentedstates ˙x, ẍ, the delayh and its derivativėh an enhanced

stability condition is provided. Differentiating the system (1), we get:

ẍ(t) = Aẋ(t)+ (1− ḣ(t))Adẋ(t −h(t)).

Consider the artificially augmented system







ẋ(t) = Ax(t)+Adx(t −h(t)),

ẍ(t) = Aẋ(t)+ (1− ḣ(t))Adẋ(t −h(t)),
(16)

with accordingly defined initial conditions. Introducing the augmented state

ζ (t) =






ẋ(t)

x(t)




 ,

and specifying the relationship between the two componentsof ζ (t) with the equality[0 1]ζ̇ (t) = [1 0]ζ (t), we

have the new descriptor augmented system

Eζ̇ (t) = Āζ (t)+ Ādζ (t −h(t)), (17)

where

E =









1 0

0 1

1 0









, Ā =









A 0

0 A

0 1









, Ād =









Ad 0

0 (1− ḣ)Ad

0 0









.



Then, the new time-varying delay system (17) can be shaped asFigure 1 with












ζ (t)

x̃φ (t)

ζ (t −h(t))

v2(t)












︸ ︷︷ ︸

w(t)

= ∇⊗12












ζ̇ (t)

˙̃xφ (t)

ζ (t)

φ̃ [ζ ]












︸ ︷︷ ︸

z(t)

(18)

and






diag
(

E,12n(2+nφ )

)

0






︸ ︷︷ ︸

E

z(t) =















Ā 0 Ād 0

B̃φ Ãφ 0 0

1n 0 0 0

D̃φ C̃φ 0 0

1n 0 −1 −1















︸ ︷︷ ︸

A

w(t) (19)

wherev2(t) = ζ (t)− ζ (t −h(t)), ∇ defined as (12) and redefining

Ãφ = 12n⊗Aφ , B̃φ = 12n⊗Bφ ,

C̃φ = 12n⊗Cφ , D̃φ = 12n⊗Dφ ,

x̃φ =









xφ1

...

xφ2n









, φ̃ [ζ ] =
















φ [ẋ1]

φ [x1]

...

φ [ẋn]

φ [xn]
















.

(20)

Following the same line than in the previous section, we propose:

Theorem 3 For given positive scalars hmax and d, if there exists positive definite matrices P∈ R
2n(1+nφ )×2n(1+nφ),

Q, R∈ R2n×2n and a matrix X∈ R
2n(6+2nφ)×n(7+2nφ ), then system (1) with a time varying delay constrained by (2)

is asymptotically stable if the LMI condition

Θ[ j ] +X[E −A
[ j ]]+ (X[E −A

[ j ]])T > 0

holds for j= 1,2, with E andA defined as (19).Θ is of the form of (15) with appropriate dimension.Θ[ j ] and

A [ j ] are the vertices of, respectively,Θ andA settingḣ(t) = d j . The constraint (2) gives d1 = −d and d2 = d.



Proof 6 First, It follows the same idea that the one of Theorem 2. Hence, the stability of (17) will be proved if

[

E −A (ḣ(t))

]⊥∗
Θ(ḣ(t))

[

E −A (ḣ(t))

]⊥
> 0

with E , A defined as (19) andΘ is of the form of (15) with appropriate dimension. Applying the Finsler’s lemma,

the above inequality is equivalent to

Θ(ḣ(t))+X[E −A (ḣ(t))]+ (X[E −A (ḣ(t))])T > 0 (21)

where X is a new decision variable of appropriate dimensions. Since,ḣ(t) appears linearly and is bounded,

invoking argument of convexity, it is sufficient to test (21)on its vertices. The inequality proposed by Theorem

3 is thus recovered. System (17) being stable, the whole state ζ (t) converges asymptotically to zero. Hence, its

components x(t) converge as well. The original system (1) is thus also asymptotically stable.

3.4 Robustness issue

Coming from robust control, quadratic separation providesa suitable framework to address the stability analysis

of uncertain delay systems:

ẋ(t) = A(∆)x(t)+Ad(∆)x(t −h(t)) (22)

where
[

A(∆) Ad(∆)

]

=

[

A Ad

]

+B∆
[

C Cd

]

.

The second term of the right hand side of the above equation describes the uncertainty characterizing system (22).

The uncertain time-varying matrix∆, belonging toΩ, satisfies

∆T(t)∆(t) ≤ 1, ∀t ≥ 0, ∀∆ ∈ Ω, (23)

and models non-linear and neglected dynamics as well as parametric uncertainties.C, Cd and B are constant

matrices of appropriate dimensions which structure the uncertainty. Then, according to the set of admissible

uncertainties and (23), we have to find a separatorU such that

〈






1

∆




x,






U1 U2

U∗
2 U3






︸ ︷︷ ︸

U






1

∆




x〉 < 0, ∀∆ ∈ Ω. (24)



For instance, assumeΩ is a set of diagonal real valued matrices with bounded uncertainties:

Ω =
{

∆ = diag(δ1, ...,δN) | |δi | ≤ δ̄i
}

,

Then, inequality (24) holds with

U = diag
(
−δ̄ 2

1 u1, . . . ,−δ̄ 2
NuN,u1, . . . ,uN

)

whereui , i = {1, ...,N} are scalar decision variables. Eventually, we propose to analyze the robust stability of

system (22) with the following Theorem.

Theorem 4 For given positive scalars hmax and d, if there exists positive definite matrices P∈ R
n(1+nφ )×n(1+nφ ),

Q, R∈ Rn×n and matrices Uk (k = 1,2,3) designed according to the uncertain setΩ (i.e. such that (24) holds),

then system (22) with a time varying delay constrained by (2)is robustly asymptotically stable for any uncertainty

∆ ∈ Ω if the LMI condition (3) holds withΘ, E andA defined as (26) and (25).

Proof 7 First, introducing the exogenous signals

w∆ = ∆z∆, with z∆ = Cx(t)+Cdx(t −h(t)),

we rewritte system (22) as the interconnection of















x(t)

x̃φ (t)

x(t −h(t))

v1(t)

w∆(t)















︸ ︷︷ ︸

w(t)

= ∇















ẋ(t)

˙̃xφ (t)

x(t)

φ̃ [x]

z∆(t)















︸ ︷︷ ︸

z(t)

with ∇ =
(

I 1n,I 1nφ n,D1n,F1n,∆
)

and






1n(3+nφ )+n∆

0






︸ ︷︷ ︸

E

z(t) =



















A 0 Ad 0 B

B̃φ Ãφ 0 0 0

1n 0 0 0 0

D̃φ C̃φ 0 0 0

C 0 Cd 0 0

1n 0 −1 −1 0



















︸ ︷︷ ︸

A

w(t) (25)



Table 1: The maximal allowable delayshm for system (27)

d 0 0.1 0.2 0.5 0.8 1

Fridman et al (2002) [7] 4.472 3.604 3.033 2.008 1.364 0.999

Fridman et al (2006) [8] 1.632 1.632 1.632 1.632 1.632 1.632

Wu et al (2004) [23] 4.472 3.604 3.033 2.008 1.364 -

He et al (2007) [11] 4.472 3.605 3.039 2.043 1.492 1.345

He et al (2007) [12] 4.472 3.605 3.039 2.043 1.492 1.345

Ariba et al (2007) [1] 5.120 4.081 3.448 2.528 2.152 1.991

Kao et al (2007) [15] 6.117 4.714 3.807 2.280 1.608 1.360

Theorem 2 6.117 4.714 3.807 2.280 1.608 1.360

Theorem 3 6.117 4.794 3.995 2.682 1.957 1.602

with notations of (14). Combining every IQC related to each operators defined by lemmas and the struture of the

uncertainty leading to (24), a separator of the form

Θ =






Θ11 Θ12

Θ∗
12 Θ22




 ,

Θ11 = diag(0n(1+nφ ),−Q,−R,U1),

Θ12 = diag(−P,02n,U2),

Θ22 = diag(0n(1+nφ ),(1−d)Q,R,U3),

(26)

fulfills the requirement (4). Finally, condition (3) provides the robust (with respect to the uncertain setΩ) stability

criterion.

4 NUMERICAL EXAMPLES

4.1 Example 1

Consider the following system,

ẋ(t) =






−2 0

0 −0.9




x(t)+






−1 0

−1 −1




x(t −h(t)). (27)

For variousd, the maximal allowable delay,hmax, is computed. To demonstrate the effectiveness of our

criterion, results are compared against those obtained in the literature (see Table 1). On this example, compared

to Lyapunov technics, robust approaches [15], Theorem 2 and3 reduce drastically the conservatism, especially

whend is close to zeroi.e. when the delay is slowly time varying. Using the same scalingfilter for bounding

operators Theorem 2 recovers the results of [15], whereas Theorem 3, taking into account the derivative equation,

reduces the conservatism. Indeed, the stability analysis is further improved thanks to an appropriate modeling of

time-varying delay systems which brings additional informations on the system.



Table 2: The maximal allowable delayshm for system (28)

d 0 0.1 0.5 0.8

[16] 0.241 0.234 0.188 0.110

[23] 1.149 1.106 0.924 0.760

[15] 1.416 1.302 0.974 0.829

Theorem 4 1.515 1.422 1.105 0.910

4.2 Example 2

Consider now the following time-varying and uncertain system, extracted from [16],

ẋ(t) =






−2+ δ1cos(t) 0

0 −1+ δ2sin(t)




x(t)

+






−1+ γ1cos(t) 0

−1 −1+ γ2sin(t)




x(t −h(t)).

(28)

Theδi andγi are uncertain but bounded parameters:

|δ1| ≤ 1.6, |δ2| ≤ 0.05, |γ1| ≤ 0.1, |γ2| ≤ 0.3.

This example can be expressed as system (22) with

A =






−2 0

0 −1




 , Ad =






−1 0

−1 −1




 ,

B = 12, C = diag(1.6, 0.05), Cd = diag(0.1, 0.3).

Results are summarized in Table 2. It shows that Theorem 4 enables to find higher maximal bounds on the delay

h(t) than others results from the literature. The quadratic separation offers thus a suitable framework to address

uncertainties. In that case, the conservatism is also related to the manner to handle uncertainties (as the design of

(24)).

5 CONCLUSIONS

In this paper, the problem of the delay dependent stability analysis of a time-varying delay systems has been studied

by means of quadratic separation. The delay part is embeddedinto an uncertain matrix of operators. Inspired from

[2] and [15], tight bounds of theL2 induced norms of operators allow to reduce the conservatismof the approach.

Then using an augmented state, new modelling of time delay systems are introduced which emphasizes the relation



betweeṅh and signals ˙x andẍ. The resulting criteria are then expressed in terms of a convex optimization problem

with LMI constraints, allowing the use of efficient solvers.Finally, two numerical examples show that these

methods reduced conservatism and improved the maximal allowable delay.

References

[1] Y. Ariba and F. Gouaisbaut. Delay-dependent stability analysis of linear systems with time-varying delay. In

IEEE Conference on Decision and Control, pages 2053–2058, December 2007.

[2] Y. Ariba, F. Gouaisbaut, and D. Peaucelle. Stability analysis of time-varying delay systems in quadratic

separation framework. InThe International conference on mathematical problems in engineering , aerospace

and sciences (ICNPAA’08), June 2008.

[3] P.-A. Bliman. Lyapunov equation for the stability of linear delay systems of retarded and neutral type.IEEE

Trans. on Automat. Control, 47:327–335, February 2002.

[4] L.G. Bushnell. Networks and control.IEEE Control Systems Magazine, 21, February 2001.

[5] Y. Ebihara, D. Peaucelle, D. Arzelier, and T. Hagiwara. Robust performance analysis of linear time-invariant

uncertain systems by taking higher-order time-derivatives of the states. In 44th IEEE Conference on Decision

and Control and the European Control Conference, Seville, Spain, December 2005.

[6] E. Fridman and U Shaked. A descriptor system approach toH∞ control of linear time-delay systems.IEEE

Trans. on Automat. Control, 47:253–270, February 2002.

[7] E. Fridman and U Shaked. An improved stabilization method for linear time-delay systems.IEEE Trans. on

Automat. Control, 47:1931–1937, November 2002.

[8] E. Fridman and U Shaked. Input-output approach to stability and l2-gain analysis of systems with time-

varying delays.Systems & Control Letters, 55:1041–1053, September 2006.

[9] F. Gouaisbaut and D. Peaucelle. Robust stability of time-delay systems with interval delays. In 46th IEEE

Conference on Decision and Control, New Orleans, USA, December 2007.

[10] K. Gu, V. L. Kharitonov, and J. Chen.Stability of Time-Delay Systems. Birkhäuser Boston, 2003. Control
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