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Abstract

The paper is devoted to the stability analysis of linear timeying delay. We first model the time varying
delay system as an interconnected system between a knavan thransformation and some operators depending
explicitly on the delay. Embedding operators related todiblay into an uncertain set, stability of such system is
then performed by adopting the quadratic separation apprddaving recognized that the conservatism comes
from the choice of the feedback modeling and the operatdisitien, these first results are afterwards enhanced

by using some redundant equation and scaling filter. Attasherical examples are given to illustrate the results.

1 INTRODUCTION

Stability of linear time-delay systems has been intengigtldied since several decades (ﬁe , [, [10]
and references therein). A such success can be explainbéeipyapplied aspect. Indeed, many processes include
dead-time phenomena such as biology, chemistry, econpasiegell as population dynamilﬁ[lS]. Processing
time and propagation time in actuators and sensors gepé@rdlice also such delays, especially if some devices

are physically distant. That is the challenge of networlkadiolled systems[[4] as well as network cont@ [22].

In the case of constant delay and unperturbed linear systdfitéent criteria based on roots Iocati(@[lg]
allow to find the exact region of stability with respect to tadue of the delay. Beside these direct methods, numer-
ous works based either on Lyapunov functionpl} [L][218i6lobustness framework (small gain thedry [10], IQC
[E] or quadratic separatioE|[9]) have established intergsesults to tackle the robust stability of delay systems
with practical tools (like LMI). All resulting stability coditions are based on convex optimization (linear matrix

inequality framework) and allow to conclude on stabilityeirvals with respect to the delay and/or the uncertainty.



Regarding the case of time-varying delay systems, som@eautiave extended the upper cited results to
address the stability issue of such systems. Neverthdlesgime-varying nature of the delay should be care-
fully handled rather than roughly adapted from methodsiogsigy developed for the constant delay case. In the
Lyapunov-Krasovskii approach few studi¢s][2B][7][{R]Hdve proposed customized functionals able to signifi-
cantly improve classical results. In the input-output apeh [1D][81[15]{2], some terms (or operators) related
to the delayed dynamics are embedded into an uncertainxnaaid the method consists in ensuring the robust
stability of the nominal system with respect to the uncarthtomain. Hence, in one hand, the key issue relies on
the choice of the interconnection modeling the delay syst@nd thus the uncertain set), and in other hand, on the
L»-norm bounds which fit the uncertain set. Although the Lyapuand the input-ouput approaches are closely

related ][P], the second one states clearly the reasfihe @onservatism and how it may be reduced.

In this paper, the quadratic separation principle, belogdgd the input-output framework, is considered
to deal with the stability analysis of linear time-varyinglay systems. First, such systems are modeled as the
interconnection of a linear matrix equation with an undartaatrix of operators. Secondly, based on previous
results ﬂZ] and|EI5] which provide bounds on some operatotsgral quadratic constraints are built. At last, a
redundant equation is introduced to construct a new moglelirthe delay systems. To this end, an augmented
state is considered which is composed of the original statéov and its derivatives. Then defining relationship
between augmented states{, the delayh and its derivativen as a set of integral quadratic constraints allows to
improve the stability criterion. Conditions are expresgetgrms of linear matrix inequalities (LMI) which can be

solved efficiently with semi-definite programming (SDP \v&ok.

After the introduction, the paper carries on with the deifimitof some operators and preliminaries on
quadratic separation useful to present the main resultedticm[j;, the prior result on robust stability is exploited
to derive a stability condition for time-varying delay sgists. The robust stability for the case of uncertain systems

is also addressed. Numerical examples that show the effeetss of the proposed critera is provided in secﬁon 4,

2 PRELIMINARIES

2.1 Notations and problem statement

Throughoutthe paper, the following notations are used.sehefL} consists of all measurable functiohsR™ —
C" such that the following normf||, = <_of°(f*(t)f(t))) v dt < «. When context allows it, the superscripbf
the dimension will be omitted. the sk, genotes the extended setldf which consists of the functions whose
time truncation lies irL5. For two symmetric matrice#y andB, A > (>) B means thaf — B is (semi-) positive

definite. AT denotes the transpose Af 1, and0,,., denote respectively the identity matrix of simeand null



Figure 1: Feedback system

matrix of sizemx n. If the context allows it, the dimensions of these matricesadten omitted. dia@p, B,C)

stands for the block diagonal matrix:

A0 O
diagA,B,C)=10 B 0
0 0 C

Let consider the following time-varying delay system:

X(t) = AX(t) + Agx(t — h(t)) Wt >0,
X(t) = @(t) Wt € [—hmax O]

1)

wherex(t) € R" is the state vectorp is the initial condition andh, Ay € R"*" are constant matrices. The delay

is time-varying and the following constraints are assumed

h(t) € [0.hmay and |h(t)| <d, @

wherehmax andd are given scalar constants and may be infinite if delay inddget condition and fast-varying

delay condition, respectively, are looked for.

2.2 Stability analysis via quadratic separation

Coming from robust control theory, the quadratic sepangpi@vides a fruitful framework to address the stability
issue of non-linear and uncertain syste@ [, [20]. Reseeries [E)] have shown that a such framework allows
to reduce significantly the conservatism of the stabilitglgsis of time-delay systems with constant delay. Then,
in order to deal with the time-varying delay case, the quadseparation method has been extended]in [2] to
handle not only the case of uncertain matrices but more géypemncertain operators. Indeed, based on the inner
product and thé_,. space a suitable theorem is then proposed. This latter wilater used to derive stability
conditions for time-varying delay systems.

Let consider the interconnection defined by Figﬂlre 1 witeemnd.«7 are two, real valued, possibly non-square
matrices and] is a linear operator frorh,e to Loe. For simplicity of notations, we assume in the present paper
that& is full column rank. Assuming the well-posedness, we areregted in looking for conditions that ensure

the stability of the interconnection.



Theorem 1 The interconnected system of Figﬂe 1 is stable if therdseaigiermitian matrixo = ©* satisfying

both conditions

1% 1

[5‘ —d] e[f —d}>0 3
1 1

Yu € Lo, ( u,© uy<0 (4)
0 0

Proof 1 Inspired from [20], the proof is detailed iff][2].

Basically, inequality|]4) which forms an integral quadtatbnstraint, is built from definitions and informations on
different operators which compose the matrix Then, the other one[|(3) provides the stability conditiorhef

interconnection.

3 MAIN RESULTS

3.1 Defining operators

Toward modeling delay system as an interconnected systelmasillustrated on Figuﬂz 1, itis required to define

appropriate operators. Define the integral operator

I Loe— Loe,
t )
X(t) — [ x(6)de,
0
and the delay operator (or shift operator)
D Lae— Loe,
(6)

X(t) — x(t — h),

which constitute the fundamental elementary operatorgsaiibe a delay system. The related integral quadratic
constraints are introduced in the following two lemmas. Sehkatters will be helpful to construct inequaliﬂ 4)

and to derive then stability criteria for linear systemshaitme-varying delays in the next section.

Lemma 1 An integral quadratic constraint for the operatof is given by the following inequalityx € L5, and

for a positive definite matrix P,

I, -P 0 1,



Proof 2 Simple calculus shows theT > 0,Vx € LY, (x being truncated: {t) =0, Vt > T)

1, 0 -P 1n
( X, X)
1, -P 0 1,
T t
= -2[x(t)TP[x(s)ds
0 0
.
= -2 $(#X)TP(£X)dt

0

= —(Jo x(9)d9P(Jg X(9)ds) <O
The second step is to derive a parameterized IQC for the twpera

Lemma 2 Anintegral quadratic constraint for the operatér is given by the following inequalityT > 0,Vx e L,

and for a positive matrix Q,

( X, . X) <0 @)

Proof 3 We get that’T > 0,Vx € L}, (x being truncated: {t) =0, vt > T)

] 9 "l

71, 0 Q1-h P1n
= — Jo X7 (W) QX(U)dU+ J57x] (1) Qxa(t) (1 — h(t))dt
= — Jo XX+ [T, o xT (U)Qx(u)du
= — [{_pmX(WTQX(Wdu< 0
where x(t) = x(t — h(t)).

In the next paragraph, applying the prior result exposedeictiSn a rate and delay dependent stability

condition for time-varying delay systems is provided.



3.2 Stability condition for time-varying delay systems

First, let us reformulate the dynamic of linear systems wiitie-varying delay as suggested on Figﬂre 1in order

to apply the quadratic separation principle. SystEm (Db=adescribed as the feedback

X(t) S1, X(t)
= ; (8)
X(t—h(t)) 21, X(t)
w(t) O z(t)
over the feedforward equation

10 X(t) A A X(t)

0 1 X(t) 1 0 X(t—h(t))

—— ——

& Z(t) o w(t)

This simplistic description of the systeﬂ1 1 gives rise, g Theorenﬂl, to the well-known independent of
delay (IOD) criterion [IZ][P]. Secondly, so as to developajetiependent condition, an additional operator must
be blended intd], enhancing then the time delay system description. Usuhkyoperatofl — Z)o.# (or in
Laplace domain for the constant delay cébe- e S")s1), bounded bymay is added. This operator is applied to

the signak(t) and the relationship

(1=2)0 I[%(1)] = (1= 2)0 S5 xi(1)]]

=x(t) —x(t—h(t)), i ={1,...n}

should be specified in the linear equatifz(t) = </w(t). In this paper, inspired fromi [15], instead of the integrato

#, a scaling filter of dimension,, of the form

Xg(t) = ApXp(t) +Byu(t),

y(t) = CyXp(t) +Dyu(t),

9)

is considered. The key idea is now to apply the new opefater?) o ¢~ to the filtered signay(t,x(t)) (each

component of the state vecte(t) of system [[L) is processert) = xi(t), i = {1,...,n}):
(1=2)o ¢ y(txi(1)] = (1~ 2) 0 ¢ [glxi(1)]
The dynamical systenﬂ(g) should be designed according tiollogving lemma.

Lemma 3 Anintegral quadratic constraint for the operatgf = (1 — 2)o ¢! is given by the following inequality



Vx € L5, and for a positive definite matrix R,

whereg, defined in[[9), is a realization of any bounded rational s#art functiond which satisfies

D) > 1A, i hadw] > 1+
(10)
|P(jw)| > hmax @], if hma | <1+ ﬁ.

Proof4 In [E], itis shown that for all systemg satisfying the above specificatiohd — %) o ¢ ||, < 1 holds.

It means that for any v, ajfunction,
7V, < Vil
Jo  (Zv(t))T Zv(t) — VT (t)v(t)dt < 0
is satisfied. Defining(¥) = RY?x(t), R being a symmetric positive definite matrix, we have
/'@mmfR?mm_ﬂammmngo
0
Factorizing on both sides b (t) (.#x(t))T] and its transposed, the IQC of the lemma is recovered.

An example ofd(s), proposed by[[15], satisfying (10) is

. ha S+ Chnas
P8 =Kz & T ahmas 1 b -
wherek = ,/8/(2—d), a= 6.5+ 2b, b= /50 andc = v/125.
The time-varying delay systerﬂ (1) is now modeled as thedotarection of
x| [ ox ]
Ro(t %ot
Xo(t) . Xp(t) (12)
x(t—h(t)) X(t)
ow(t) | o |




with 0 = diag(fln,m%m P1a,(1— D)o 40711“) and

A 0 Ay O
Bp Ay 0 0
1n(3+n¢) .
Z(t)y=1 1, 0 0 | w(t) (13)
0 X
D — Dy Cp 0 0
&
i 1, 0 -1 -1 )
o
wherev; (t) = x(t) — x(t — h(t)),
A{p - 1n ®A(p, é(p - 1n®B(p,
é(p = 1n ® C(p, 5(p = ].n ® D(p7
Xop1 @[xq] (14)
Ry = ;oM = ,
Xon @[Xn]

X; are the components of the state vectoNote that there is one filter of dimensiop associated to each. At

this point, refering to the quadratic separation approﬁibbprenﬂl may be applied.

Theorem 2 For given positive scalarsux and d, if there exists positive definite matrices R"1+Me)<n(1+ng)
and Q, Re R™", then systen[kl) with a time varying delay constrained:bys(a}symptotically stable if the LMI
condition (B) holds witt® (settingh = d), & and.«7 defined as[(15) and (L3).

Proof 5 First, condition ﬂl) must be satisfied far defined as@Z). Invoking all Lemmas previously defined and
combining all inequalities related to each operator, it &dily seen that the separat15) fulfills the inequality

@), where
@ll = dlaqon(l+n¢)a _Q7 _R)7
©11 O .
0= ;, O = dlaq—P,Ozn), (15)
O, 02 . .
O = d|aq0n(1+n(p), (1 — h)Q, R),

and Pe R+ xn(1+9) and QR € R™M are positive definite matrices. It is readily seen that ireiy (7) still
holds forh = d. Hence, regarding the separat@j, can be chosen adiag(0, (1 — d)Q,R). Then, the filtekp may
be chosen as a realization 11) defined by

_ 0 1 0
Xgi(t) = X . Xgi (1) + u(t)
“Ro o 1 :

héhax Nmax

yi(t) = { __gl ke—ka ]x<pi(t)+ku(t)



where %, i = {1,...,n}, represents the different states of the same filter accorttirtpe different inputs ) =
{xa(t),...,xn(t)}. Considering Theoref] 1 where the interconnection is giweiB)-{12), and[{4) being proved,
the LMI @) forms the stability criterion.

3.3 Model extension

Previous Works[||5] ano[[3],[[9] have shown that redundantesysmodeling (for linear uncertain systems and
constant delay systems, respectively) may increase tbeamty of the stability analysis. The rational behind
this model extension is to provide some extra relations beiwthe delay, its variations and the state. Using
the derivative operator, an augmented state is construdtézh is composed of the original state vector and its
derivatives. Then defining relationship between augmestttes, X, the delayh and its derivativéd an enhanced

stability condition is provided. Differentiating the sgst ﬂ), we get:
K(t) = AX(t) + (1— h(t))AgX(t — h(t)).
Consider the artificially augmented system

X(t) = AX(t) + Agx(t — h(t)),

. (16)
X(t) = AX(t) + (1= h(t))Aax(t — h(t)),

with accordingly defined initial conditions. Introducintggtaugmented state

and specifying the relationship between the two compora$t) with the equalityi0 1] (t) = [1 0]Z(t), we

have the new descriptor augmented system

EJ(t) = AZ(t) +Agd(t—h(t)), (17)
where
10 A 0 Aq 0
E=|0 1|.A=]|0 A|.A=| 0 (1-hA
10 0 1 0 0



Then, the new time-varying delay systefn|(17) can be shapEijase[l with

RO ROR
%(t) =081, ® (18)
{(t—h(t)) ()
v | | #lq) |
a0 e
and ) )
A 0 Ay O
Bp A, 0 0
diag( E, 1on(2-4n
29(E Larainy) 2= 1, 0o o o0 |w (19)
0
Dy €, 0 O
&
L 1, 0 -1 —1_
o
wherev,(t) = (t) — {(t — h(t)), O defined as[(]2) and redefining
Ay = 1am®Ay, By = 15,®By,
é(p = 12n®C(p7 Iqu = 12n®D(p7
P[xq]
Xg1 @[xq] (20)
Rp = ol el = :
Xg2n @[%n]
_¢[Xn]_

Following the same line than in the previous section, we psep

Theorem 3 For given positive scalarsjiy and d, if there exists positive definite matrices R2"(1+g)x2n(1+ng)

Q, Re R?™2 and a matrix Xe R2"6+200)xn(7+2%) ' then systen{|1) with a time varying delay constrainedpy (2)

is asymptotically stable if the LMI condition
ol X -+ (x[¢ -7 >0

holds for j= 1,2, with & and .« defined as[(39)O is of the form of[(15) with appropriate dimensio®!i! and
Il are the vertices of, respective,and .o/ settingh(t) =dj. The constraint|]2) givesid= —d and ¢ =d.



Proof 6 First, It follows the same idea that the one of Theoﬂam 2. dethe stability 0f|@7) will be proved if

{ & —d(h(t)) r@(ﬁ(t))[ & —a(h(t)) ]L >0

with &, <7 defined a59) an@ is of the form of5) with appropriate dimension. Applyihg Finsler’'s lemma,

the above inequality is equivalent to
O(h(t) +X[& —«(h(t)]+ (X[& —«/(h(t)])" >0 (21)

where X is a new decision variable of appropriate dimensioﬁmce,h(t) appears linearly and is bounded,
invoking argument of convexity, it is sufficient to t (8d)its vertices. The inequality proposed by Theorem
E is thus recovered. SysteEl(l?) being stable, the whole &(gt converges asymptotically to zero. Hence, its

components(x) converge as well. The original systeﬂ1 (1) is thus also asytieptly stable.

3.4 Robustness issue

Coming from robust control, quadratic separation proviasitable framework to address the stability analysis

of uncertain delay systems:

X(t) = A(Q)x(t) + Adg(B)x(t —h(t)) (22)

where
A A=A A ]rEslcoq

The second term of the right hand side of the above equatistrithes the uncertainty characterizing systE\ (22).

The uncertain time-varying matri, belonging toQ, satisfies
AT(DA(t) <1, vt>0, VA€ Q, (23)

and models non-linear and neglected dynamics as well asng#éiia uncertainties.C, Cy andB are constant
matrices of appropriate dimensions which structure theettamty. Then, according to the set of admissible

uncertainties and (P3), we have to find a sepatdteuch that

1 Ui U 1
( X, X) <0, VA€ Q. (24)
A Us; Us A

u



For instance, assuntigis a set of diagonal real valued matrices with bounded uaicgigs:
Q= {A=diagd,...on) | || <3},
Then, inequality[(24) holds with
U= diag(—é_ful,...,—q_ﬁuN,ul,...,uN)

wherevu;, i = {1,...,N} are scalar decision variables. Eventually, we propose &lyae the robust stability of

system [2) with the following Theorem.

Theorem 4 For given positive scalarsuy and d, if there exists positive definite matrices R"1+Ne)<n(1+ng)

Q, Re R™" and matrices Y (k = 1,2, 3) designed according to the uncertain €2fi.e. such that @4) holds),
then systean) with a time varying delay constrainecﬂbjs(ﬁt)bustly asymptotically stable for any uncertainty
A € Q if the LMI condition [B) holds witl®, & and.«7 defined as[(36) and (p5).

Proof 7 First, introducing the exogenous signals
wp = Az, with zy = CX(t) +Cgx(t — h(t)),

we rewritte systen] (P2) as the interconnection of

w(t) 2(t)
With 0= (710, 7 Lpgn, Z1p, # 1,4 ) and
A 0 A 0 B
Bp A, 0 0 O
1 1, 0 0 0 0
n(3+ng)+na Z(t) _ ) ) W(t) (25)
0 Dy Co6 0 0 0
———— ——
& 0 CG 0 o
1, 0 -1 -1 0




Table 1: The maximal allowable delakis for system )
d | o Joi1]o2]o5]o08] 1 |
Fridman et al (2002)[7]| 4.472| 3.604 | 3.033| 2.008 | 1.364 | 0.999
Fridman et al (2006)[8]| 1.632| 1.632| 1.632| 1.632| 1.632| 1.632
Wu et al (2004)[28] || 4.472| 3.604 | 3.033| 2.008| 1.364| -
He etal (2007)[[11] || 4.472| 3.605| 3.039| 2.043| 1.492| 1.345
He etal (2007)[[12] || 4.472| 3.605| 3.039| 2.043| 1.492| 1.345
Ariba et al (2007)[[1] || 5.120| 4.081 | 3.448| 2.528 | 2.152| 1.991
Kao et al (2007)[[15] || 6.117| 4.714| 3.807| 2.280| 1.608| 1.360
Theoren{p 6.117| 4.714| 3.807| 2.280| 1.608| 1.360
Theoren[B 6.117| 4.794| 3.995| 2.682| 1.957| 1.602

with notations of@4). Combining every IQC related to eaplkrators defined by lemmas and the struture of the

uncertainty leading tom4), a separator of the form

ell = dlaqon(lJrnq,)v_Qa_RaUl)a
©11 Oz _
0= , O =diag(—P,02n,U>), (26)
01, O .
622 = dlaqon(lJrnq;)v (1 - d)Qa Rv U3)a

fulfills the requiremenl[[4). Finally, conditioﬁ|(3) prod the robust (with respect to the uncertain@gstability

criterion.

4 NUMERICAL EXAMPLES

4.1 Example 1

Consider the following system,

X(t) = X(t) + X(t —h(t)). (27)
0 -09 -1 -1

For variousd, the maximal allowable delayinax is computed. To demonstrate the effectiveness of our
criterion, results are compared against those obtaindukititerature (see Tab@ 1). On this example, compared
to Lyapunov technics, robust approach@ [15], Theq]em @amdjuce drastically the conservatism, especially

whend is close to zera.e. when the delay is slowly time varying. Using the same scdiiitey for bounding
operators Theorevlﬂ 2 recovers the results@f [15], Whereaer'éh‘[B, taking into account the derivative equation,
reduces the conservatism. Indeed, the stability analgdigtiher improved thanks to an appropriate modeling of

time-varying delay systems which brings additional infatimns on the system.



Table 2: The maximal allowable delakg for system )
| d | o | o1]o05] 08
(L6 0.241| 0.234| 0.188| 0.110
VE| 1.149| 1.106 | 0.924| 0.760
(5] 1.416| 1.302| 0.974| 0.829

Theoren‘[|4 1.515| 1.422| 1.105| 0.910

4.2 Example 2

Consider now the following time-varying and uncertain eyst extracted froan],

(1) = —2+ 4 coqt) 0 ()
0 —1+ &psin(t)
(28)
—1+ ycodt) 0 X(t — h(t)).
-1 —1+ ypsin(t)

Thed andy are uncertain but bounded parameters:
181/ < 16, 8] < 0.05, |y1] <0.1, |ys| <03
This example can be expressed as sysfein (22) with

-2 0 -1 0
0 -1 -1 -1

B=1,, C=diag(1.6, 0.05), Cq = diag(0.1, 0.3).

Results are summarized in Tafle 2. It shows that Thedfemdlemto find higher maximal bounds on the delay
h(t) than others results from the literature. The quadraticregjoa offers thus a suitable framework to address

uncertainties. In that case, the conservatism is alscetlatthe manner to handle uncertainties (as the design of

[®4)).

5 CONCLUSIONS

In this paper, the problem of the delay dependent stabitighgsis of a time-varying delay systems has been studied
by means of quadratic separation. The delay part is embedtiean uncertain matrix of operators. Inspired from
[B] and ], tight bounds of the, induced norms of operators allow to reduce the conservatighe approach.

Then using an augmented state, new modelling of time dektgs)s are introduced which emphasizes the relation



betweerh and signalx andX. The resulting criteria are then expressed in terms of aeoaptimization problem
with LMI constraints, allowing the use of efficient solver&inally, two numerical examples show that these

methods reduced conservatism and improved the maximalatie delay.
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